
1. Introduction
The properties of polymers can be tailored to meet
the increasingly application-specific requirements by
adding filler particles. Particularly, nano-sized addi-
tives yield considerable gains in optical [1], electri-
cal [2], thermal [3, 4], and mechanical [5] properties.
The filler particles influence the characteristics of
the matrix polymer in their immediate vicinity [6],
creating a region with diverging properties denoted
as interphase [7]. In the case of non-overlapping in-
terphases, the volume fraction of the interphase is
directly proportional to the filler-matrix interface and
thus dependent on the surface/volume fraction of the
filler particles (at constant filler content). In the case

of overlapping interphases, the proportionality de-
pends on the extent of overlaps. Due to their sub-
stantial surface-to-volume ratio, nano-sized particles,
i.e., one dimension ≤100 nm [8], yield a high inter-
phase volume fraction which affects the overall
properties considerably. Consequently, the material
behavior of nanocomposites is strongly filler size
sensitive, in contrast to conventional (micro)com-
posites [9, 10]. This dependence on the filler size,
often called the size effect, has been experimentally
confirmed in many cases, including calcium carbon-
ate-induced polypropylene [11], magnesium hydrox-
ide-reinforced rubber [12], and ground tire rubber-
filled polyethylene [13]. In addition to the filler size,

1304

Applying a generic and fast coarse-grained molecular
dynamics model to extensively study the mechanical
behavior of polymer nanocomposites
Maximilian Ries* , Jakob Seibert, Paul Steinmann , Sebastian Pfaller

Institute of Applied Mechanics, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany

Received 14 April 2022; accepted in revised form 9 August 2022

Abstract. The addition of nano-sized filler particles enhances the mechanical performance of polymers. The resulting prop-
erties of the polymer nanocomposite depend on a complex interplay of influence factors such as material pairing, filler size,
and content, as well as filler-matrix adhesion. As a complement to experimental studies, numerical methods, such as molecular
dynamics (MD), facilitate an isolated examination of the individual factors in order to understand their interaction better.
However, particle-based simulations are, in general, computationally very expensive, rendering a thorough investigation of
nanocomposites’ mechanical behavior both expensive and time-consuming. Therefore, this paper presents a fast coarse-
grained MD model for a generic nanoparticle-reinforced thermoplastic. First, we examine the matrix and filler phase indi-
vidually, which exhibit isotropic elasto-viscoplastic and anisotropic elastic behavior, respectively. Based on this, we demon-
strate that the effect of filler size, filler content, and filler-matrix adhesion on the stiffness and strength of the nanocomposite
corresponds very well with experimental findings in the literature. Consequently, the presented computationally efficient
MD model enables the analysis of a generic polymer nanocomposite. In addition to the obtained insights into mechanical
behavior, the material characterization provides the basis for a future continuum mechanical description, which bridges the
gap to the engineering scale.

Keywords: mechanical properties, nanocomposites, modelling and simulation, interphase, size effect

Express Polymer Letters Vol.16, No.12 (2022) 1304–1321
Available online at www.expresspolymlett.com
https://doi.org/10.3144/expresspolymlett.2022.94

Research article

*Corresponding author, e-mail: maximilian.ries@fau.de
© BME-PT

  

 p  
p
o

http://www.orcid.org/0000-0002-7351-6521
http://www.orcid.org/0000-0003-1490-947X
http://www.orcid.org/0000-0001-8577-5048


the mechanical performance of nanocomposites also
depends significantly on the material pairing [14,
15], the filler content, the filler distribution, and the
matrix-filler adhesion.
These influence factors affect each other and thus
form a complex interaction network which adds to
the challenge of experimental investigations. On the
one hand, higher filler contents increase the parti-
cles’ tendency to agglomerate, effectively increasing
the filler size [16]. Surface treatment of the nanopar-
ticles, on the other hand, can improve the filler dis-
tribution but, in turn, affects the filler-matrix adhe-
sion [17, 18]. Furthermore, the property profiles
within the interphase are not experimentally acces-
sible [19]. Therefore, numerical simulations of poly-
mer nanocomposites are required to complement the
experiments.
To this end, coarse-grained molecular dynamics
(CGMD) is commonly used as it offers a good com-
promise between molecular resolution and compu-
tational cost. In CGMD simulations, individual influ-
ence factors can be examined isolated to understand
their effects better and thus to be able to implement
more accurate models. Odegard and coworkers [20,
21] derived an elastic micromechanics model for
nanosilica-reinforced polyimide by matching the
continuum’s energy to its counterpart in CGMD de-
formation simulations. Even novel materials can be
explored with CGMD, as impressively demonstrated
by the work of Moghimikheirabadi and coworkers
[22, 23] on the structure and mechanical behavior of
ionized polymer nano composites. In a previous study
on nanosilica-reinforced polystyrene, we used
CGMD pseudo-experiments to characterize the me-
chanical properties of the matrix [24, 25] and filler
[26]. Based on these findings, we derived the inelas-
tic property profiles within the interphase via multi-
scale simulations [27] using a finite element-molec-
ular dynamics coupling method [28, 29]. CGMD
facilitated a targeted investigation of the interphase
properties as a function of the particle distance at
constant volume content and particle radius, which
is neither feasible nor measurable experimentally.
The employed coarse-grained (CG) model was cal-
ibrated via iterative Boltzmann inversion [30] to pre-
cisely reproduce the behavior of polystyrene [31,
32]. However, this physically motivated approach
leads to highly complex potential formulations,
which are computationally expensive and thus limit
possible investigations.

Therefore, this paper presents a simple and computa-
tionally efficient, generic CG model (Subsection 2.1)
suitable for generic studies and method development.
We verify the model by extensively analyzing the
overall mechanical behavior and demonstrate its ca-
pability to reproduce experimentally reported trends
(Subsection 3.3). However, contrary to more complex
CG models, e.g. calibrated via iterative Boltzmann
inversion, our model is not capable of accurately re-
producing the behavior of one particular thermoplas-
tic. The model is based mainly on Bocharova et al.
[33], who already proved its applicability to the struc-
ture of polymer chains. In particular, their investiga-
tions for a blend of long and short polymer chains
proved to be in excellent agreement with correspon-
ding experimental results [33]. The present paper first
characterizes the two constituents separately: The
amorphous matrix polymer behaves elasto-viscoplas-
tic and isotropic (Subsection 3.1), while the crys-
talline filler exhibits purely elastic but distinctly
anisotropic material behavior (Subsection 3.2). In the
subsequent thorough analysis of the nanocomposite,
which is only feasible with the fast CG model, we in-
vestigate the influence of filler size, filler content, and
filler-matrix adhesion on the overall material behav-
ior. We reveal that the composite’s stiffness (Subsec-
tion 3.3.3) and strength (Subsection 3.3.4) increase
with higher filler volume and stronger filler-matrix
adhesion. In particular, the strength depends consid-
erably on the filler radius, revealing the characteristic
size effects for nanocomposites. As a novelty, we ob-
tain an estimation for the thickness of the interphase
layer based on the entanglements of the polymer
chains (Subsection 3.3.2). Due to the generic nature
of the present model, the obtained findings are not ap-
plicable to experimental results of one specific ma-
trix-filler combination, but will nonetheless help to
gain a better understanding of the mechanical behav-
ior of polymer nanocomposites in general. In our pre-
vious MD-based studies of polymer nanocomposites,
we focused on a single phase and thus limited the in-
dividual investigations to either filler [26], matrix [24,
25, 34], or interphase [27, 35]. On the contrary, this
contribution includes a thorough mechanical analysis
of both filler and matrix, as well as a detailed study
of multi-inclusion composite samples. Overall, the
obtained findings demonstrate that, despite its sim-
plicity, the presented model features the mechanical
characteristics of a generic thermoplastic nanocom-
posite and is thus well-suited for future investigations.
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2. Model and simulation details
In this contribution, we investigate a generic poly-
mer nanocomposite. Spherical particles with crys-
talline microstructure (Figure 1c) are embedded into
an amorphous polymer without crosslinks, i.e., a
thermoplastic (Figure 1d). We vary the filler content
and size as visualized in Figures 1a and 1b.
This section introduces the coarse-grained molecular
dynamics model (Subsection 2.1) and the investigat-
ed samples (Subsection 2.2). Furthermore, we dis-
cuss the applied material characterization strategy
(Subsection 2.3) and the quantities obtained during
the simulations (Subsection 2.4).

Simulation software and data
The MD calculations were performed with LAMMPS
(version 29 Oct 2020) [36], while the parameter iden-
tification of the continuum mechanical models was
done in Matlab. We would also like to acknowledge
the usefulness of VMD [83] and its TopoTools [84]
and PBCtools (github.com/frobnitzem/pbctools) plu-
gins in the visualisation of our systems. We provide
the data published in this contribution via Zenodo [38].

2.1. Coarse-grained potentials for filler and
matrix

Normalized units
All quantities are expressed as multiples of the fun-
damental mass m–, length (the usual symbol ‘σ’ is
not used here to avoid confusion with the Cauchy
stress σ), and energy ϵ– as well as the Boltzmann con-
stant kB and are thus unitless. By choosing these three
properties as a base, the fundamental time τ– has to
fulfill the relation .

Without loss of generality, the fundamental quanti-
ties are set to 1; thus, m– = = ϵ– = 1 [36]. The fun-
damental quantities are omitted in this work for bet-
ter readability, and only the normalized values are
given. Consequently, the temperatures T and pres-
sures p discussed below are normalized to the char-
acteristic temperature T– = ϵ–/kB and the characteristic
pressure p– = ϵ–/ 3, respectively. Bocharova et al. [33]
demonstrated that trends obtained by simulation,
e.g., the ratio of the gyration radii of two system con-
figurations, were in excellent agreement with their
experimental findings on poly(2-vinylpyridine)-silica
nano composites. Therefore, the normalized units are
ideally suited for our goal of showing that the present
model is capable of capturing general trends of poly-
mer nanocomposites.

Coarse-grained potentials
We investigate our systems in coarse-grained reso-
lution, which means that so-called superatoms sub-
stitute groups of atoms to reduce the computational
effort (see, e.g., Müller-Plathe et al. [37]). The coarse-
grained model has been adopted from Bocharova
et al. [33]: The matrix-matrix interaction comprises
bond, angle, and pair contributions, while the ma-
trix-filler interaction is modeled solely by pair po-
tentials; hence, the polymer chains are not grafted to
the nano fillers. Thus, we use the parameters of
Bocharova et al. [33] for matrix-matrix and matrix-
filler interactions (cf. Table 1). Please note that this
simple model does not feature dihedral interactions.
Bocharova et al. [33] have used the same potentials
for matrix-matrix and filler-filler interactions since/m e2x w= r

wr

wr

wr
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Figure 1. Simulation setup: polymer nanocomposite under periodic boundary conditions for a) 20 filler particles (filler radius
rNP = 4.6 and filler content ϕNP = 23.5 vol%) and b) one filler particle (rNP = 9.1 and ϕNP = 10.3 vol%); Magnifi-
cations highlight crystalline and amorphous microstructures of filler (c) and polymer (d), respectively.



they were mainly interested in the composite’s mi-
crostructure. Since we focus on the mechanical be-
havior, we have to adjust the filler-filler interactions
to achieve a sufficiently high ratio of filler-to-matrix
stiffness, similar to those of real composite materials
(cf. Subsection 3.2). We, therefore, choose the nu-
merically robust harmonic bond potential with a sig-
nificantly higher spring constant K = 3000, and also
increase the stiffness of angular bonds with K = 100
(cf. Table 1). We show in Subsection 3.2 that the neat
filler still behaves purely elastic, proving the validity
of our parameter choice. Additionally, we vary the
strength of the matrix-filler interaction ϵm–f to model
different degrees of filler-matrix adhesion. The used
potentials and their corresponding parameters are
summarized in Table 1. We provide further details in
the supplementary material [38]. For all performed
simulations, we set the time step Δt = 0.01 and the
coupling times of the applied Nosé-Hoover thermo-
stat [39] and barostat [40] to tT = 1.0 and tp = 5.0, re-
spectively [33].

2.2. Sample generation and initial
equilibration

Neat polymer
A self-avoiding random walk algorithm [42] places
200 polymer chains of 200 super atoms each within
a cubic, periodic simulation box for the neat polymer
samples. The resulting 40000 beads are initiated at

temperature T = 1.0 under an isothermal-isobaric en-
semble and then equilibrated in three steps: First, we
apply a pressure p = 0.5, which is reduced linearly
to p = patm = 0.0 [33] over 100 000 time steps to ac-
celerate the initial contraction of the simulation box
and to ensure a high degree of entanglements. Sec-
ond, the system is cooled down below its glass tran-
sition temperature of Tg ≈ 0.41 (cf. Subsection 3.1)
to T = 0.3 in 140 000 time steps. Finally, the system
is equilibrated for another 100 000 time steps at T =
0.3 and p = 0.0.

Neat filler
We use the crystalline microstructure of the coarse-
grained silica from Ries et al. [26], scale it to suit
the potentials employed here, and re-equilibrate the
system under periodic boundary conditions. Since
the filler particles are only a few nanometers in size,
we assume their microstructure to be single crys-
talline. This assumption simplifies the future consti-
tutive modeling considerably since no complex grain
boundary effects, for example, modeled by Spannraft
et al. [43], have to be accounted for. Since a single
crystal features a uniform, homogeneous crystal lat-
tice, a periodic sample is sufficient for an exact rep-
resentation. In principle, the investigation of just one
crystal cell under periodic boundary conditions is
enough. However, for the evaluation of the virial
stress, which is very sensitive to thermal fluctua-
tions, a sufficiently large sample is necessary. Based
on the experience from previous investigations on
single crystals [26], we choose a sample size of
1350 superatoms.

Nanocomposite
The nanocomposite samples are generated analo-
gously to the neat polymer: First, 200 polymer chains
with 200 superatoms each are placed in a simulation
box using the same random walker as above. How-
ever, the chains are now placed around randomly
arranged cavities, which are slightly larger than the
desired filler particles. Next, the nanoparticles are
carved out from a large filler system, randomly ro-
tated, and inserted into these cavities. In the resulting
composite samples, neither the polymer nor the fillers
are in a state of equilibrium, so the equilibration pro-
cedure already used for the neat polymer is employed.
During the cooling process, the nanoparticles con-
tract slightly due to the interaction with the surround-
ing matrix and as a result of their free surface. This
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Table 1. Coarse-grained interaction potentials: Bond, angle,
and pair interaction potentials and their parameters
for filler-filler, matrix-matrix, and matrix-filler in-
teractions using harmonic, finite-extensible nonlin-
ear-elastic (FENE) [41], cosine, and 12/6 Lennard-
Jones (LJ) formulations; Equations given in supple-
mentary material [38].

Bond Angle Pair

Filler-filler
(adapted 
from [33])

harmonic cosine LJ
K = 3000.0 K = 100.0 ϵ = 1.0
r0 = 0.89 = 1.0w

rc = 26

Matrix-matrix
(from [33])

FENE cosine LJ
K = 30.0 K = 0.75 ϵ = 1.0
R0 = 1.5 = 1.0w

ϵ = 1.0 rc = 2.5
= 1.0 w

Matrix-filler
(from [33]) – –

LJ
ϵm–f = 1.0|4.0|8.0

= 1.0w

rc = 2.5



shrinkage is most pronounced for the largest particles
considered, with their radius decreasing from r̃NP =
10.0 to rNP = 9.1. We investigate filler radii of rNP =
2.5 to 9.1 and filler contents ϕNP from 1.1 to 23.4, as
summarized in Table 2. Note that the identification of
the interphase thickness in Subsec tion 3.3.2 requires
samples with 1650 chains of length 200 surrounding
a single nanoparticle to ensure a sufficiently large sim-
ulation box for r̃NP = 7.5.

2.3. Material characterization
Classification strategy
The four paradigmatic material models, elasticity,
plasticity, viscoelasticity, and viscoplasticity, can be
identified by means of two mechanical phenomena:
Rate-dependence and quasi-static hysteresis [44].
If the material exhibits an equilibrium hysteresis
under quasi-static loading conditions, it behaves plas-
tically. Otherwise, no plasticity is involved [45]. A
rate-dependent material response reveals additional
viscous components. This categorization strategy de-
picted in Figure 2a was originally experimentally
motivated but is also suitable for molecular dynamics
simulations, as was shown in our previous contribu-
tions [24, 25, 26].

Applied deformation
In order to capture the complete material behav-
ior, we apply strain-controlled uniaxial and shear
deformations, as visualized in Figures 2b and 2c, re-
spectively. The uniaxial deformation is achieved by
deforming the simulation box in the tensile direction
via a canonical ensemble (NVT). The resulting ten-
sile strain εii is calculated as Equation (1):

(1)

with initial and current box length Li and ℓi, respec-
tively. The application of the isothermal-isobaric en-
semble (NPT) in the transverse directions allows for
a free lateral contraction under atmospheric pressure
patm, which is set to zero for the present model [33].
In contrast, simple shear is by definition volume-pre-
serving [47], thus requires only a canonical ensem-
ble (NVT). The applied shear strain εij results from
Equation (2):

(2)

with shear angle γij, displacement ui, and box length
Lj. To capture the behavior under loading and un-
loading the overall strain is imposed for both defor-
mation cases, either time-proportionally or time-pe-
riodically specified by Equation (3):

and 

(3)

respectively [24, 26]. In the former, the deformation
is applied at a constant strain rate ε·, i.e., linearly

L
L

ii
i

i i,
f =

-

L
u
2
1

2
1

ij
j

i
ij.f c=

sint t
max

ij
a

af f
f
f=
oQ UV Zt tijf f= oQ V

, , ,i j x y z!

M. Ries et al. – Express Polymer Letters Vol.16, No.12 (2022) 1304–1321

1308

Table 2. Nanocomposite samples: Initial and equilibrated
filler radii r̃NP and rNP, number of filler particles nNP,
resulting filler contents ϕNP, and strength of the
filler-matrix interaction ϵm–f.

nNP r̃NP rNP ϵm–f ϕNP

[vol%]
08–160 2.5 2.5 8.0 1.3–23.4
1–20 5.0 4.6 1.0-8.0 1.1–18.4
1–50 7.5 6.8 8.0 3.4–15.0
1–20 10.00 9.1 8.0 7.7–14.6

Figure 2. Material characterization: a) classification scheme based on rate dependence and quasi-static hysteresis into elas-
ticity, plasticity, viscoelasticity, and viscoplasticity (from Ries et al. [26] , based on Pfaller [46]); strain-controlled
deformation via NVT ensemble: b) uniaxial deformation with initial and deformed lengths Lx and ℓx, free lateral
contraction enabled by NPT ensemble and atmospheric pressure patm; c) simple shear with length Ly, displacement
ux, and shear angle γxy.



over time t. In the latter, the strain follows a sinu-
soidal course with amplitude εa and maximum strain
rate ε·max.

2.4. Obtained quantities
Stress and derived quantities
In order to measure the stress due to the applied de-
formation, we evaluate the virial stress tensor σ [48]
(Equation (4)):

(4)

whose first term represents the virial contribution
with volume V, number of atoms nA, atom position
vectors ri and rj, and pair-wise interaction force fij.
The second term incorporates the particles’ mass mi
and velocity vi and thus their temperature. Accord-
ing to Subramaniyan and Sun [49], the virial stress
tensor σ corresponds to the Cauchy stress tensor
commonly used in continuum mechanics. Since the
stress observed in a molecular system is typically
affected by strong fluctuations, we apply a Sav-
itzky-Golay filter [50] with linear polynomials to
smooth them out. From the filtered stress, we derive
the following quantities: The stiffness is usually ex-
pressed in terms of Young’s modulus E, determined
here as the secant of the tensile stress at 1% tensile
strain. Since polymers often do not exhibit a distinct
yield point, we choose the maximum stress σmax oc-
curring at up to 20% strain as a measure of the ma-
terial’s strength.

Radius of gyration
In general, the conformation of the polymer chains is
characterized by the radius of gyration Rg or the end-
to-end distance Re. Since Re and Rg are related via
Re

2 = 6Rg
2 for linear ideal chains [51] we focus on the

gyration radius. However, a supplemental evaluation
of Re is provided in the supplementary material [38].
The radius of gyration Rg accounts for the distribution
of mass of each polymer chain and thus measures the
chain’s size. According to Rubinstein [51], Rg for
each chain is defined as Equation (5):

with 

(5)
with N atoms per chain, the i-th atom’s position ri,
and the chain’s center of mass rcom. To examine its

spatial distribution, we average Rg for each chain
over 10000 time steps and associate this mean radius
of gyration with the corresponding chain’s center of
mass rcom.

Entanglements
Contrary to studies where the interphase is identified
by the end-to-end distance [52] or the radius of gyra-
tion of the polymer chains [32, 53], we follow the ap-
proach of Moghimikheirabadi et al. [54] and examine
the nanoparticles’ influence on the entanglement net-
work. To this end, we employ the Z1 Algorithm [55–
58], which reduces each polymer chain to its primi-
tive path considering the entire polymer network. The
resulting ‘kinks’ Z of the primitive paths can be re-
lated to the entanglements of the chains and thus
characterize the thermoplastic polymer network. The
nanoparticles disturb the equilibration of the chains
and are therefore considered as obstacles to the Z1
algorithm (‘frozen limit’). In samples containing only
one nanoparticle, we can quantify its impact via the
density distribution of the kinks ρz(r) (Equation (6)):

(6)

with the number of kinks nz within a hollow sphere
Ω(r) of radius r > rNP and volume V around the nano -
particle’s center of mass (cf. Figure 8a inset).

Global Shannon entropy
To evaluate the filler dispersion, we employ the
global Shannon entropy χNP [59]. The idea is to sep-
arate the simulation box into a grid of q cuboids and
derive the entropy via the observed probability pi
that a filler is found in grid i. The global Shannon
entropy χNP is then computed as Equation (7):

with  (7)

where ni and ntot denote the number of fillers in grid
i and the total number of fillers, respectively. In the
case of complete spatial randomness of the fillers,
pi = q and thus χNP = 1, while χNP → 0 for highly ag-
gregated systems. The global Shannon entropy has
been used by Camesasca et al. [60] to analyze the
mixing quality of polymer blends. Moreover, Kam
et al. [59] compared 14 commonly used distribution
metrics and identified χNP as the optimal measure for
the evaluation of nanocomposites. Based on their
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findings, we choose q = 27 arranged in a 3×3×3 grid
for our studies.

3. Results and discussions
3.1. Neat polymer
In this section, we first consider the mechanical be-
havior of the neat polymer without filler particles.
We identify the glass transition temperature Tg ≈
0.41, show the isotropy of the polymer, and reveal
that it behaves elasto-viscoplastically.

Glass transition temperature
Bocharova et al. [33] studied the polymer in the
molten state at temperature T = 1.0. However, for the
present analysis of the mechanical properties, the
polymer has to be cooled down below its glass tran-
sition temperature Tg to behave like a solid. Hence,
Figure 3a displays the stress-strain curves of uniaxial
tensile tests at different temperatures. Clearly, at T ≥
0.5, the sample is still in a molten state and thus can-
not sustain any tensile stresses. Only at lower tem-
peratures T ≤ 0.4, the material experiences stresses,
with both the initial slope (Young’s modulus) and the
maximum stresses increasing with decreasing tem-
perature. Consequently, the glass transition occurs
between T = 0.4 to 0.5, with Tg ≈ 0.41 derived from
the density evolution during quenching (cf. supple-
mentary material [38]). Such a strongly temperature-
dependent material behavior is typical for polymers.
We choose T = 0.3 for all following investigations,
which is sufficiently far below Tg, but without sup-
pressing all dynamic effects.

Isotropy
Figure 3b reveals that the mechanical response of
the present polymer is independent of the loading
direction, i.e., isotropic. This confirms that the
polymer chains indeed appear in amorphous
form, thus validating our random walk algorithm
and subsequent equilibration procedure as intro-
duced in Subsection 2.2. Consequently, we per-
form all following uniaxial and shear tests for the
neat polymer only in x- and xy-direction, respec-
tively.

Large deformation
The inset in Figure 3b shows that the tensile stress
increases almost linearly for strains from 25% up to
100%. This is reasonable since no bond breakage cri-
terion is implemented, which would cause material
damage. Hence, the MD model currently provides
no meaningful results for such large strains. An ex-
tension to include a suitable bond breakage criterion
is currently in progress.

Rate dependence
The rate-dependent stress-strain curves due to time-
proportional tensile and shear deformation are
shown in Figures 4, respectively. For both load
cases, the polymer exhibits a pronounced strain rate
dependence, revealing viscous material behavior (cf.
Figure 2a). This rate dependence is consistent with
the previously identified temperature dependence, as
both are related by the time-temperature superposi-
tion principle [61].
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Figure 3. Uniaxial tension test with ε· = 5·10–5: a) temperature dependence with glassy state for T ≤ 0.4 (1 sample for each
temperature); b) isotropic behavior shown by loading in x-, y-, and z-direction (band displays standard deviation
over 5 samples); inset: large deformation up to 100%.



Equilibrium hysteresis
Figure 5a displays the stress-strain curves resulting
from time-periodic uniaxial deformation for strain
amplitudes εa from 1 to 20%. It is evident that a stable
equilibrium hysteresis is already formed in the first
deformation cycle for all amplitudes. The area of the
σ–ε-hysteresis increases with larger amplitudes and
is proportional to the dissipated energy [62]. The
larger dissipation indicates increasingly inelastic ma-
terial behavior at larger strain amplitudes. An excep-
tion to this is εa = 1%: In this case, the area of the
hysteresis vanishes, thus, no energy is dissipated,
and purely elastic material behavior is observed for
such small deformations.

Relaxation
The stress relaxation shown in Figure 5b is per-
formed directly after the fourth load cycle when

reaching zero strain and thus reveals whether the ob-
served inelasticity stems from viscous or plastic ef-
fects. In this procedure, any remaining stress for
t → ∞ would be due to plastic effects, whereas the
elastic contributions would vanish immediately, and
the viscous contributions would disappear over time.
To derive the converged plastic stress, we extrapo-
late our simulation data with σxx(t) = [at + b]/[t + c],
where a = σxx

t→∞ [24]. The stress relaxation in Figure 5b
confirms purely elastic behavior for the smallest am-
plitude and the presence of viscous effects for am-
plitudes εa ≥ 5%. However, the fact that the stress
does not vanish completely indicates additional plas-
tic effects. Interestingly, σxx

t→∞ seems to converge to
a constant value for εa ≥ 15%, as highlighted in the
inset of Figure 5b. This implies that only the viscous
components increase for larger deformations while
the plastic components remain constant, which is

M. Ries et al. – Express Polymer Letters Vol.16, No.12 (2022) 1304–1321

1311

Figure 4. Strain rate dependence: a) uniaxial tension in x-direction; b) simple shear in xy-direction; Bands display standard
deviations over five samples.

Figure 5. a) Time-periodic loading with 4 sinusoidal cycles with strain amplitudes from 1 to 20%; b) subsequent stress re-
laxation at the end of the 4th loading cycle; inset: Relaxed stress for t → ∞ derived via extrapolation.



most likely due to the missing damage as discussed
above.

Computation time
Finally, we evaluate the computational performance
of the present generic MD model. To this end, a com-
parison to the simulations of polystyrene with a more
sophisticated CG model in Bauer et al. [63] is suit-
able since these were carried out on the same hard-
ware using lammps. The generic model stands out in
2 aspects: On the one hand, the computation of the
time steps is much more efficient with 180 compared
to 90 time steps/s. On the other hand, significantly
fewer time steps are required to apply the deformation
in the generic model, as shown in Table 3. Of course,
the more complex model provides a more accurate
representation of the specific behavior of the polymer,

which is polystyrene in the present case. However,
the model introduced here is much more attractive
for generic investigations and method develop-
ment due to its significantly higher computational
efficiency.

3.2. Neat filler
Next, we focus on the mechanical behavior of the
neat filler and show that it behaves purely elastic and
is significantly stiffer than the neat polymer. Hence,
the filler particles within the composite deform con-
siderably less than the softer polymer matrix. Con-
sequently, an investigation of the material behavior
of the filler up to 10 % strain is sufficient for our pur-
poses. Additionally, the filler exhibits pronounced
anisotropy due to its crystalline microstructure.

Anisotropy
From the stress-strain curves in Figures 6, it is ev-
ident that the filler exhibits pronounced anisotropic
behavior for uniaxial tension and simple shear, re-
spectively. This is attributed to the crystalline mi-
crostructure of the filler (cf. Figure 1c), which
causes the tensile stiffness in the x-direction to be
significantly higher than in the y- and z-directions.
In addition, the tensile stress in the x-direction σxx
increases almost linearly, while σyy and σzz follow
a distinctly nonlinear, i.e. concave path. The shear
stresses behave similarly, albeit σyz is linear, σxy is
slightly concave, and σxz is significantly lower and
slightly convex.
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Table 3. Computational cost for uniaxial tension tests: Com-
parison of the present generic model and a sophis-
ticated coarse-grained model of polystyrene [63] at
typical strain rates of ε· = 5·10–5 (generic model with
dimensionless time) and ε· = 1%·ns–1 (polystyrene
with physical time), respectively; Both systems
comprise 60 000 atoms: Computational efficiency
in time steps per walltime, i.e. timesteps/s, and load
discretization in required timesteps/(1% strain);
simulations performed with lammps on the same
hardware.

Model
Efficiency

s
timestep

Load discretization

1%
timestep
strain

Generic model ≈ 180 40000
Polystyrene ≈ 90 800000

Figure 6. Time-proportional loading at strain rates from 5·10–6 to 5·10–4 (all overlapping) reveals anisotropy and rate-inde-
pendence for a) uniaxial tension in x-, y-, and z-direction; b) simple shear in xy-, xz-, and yz-direction; Whiskers
indicate fluctuations.



Rate independence
The stress-strain curves in Figures 6 for different
strain rates perfectly overlap for the individual load
directions. Consequently, the filler exhibits no rate
dependence and hence no viscosity. Compared to the
pure polymer (cf. Figure 4), the filler behaves sig-
nificantly stiffer, which enables the model composite
to capture the generic behavior of a polymer with
stiffer inclusions.

Cyclic loading
Due to the stiffness difference, we expect the nano -
particles to deform significantly less than the softer
matrix during the loading of the nanocomposite.
Therefore, an analysis of the cyclic behavior with
strain amplitudes of εa = 5% is sufficient for the filler.
The cyclic load curves in Figure 7 clearly illustrate
that no hysteresis develops for the filler, and thus no
energy is dissipated. Combined with the observed
rate independence, this means that the filler behaves
purely elastic with pronounced anisotropy. Further-
more, we observe a tension-compression asymmetry,
particularly for loading in y-, z-, and xz-directions.

3.3. Polymer nanocomposite
3.3.1. Experimental trends
In the following, we briefly review the mechanical
behavior of polymer nanocomposites reported in ex-
perimental studies and derive general trends.

Stiffness
The addition of nanoparticles increases the volume
fraction of the stiffer filler phase and, thus also the

overall stiffness. As explained above, an additional
reinforcement effect occurs for smaller fillers since
these cause a larger portion of the stiffer interphase.
The stiffness is typically measured as Young’s mod-
ulus at small deformations, where the matrix-filler
adhesion does not yet contribute to the overall behav-
ior [5]. Furthermore, chemical or physical surface
modifications introduce additional parameters (graft-
ing agent, grafting density, etc.) [64], making the ma-
terial behavior strongly dependent on the individual
material pairing and preparation. Consequently, no
general trend can be derived for the influence of ma-
trix-filler adhesion on the nanocomposite’s stiffness.
In general, the stiffness of nano composites
T1) increases with increasing filler content [65–68],
T2) increases with decreasing filler size at constant

filler content [67–71], and
T3) shows no clear trend with respect to filler-ma-

trix adhesion (strongly depends on material
pairing) [72–74].

Strength
The nanocomposite’s strength depends on effective
stress transfer between the matrix and filler. Both a
larger filler content and smaller nanoparticles increase
the filler-matrix interface improving the load transfer
and enhancing the strength. In terms of strength,
filler-matrix adhesion plays a crucial role: strong ad-
hesion ensures effective loading of the particles and
thus high overall strength, while weak filler-matrix in-
teraction results in debonding, which might even
weaken the nanocomposite compared to the neat poly-
mer [5]. In general, the strength of nanocomposites
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Figure 7. Time-periodic loading indicates pure elasticity with pronounced anisotropy for a) uniaxial deformation in x-, y-,
and z-direction with strain amplitude εa = 5% and b) shear deformation in x-, xz-, and yz-direction with strain am-
plitude εa = 2.5%; Four sinusoidal loading-unloading cycles (curves overlapping)



T4) increases with increasing filler content [11, 12],
T5) increases with decreasing filler size [6, 12, 75],

and
T6) increases with better filler-matrix adhesion

[66, 76].
In addition to stiffness and strength, the mechanical
performance of nanocomposites is also measured by
their fracture toughness. However, the fracture be-
havior is characterized by large parameter uncertain-
ties [77], and its complex analysis is thus beyond the
scope of this contribution.

Filler dispersion
One of the main challenges in the preparation of real
polymer nanocomposite specimens is the proper dis-
persion of the nanofillers [8]. Any remaining filler
agglomerate effectively represents a larger particle
and thus counteracts the beneficial size effect. Fur-
thermore, these particle clusters represent nuclei for
crack initiation and thus have a considerable negative
effect on the mechanical properties of the composite.
Recently, Petrény et al. [78] showed that for poorly
dispersed nanofillers strength and stiffness decrease
with increasing filler content. However, by adding
micro-sized fillers, they enhanced the nano particles’
dispersion significantly and obtained an increased

stiffness for larger filler content at a constant strength.
Using a combination of micro- and nano-sized rein-
forcements to effectively suppress agglomeration and
thus facilitate mechanical strengthening has also
been reported by Mészáros et al. [79]. Consequently,
the trends T1) to T7) are only valid for well-dis-
persed nanoparticles.

3.3.2. Interphase
The interphase denotes the polymer region close to
the filler particles in which these induce a modifica-
tion of the material properties. Such a local effect on
the material behavior cannot be measured directly but
can be deduced from changes in the microstructure.
Therefore, we assess the thickness of the interphase
via the entanglement density ρz and the radius of gy-
ration Rg. To properly assess the particles’ influence,
we consider samples with only a single filler particle
each. We keep a low filler content of ϕNP ≈ 1 vol%
to ensure that the fillers are surrounded by a sufficient
polymer. For statistical validation, the following re-
sults are averaged over 20 samples each.
Figure 8a shows the spatial distribution of the entan-
glement density ρz(r) (cf. Equation (6)) normalized
to the neat polymer ρz

neat over the distance from the
filler surface dNP. Directly at the particle surface
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Figure 8. Nanoparticle’s effect on the surrounding polymer: Spatial distribution of the entanglement density ρz (a) and radius
of gyration Rg (b) for filler radius rNP = 4.6 to 6.8, over distance from filler surface dNP, normalized to ρz

neat and
Rg

neat of the neat polymer, respectively. Averaged over 20 samples, bands display standard deviation.



(dNP = 0), we observe an increase in the entangle-
ment density compared to the neat polymer, which
is more pronounced for smaller particles. Interest-
ingly, the curves for different rNP differ qualitatively
in the range up to dNP = 5: For the smallest particle
radius rNP = 2.5, there is a clear concentration of en-
tanglements near the filler surface. The substantial
standard distribution near the filler surface most like-
ly results from the extremely small surface area in
the case of small filler particles: In contrast to larger
filler particles, only a few polymer beads are located
within the considered volume Ω(r), such that high
fluctuations must be expected. A minimum slightly
below the neat polymer emerges at dNP = 5. With
rNP = 4.6, a similar minimum already occurs at dNP ≈
2.2, i.e., much closer to the particle surface. In con-
trast, larger particles lead to a much lower minimum
at dNP ≈ 2.2, and thus induce a noticeably lower en-
tanglement density in the vicinity of the filler com-
pared to smaller filler particles. For larger surface
distances, all curves converge to the level of the pure
polymer, as expected.
Analogously, the spatial distribution of the radius
of gyration is displayed in Figure 8b. For all parti-
cle sizes, the curves start at 0, since few chains are
located in the direct vicinity of the particle surface.
In the range 0 < dNP < 5, the Rg-curves increase and
converge towards 1, i.e., the neat polymer. In the
same range for dNP, Rg/Rg

neat < 1 holds only in the
case of the smallest particles with r = 2.5. Hence,
the chains are smaller and more ball-like compared
to the neat polymer. Similar results are obtained for
r = 4.6, albeit the curve exhibits a larger gradient

and converges to 1 earlier. A similar gradient is ob-
tained for larger fillers, but Rg/Rg

neat > 1 occurs,
which means that the chains are more stretched out
in this area, as compared to the neat polymer. For
all particle sizes, the standard deviation over
20 samples is very large near the particle surface but
decreases markedly with increasing distance from
the filler surface to only ±1% for dNP > 10. This in-
dicates that the polymer conformation near the
fillers features large local variations, thus requiring
statistical validation of the results. The end-to-end
distances behave similarly and are therefore only
provided in the supplementary material [38].
Figure 8 suggests a correlation between the entan-
glement density and the radius of gyration: While
there are more entanglements and smaller Rg for small
fillers, the opposite occurs for larger ones. For all
filler sizes, however, the influence of the particles on
the surrounding polymer seems to decay at a surface
distance dNP ≈ 5. Consequently, the material proper-
ties in this region presumably differ from those of the
neat polymer, which implies that the interphase is of
thickness 5. However, the filler size-dependent pro-
files in Figure 8 indicate that the property gradients
within the interphase also depend on rNP.

3.3.3. Stiffness
We first consider the overall stiffness, expressed by
Young’s modulus E normalized to the neat polymer
Eneat. Figure 9a shows the influence of the filler size
on the stiffness for different filler contents ϕNP. For
all radii, the stiffness increases significantly with in-
creasing filler content, consistent with trend T1).
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Figure 9. Stiffness of nanocomposite: normalized Young’s modulus E/Eneat over filler content ϕNP for a) different filler radii
rNP at strong filler-matrix adhesion ϵm–f = 8.0 and b) filler-matrix adhesion ϵm–f = 8.0 (strong), 4.0 (mid), and 1.0
(weak) at filler radius rNP = 4.6; averaged over 5 samples; bands display the standard deviation for each point.



Furthermore, Young’s modulus rises slightly with
decreasing particle radius, corresponding to T2), al-
though this is not particularly pronounced.
Figure 9b illustrates the influence of the matrix-filler
adhesion over filler content at a particle radius of rNP =
4.6. At low filler contents of ϕNP < 7 vol%, the differ-
ence between the curves is marginal. For larger ϕNP,
however, it becomes evident that the weaker adhesion
of the particles leads to a lower overall stiffness, con-
sistent with T3). This can be attributed to the thinner
interphase for weak filler-matrix adhesion, which cor-
responds to a lower volume fraction of the interphase,
which behaves stiffer than the neat polymer.

3.3.4. Strength
Figure 10a presents the strength as maximum stress
σmax (cf. Subsection 2.4) normalized to the neat
polymer σneat

max versus filler content ϕNP for different
filler radii. A higher filler content leads to an increase
in strength matching T5). However, this reinforce-
ment is more pronounced for smaller particles and
thus in good agreement with T2). A filler content of
ϕNP ≈ 15 vol% already leads to a doubling of the
strength with r = 2.5, while r = 9.1 results in a
strengthening of only 40% relative to the neat poly-
mer. In general, the strength exhibits a significantly
smaller standard deviation than the stiffness.
Analogously, Figure 10b illuminates the influence of
matrix-filler adhesion. Similar to the stiffness, there
is no influence of the matrix-filler adhesion at small
volume fractions of ϕNP < 5 vol%. For larger ϕNP,

weaker adhesion leads to significantly lower strength,
as expected from trend T7). While the strength al-
ready almost doubles for strong matrix-filler inter-
action at ϕNP ≈ 18 vol%, it only improves by 20%
for weak adhesion.

3.3.5. Filler dispersion
Since agglomeration of nanoparticles has a crucial
impact on the mechanical properties of polymer
nanocomposites, we evaluate the degree of disper-
sion by means of the global Shannon entropy χNP,
given in Equation (7). Since the samples with the
smallest fillers (rNP = 2.5) comprise the largest num-
ber of nanoparticles (cf. Table 2); they are suited best
for evaluating χNP. Figure 11 depicts the impact of
the dispersion on stiffness and strength for rNP = 2.5
and filler contents of 0 < ϕNP < 25 vol%. On the one
hand, χNP increases with the filler content, and we
observe an excellent filler dispersion at high ϕNP. The
significantly lower Shannon entropy for the lowest
filler content is attributed to the small number of
only eight nanoparticles, which can take a wide
range of χNP starting from their random initial posi-
tions. Nevertheless, this verifies our sample genera-
tion and equilibration procedure (cf. Subsection 2.2)
and confirms that the results of Subsection 3.3.3
and Subsection 3.3.4 have not been distorted by the
formation of particle clusters. On the other hand, bet-
ter dispersion seems to lead to enhanced mechanical
properties. However, we also know from Figure 9
and Figure 10 that the filler content ϕNP improves the
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Figure 10. Strength of nanocomposite: normalized maximum tensile stress σmax/σneat
max over filler content ϕNP for a) different

filler radii rNP at strong filler-matrix adhesion ϵm–f = 8.0 and b) filler-matrix adhesion ϵm–f = 8.0 (strong), 4.0
(mid), and 1.0 (weak) at filler radius rNP = 4.6; Bands display standard deviation over 5 samples for each data
point.



overall stiffness and strength. Therefore, at this
point, it is not possible to separate the impact of the
filler distribution from one of the filler content. To
determine whether agglomeration negatively affects
the mechanical properties of our model, MD simu-
lations with enforced particle clusters are required.
This, however, exceeds the scope of this work and
will be addressed in a future contribution.

3.3.6. Summary
The generic CGMD model presented here is thus ca-
pable of reproducing the trends known from experi-
ments for nanocomposites (cf. T1)–T7)). Therefore,
it is an excellent tool to facilitate generic studies as
well as method development.

4. Conclusions
In this paper, we present a generic and computation-
ally efficient CGMD model for polymer nanocom-
posite based on Bocharova et al. [33]. We first me-
chanically characterize the neat polymer, which be-
haves isotropically and elasto-viscoplastically. Sub-
sequently, we show that the neat filler exhibits purely
elastic material behavior. However, due to its crys-
talline microstructure, it displays a pronounced aniso -
tropy. When combined, the polymer and filler rep-
resent a generic nanocomposite with spherical filler
particles in a softer polymer matrix. We demonstrate
that the presented model, despite its simplicity, is able
to reproduce the trends for polymer nanocomposites

known from experimental studies in the literature.
In particular, we observe a strong dependence on the
particle size, characteristic of nanocomposites. Fur-
thermore, we prove the presence of an interphase
surrounding the nanoparticles and identify its thick-
ness based on the filler-induced changes in the poly-
mer’s microstructure. Consequently, the presented
model is ideally suited for generic studies and
method development, as it is significantly more
computationally efficient than more accurate physi-
cally motivated CGMD models.
The present study forms the basis for future investi-
gations. In the next step, we intend to calibrate con-
tinuum mechanical constitutive laws for polymer and
filler analogous to Zhao et al. [80] and Ries et al. [26]
based on the present results. These continuum models
are a prerequisite for the identification of the property
gradients within the interphase, as described, for ex-
ample, in our previous studies [27, 35].
To overcome the current limitation of the model in
terms of maximum deformation, we will extend it
with a suitable bond-breaking criterion. Incorporat-
ing this extended CGMD model into an atomistic-
to-continuum coupling scheme, such as the recently
updated Capriccio method [81, 82] will enable us to
unravel the challenging fracture behavior of polymer
nanocomposites.
Finally, another extension of the model to investigate
also grafted polymer nanocomposites is currently in
progress.
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Figure 11. Impact of the particle agglomeration: a) normalized Young’s modulus E/Eneat and b) normalized maximum tensile
stress σmax/σneat

max over global Shannon entropy χNP for filler radius rNP = 2.5 and strong filler-matrix adhesion ϵm–f =
8.0; χNP = 1 at complete spatial randomness of the fillers.
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