
MHD Code Using Multi Graphical Processing Units: SMAUG+

N. Gyengea,b,d,∗, M. K. Griffithsc, R. Erdélyia,d

aSolar Physics and Space Plasmas Research Centre (SP2RC), School of Mathematics and Statistics,
University of Sheffield, Hounsfield Rd, Sheffield S3 7RH, UK

bDebrecen Heliophysical Observatory (DHO), Konkoly Observatory, Research Centre for Astronomy and Earth Sciences
Hungarian Academy of Sciences, Debrecen, P.O.Box 30, H-4010, Hungary

cCorporate Information and Computing Services, The University of Sheffield, 10-12 Brunswick Street, Sheffield S10 2FN, UK.
dDepartment of Astronomy, Eötvös Lóránd University, Pf. 32, Budapest, H-1518 Hungary

Abstract

This paper introduces the Sheffield Magnetohydrodynamics Algorithm Using GPUs (SMAUG+), an advanced numer-
ical code for solving magnetohydrodynamic (MHD) problems, using multi-GPU systems. Multi-GPU systems facilitate
the development of accelerated codes and enable us to investigate larger model sizes and/or more detailed computational
domain resolutions. This is a significant advancement over the parent single-GPU MHD code, SMAUG (Griffiths, M.,
Fedun, V., and Erdélyi, R. (2015). A fast MHD code for gravitationally stratified media using graphical processing units:
SMAUG. Journal of Astrophysics and Astronomy, 36(1):197–223). Here, we demonstrate the validity of the SMAUG+
code, describe the parallelisation techniques and investigate performance benchmarks. The initial configuration of the
Orszag-Tang vortex simulations are distributed among 4, 16, 64 and 100 GPUs. Furthermore, different simulation box
resolutions are applied: 1000×1000, 2044×2044, 4000×4000 and 8000×8000. We also tested the code with the Brio-Wu
shock tube simulations with model size of 800 employing up to 10 GPUs. Based on the test results, we observed speed
ups and slow downs, depending on the granularity and the communication overhead of certain parallel tasks. The main
aim of the code development is to provide massively parallel code without the memory limitation of a single GPU. By
using our code, the applied model size could be significantly increased. We demonstrate that we are able to successfully
compute numerically valid and large 2D MHD problems.

Keywords: Numerical simulations, magnetohydrodynamics, graphical processing units, Sheffield Advanced Code

1. Introduction

Numerical simulations are one of the most important
tools for studying astrophysical magnetohydrodynamic (or
MHD) problems since the birth of computer science. MHD
modelling the physical processes of a complex astrophys-
ical observation frequently requires enormous computa-
tional efforts with high compute performance because of
the often strong inhomogeneous and/or stratified magne-
tised plasma medium, just to name two challenges. Ad-
vances in modern processing unit technology allows us to
solve more and more complex physical problems by us-
ing faster and higher number of central processing units
(CPUs) or accelerators, such as graphical processing units
(GPUs). Many implementations of MHD exist using a
range of approaches and methods (see, e.g., Stone and
Norman, 1992a,b; Stone et al., 1992; Tóth, 1996; Arber
et al., 2001; Keppens et al., 2003; Hasan et al., 2005;
Shelyag et al., 2008; Stone et al., 2008), however, numeri-
cal performance of GPUs is recently exploited for scientific
purposes and it is becoming used by an increasing number

∗Corresponding author
Email address: n.g.gyenge@sheffield.ac.uk (N. Gyenge)

of diverse studies for modelling MHD problems (e.g. Wong
et al., 2009; Pang et al., 2010; Griffiths et al., 2015).

Multi-GPU (mGPU) systems are able to provide fur-
ther benefits, such as larger computational domains and
substantial compute time savings, the latter resulting in
saving of operational costs. Many studies demonstrate the
performance effectivity for solving various astrophysical
problems with mGPU architecture. For instance, Schive
et al. (2011) used a parallel GPU-accelerated adaptive-
mash-refinement method for solving hydrodynamic prob-
lems. The mGPU systems allow us to achieve orders of
magnitude performance speed-up compered to CPU cores
(Wong et al., 2014b,a). However, the mGPU systems also
enable to extend considerably the investigated model size
or increase the resolution of the computational domain,
therefore allowing to obtain more details.

The Sheffield Advanced Code (SAC) is a fully non-
linear MHD numerical tool for simulating, in particular,
linear and non-linear wave propagation in strongly mag-
netised plasma with structuring and stratification (Shelyag
et al., 2008). SAC is based on the seminal Versatile Advec-
tion Code (VAC) (see Tóth, 1996). Griffiths et al. (2015)
developed the parallel version of SAC using a single GPU.
Griffiths et al. (2015) reported significant speed up, by

Preprint submitted to Advances in Space Research November 9, 2018

ar
X

iv
:1

71
0.

06
42

3v
1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 1
4

O
ct

 2
01

7

MPI Parallelisation Cuda

1

3

2

4

Initial
Configuration

C
PU

C
PU

C
PU

C
PU

H A L O C E L L

B U F F E R

Receive Bottom Layer
Send Top Layer

Send Bottom Layer
Receive Top Layer

Send Bottom Layer
Receive Top Layer

Receive Bottom Layer
Send Top Layer

Receive Bottom Layer
Send Top Layer

Send Bottom Layer
Receive Top Layer

Receive Bottom Layer
Send Top Layer

Send Bottom Layer
Receive Top Layer

1

2

3

4

1

Distribution

B U F F E R

B U F F E R

B U F F E R

B U F F E R

B U F F E R

B U F F E R

B U F F E R

H A L O C E L L

H A L O C E L L

H A L O C E L L

H A L O C E L L

H A L O C E L L

H A L O C E L L

H A L O C E L L

G
PU

G
PU

G
PU

G
PU

Figure 1: Flowchart outlining SMAUG+ with the implemented MPI parallelisation technique. The red boxes demonstrate the initial and
distributed model configurations. The configuration is equally divided and spread around the different CPUs and GPUs, using MPI and
CUDA. The white rectangles show the ’halo’ cells, the grey rectangles demonstrate the buffers for storing the exchanged information. The
red domains within each process show the actual mesh outline and the blue boundaries mark data, which is stored by different processes.
The numerically intensive calculations are sent and performed by the GPUs. The GPUs distribute the subdomains further for calculating
the actual numbers. These calculations are performed by the thousands of GPU cores (green rectangles). The figure is an example of a 2 × 2
configuration.

demonstrating simulations of the Orszag-Tang vortex on
a single NVIDIA M2070 GPU, being 18 times faster than
the same problem running on a single core of an Intel Xeon
X5650 CPU.

Our primary aim, here, is to introduce a fast MHD
code for gravitationally highly stratified media by further
developing SMAUG. Therefore we introduce SMAUG+,
running it on a multi-GPU system for allowing increased
computational domain, i.e. enabling larger physical model
size computations. The developed software provides the
opportunity to execute/perform simulations of MHD wave
propagation mimicking the strongly magnetised solar at-
mosphere, in particular, representing the lower solar at-
mosphere from photosphere to low corona. Such approach
is important, as there are a number of high-resolution
ground- (e.g. SST - Swedish Solar Telescope, La Palma;
DKIST - Daniel K. Inouye Solar Telescope, USA to be
commissioned in 2019 or the EST - European Solar Tele-
scope, to be realised by the second half of the next decade)
and space-based (e.g. Hinode, SDO - Solar Dynamics Ob-
servatory, IRIS - Interface Region Imaging Spectrograph)
facilities providing a wealth of earlier unforeseen observa-
tional details that need now to be understood.

2. Numerical Approach

The SMAUG+ is a numerical finite element solver,
which is based on addressing the ideal fully non-linear
3-dimensional MHD equations. In particular, it is suit-
able to model linear and non-linear wave propagation in
strongly magnetised plasma with structuring and stratifi-
cation. The code is designed to solve multi-dimensional
hyperbolic systems of partial differential equations. The
governing equations of compressible MHD with stratifica-
tion in their conservative form are:

∂ρ

∂t
+∇ · (vρ) = 0,

∂(ρv)

∂t
+∇ · (vρv −BB) +∇pt = ρg,

∂e

∂t
+∇ · (ve−BB · v + vpt) +∇pt = ρg · v,

∂B

∂t
+∇ · (vB −Bv) = 0,

where ρ is the density, v is the velocity, B is the mag-
netic field, e is the energy density and g is the gravity. The
total pressure pt is defined by:

2

pt = pk +
B2

2
,

where, pk is the kinetic pressure:

pk = (γ − 1)

(
e− ρv2

2
− B2

2

)
.

Fourth-order central differencing method is applied for
solving the spatial derivatives and fourth-order Runge-
Kutta solver is performed for solving the time derivatives.
By virtue of their symmetry, central differencing schemes
are conservative, with the desired side effect that the solver
conserves the divergence of the magnetic field. We employ
hyper-resistivity and hyper-diffusion for increasing the nu-
merical stability of the calculated MHD equation, based on
the implementation by e.g., Caunt and Korpi (2001); Stein
and Nordlund (1998); Shelyag et al. (2009). The hyper-
viscosity coefficient calculations require the estimation of
maximum wave speed in the computational domain.

By applying the central difference approximation to
the hyperbolic differential governing equations, the solu-
tions are unstable with a spurious oscillatory behaviour.
Hence, numerical diffusion is applying for stabilising the
code. The primary purpose of the diffusion terms is to
compensate for the anti-diffusion from truncation errors
arising in the computation of temporal and spatial deriva-
tives. When the diffusion is correctly tuned, the resulting
evolution is non-diffusive. In addition, the diffusion terms
control the steepness of shocks by becoming large wherever
the compression is large.

The MHD equations and the hyper-diffusion source
terms are described in details in Griffiths et al. (2015).
Numerical instabilities could be generated by the applied
central differencing method, hence obtaining the solutions
of the shocked systems could be difficult. The hyper-
viscosity parameter is the ratio of the forward difference of
a parameter to third order and first order. The temporal
evolution of the hyper-viscosity term helps to identify nu-
merical noise. If it is necessary, the hyper-viscosity term
also helps to smooth the identified noise. For further de-
tails of the algorithm and the tests the reader is referred to
the papers describing The Sheffield Advanced Code (SAC)
(Fedun et al., 2011a,b,c) and SMAUG, the parallel version
of the SAC employing a single GPU (Griffiths et al., 2015).

3. Parallelisation Techniques

MPI and NVIDIA CUDA allow us to develop a hybrid
environment with multiple GPUs and multi-core CPUs.
The MPI provides a message-passing parallel program-
ming model: data is moved from the address space of
one process to that of another process through coopera-
tive operations on each process. We use the MPI methods
to spread the initial model configuration.

Figure 1 shows the principals of an example system of
architecture. The red boxes represent the computational

domain of the initial model configuration (e.g. for the
Orszag-Tang vortex problem). The original grid, however,
is now divided into four equal sub-regions, as indicated by
the successive serial numbers. Each sub-region is assigned
to a CPU. The CPUs are able to communicate with each
other using communication fabrics, such as MPI messag-
ing, OMNI-Path technology (Birrittella et al., 2015).

Figure 1 sketches an example of the CPU-CPU MPI
communication. Exchanging information between the sub-
domains with ’halo’ layers is a common practice in paral-
lel computation on CPUs (Kjolstad and Snir, 2010). The
halo layers are demonstrated by the white rectangle within
the computation domains (red rectangles). The data are
obtained from (or sent to) the buffer of the top (or bot-
tom) neighbour processors (indicated by grey rectangles).
By sending and receiving only ’halo’ cells and not the full
grid, we reduce the size of the communications. Based on
halo messaging technique employed in the SMAUG and
SAC code, we demonstrate an example code of the imple-
mentation of MPI messaging.

void exchange_halo(vector v)

{

//gather halo data from v into gpu_buffer1

cudaMemcpy(host_buffer1, gpu_buffer1, ...);

MPI_Isend(host_buffer1, ..., destination, ...);

MPI_Irecv(host_buffer2, ..., source, ...);

MPI_Waitall(...);

cudaMemcpy(gpu_buffer2, host_buffer2, ...);

//scatter halo data from gpu_buffer2 to

//halo regions in v

}

The CUDA platform, however, provides us to access
GPU accelerated solutions. Here, the actual numerical
methods are performed/applied by the GPUs. With MPI
and CUDA we can use multiple GPUs simultaneously for
e.g., increasing model resolution or archiving speed-up.

4. The HPC facility

We ran the simulations using two different HPC facil-
ities, namely, the University of Cambridge (Wilkes) and
the University of Sheffield (ShARC) architectures. The
Wilkes computer is based on Dell T620 mashines. Each
Dell T620 has two NVIDIA Tesla K20c (5 GiB) card and
12 cores Intel Ivy Bridge 2.6 GHz CPU and 64 GByte
memory. Overall, the cluster consists of 128 Dell nodes
with 256 GPUs. Each Tesla K20c contains 2496 GPU
cores, hence the total number of GPU cores is 638976 and
the total number of CPU cores is 1536.

The ShARC cluster is based on Dell PowerEdge C4130
units with 16 cores Intel Xeon E5-2630 v3 (2.4GHz) pro-
cessors and 64 GByte memory. Accessing the GPU nodes
provides 8 NVIDIA Tesla K80 (24 GiB) graphical units.
The total number of GPU cores is 39936.

3

Table 1: Timings for 100 iterations for the Orszag-Tang test. The
timing results are based on the simulations performed at the Cam-
bridge Wilkes Cluster.

Grid Size Number Time [s] Time [s]
GPUs Without HD With HD

1000× 1000 1× 1 34.50 -
1000× 1000 2× 2 11.19 -
1000× 1000 4× 4 13.70 -
2044× 2044 2× 2 41.32 184.10
2044× 2044 4× 4 43.39 199.89
4000× 4000 4× 4 77.44 360.71
8000× 8000 8× 8 61.70 253.80
8000× 8000 10× 10 41.00 163.60

5. Verification and Validation

5.1. The Orszag-Tang vortex

The single GPU code (SMAUG) is already validated
using e.g. the Brio-Wu shock tube test (Griffiths et al.,
2015) for 1-dimensional MHD. The Orszag-Tang vortex is
a common validation test employing two-dimensional non-
linear MHD. This test is able to verify that the code em-
ploying it can handle MHD shock formations and shock
interactions efficiently and cost-effectively. The horizon-
tal and vertical non-dimensional domain sizes are set to
0 ≤ x ≤ 1; 0 ≤ y ≤ 1, the adiabatic index γ = 5/3, the
gas pressure and the density are constants. The boundary
conditions are set to periodic at each boundary. The mag-
netic field components (Bx, By) and the initial velocity
components (Vx, Vy) are defined by:

Bx = −B0 sin(4πy),

By = B0 sin(2πx),

Vx = sin(2πy),

Vy = sin(2πx).

We ran a series of simulations with different simulation
box resolution as seen in the Table 1. The timings with and
without hyper-diffusion (HD) are distinguished, because
we would like to understand the impact of the different
code segments on the communication overhead between
the GPUs.

Figure 2 is a set of snapshots of an example Orszag-
Tang simulation. The panels shows the temporal variation
of the density on a linear colormap. As the bottom panel
of Figure 2 shows, various string waves pass through each
other. This motion creates turbulent flow in different spa-
tial scales. Figure 2 demonstrates that there is a convinc-
ing agreement between the results of SMAUG+ and their
counterpart output of SMAUG (Griffiths et al., 2015) and
SAC (Shelyag et al., 2008).

5.2. The Brio-Wu shock tube test

The Brio and Wu shock tube is an excellent test for
solving a Riemann-type problem (Roe, 1981). The shock

Figure 2: Orszag-Tang vortex results computed by SMAUG+. The
initial configuration contains 1000 × 1000 data and is distributed
among 4 GPUs (2 × 2). The figure shows the temporal variation
of the density for t1 = 0.04 s, t2 = 0.14 s and t3 = 0.25 s. The
simulation ran on the ShARC cluster.

4

tube is a 1D ideal MHD test problem in which the ini-
tial conditions of the model feature a discontinuity in the
centre of the configuration, i.e., the left and right states
are initialised with different values (Brio and Wu, 1988).
On either side of the discontinuity, the initial parameters
are: pl, ρl, Byl = 1, pr = 0.1, ρr = 0.125, Byr = −1 and
Bx = 0.75. For the method employed by Brio and Wu
(1988), the exact solution is approximated by a linearised
version, averaged on either side of the discontinuity.

Figure 3 shows various features confirming the accu-
rate run on the code. The slow compound wave, the con-
tact discontinuity, the slow shock and the fast rarefaction
can be seen. Running the problem on a numerical domain
with 800 grid points, gives an excellent agreement with the
original SAC (Shelyag et al., 2008) and SMAUG (Griffiths
et al., 2015) results. We distributed the initial configura-
tion among up to 10 GPUs. The tests demonstrate that
code is sufficiently robust so that it can handle supersonic
MHD turbulence.

6. Parallel Performance

The actual parallel performance of the applied mod-
els is determinated by various factors, such as: (i) the
granularity of the parallelizable tasks, (ii) the communi-
cation overhead between the nodes, (iii) finally, the load
balancing. The load balancing refers to the distribution
of the data among the nodes. If the data distribution
is not balanced, some of the GPUs with less load must
wait until the heavily loaded GPUs finish the job. We
always use equally divided configurations, hence all the
GPUs are equally loaded. The granularity of the paral-
lel task represents the amount of work that will be car-
ried out by a certain node. The communication overhead
is the cost of sending and receiving information between
the different nodes. In our case, the overhead is built-
up by two components: the MPI node communication
and the CPU-GPU information transfer, namely the func-
tions cudaMemcpy(), MPI Isend(), MPI Irecv() and
MPI Waitall(). The actual running time T of a parallel
job task is,

T = Tcomp + Tcomm + Tidle,

where, Tcomp is the useful computation time, Tcomm is
the communication overhead and Tidle is the waiting time
until all the GPUs finishes a certain step. The Tidle could
be minimised by optimal load balance and Tcomm could be
relatively small by choosing optimal granularity.

Let us define the quantity τ for characterising the par-
allelisation overheads:

τ = ln
Tcomp

Tcomm + Tidle
.

Parallel slowdown (Tcomm+Tidle > Tcomp) could be the
result of a communication bottleneck. More GPUs must

0.40 0.45 0.50 0.55 0.60
x

0.0

0.5

1.0

1.5

ρ

t0 = 0s t1 = 0. 015s t2 = 0. 030s

0.40 0.45 0.50 0.55 0.60
x

1

0

1

B
y

t0 = 0s t1 = 0. 015s t2 = 0. 030s

0.40 0.45 0.50 0.55 0.60
x

0.0

0.2

0.4

0.6

V
x

t0 = 0s t1 = 0. 015s t2 = 0. 030s

0.40 0.45 0.50 0.55 0.60
x

1.0

0.5

0.0

0.5

V
y

t0 = 0s t1 = 0. 015s t2 = 0. 030s

Figure 3: Numerical solution of Brio and Wu shock tube problem nu-
merical solution taken at time t0 = 0, t1 = 0.015 and t2 = 0.03. The
density (purple colour), the tangential magnetic field (yellow colour),
the tangential velocity (blue colour) and the (red colour) normal ve-
locity are distinguished among the panels. The initial configuration
was equally distributed among 4 GPUs.

5

2 3 4 5 6 7 8 9
Number of GPUs

6.5

6.0

5.5

5.0

4.5

4.0

τ B
W

2 3 4 5 6 7 8 9
0.40

0.35

0.30

0.25

0.20

0.15

0.10

τ O
T

Figure 4: Brio-Wu and Orszag-Tang communication overhead test.
The vertical axis represents the parameter τ , the ratio of useful cal-
culation and communication. The horizontal axis shows the number
of applied GPUs. The size of initial configuration is constants (800
data points for Brio-Wu and 2044 × 2044 for the Orszag-Tang test.
The increasing parallelism alone cannot increase performance.

spend more time for communication. Sometimes, the com-
munication between the GPUs takes actually more time
than the useful calculation. This situation is demonstrated
by the Figure 4. The blue values represent Brio-Wu simu-
lations, using up to 10 GPUs. As the number of GPUs in-
creases, the parameter τ decreases. We kept the model size
constant. The range of the parameter τ shows extremely
small numbers, e.g τ = −4.5 means only 1% of the run-
ning time was actual calculation. This value is extremely
small, because it is likely that much of the communica-
tions overhead arises from routines, used for transferring
data within the GPU memory. From the GPU memory
the data must be transferred to the system memory. From
here, the CPU will send the information to another CPU
node, finally this node transfers the data to the GPU and
so on. This continuous data transfer significantly jeopar-
dise the parallel performance. This is the consequence of
using not computationally dense GPUs. The red values
in Figure 4 shows similar behaviour but the used model is
a 2044 × 2044 Orszag-Tang configuration. In this case, a
GPU calculates a larger amount of data, hence the nodes
are more computationally dense. Around 30% of the run-
ning time is the actual calculation. The total running time
of the 9-GPU configurations in both cases is around 4 times
slower than the 2-GPUs configuration.

As shown above, choosing the non-optimal configura-
tion could cause massive wasting of computational power.
To avoid parallel slowdown the following must be consid-
ered: (i) Only increasing parallelism will not provide the
best performance (Chen et al., 1990). Increased paral-
lelism with non-optimal data granularity could easily cause
parallel slowdown, as seen above. (ii) The amount of ex-
changed MPI messages must be reduced as much as possi-
ble for the best performance (Thakur et al., 2004). It also
means that a single GPU could give better performance
than multiple GPUs, if the applied model size is the same.

(iii) Task must be enough to overleap the parallel commu-
nication overheads. The processes must have a higher task
granularity if the number of applied GPUs increases. For
avoiding the communications overhead, it is advisable to
use always arithmetically dense GPUs. The adjustment of
the model size and the decomposition of the initial con-
figuration must be optimal. (iv) It is possible to improve
communication performance by using higher-performance
communication hardware, but it may turn out expensive.
The collective communication, can also improve communi-
cation performance, since it optimises the communication
based on the hardware, network and topology.

By applying the above principle parallel performance
speed-up is possible. In Table 1, the 1000× 1000 Orszag-
Tang test with 4 GPUs is around 3 times faster than the 1
GPU configuration. The 8000× 8000 test shows 1.5 times
speed-up between 64 and 100 GPUs. The simulations with
HD show similar properties than the simulations without
HD. The timings with HD are significantly longer than
without HD which shows that the HD functions are ex-
tremely computation intense segments of the SMAUG+.

7. Discussion

Future, high-performance computer architectures are
enabling an increasing use of large numbers of GPU ac-
celerators. It is crucial to develop codes enabling an the
available fast communication between the GPUs. Our ap-
proach to exchange information between decomposed do-
mains not only occupies one core in each CPU but also it
may become a bottleneck to speed and scaling because of
indirect data transfer between GPUs. This issue may be
solved by direct data transfer between GPUs introduced
by the GPU Direct technology.

However, the primary aim of our approach is to archive
extended model size. A single GPU is only able to support
limited memory but using our method an mGPU system
provides as much memory as the total of GPUs. The only
disadvantage is the communication overhead, however, an
mGPU system may still be faster and significantly cheaper
than a multi-CPU approach. For the same price, a GPU
contains orders of magnitude more processing cores than
a CPU. Our approach provides affordable desktop high-
performance computing.

The challenge with advancing these codes is the iden-
tification and application of the current communication
standards: different possibilities including NVLINK and
various versions of the GPU Direct technology. These im-
plementations are sensitive to the system configuration,
making it challenging to successfully implement the code.

8. Conclusion

We have demonstrated that SMAUG+ is able to suc-
cessfully compute numerically valid and large MHD prob-
lems by distributing the needed compute tasks across mul-
tiple GPUs. We conclude that the speed-up of the MHD

6

simulations performed depends on the distribution of the
initial architectural configuration. In some cases, the run-
ning time could be slower if unwanted communication over-
head arises between the higher number of GPU. However,
and we propose this is a key point, a not over-distributed
simulation could show significant speed-up. Further per-
formance enhancements are also feasible through appli-
cation architecture modification. By using our method
an mGPU system essentially is able to provides as much
memory as the total of applied graphical accelerators of-
fer. The algorithm has been implemented in 3D testing
of 3D models that will be completed over a forthcoming
projects.

Acknowledgments

MG and RE are grateful to STFC (UK), and RE ac-
knowledges The Royal Society (UK) for the support re-
ceived. This research was made use of SunPy, an open-
source and free community-developed Python solar data
analysis package (Mumford et al., 2013). The authors
are grateful to the University of Cambridge HPC service
for providing access to the Wilkes cluster and to Filippo
SPIGA, Head of Research Software Engineering (RSE)
University of Cambridge for providing assistance with run-
ning the the SMAUG+ code on the Wilkes cluster.

References

References

Arber, T., Longbottom, A., Gerrard, C., and Milne, A. (2001). A
staggered grid, Lagrangian–Eulerian remap code for 3-D MHD
simulations. Journal of Computational Physics, 171(1):151–181.

Birrittella, M. S., Debbage, M., Huggahalli, R., Kunz, J., Lovett, T.,
Rimmer, T., Underwood, K. D., and Zak, R. C. (2015). Intel R©
Omni-path Architecture: Enabling Scalable, High Performance
Fabrics. In High-Performance Interconnects (HOTI), 2015 IEEE
23rd Annual Symposium on, pages 1–9. IEEE.

Brio, M. and Wu, C. C. (1988). An upwind differencing scheme for
the equations of ideal magnetohydrodynamics. Journal of com-
putational physics, 75(2):400–422.

Caunt, S. and Korpi, M. (2001). A 3D MHD model of astrophys-
ical flows: Algorithms, tests and parallelisation. Astronomy &
Astrophysics, 369(2):706–728.

Chen, D.-K., Su, H.-M., and Yew, P.-C. (1990). The impact of
synchronization and granularity on parallel systems. SIGARCH
Comput. Archit. News, 18(2SI):239–248.

Fedun, V., Shelyag, S., and Erdélyi, R. (2011a). Numerical mod-
eling of footpoint-driven magneto-acoustic wave propagation in a
localized solar flux tube. The Astrophysical Journal, 727:17.

Fedun, V., Shelyag, S., Verth, G., Mathioudakis, M., and Erdélyi, R.
(2011b). MHD waves generated by high-frequency photospheric
vortex motions. Ann. Geophys., 29:1029–1035.

Fedun, V., Verth, G., Jess, D., and Erdélyi, R. (2011c). Frequency
filtering of torsional alfvén waves by chromospheric magnetic field.
The Astrophysical Journal Letter, 740(2):L46.

Griffiths, M., Fedun, V., and Erdélyi, R. (2015). A fast MHD code for
gravitationally stratified media using graphical processing units:
SMAUG. Journal of Astrophysics and Astronomy, 36(1):197–223.

Hasan, S., Van Ballegooijen, A., Kalkofen, W., and Steiner,
O. (2005). Dynamics of the solar magnetic network: Two-
dimensional MHD simulations. The Astrophysical Journal,
631(2):1270–1280.

Keppens, R., Nool, M., Tóth, G., and Goedbloed, J. (2003).
Adaptive mesh refinement for conservative systems: multi-
dimensional efficiency evaluation. Computer Physics Communi-
cations, 153(3):317–339.

Kjolstad, F. B. and Snir, M. (2010). Ghost cell pattern. In Proceed-
ings of the 2010 Workshop on Parallel Programming Patterns,
ParaPLoP ’10, pages 4:1–4:9, New York, NY, USA. ACM.

Mumford, S., Pérez-Suárez, D., Christe, S., Mayer, F., and Hewett,
R. J. (2013). SunPy: python for solar physicists. In Proceedings
of the 12th Python in Science Conference, volume 74-77.

Pang, B., Pen, U., and Perrone, M. (2010). Magnetohydrodynam-
ics on heterogeneous architectures: a performance comparison.
CoRR, abs/1004.1680.

Roe, P. L. (1981). Approximate riemann solvers, parameter vec-
tors, and difference schemes. Journal of computational physics,
43(2):357–372.

Schive, H.-Y., Zhang, U.-H., and Chiueh, T. (2011). Direction-
ally Unsplit Hydrodynamic Schemes with Hybrid MPI/OpenM-
P/GPU Parallelization in AMR. ArXiv e-prints.

Shelyag, S., Fedun, V., and Erdélyi, R. (2008). Magnetohydrody-
namic code for gravitationally-stratified media. Astronomy & As-
trophysics, 486(2):655–662.

Shelyag, S., Zharkov, S., Fedun, V., Erdélyi, R., and Thomp-
son, M. J. (2009). Acoustic wave propagation in the solar sub-
photosphere with localised magnetic field concentration: effect of
magnetic tension. Astronomy & Astrophysics, 501(2):735–743.

Stein, R. and Nordlund, Å. (1998). Simulations of solar granulation.
i. general properties. The Astrophysical Journal, 499(2):914–933.

Stone, J. M., Gardiner, T. A., Teuben, P., Hawley, J. F., and Simon,
J. B. (2008). Athena: A New Code for Astrophysical MHD. The
Astrophysical Journal Supplement Series, 178:137–177.

Stone, J. M., Mihalas, D., and Norman, M. L. (1992). ZEUS-2D:
A radiation magnetohydrodynamics code for astrophysical flows
in two space dimensions. III - The radiation hydrodynamic algo-
rithms and tests. The Astrophysical Journal Supplement Series,
80:819–845.

Stone, J. M. and Norman, M. L. (1992a). ZEUS-2D: A radiation
magnetohydrodynamics code for astrophysical flows in two space
dimensions. I - The hydrodynamic algorithms and tests. The As-
trophysical Journal Supplement Series, 80:753–790.

Stone, J. M. and Norman, M. L. (1992b). ZEUS-2D: A Radia-
tion Magnetohydrodynamics Code for Astrophysical Flows in Two
Space Dimensions. II. The Magnetohydrodynamic Algorithms and
Tests. The Astrophysical Journal Supplement Series, 80:791.

Thakur, R., Gropp, W. D., and Toonen, B. (2004). Minimizing
synchronization overhead in the implementation of MPI one-sided
communication. PVM/MPI, 3241:57–67.

Tóth, G. (1996). General code for modeling MHD flows on parallel
comptuers: Versatile Advection Code. Astrophysical Letters and
Communications, 34:245–250.

Wong, H.-C., Wong, U.-H., Feng, X., and Tang, Z. (2009). Efficient
magnetohydrodynamic simulations on graphics processing units
with CUDA. ArXiv e-prints.

Wong, U.-H., Aoki, T., and Wong, H.-C. (2014a). Efficient magneto-
hydrodynamic simulations on distributed multi-GPU systems us-
ing a novel GPU Direct–MPI hybrid approach. Computer Physics
Communications, 185(7):1901–1913.

Wong, U.-H., Wong, H.-C., and Ma, Y. (2014b). Global magneto-
hydrodynamic simulations on multiple GPUs. Computer Physics
Communications, 185(1):144–152.

7

	1 Introduction
	2 Numerical Approach
	3 Parallelisation Techniques
	4 The HPC facility
	5 Verification and Validation
	5.1 The Orszag-Tang vortex
	5.2 The Brio-Wu shock tube test

	6 Parallel Performance
	7 Discussion
	8 Conclusion

