Maximum scattered \mathbb{F}_q-linear sets of PG(1, q^4)

Bence Csajbók and Corrado Zanella

October 23, 2019

Abstract

There are two known families of maximum scattered \mathbb{F}_q-linear sets in PG(1, q^t): the linear sets of pseudoregulus type and for $t \geq 4$ the scattered linear sets found by Lunardon and Polverino. For $t = 4$ we show that these are the only maximum scattered \mathbb{F}_q-linear sets and we describe the orbits of these linear sets under the groups PGL(2, q^4) and PΓL(2, q^4).

1 Introduction

Recent investigations on linear sets in a finite projective line PG(1, q^t) of rank t concerned: the hypersurface obtained from the linear sets of pseudoregulus type by applying field reduction [12]; a geometric characterization of the linear sets of pseudoregulus type [9]; a characterization of the clubs, that is, the linear sets of rank r with a point of weight $r - 1$ [13]; a generalization of clubs in order to construct KM-arcs [10]; a condition for the equivalence of two linear sets [8, 18]; the definition and study of the class of a linear set in order to study their equivalence [7]; a construction method which yields MRD-codes from maximum scattered linear sets of PG(1, q^t) [17]. Furthermore, the linear sets in PG(1, q^t) coincide with the so-called splashes of subgeometries [13]. The results of such investigations make it reasonable to attempt to classify the linear sets in PG(1, q^t) of rank t for small t.

A point in PG(1, q^t) is the \mathbb{F}_{q^t}-span $\langle v \rangle_{\mathbb{F}_{q^t}}$ of a nonzero vector v in a two-dimensional vector space, say W, over \mathbb{F}_{q^t}. If U is a subspace over \mathbb{F}_q of

*The research was supported by Ministry for Education, University and Research of Italy MIUR (Project PRIN 2012 “Strutture Geometriche, Combinatoria e loro applicazioni”) and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA–INdAM).
Let q be a prime power, $t \geq 4$ an integer, $b \in \mathbb{F}_{q^t}$ such that the norm $N_{q^t/q}(b)$ of b over \mathbb{F}_q is distinct from one, and

$$U(b,t) = \{(u, bu^q + u^{q^t-1}) : u \in \mathbb{F}_{q^t}\}.$$ \hspace{1cm} (1)

If $b \neq 0$ then $L_{U(b,t)}$ is a maximum scattered \mathbb{F}_{q^t}-linear set in $\operatorname{PG}(1,q^t)$ and if $q > 3$, then it is not of pseudoregulus type.

It can be directly seen that $L_{U(0,t)}$ is maximum scattered of pseudoregulus type. For $t = 4$, Theorem 1.1 can be extended to $q = 3$, as it can be checked by using the package FinInG of GAP [3]. In the following $t = 4$ is assumed. For all $b \in \mathbb{F}_{q^t}$ define

$$U(b) = U(b,4) = \{(x, bx^q + x^{q^3}) : x \in \mathbb{F}_{q^4}\}.$$ \hspace{1cm} (2)

In section 2 it is shown that $N_{q^t/q}(b) \neq 1$ is a necessary condition to obtain scattered linear sets of $\operatorname{PG}(1,q^4)$ and the case $N_{q^t/q}(b) = 1$ is dealt with. In this case, $L_{U(b)}$ contains either one or $q + 1$ points of weight two, and the remaining points have weight one.

The main result in section 3 is that if L is a maximum scattered linear set in $\operatorname{PG}(1,q^4)$, then L is projectively equivalent to $L_{U(b)}$ for some $b \in \mathbb{F}_{q^4}$ with $N_{q^t/q}(b) \neq 1$ (cf. Theorem 3.1).
In section 4 the orbits of the \mathbb{F}_q-linear sets of rank four in $\text{PG}(1, q^4)$ of type $L_{U(b)}$, under the actions of both $\text{PGL}(2, q^4)$ and $\text{PGL}(2, q^4)$, are completely characterized. Such orbits only depend on the norm $b^d + 1$ of b over \mathbb{F}_q. In particular, $\text{PG}(1, q^4)$ contains precisely $q(q - 1)/2$ maximum scattered linear sets up to projective equivalence (Theorem 4.3), one of them is of pseudoregulus type, the others are as in Theorem 1.1.

2 Classification

This section is devoted to the classification of all $L_{U(b)}$ for $b \in \mathbb{F}_q^4$, where $U(b)$ is as in (2).

Theorem 2.1. For $b \in \mathbb{F}_q^4$ the following holds.

1. If $N_{q^4/q}(b) \neq 1$, then $L_{U(b)}$ is scattered.

2. If $N_{q^4/q}(b) = 1$, then $L_{U(b)}$ has a unique point with weight two, the point $\langle (1, 0) \rangle_{\mathbb{F}_q^4}$, and all other with weight one.

3. If $N_{q^4/q}(b) \neq 1$ and $N_{q^4/q}(b) = 1$, then $L_{U(b)}$ has $q + 1$ points with weight two and all other with weight one.

Proof. Put $f_b(x) = bx^q + x^{q^3}$. For $x \in \mathbb{F}_q^4$ the point $P_x := \langle (x, f_b(x)) \rangle_{\mathbb{F}_q^4}$ of $L_{U(b)}$ has weight more than one if and only if there exists $y \in \mathbb{F}_q^4$ and $\lambda \in \mathbb{F}_q^4 \setminus \mathbb{F}_q$ such that $\lambda(x, f_b(x)) = (y, f_b(y))$. This holds if and only if $y = \lambda x$ and

$$\lambda bx^q + \lambda x^{q^3} - \lambda^q bx^q - \lambda^{q^3} x^{q^3} = 0. \quad (3)$$

For a given x the solutions in λ of (3) form an \mathbb{F}_q-subspace whom rank equals to the weight of the point P_x. Since q-polynomials over \mathbb{F}_q^4 of rank 1 are of the form $\alpha \text{Tr}_{q^4/q}(\beta x) \in \mathbb{F}_{q^4}[x]$, it is clear that the kernel of the \mathbb{F}_q-linear map in the variable λ at the left-hand side of (3) has dimension at most two and hence the weight of each point of $L_{U(b)}$ is at most two. If (λ, x) is a solution of (3) for some $\lambda \in \mathbb{F}_q^4$ and $x \in \mathbb{F}_{q^2}^4$, then (λ', x') is also a solution for each $\lambda' \in \langle 1, \lambda \rangle_{\mathbb{F}_q}$ and $x' \in \langle x \rangle_{\mathbb{F}_{q^2}}$ and hence for each $\mu \in \mathbb{F}_{q^2}^*$ if P_x has weight two, then $P_{\mu_x} := \langle (\mu x, f_b(\mu x)) \rangle_{\mathbb{F}_q^4}$ has weight two as well. Note that $P_{\mu x} = \langle (1, \mu^{q^2-1}(bx^{q^2-1} + x^{q^3-1})) \rangle_{\mathbb{F}_q^4}$ and hence if $P_x \neq \langle (1, 0) \rangle_{\mathbb{F}_q^4}$ has weight two, then $\{P_{\mu x} : \mu \in \mathbb{F}_{q^2}^*\}$ is a set of $q + 1$ distinct points with weight 2.

The function $f_b(x)$ is not \mathbb{F}_{q^2}-linear and hence the maximum field of linearity of $L_{U(b)}$ is \mathbb{F}_q. It follows (cf. [7, Proposition 2.2]) that $L_{U(b)}$ has
at least one point with weight one, say \((x_0, f_b(x_0))\). Then the line of \(\text{AG}(2, q^4)\) with equation \(x_0 Y = f_b(x_0) X\) meets the graph of \(f_b(x)\), that is, \(\{(x, f_b(x)) : x \in \mathbb{F}_{q^4}\}\), in exactly \(q\) points. It follows from [12], see also [3], that the number of directions determined by \(f_b(x)\) is at least \(q^2 + 1\), and hence also \(|L_{U(b)}| \geq q^3 + 1\). Denote by \(w_1\) and \(w_2\) the number of points of \(L_{U(b)}\) with weight one and two, respectively. Then

\[
w_1 + w_2 = |L_{U(b)}| \geq q^3 + 1, \tag{4}
\]

\[
w_1(q - 1) + w_2(q^2 - 1) = q^4 - 1. \tag{5}
\]

Subtracting (4) \((q - 1)\)-times from (5) gives \(w_2(q^2 - q) \leq q^3 - q\) and hence \(w_2 \leq q + 1\). At this point it is clear that in \(L_{U(b)}\) there is either one point with weight two, the point \(\langle (1, 0) \rangle_{\mathbb{F}_{q^4}}\), or there are exactly \(q + 1\) of them and \(\langle (1, 0) \rangle_{\mathbb{F}_{q^4}}\) is not one of them.

If \(N_{q^4/q}(b) \neq 1\), then Theorem [11] states that \(L_{U(b)}\) is scattered. We show that \(\langle (1, 0) \rangle_{\mathbb{F}_{q^4}}\) has weight two if and only if \(N_{q^4/q^2}(b) = 1\). Note that the weight of this point is the dimension of the kernel of \(f_b(x)\). If \(f_b(x) = 0\) for some \(x \in \mathbb{F}_{q^4}^*\), then \(b = -x^{q^4-q}\) and hence, by taking \((q^2 + 1)\)-th powers at both sides, \(N_{q^4/q^2}(b) = 1\). On the other hand, if \(N_{q^4/q^2}(b) = 1\), then \(b = w^{2q-1}\) for some \(w \in \mathbb{F}_{q^4}^*\). Let \(\varepsilon\) be a non-zero element of \(\mathbb{F}_{q^4}\) such that \(\varepsilon^{q^2} + \varepsilon = 0\). Then it is easy to check that the kernel of \(f_b(x)\) is \(\langle (\varepsilon w)^{q^3} \rangle_{\mathbb{F}_{q^2}}\) which has dimension two over \(\mathbb{F}_q\) and hence \(\langle (1, 0) \rangle_{\mathbb{F}_{q^4}}\) has weight two.

It remains to prove that if \(N_{q^4/q}(b) = 1\) and \(N_{q^4/q^2}(b) \neq 1\), then there is at least one point (hence precisely \(q + 1\) points) of weight two. After rearranging in (3), we obtain

\[
(\lambda - \lambda^q)q^3 - 1 = bx^{q^2-q^3}. \tag{6}
\]

By taking \((q^2 + 1)\)-th powers on both sides we can eliminate \(x\), obtaining

\[
(\lambda - \lambda^q)(q^3 - 1)(q^2 + 1) = (\lambda - \lambda^q)(q - 1)(q^2 + 1) = b^{q^2 + 1}. \tag{7}
\]

It is clear that we can find \(\lambda \in \mathbb{F}_{q^4} \setminus \mathbb{F}_q\) satisfying (7) if and only if there exists \(\varepsilon \in \mathbb{F}_{q^4}^*\) such that

\[
(\lambda - \lambda^q)q^2 - 1 / b = \varepsilon^{q^2 - 1}. \tag{8}
\]

Then \(x \in \langle \varepsilon^{q^3} \rangle_{\mathbb{F}_{q^2}}\) with \(y = \lambda x\) satisfies our initial conditions in (3).
Now use $N_{q^4/q}(b) = 1$ and put $b = \mu^{q-1}$ for some $\mu \in F_{q^4}^{\ast}$. Then (7) can be written as

$$\left(\frac{\lambda - \lambda^q}{\mu} \right)^{(q-1)(q^2+1)} = 1.$$ \hspace{1cm} (9)

We can solve (9) if and only if there exists $\delta \in F_{q^4}^{\ast}$ such that

$$\left(\frac{\lambda - \lambda^q}{\mu} \right)^{q-1} = \delta^{q^2-1}, \hspace{1cm} (10)$$

or, equivalently,

$$\left\langle \frac{\lambda - \lambda^q}{\mu} \right\rangle_{F_q} = (\delta^{q^2+1})_{F_q}. \hspace{1cm} (11)$$

Now we will continue in $PG(F_{q^4}, F_q) = PG(3,q)$. At the left-hand side of (11) we can see a point of the hyperplane H_μ defined as

$$H_\mu = \{ \langle z \rangle_{F_q} : \text{Tr}_{q^4/q}(\mu z) = 0 \},$$

while on the right-hand side we can see a point of the elliptic quadric Q defined as

$$Q = \{ \langle z \rangle_{F_q} : z^{(q-1)(q^2+1)} = 1 \}.$$

For a proof that Q is an elliptic quadric see [5, Theorem 3.2]. Since $Q \cap H_\mu \neq \emptyset$ it follows that we can always find $\lambda \in F_{q^4} \setminus F_q$ satisfying (10) and hence $L_{U(b)}$ is not scattered.

\[\square\]

Remark 2.2. The linear sets in Theorem 2.1 are of sizes $q^3 + q^2 + q + 1$, $q^3 + q^2 + 1$, or $q^3 + 1$. The linear set associated with $\{(x, \text{Tr}_{q^4/q}(x)) : x \in F_{q^4}\}$ is of size $q^3 + 1$ as well. As it turns out from [7] the projective line $PG(1, q^4)$ also contains F_q-linear sets of size $q^3 + q^2 - q + 1$.

3 The canonical form

In this section L denotes a maximum scattered F_q-linear set in $PG(1, q^4)$, not of pseudoregulus type. In particular, this implies $q > 2$. By [15], L is a projection $p_\ell(\Sigma)$, where the vertex ℓ is a line and Σ is a q-order canonical subgeometry1 in $PG(3, q^4)$, with $\ell \cap \Sigma = \emptyset$. The axis of the projection

\[1\text{Let } PG(V, F_{q^4}) = PG(n-1, q^4), \text{let } U \text{ be an } n \text{-dimensional } F_q \text{-vector subspace of } V, \text{and } \Sigma = \{ \langle u \rangle_{F_{q^4}} : u \in U \setminus \{0\} \}. \text{ If } (\Sigma) = PG(n-1, q^4), \text{ then } \Sigma \text{ is a } (q \text{-order) canonical subgeometry of } PG(n-1, q^4). \text{ Here and in the following, angle brackets } (\langle \cdot \rangle) \text{ without a subscript denote projective span in } PG(n-1, q^4), \text{ that is, } PG(3, q^4) \text{ in our case.} \]
is immaterial and can be chosen by convenience. Let σ be a generator of the subgroup of order four of $\text{PGL}(4, q^4)$ fixing pointwise Σ. Let M be a k-dimensional subspace of $\text{PG}(3, q^4)$. We say that M is a subspace of Σ if $M \cap \Sigma$ is a k-dimensional subspace of Σ, which happens exactly when $M^{\sigma} = M$.

Proposition 3.1. Let Σ' be the unique q^2-order canonical subgeometry of $\text{PG}(3, q^4)$ containing Σ, that is, the set of all points fixed by σ^2. Then the intersection of ℓ and Σ' is empty.

Proof. Assume the contrary, that is, there exists a point P in $\ell \cap \Sigma'$. Then $P^{\sigma^2} = P$, the subspace $\ell_P = \langle P, P^{\sigma} \rangle$ is a line, and satisfies $\ell_P^{\sigma} = \ell_P$, whence ℓ_P is a line of Σ. This implies that $p(\ell_P)$ is a point, and L is not scattered. \square

Let K and K' be the Klein quadrics representing – via the Plücker embedding – the lines of Σ and Σ'. In order to precisely define φ, take coordinates in $\text{PG}(3, q^4)$ such that Σ (resp. Σ') is the set of all points with coordinates rational over F_q (resp. F_{q^2}), and define the image r^{φ} of any line r through minors of order two in the usual way. Then $\mathcal{K} = \mathcal{K'} \cap \text{PG}(5, q)$ by considering $\text{PG}(5, q)$ as a subset of $\text{PG}(5, q^2)$. The only nontrivial element of the subgroup of $\text{PGL}(6, q^2)$ fixing $\text{PG}(5, q)$ pointwise is

$$
\tau : \left((x_0, x_1, x_2, x_3, x_4, x_5) \right)_{F_{q^2}} \mapsto \left((x_0^q, x_1^q, x_2^q, x_3^q, x_4^q, x_5^q) \right)_{F_{q^2}}.
$$

Then $K_2' = K_2$, and $\sigma^{\varphi} = \varphi^{\tau}$.

Proposition 3.2. Let S be a solid in $\text{PG}(5, q^2)$ such that (i) $S \cap K' \cong Q^-(3, q^2)$, (ii) $S \cap K = \emptyset$. Then $S \cap S^{\tau} \cap K'$ is a set of two distinct points forming an orbit of τ.

Proof. If $\dim(S \cap S^{\tau}) \geq 2$, then $S \cap S^{\tau}$ contains a plane of $\text{PG}(5, q)$. Each plane of $\text{PG}(5, q)$ meets \mathcal{K} in at least one point of $\text{PG}(5, q)$, contradicting (ii). Then $r = S \cap S^{\tau}$ is a line fixed by τ, so it is a line of $\text{PG}(5, q)$. This r is external to the Klein quadric \mathcal{K} by (ii), hence it meets $\mathcal{K'}$ in two points. Since both of $\mathcal{K'}$ and r are fixed by τ the assertion follows. \square

Proposition 3.3. There is a line r in $\text{PG}(3, q^4)$, such that r and r^{σ^2} are skew lines both meeting ℓ, and $r^{\sigma^2} = r$.

Proof. Let Σ and Σ' be as in Proposition 3.1. Since $\ell \cap \Sigma' = \emptyset$, ℓ defines a regular (Desarguesian) spread \mathcal{F} of Σ'. The lines of \mathcal{F} are all lines $\langle P, P^{\sigma^2} \rangle \cap \Sigma'$ where $P \in \ell$. The image \mathcal{F}^{φ} under the Plücker embedding of \mathcal{F} is an
elliptic quadric \(S \cap K' \cong Q^{-}(3, q^{2}) \) in \(\text{PG}(5, q^{2}) \), \(S \) a solid. Since \(L \) is scattered, there is no line of \(F \) fixed by \(\sigma \), whence \(S \cap K = \emptyset \). Then the assertion follows from Proposition 3.2.

Theorem 3.4. Any maximum scattered linear \(F_{q} \)-linear set in \(\text{PG}(1, q^{4}) \) is projectively equivalent to \(L_{U(b)} \) for some \(b \in F_{q^{4}} \), \(N_{q^{4}}(b) \neq 1 \).

Proof. The set \(L_{U(0)} \) is a linear set of pseudoregulus type. Now assume that \(L = p_{\ell}(\Sigma) \) is maximum scattered, not of pseudoregulus type. Coordinates \(X_{0}, X_{1}, X_{2}, X_{3} \) in \(\text{PG}(3, q^{4}) \) can be chosen such that

\[
\Sigma = \{(u, u^{q}, u^{q^{2}}, u^{q^{3}}) \}_q : u \in F_{q^{4}}^*, \quad (13)
\]

and a generator of the subgroup of \(\text{PGL}(4, q^{4}) \) fixing \(\Sigma \) pointwise is

\[
\sigma : \langle (x_{0}, x_{1}, x_{2}, x_{3}) \rangle_{F_{q^{4}}} \mapsto \langle (x_{0}^{q}, x_{1}^{q}, x_{2}^{q}, x_{3}^{q}) \rangle_{F_{q^{4}}}. \quad (14)
\]

Define \(C = \ell \cap r \), where \(r \) is as in Proposition 3.3. The points \(C \) and \(C^{q^{2}} \) lie on \(r \), as well as the points \(C^{q} \) and \(C^{q^{3}} \) on \(r^{q} \). By Proposition 3.1, \(C \neq C^{q^{2}} \) and \(C^{q} \neq C^{q^{3}} \). This implies \(\ell \subset \langle C, C^{q}, C^{q^{3}} \rangle \), and \(\langle C, C^{q}, C^{q^{2}}, C^{q^{3}} \rangle = \text{PG}(3, q^{4}) \). Since the stabilizer of \(\Sigma \) in \(\text{PGL}(4, q^{4}) \) acts transitively on the points \(C \) of \(\text{PG}(3, q^{4}) \) such that \(\langle C, C^{q}, C^{q^{2}}, C^{q^{3}} \rangle = \text{PG}(3, q^{4}) \) [4, Proposition 3.1], it may be assumed that \(C = \langle (0, 0, 1, 0) \rangle_{F_{q^{4}}} \), whence

\[
\ell = \langle (0, 0, 1, 0), (0, a, 0, -b) \rangle_{F_{q^{4}}},
\]

for some \(a, b \in F_{q^{4}} \), not both of them zero. If \(a = 0 \), then \(L \) is of pseudoregulus type [3, Theorem 2.3], so \(a = 1 \) may be assumed. For any point \(P_{u} = \langle (u, u^{q}, u^{q^{2}}, u^{q^{3}}) \rangle_{F_{q^{4}}} \) in \(\Sigma \), the plane containing \(\ell \) and \(P_{u} \) has coordinates \([u^{q^{3}} + bu^{q}, -bu, 0, -u] \), and this leads to the desired form for the coordinates of \(L \).

4 Orbits

Analogously to the definition of the \(\Gamma L \)-class of linear sets (cf. Definition 2.4 in [7]) we define the \(GL \)-class, which will be needed to study \(\text{PGL}(2, q^{4}) \)-equivalence. Note that for any scattered \(F_{q} \)-linear set the maximum field of linearity is \(F_{q} \).

Definition 4.1. Let \(L_{U} \) be an \(F_{q} \)-linear set of \(\text{PG}(1, q^{t}) \) of rank \(t \) with maximum field of linearity \(F_{q} \). We say that \(L_{U} \) is of \(\Gamma L \)-class \(s \) [resp.
GL-class s if s is the largest integer such that there exist \mathbb{F}_q-subspaces U_1, U_2, \ldots, U_s of \mathbb{F}_q^2 with $L_{U_i} = L_U$ for $i \in \{1, 2, \ldots, s\}$ and there is no $\varphi \in GL(2, q^4)$ (resp. $\varphi \in GL(2, q^2)$) such that $U_i = U_j^\varphi$ for each $i \neq j$, $i, j \in \{1, 2, \ldots, s\}$.

The first part of the following result is [7, Theorem 4.5], while the second part follows from its proof. We briefly summarize the main steps of the proof from [7].

Theorem 4.2. [7, Theorem 4.5] Each \mathbb{F}_q-linear set of rank four in $PG(1, q^4)$, with maximum field of linearity \mathbb{F}_q, is of GL-class one. More precisely, if $L_U = L_V$ for some 4 dimensional \mathbb{F}_q-subspaces U, V of \mathbb{F}_q^4, then there exists $\varphi \in GL(2, q^4)$ such that $U^\varphi = V$. Also, φ can be chosen such that it has companion automorphism either the identity, or $x \mapsto x^{q^2}$.

Proof. Assume $L_U = L_V$. We may assume $\langle (0, 1) \rangle_{\mathbb{F}_{q^4}} \notin L_U$. Then $U = U_f = \{ (x, f(x)) : x \in \mathbb{F}_{q^4} \}$ and $V = V_g = \{ (x, g(x)) : x \in \mathbb{F}_{q^4} \}$ for some q-polynomials f and g over \mathbb{F}_{q^4}. By [7, Proposition 4.2], either $g(x) = f(\lambda x)/\lambda$, or $g(x) = \hat{f}(\lambda x)/\lambda$ for some $\lambda \in \mathbb{F}_{q^4}^*$, where here \hat{f} denotes the adjoint map of f with respect to the bilinear form $\langle x, y \rangle := Tr_{q^4/q}(xy)$. The \mathbb{F}_{q^4}-linear map $v \mapsto \lambda v$ maps U_φ to one of U_f, or U_f. In the proof of [7, Theorem 4.5], a $\kappa \in GL(2, q^4)$ with companion automorphism the identity, or $x \mapsto x^{q^2}$ is determined such that $U_\kappa = U_f$. \hfill \square

Theorem 4.3. For any $b \in \mathbb{F}_{q^4}$, $L_{U(b)}$ is of GL-class one.

Proof. By Theorem 4.2 if $L_{U(b)} = L_V$, then there exists $\varphi \in GL(2, q^4)$ such that $U(b)^\varphi = V$ and the companion automorphism of φ is $x \mapsto x^{q^2}$, or the identity. In order to prove the statement it is enough to show that $U(b)$ and $U(b)^{q^2} = \{ (x^{q^2}, y^{q^2}) : (x, y) \in U(b) \}$ lie on the same orbit of $GL(2, q^4)$. If $b = 0$, then $U(b) = U(b)^{q^2}$. If $b \neq 0$, then for any $u \in \mathbb{F}_{q^4}$,

\[
\begin{pmatrix}
 b^{q^3} & 0 \\
 0 & b^{q^2} \\
 b u^q + u^{q^3} & b v^q + v^{q^3}
\end{pmatrix}
\begin{pmatrix}
 u \\
 b u^q + u^{q^3} \\
 v
\end{pmatrix}
= \begin{pmatrix}
 b^{q^3} & 0 \\
 0 & b^{q^2} \\
 b v^q + v^{q^3} & b v^q + v^{q^3}
\end{pmatrix}
\begin{pmatrix}
 b^{q^3} u^{q^2} \\
 b^{q^2} u^{q^2} + b u^{q^2} q^3 \\
 v
\end{pmatrix}^{q^2},
\]

with $v = b u^{q^2}$. \hfill \square

Corollary 4.4. Let $b, c \in \mathbb{F}_{q^4}$. The linear sets $L_{U(b)}$ and $L_{U(c)}$ are projectively equivalent if and only if $U(b)$ and $U(c)$ are in the same orbit under the action of $GL(2, q^4)$.

8
Proof. The “if” part is obvious, so assume that $L_{U(b)}^\kappa = L_{U(c)}$ where $\kappa \in \text{GL}(2, q^4)$. Then $L_{U(b)}^\kappa = L_{U(c)}$ and by Theorem 4.3 there is $\kappa' \in \text{GL}(2, q^4)$ such that $U(b)^{\kappa \kappa'} = U(c)$. □

It follows that in order to classify the F_{q^4}-linear sets $L_{U(b)}$ up to $\text{PGL}(2, q^4)$ and $\text{PTL}(2, q^4)$-equivalence, it is enough to determine the orbits of the subspaces $U(b)$ under the actions of $\Gamma L(2, q^4)$ and $\text{GL}(2, q^4)$.

Theorem 4.5. Let q be a power of a prime p.

(i) For any $b, c \in F_{q^4}$, $L_{U(b)}$ and $L_{U(c)}$ are equivalent up to an element of $\text{PTL}(2, q^4)$ if and only if $c^{q^2+1} = b^{p^s(q^2+1)}$ for some integer $s \geq 0$.

(ii) For any $b, c \in F_{q^4}$, the linear sets $L_{U(b)}$ and $L_{U(c)}$ are projectively equivalent if and only if $c^{q^2+1} = b^{q^2+1}$ or $c^{q^2+1} = b^{-q(q^2+1)}$.

(iii) All linear sets described in 2. of Theorem 2.1 are projectively equivalent.

(iv) There are precisely $q(q-1)/2$ distinct linear sets up to projective equivalence in the family described in 1. of Theorem 2.1 and these are the only maximum scattered linear sets of $\text{PG}(1, q^4)$.

(v) There are precisely q distinct linear sets up to projective equivalence in the family described in 3. of Theorem 2.1.

Proof. Take $b \in F_{q^4}^*$. If $L_{U(b)}$ is not scattered, then it clearly cannot be equivalent to $L_{U(0)}$ (the scattered linear set of pseudoregulus type), while if $L_{U(b)}$ is scattered, then it follows from Theorem 1.1 (and from a computer search when $q = 3$) that $U(b)$ and $U(0)$ yield projectively inequivalent linear sets. Since the automorphic collineations $(x, y) \mapsto (x^{p^s}, y^{p^s})$ fix $U(0)$, it also follows that $L_{U(0)}$ and $L_{U(b)}$ lie on different orbits of $\text{PTL}(2, q^4)$. Thus (i) and (ii) are true when one of b or c is zero, so from now on we may assume $b \neq 0$ and $c \neq 0$.

The sets $L_{U(b)}$ and $L_{U(c)}$ are equivalent up to elements of $\text{PTL}(2, q^4)$ if and only for some $\psi = p^k$, $k \in \mathbb{N}$ and some $A, B, C, D \in F_{q^4}$ such that $AD - BC \neq 0$ the following holds:

$$\left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} u^{\psi} \\ v^{\psi} \\ u^{\psi q} + u^{\psi q^3} \end{pmatrix} : u \in F_{q^4} \right\} = \left\{ \begin{pmatrix} u \\ v \\ cv^{q^2} + vq^3 \end{pmatrix} : v \in F_{q^4} \right\}. \quad (15)$$

Furthermore, by Corollary 4.4 $L_{U(b)}$ and $L_{U(c)}$ are projectively equivalent if, and only if, (15) has a solution with $\psi = 1$. This leads to a polynomial in
u^ψ of degree at most q^3 which is identically zero. Equating its coefficients to zero,

$$\begin{cases}
Aq^3 - D &= 0 \\
B^q b^q c + Bq^3 &= 0 \\
A^q c - Db^\psi &= 0 \\
B^q c + B^q b^q C - C &= 0.
\end{cases}$$

(16)

Assume that $L_{U(b)}$ and $L_{U(c)}$ are in the same orbit of $\operatorname{PTL}(2,q^4)$, and take $\psi = 1$ in case they are also projectively equivalent. If $D \neq 0$, then the first and third equations imply $b^\psi = Dq^3 - c$ and so $c^q + 1 = b^\psi(q^3 + 1)$. If $D = 0$, then $BC \neq 0$; from the second equation, $(b^q c)^{q^2 + 1} = 1$, hence $c^q + 1 = b^{-\psi}(q^3 + 1)$. This proves the only if parts of (i) and (ii).

Conversely, if $c^q + 1 = b^\psi(q^3 + 1)$ for some $s \in \mathbb{N}$, then $b^q c^{-1} = \delta q^3$ for some $\delta \in \mathbb{F}^*_{q^4}$. The quadruple $A = \delta q^3$, $B = C = 0$, $D = \delta$ with $\psi = \rho^s$ is a solution of (16) with $AD - BC \neq 0$. This proves the if part of (i) when $c^q + 1 = b^\psi(q^3 + 1)$ and the if part of (ii) when $c^q + 1 = b^{q^3 + 1}$. If $b^{q^3 + 1} = c^q + 1 = 1$, i.e. when $U(b)$ and $U(c)$ define linear sets described in 2. of Theorem 2.1, then the above condition holds, thus (iii) follows. From now on we may assume $b^{q^3 + 1} \neq 1$ and $c^q + 1 \neq 1$.

Assume $c^q + 1 = b^{\rho^s(q^3 + 1)}$ for some $s \in \mathbb{N}$, i.e. $b^q c = \varepsilon q^3$ for some $\varepsilon \in \mathbb{F}^*_{q^4}$. Define $\psi = p^q q^3$. A $\rho \in \mathbb{F}^*_{q^4}$ exists such that $\rho q^3 - 1 = -1$. Take $A = D = 0$, $B = (p\varepsilon)^q q^3$, $C = \varepsilon p c (1 - b^q(q^3 + 1))$. If $C = 0$, then $b^q q^3 + 1 = 1$, a contradiction. So $AD - BC \neq 0$ and (16) has a solution. If $p^q = q$, then $\psi = 1$, hence in this case $L_{U(b)}$ and $L_{U(c)}$ are projectively equivalent. This finishes the proofs of (i) and (ii).

Now we prove (iv). Note that $N_{q^4/q}(b) = (b^{q^3 + 1})^{q^4 - 1}$ for any $b \in \mathbb{F}_q$, therefore, $L_{U(b)}$ is a maximum scattered \mathbb{F}_q-linear set not of pseudoregulus type if, and only if, $b^{q^3 + 1}$ is an element of the set

$$S = \{x \in \mathbb{F}_{q^2} : x^{q^3 + 1} \neq 1\}.$$

The orbits of point sets of type $L_{U(b)}$, $b \neq 0$, under the action of $\operatorname{PGL}(2,q^4)$ are as many as the pairs $\{x, x^{-q}\}$ of elements in S. Since all such pairs are made of distinct elements, adding one for the linear set of pseudoregulus type, one obtains

$$1 + \frac{q^2 - q - 2}{2} = \frac{q(q^4 - 1)}{2}.$$

Finally we prove (v). $L_{U(b)}$ is an \mathbb{F}_q-linear set described in 3. of Theorem 2.1 if, and only if, $b^{q^3 + 1}$ is an element of the set

$$Z = \{x \in \mathbb{F}_{q^2} \setminus \{1\} : x^{q^3 + 1} = 1\}.$$
The orbits of point sets of this type under the action of PGL(2, q^4) are as many as the pairs \(\{x, x^{-q}\} \) of elements in Z. Since for each \(x \in Z \) we have \(x = x^{-q} \), this number is \(q \).

Remark 4.6. The number of orbits of maximum scattered linear sets under the action of PGL(2, q^4) depends on the exponent \(e \) in \(q = p^e \). A general formula is not provided here. For \(e = 1 \) each orbit which does not arise from the linear set of pseudoregulus type is related to two or four norms over \(\mathbb{F}_{q^2} \), according to whether \(N_{q^4/q^2}(b) \in \mathbb{F}_q \setminus \{0, 1, -1\} \) or not. This leads (including now the linear set of pseudoregulus type) to a total number of \((q^2 - 1)/4 \) orbits for odd \(q \).

Acknowledgement

The authors of this paper thank Michel Lavrauw, Giuseppe Marino and Olga Polverino for useful discussions and suggestions during the development of this research.

References

Bence Csajbók
MTA–ELTE Geometric and Algebraic Combinatorics Research Group,
Eötvös Loránd University,
H– 1117 Budapest, Pázmány Péter Sétány 1/C, Hungary
csajbok.bence@gmail.com

Corrado Zanella
Dipartimento di Tecnica e Gestione dei Sistemi Industriali,
Università di Padova, Stradella S. Nicola, 3, I-36100 Vicenza, Italy
corrado.zanella@unipd.it