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Annotation 

Since the late 1960s, ceric hydrogen phosphates have attracted the attention of scientists 

due to remarkable ion exchange, sorption, proton-conduction and catalytic properties. In this 

work, through the application of various solvents, we, for the first time, have obtained 

monolithic aerogels based on ceric hydrogen phosphates with high porosity (~99%) and 

extremely low density (~10 g/cm
3
). The composition and structure of aerogels were thoroughly 

studied with XRD, TEM, SEM, XPS, low temperature nitrogen adsorption methods, TGA/DSC, 

FTIR and SANS. The aerogels were found to belong to the fibrous macroporous aerogels family. 

 

1. Introduction 

Aerogels, being highly porous materials with low density and high specific surface area, 

are gels in which the liquid phase is completely replaced by a gaseous phase [1]. Aerogels are 

typically used as catalysts, sensors, ion-exchange materials, and as heat and sound insulators [2]. 

They can be produced from a number of simple substances, both inorganic and organic 

compounds; hybrid organic-inorganic aerogels are also known [3–17]. 
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The most studied SiO2-based aerogels, obtained by hydrolysis of silicon alkoxides, with 

subsequent supercritical drying, consist of isotropic SiO2 nanoparticles (0D) forming a spatial 

network [18]. Recently, a significant number of papers have also been published on the 

production of aerogels containing anisotropic 1D and 2D building blocks, including carbon 

nanotubes and graphene [19–22]. Special attention has been paid to monolithic materials having 

a similar architecture, but containing not only micropores (<2 nm) and mesopores (2–50 nm), but 

also macropores, since they have a highly accessible surface, which is guaranteed by 

macroporosity. In addition to the high permeability of such materials, which is important for 

their application as catalysts and sensors, they can be easily recovered for repetitive use [23]. 

One of the most challenging tasks in the design of new multifunctional materials is the 

production of aerogels from orthophosphates of transition and rare-earth elements. Such 

materials could attract a great deal of interest, due to their extended applications in various 

possible applications, such as ion-exchange for water purification, catalysts, proton conductors, 

etc. At the same time, the data on the synthesis of such materials is extremely scarce. Thus, 

methods are reported for the synthesis of aerogels of the compositions Ti3(PO4)4/Si3(PO4)4, 

AlPO4/Si3(PO4)4, Si3(PO4)4, Zn3(PO4)2, Zn3(PO4)2/Si3(PO4)4, AlPO4, Ti3(PO4)4 и 

Zr3(PO4)4/Si3(PO4)4 [24]. Zhu et al. [23] described the synthesis of a monolithic aerogel based on 

zirconium phosphate, which can be used for the purification of water as a heavy metals sorbent. 

Studies concerning the preparation of surface-modified, phosphate-containing oxide aerogels 

have been also reported [25–28]. In particular, Boyse et al. [25] obtained Nb2O5-based aerogels 

containing 5 or 10 mol.% of niobium phosphate, which showed a high level of catalytic activity 

in the reaction of butene-1 isomerisation. 

The synthesis of rare-earth phosphate aerogels has not been reported, to date, although 

they may be of considerable interest, due to a number of valuable properties, including sorption 

[29], ion exchange [30], proton-conduction [31] and catalytic activities [32], which are typical, in 

particular, of cerium (IV) hydroorthophosphates. Despite the long history of cerium phosphates 

[33,34], cerium (III) orthophosphates of monazite or rhabdophane structures [35] remain the 

most investigated, whereas cerium (IV) orthophosphates have been studied to a much lesser 

degree. Only recently, crystalline structures of two acidic phosphates of cerium (IV), 

Ce(PO4)(HPO4)0.5(H2O)0.5 and Сe(PO4)1.5(H2O)(H3O)0.5(H2O)0.5 were solved by Nazaraly et al. 

[36–38]. 

In the present study, we made the first attempt to obtain aerogels based on ceric hydrogen 

phosphates, to yield materials possessing higher porosity, and better mechanical strength and 

chemical stability, in comparison to wet gels. Guidance for our attempt was the fact that wet gels 

of monolithic ceric hydrogen phosphates are easily formed by mixing cerium-containing 
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hydrogen phosphate solutions with water [39]. It was reasonable to assume that, under certain 

conditions, these gels could be dried supercritically, resulting in monolithic aerogel materials.  

 

2. Materials and methods 

The following materials were used, as received and without further purification: 

Ce(NO3)3·6H2O (99%, Aldrich #238538), orthophosphoric acid (85 wt.% aq., analytical grade, 

Khimmed Russia), aqueous ammonia (25 wt.%, extra-pure grade, Khimmed Russia), isopropanol 

(extra-pure grade, Khimmed Russia), acetonitrile (analytical grade, Khimmed Russia), methyl 

tert-butyl ether (Acros, 99%), distilled or deionised (18 MΩ) water. 

To obtain cerium (IV) orthophosphate gels, we used a technique developed in our group 

recently [40]. A typical procedure for the synthesis of a monolithic wet gel involves the 

dissolution of 0.020 g of CeO2 powder (prepared according to [41]) in 1 ml of H3PO4 (85 wt.%, 

 = 1.689 g/cm
3
) under constant stirring at 100°C. After the CeO2 was completely dissolved and 

the solution showed no Tyndall effect, the solution was cooled to room temperature, (the 

solution is hereafter referred to as sCeP, molar ratio Ce:P is equal to 1:140), and 4 ml of distilled 

water or 4 ml of methyl tert-butyl ether (MTBE) was added. As a result, a gel was formed, which 

was aged for 10 days, then the solvent was replaced by keeping the gel in acetonitrile for one 

week, with a daily solvent change. The samples were dried under supercritical conditions, to 

obtain the aerogels. As solvents for the supercritical drying, we used carbon dioxide and MTBE. 

A glass tube containing wet gel under an MTBE layer (14–16 mL) was placed in an autoclave (V 

= 38 mL). The autoclave was mounted in a furnace, heated at a rate of 100°C/h to 235–245°C 

(6.0–7.0 MPa) and held at that temperature for 10–15 min. Next, the pressure in the heated 

autoclave was gradually lowered to atmospheric pressure and the autoclave was evacuated for 30 

min (30–40 kPa), cooled and opened.  

Supercritical drying in CO2 was carried out in a system that comprised a Supercritical 24 

high pressure pump for CO2 (SSI, USA), a 50 mL steel reactor and a BPR back pressure 

regulator (Goregulator, Waters, USA). The sample was washed with liquid CO2 for 2 h at a 

temperature of 20°C and pressure of 15 MPa. The temperature in the reactor was then raised to 

50°C and the sample was washed with supercritical CO2 (15 MPa) for 2–2.5 h. Next, the 

pressure in the heated autoclave was gradually (30–40 min) lowered to atmospheric pressure and 

the autoclave was cooled and opened [42].  

As a reference sample, a xerogel was used, the synthesis of which included mixing the 

cerium-containing phosphoric acid solution and water, purifying the resulting gel by dialysis 

against deionised water and drying the purified gel at 60°C under atmospheric pressure. 
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X-ray powder diffraction patterns were recorded with a Bruker D8 Advance 

diffractometer using CuKα radiation in the 2θ range 3–120° at a 2θ step of 0.02° and a counting 

time of 0.3 s per step. 

The microstructure of the samples was studied by means of transmission electron 

microscopy (TEM) with a Leo912 AB Omega analytical transmission electron microscope. TEM 

images were taken at an accelerating voltage of 100 kV in the bright-field mode. 

The microstructure (scanning electron microscopy, SEM) and the chemical composition 

(energy dispersive X-ray analysis, EDX) of the samples were analysed on a Carl Zeiss NVision 

40 high-resolution scanning electron microscope equipped with an Oxford Instruments X-MAX 

(80 mm
2
) detector, operating at an accelerating voltage of 1–20 kV. SEM images were taken 

with an Everhart-Thornley detector (SE2) at 1 kV accelerating voltage. 

The investigation of the chemical composition of the surface layers of ceric hydrogen 

phosphate materials was conducted by X-ray photoelectron spectroscopy (XPS) on a SPECS X-

ray photoelectron spectrometer with a PHOIBOS-150 energy analyser in fixed analyser 

transmission mode (15 eV), using MgKα radiation (hν = 1253.6 eV). Experimental data 

processing was performed with the CasaXPS software package. 

Specific surface areas of powders were determined by low temperature nitrogen 

adsorption on an ATX-6 analyser (Katakon, Russia), using the 5-point Brunauer–Emmett–Teller 

(BET) model at partial pressures in the range 0.05–0.25. Pore size distribution was assessed by 

the Barrett–Joyner–Halenda (BJH) method, using adsorption isotherms at partial pressures in the 

range 0.4–0.97. 

Thermal analysis was performed on a TGA/DSC/DTA SDT Q-600 analyser (TA 

Instruments), upon linear heating to 1,000°С (heating rate of 10°C/min) in a 250 ml/min airflow. 

The FTIR spectra of the samples were recorded on a Perkin Elmer Spectrum One 

spectrometer, in a range of 450–4000 cm
-1

, in attenuated total reflectance mode. 

The SANS experiment was performed using the “Yellow Submarine” instrument of the 

BNC research reactor, in Budapest (Hungary), which operates in near point geometry. The use of 

two neutron wavelengths ( = 4.9 and 9.4 Å, / = 18%) and two sample-to-detector distances 

(1.57 and 5.5 m) provided measurements in the momentum transfer range of 610
-3

 < q < 0.3 Å
-1

. 

The BerSANS software [43] was used for data pre-processing. 

 

3. Results and discussion 

Directly upon addition of distilled water to the sCeP solution, the formation of a solid 

phase (gel) was observed. A stable and cohesive gel was formed at the ratios VsCeP : Vwater = 1:2 – 
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1:6 (see Table 1). When a smaller volume of water was added, the gel was not formed; with the 

ratio of VsCeP : Vwater > 1:8, the resulting gel broke down after 1 week of ageing. 

 

Table 1. Formation of ceric phosphate hydrogels at different volume ratios of reactants 

Entry Volume of  

sCeP solution, 

(ml) 

Water 

volume, 

(ml) 

Molar  

ratio 

Ce:H2O 

Formation of gel 

 

Ageing for 7 days   

V1 1 1 1:530 No ‒ 

V2 1 2 1:1060 Yes Gel remains 

monolithic  

V4 1 4 1:2120 Yes Gel remains 

monolithic  

V6 1 6 1:3180 Yes Gel remains 

monolithic  

V8 1 8 1:4250 Yes Gel breaks down 

V10 1 10 1: 5300 Yes Gel breaks down 

 

Interestingly, the formation of the gel was observed not only when the cerium-containing 

phosphate solution interacted with distilled water, but also when sCeP was mixed with non-

aqueous solutions, including protic or aprotic solvents (methanol, ethanol, isopropanol, ethylene 

glycol, acetone, methyl tert-butyl ether and tetrahydrofuran). Table 2 contains the results of the 

corresponding experiments. The reason for the observed effect is still unclear, and, for its 

clarification, data are required on the ceric coordination chemistry in non-aqueous 

orthophosphoric acid solutions, which are rather scarce. It should be noted that the obtained gels 

did not always remain monolithic upon ageing (Table 2, experiments S2, S5, S9, S10). The 

breakdown of gels in these cases was probably associated with the reduction of Ce
+4

 ions to 

Ce
+3

, due to the oxidation of the corresponding solvent under acidic (H3PO4) conditions. To 

determine which of the obtained gels remain monolithic after solvent replacement, the obtained 

samples were further dialysed against deionised water (see Table 2). The results of this 

experiment revealed that only in entries S1 and S8 (see Table 2) did the samples remain 

monolithic. 
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Table 2. The effect of solvent nature on the formation of Ce (IV) phosphate gel 

Entry Solvent Formation of gel After aging 

(12 days), when 

transferred to a test 

tube with distilled 

water 

After replacing the 

solvent with distilled 

water 

S1 Water Yes Gel remains 

monolithic  

Gel remains 

monolithic  

S2 Methanol Yes Gel disintegrates ‒ 

S3 Ethanol Yes Gel remains 

monolithic  

Gel disintegrates 

S4 Isopropanol Yes Gel remains 

monolithic  

Gel disintegrates 

S5 Acetone Yes Gel disintegrates ‒ 

S6 Acetonitrile No ‒ ‒ 

S7 Diethyl ether No ‒ ‒ 

S8 MTBE Yes Gel remains 

monolithic  

Gel remains 

monolithic  

S9 Tetrahydrofuran Yes Gel disintegrates ‒ 

S10 Ethylene glycol Yes Gel disintegrates ‒ 

S11 Hexane No ‒ ‒ 

 

Hence, in the following, for the synthesis of aerogels, we used wet gels obtained by 

adding the distilled water or MTBE to a solution of cerium-containing phosphoric acid in a 

volume ratio of 4:1 (see Table 1, Table 2, experiments S1, S8). The selected gels, upon 

replacement of the solvent with acetonitrile, were dried under supercritical conditions in CO2 and 

in MTBE (Fig. 1). For the sake of clarity, the samples synthesised in this way are hereafter 

named as follows: 

Notation CePH CePM CePMTB CePx* 

Solvent used for 

wet-gel synthesis 

H2O MTBE MTBE H2O 

Solvent used for 

supercritical drying 

СО2 СО2 MTBE ambient pressure drying in 

air 

* xerogel obtained as a reference sample according to the reported synthetic procedure [40] 
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 (a)  (b) 

 (c)  (d) 

Fig. 1. The appearance of the obtained samples: (a) – CePH, (b) – CePM, (c) – CePMTB, (d) – 

CePx. 

 

It was demonstrated that supercritical drying in CO2 leads to the successful production of 

monolithic aerogels (Fig. 1a, b). Their mechanical strength is quite high for common handling, 

but somewhat lower than that of silica aerogels synthesized by common procedures. Note that 

monolithic aerogel samples are visually white, whereas powdered samples prepared from the 

same hydrogels are coloured (Fig. 1). The diffuse UV-vis reflectance spectra (Fig. S1) of 

colourless CePH and coloured CePx samples are nearly identical, indicating that the aerogels’ 

colourlessness is probably due to their low density and multiple scattering of ambient light by the 

solid-gas interfaces. Actually, the geometrical density of monolithic aerogels (CePH and CePM) 

amounts to ~0.01 g/cm
3
. The porosity of the obtained aerogels was estimated using the formula 

[44]: 

  (  
  
  
)        

where 1 is the aerogel density and 2 is the skeletal density. The skeletal density of aerogel 

samples, as measured using a Pycnomatic ATC helium pycnometer, was equal to 2.980.04 

g/cm
-3

. The calculated porosity of the monolithic aerogels was ~ 99%.  

According to X-ray diffraction analysis of aerogels obtained by drying in supercritical 

CO2 and xerogel, CePx are mostly X-ray amorphous (Fig. 2 a, b, c).  
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Fig. 2. X-ray diffraction patterns of ceric hydrogen phosphate aerogels and xerogels: (a) CePx, 

(b) CePH, (c) CePM, (d) CePMTB. The peaks corresponding to the monazite phase are indicated 

with an asterisk. 

 

In the diffractograms of these samples, at 2 ~8°, one can observe a pronounced 

broadened maximum, which may indicate the existence of short-range order in cerium-

containing hydrogen orthophosphate gels with a characteristic distance of ~1.1 nm. The presence 

of this peak for cerium-phosphate gels has also been reported previously [40,45]. Hayashi et al. 

[46] presumed that the presence of this peak is due to the layered structure of the gels allowing 

them to be intercalated with e.g. oleylamine [46]. The diffractogram for the CePM aerogel (Fig. 

2c) is almost the same as the diffractogram for the Ce (IV) hydrogen phosphate of 

Ce(HPO4)23.5H2O composition, which was obtained by Hayashi et al. by a procedure involving 

the preparation of Ce(SO4)24H2O solution in 0.5 M H2SO4, followed by its addition to a solution 

of 6M H3PO4 (95°C), followed by digestion at 95°C [46]. 
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The CePMTB sample (Fig. 2 d) was a single-phase monazite (CePO4, PDF2 №32-199). 

The formation of trivalent cerium orthophosphate seems to be the result of the oxidation of 

methyl tert-butyl ether during synthesis at high temperature (about 250°C), (probably with the 

formation of tert-butyl formate and tert-butyl alcohol), with simultaneous reduction of Ce (IV) 

[47]. As supercritical drying in the MTBE medium failed to yield a monolithic aerogel, further 

detailed studies of the CePMTB sample were not conducted. 

Fig. 3 shows the results of thermal analysis of CePx, CePM and CePH samples. In 

general, both xerogel (CePx) and aerogels (CePH and CePM) exhibited similar behaviour upon 

heating, and their thermal decomposition was of a multistage nature. In the region of relatively 

low temperatures (up to ~200°C), physically bound molecules of water, acetonitrile and others 

were removed. At temperatures up to ~500°C, apparently, the removal of chemically bound 

water occurred [40,48,49]. 

 

Fig. 3. Thermogravimetric and differential thermal analysis data for ceric hydrogen ophosphate 

aerogels (CePH, CePM) and xerogel CePx.  

 

At 680–750°C, a pronounced exothermic effect was observed, accompanied by a small 

weight loss (0.5–1%). This effect has previously been described in the literature [40,50], and is 

associated with the decomposition of Ce (IV) orthophosphates, with the release of oxygen and 

the formation of crystalline Ce (III) phosphate. According to XRD data, this led to the formation 

of monazite phase (CePO4, PDF №00-032-199) and cerium tripolyphosphate (CeP3O9, PDF 

№00-033-0336). It is noteworthy that the position of this exothermic effect when heating the 

aerogels (CePM and CePH) shifted to higher temperatures in comparison with the corresponding 

parameter for xerogel (CePx). Most likely, this difference was due to the differences in chemical 

composition of the corresponding samples, namely to the higher phosphate to cerium molar ratio 

in aerogels.  

Based on the results of a local EDX analysis (Table 3), the average Ce:P molar ratio was 

established as being approximately 1:1.5 for CePx xerogel and 1:2 for CePH and CePM 

aerogels. Thus, the chemical composition of CePx xerogel is close to Ce2H(PO4)3H2O [51], 
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Ce2(PO4)2HPO4(H2O) [51] and Сe(PO4)1.5(H2O)(H3O)0.5(H2O)0.5 [37], while the composition of 

CePH and CePM aerogels is closer to compounds Ce(HPO4)2хH2O [52] and 

CeO(H2PO4)2·2H2O [46]. Fig. 4 provides the survey XPS spectra for CePH and CePM aerogels, 

as well as for initial nanocrystalline CeO2. In Table 3, the molar ratios of the elements are 

provided, which were calculated from the integral intensities of the corresponding signals, taking 

into account the element sensitivity coefficients. The P/Ce ratios for aerogels computed from 

XPS data were in good agreement with the EDX data (Table 3). 

 

Table 3. Ce:P molar ratios in the samples of CePM and CePH aerogels and CePx xerogel, 

according to EDX and XPS 

Sample P:Ce ratio (EDX) P:Сe ratio (XPS) О/(Се+Р) ratio 

(XPS) 

CePx 1.5 – – 

CePH 2.0 1.9 2.4 

CePM 2.1 2.3 2.5 

 

 

Fig. 4. XPS survey spectra of nano-CeO2 and CePH, CePM aerogels. 
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Fig. 5 shows the IR spectra of aerogel and xerogel samples. The general appearance of 

the IR spectra of CePx, CePH and CePM samples is virtually the same, and is typical for the 

rare-earth metal phosphates. The absorption maxima at 1,061 (v.str), 980 (br), 620 (str) and 540 

(med) cm
–1

 (see Fig. 5a, b) correspond to the four characteristic symmetric and antisymmetric 

oscillations of the P-O-bonds in the PO4
3-

 ion. The absence of the pronounced splitting of the 

absorption bands of PO4 groups in the IR spectra in the regions of 900-1,200 cm
–1

 and 600 cm
–1

 

may indicate that the orthophosphate anion in the structure of the obtained substances did not 

exhibit definite denticity, and could act both as a monodentate, and as a polydentate, ligand. The 

absorption maxima with the wave numbers 3,225 (str) and 1,628 (str) cm
-1

 characterise the 

stretching vibrations of the OH groups and deformation vibrations of H-O-H in water molecules, 

respectively. The band at 1,435 cm
-1

 refers to the valence vibrations of CO3
2-

, and indicates the 

presence of a carbonate impurity, (the sample was air-dried). The band at 1,240 cm
-1

 for the 

CePM sample can be attributed to the C-O-C oscillations typical of MTBE [53], but, since it was 

present in the IR spectra of other samples, it is more likely to have been attributed to the P–O–H 

plane deformation [50]. 

 

  

Fig. 5. IR spectra of ceric hydrogen phosphate xerogel CePx (a), and ceric hydrogen phosphate 

aerogels CeРM (b) and CeРH (c). 

 

 

Table 4 shows the specific surface areas of the samples. The relatively low specific 

surface area (60-70 m
2
/g) and high porosity of aerogels (~99%) indicate the presence of a large 

number of macropores in aerogels. 

 

Table 4. Specific surface area of ceric hydrogen orthophosphate aerogel and xerogel samples. 

Sample CePx CePH CePM 

Ssp, m
2
/g 60 ± 6 70 ± 7 75 ± 8 
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Fig. 6 shows the full nitrogen adsorption/desorption isotherm for the CePM aerogel. One 

can see that the isotherm has a narrow hysteresis, which can be attributed to H3 type according 

to IUPAC classification [54]. The isotherm reflects the presence of macropores as evidenced by 

the continuous uptake at the highest relative pressure range. Unfortunately, the method of low-

temperature nitrogen adsorption is not sensitive to pores larger than ~100 nm [55]. 

 

Fig. 6. Nitrogen adsorption/desorption isotherm, pore size distribution and differential pore 

volume distribution (pore volume density) (in the inset) for the CePM aerogel.  

 

Fig. 7 shows TEM images of CePx, CePH and CePM samples. The results of 

transmission electron microscopy and electron diffraction indicated that CePx, CePH and CePM 

samples consisted of fibre-shaped anisotropic particles, at that the smallest fibre thickness (about 

15–20 nm) was observed for the CePx sample (Fig. S2). The fibre diameter for the CePH and 

CePM samples was significantly (approximately 2 times) larger, and, according to the TEM data, 

they contained inhomogeneities, most probably the closed pores (Figs. S2, 7a, b).  
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a  b  

Fig. 7. TEM images of ceric hydrogen phosphate aerogels CeРH (a) and CeРM (b). 

 

The results of scanning electron microscopy (Fig. 8) were in good agreement with the 

transmission electron microscopy data, and also indicated that CePH and CePM aerogels are 

characterised by a larger fibre diameter (up to 40-50 nm), compared to CePx xerogel. SEM data 

also indicated a slight decrease in fibre length (up to 1-2 microns) in aerogels, compared to CePx 

xerogel (Figs. S3, 8). In addition, the obtained SEM images confirmed the presence of a 

significant number of macropores in aerogels, with pores from 100 to 500 nm. 

a)  b)  

Fig. 8. SEM images of ceric hydrogen phosphate aerogels CeРM (a) and CeРH (b). 

 

The structure of xerogel (CePx) and aerogel (CePM) samples was independently analysed 

by means of small angle neutron scattering. Experimental curves of the differential macroscopic 

neutron cross section dΣ(q)/dΩ versus momentum transfer q (Fig. 9) evidently showed three 

characteristic q-ranges where the behaviours of the SANS cross section d(q)/d were 

significantly different. 

In the range 0.02 < q < 0.15 Å
-1

, the scattering cross section dΣ(q)/dΩ for all the 

samples satisfied the power law q
-n

. The exponent n values found from the slope of the 
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straight-line sections of the experimental curves for CePx and CePM samples were equal to 

3.32 ± 0.02 and 3.96 ± 0.02, respectively. The n value for the CePx sample corresponds to the 

scattering from the fractal surface with the dimension Ds = 6 – n = 2.68 ± 0.02. The n value for 

the aerogel sample was very close to 4, which corresponds to the scattering on 

inhomogeneities with virtually smooth (in the scale of neutron wavelength used in the 

experiment,  = 4.9 Å) surfaces (Ds = 2.04 ± 0.02) according to Porod law. Such a difference in 

fractal properties of xerogel and aerogel samples obtained from the nearly identical starting 

materials is quite unusual. Probably, surface fractal structure of the xerogel is formed upon 

dehydration under ambient conditions. Fractalization of smooth materials upon their drying has 

been observed previously (see e.g. [56]). 

 

Fig. 9. SANS differential cross section d(q)/d for the samples of ceric hydrogen phosphate 

xerogel CePx and aerogel CePM. Fitting of experimental data was performed according to [57] 

and is shown as solid lines. 

 

Deviations from the power law q
–n

 in differential cross section curves d(q)/d were 

observed for all samples, both at small and large q-ranges. The deviation in the small q-range (q 

< 210
-2

 Å
-1

) was due to approaching the Guinier regime [58], where the scattering is governed 

by the inhomogeneities having the characteristic size Rс. Analysis of the scattering in this q-

range enables an estimation of the Rс value, which is equal to 25.90.6 nm for CePx, and 
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29.8±0.7 nm for CePM samples. These values correspond to the upper estimate of the fibrillae 

radii in the gels and are in line with TEM and SEM data. In the large q-range (q  0.15 Å
-1

), the 

cross-sections d(q)/d became constant, (did not depend on q), because of incoherent 

scattering on hydrogen atoms present in the samples in the form of physically and chemically 

bound water, and scattering on the inhomogeneities having a size comparable to the neutron 

wavelength used in the experiment. 

The combination of the obtained data on the micro- and mesostructure of the obtained 

aerogels makes it possible to classify them as macroporous materials composed of interlaced 

fibres. Such macroporous aerogels are typically obtained using specific approaches, such as 

template synthesis [23], freeze-drying synthesis [59,60] and supercritical drying with rapid 

removal of supercritical fluid [60]. The macroporous structure is also inherent to aerogels 

consisting of fibrous or lamellar particles with carbon nanotube-based and cellulose-based 

aerogels, (which can be referred to as "1D-aerogels"), as well as graphene ("2D aerogels") being 

classic examples of such materials. It is also reasonable to mention the unusual class of alumina 

1D aerogels obtained by the controlled oxidation of metallic aluminum on the surface of 

aluminum amalgam [61], or the hydrolysis of aluminum trichloride in the presence of propylene 

oxide [3]. Jung et al. [62] proposed a method for producing monolithic macroporous aerogels 

using both one-dimensional (nanorods of Ag, Si, MnO2 and single-walled nanotubes) and two-

dimensional nanoparticles (MoS2, h-BN and graphene). The method is based on the self-

assembly of the preliminary anisotropic 1D or 2D nanoparticles obtained into a cross-linking 

network upon the increase in the concentration of their colloidal suspensions. In turn, direct sol-

gel methods for the synthesis of 1D aerogels of complex inorganic compounds are practically 

unknown. This is because the formation of flexible fibres that could form an interwoven, stable 

network within a sol-gel process is not typical for such structures. One of the scarce examples of 

sol-gel derived 1D aerogels is vanadium pentoxide gels derived from neutral VO(OH)3 species 

or vanadium alkoxide precursors [63]. These gels form according to polymeric growth 

mechanism which can be judged as one of the possible mechanisms for cerium phosphate 

fibrillae formation, too. The formation of gels from poorly soluble complex inorganic 

compounds, in particular orthophosphates of transition and rare-earth elements, is also 

complicated, because of their low solubility in the liquid phase, which leads to their hasty 

precipitation in the form of fine precipitates, hindering the structuration to impart the desirable 

morphology. 
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Conclusions 

Monolithic aerogels based on ceric hydrogen orthophosphates, being the first 

representatives of the 1D rare-earth phosphate aerogel family, have been obtained and 

characterised. It has been shown that these gels have a specific surface of 60–70 m
2
/g and, in 

addition, have a high porosity (~99%), due to the presence of pores with a wide range of sizes, 

including macropores. The obtained aerogels had a fibrous structure, with a fibre thickness up to 

~50 nm and a length of 1–2 μm, which allows considering them as a new type of 1D aerogel 

based on complex inorganic compounds. 
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Fig. S1. Diffuse UV-vis reflectance spectra of CePx (xerogel) and CePH (aerogel) samples. 
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Fig. S2. TEM images of ceric 

hydrogen phosphate xerogel CePx. 

Fig. S3. SEM images of ceric hydrogen phosphate 

xerogel CePx. 

 

 

 


