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A B S T R A C T   

Application of process-based models at different spatial scales requires their proper parameterization. This task is 
typically executed using trial-and-error parameter adjustment or a probabilistic method. Practical application of 
the probabilistic methods is hampered by methodological complexity and lack of interpretability. Here we 
present a novel approach for the parameterization of process-based models that we call as conditional interval 
refinement method (CIRM). The method can be best described as the combination of a probabilistic approach and 
the advantages of the expert-based parameter adjustment. CIRM was demonstrated by optimizing the Biome- 
BGCMuSo biogeochemical model using maize yield observations. The proposed approach uses the General 
Likelihood Uncertainty Estimation (GLUE) method with additional expert knowledge, supplemented by the 
construction and interpretation of decision trees. It was demonstrated that the iterative, fully automatic method 
successfully constrained the parameter intervals meanwhile our confidence on the parameters increased. The 
algorithm can easily be implemented with other process-based models.   

1. Introduction 

Process based models are typically associated with many parameters 
that have to be set by the user in any modeling exercise (Therond et al., 
2011; Wöhling et al., 2013; Hararuk et al., 2014; Bilionis et al., 2015; 
Hidy et al., 2022). Model parameterization is a complex procedure as 
generally some of the adjustable constants of the model cannot be 
measured directly (e.g. they are empirical coefficients associated with 
some process representation). Another problem is the well-recognized 
uncertainty of the model parameters especially if the model is used at 
large spatial scales (Van Oijen et al., 2005; Xiong et al., 2008; Angulo 
et al., 2013). Inverse modeling (also referred as parameter estimation or 
model optimization/calibration) techniques are widely used to estimate 
unknown or uncertain model parameters based on observations (Bras
well et al., 2005; Van Oijen et al., 2005; Sadegh and Vrugt 2013; Bilionis 

et al., 2015). 
Inverse modelling is considered successful if and only if the model 

results based on the estimated parameters are reasonably close to the 
observations that represent the “reality” (with some noise quantified by 
the measurement error). If the uncertainty of the estimation is also low, 
the model is considered appropriate to describe the studied system 
accurately and precisely. The key factor here is the metric for the 
“closeness” of the simulations to the observations, and the uncertainty of 
the parameter estimation (where the latter can be represented by a 
probability distribution; Trudinger et al., 2007). The metric is repre
sented by the objective function (e.g. likelihood for probabilistic 
methods), while the latter is quantified by the uncertainty range (i.e. 
posterior density function for probabilistic case). Up to recently, most of 
the inverse modelling efforts directed toward only the objective func
tion, without estimating the parameter uncertainties (e.g. Wallach et al., 
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2021). Derivate-based optimization techniques such as the 
Levenberg-Marquardt method are frequently used (Moré, 1978; Tru
dinger et al., 2007; Brunetti et al., 2022). These techniques can provide 
fast convergence with low stability (ideal for deep learning applications, 
where these are most commonly used). The success of the procedure 
depends on the initial values of the parameters and the choice of meta 
parameters (e.g. the learning rate for gradient descent; Goodfellow et al., 
2017, p. 101; Tarantola, 2005, p. 76). For complex process-based models 
information about the derivate is usually not available, therefore the 
so-called derivate-free methods are preferred. 

Two subcategories can be distinguished within the derivate-free 
methods: the direct search-based methods and the probabilistic 
methods. The first one is only suitable for finding the optimum param
eter values and more subject to the “curse of dimensionality” (Bellman, 
1957) meaning that these methods are applicable only in 
low-dimensional cases (Tarantola, 2005, p. 42). When we only have a 
few parameters to optimize, grid search can be fast, simple and stable, 
meaning that after repeating the optimization with the same hyper
parameters (i.e. number of dividing points), the result would be close to 
the original optimization output. Metaheuristic algorithms such as ge
netic algorithms can be used for addressing the “curse of dimension
ality”, but usually by sacrificing the stability or the unicity of the result 
(Gogna and Tayal, 2013; White et al., 2022). Finding the global opti
mum is also not guaranteed in such case. 

The goal of the probabilistic methods (which is the subject of this 
study) is usually not only to find the optimum of the parameters, but also 
to provide some uncertainty for these (Van Oijen et al., 2005; Hartig 
et al., 2011). These methods are largely flexible and naturally provide 
possibilities to calibrate input parameters while considering modelling, 
parametrization and measurement errors at the same time (Tarantola, 
2005). However, flexibility has its cost. The more flexible the system is 
the more hyperparameters and assumptions have to be used in order to 
simplify the workflow. Building up a probabilistic model is generally 
much harder than finding a good objective function. 

The least complicated probabilistic method that can be used for 
estimating the models’ input parameters is the maximum likelihood 
(ML) estimation. This method relies on an efficient sampling algorithm, 
which effectively samples from the input parameter space. In this 
context effectivity means that the sampling distribution resembles the 
prior distribution with the minimum number of sampled parameters. 
Depending on the effectiveness of the sampling procedure, the “curse of 
dimensionality” can be a major problem here as well. However, the 
biggest problem is that if the number of sampled parameters is low, the 
confidence over the ML value is unreasonably strong, and usually the ML 
values fail on independent data. There are two possible directions to 
address this issue: the frequentist and the Bayesian approach. The fre
quentist solution is regularization. For example, in the General Likeli
hood Uncertainty Estimation (GLUE) method, not all likelihood values 
are used for constructing the distribution of the estimated input 
parameter values, but only the so-called behavioral values, which are 
usually defined as the top x % (typically x = 5) of the sampled param
eters (Prihodko et al., 2008; Beven and Binley, 2014; Sexton et al., 
2016). The behavioral parameter values are all considered as “good” 
parameter values. Among them the parameter value with the ML value is 
just one of the many. The median of the sampled parameter values is 
frequently considered as the optimum parameter value with the uncer
tainty interval defined by the empirical cumulative distribution function 
(ECDF). If the empirical probability density function is unimodal, this 
approach is more stable and usually gives better results during valida
tion with independent data than the ML estimation. 

The other large family of the probabilistic methods is the Bayesian 
one. These methods are generally more flexible than the frequentist 
approaches and naturally provide interfaces to (re)use previous 
knowledge about the parameter space. The use of previous knowledge 
prevents the optimization algorithms to be overly confident about the 
estimation which is based on small amount of data points. The Bayes 

rule is the unifying device with which the prior knowledge can be 
updated by the likelihood function to gather posterior knowledge 
(Gelman et al., 1995). The posterior density function provides us with 
probabilistic information about our parameters. For example, one can 
answer questions like what is the probability of a given parameter value 
present within a certain range? With this information we can estimate a 
parameter with its characteristic points such as a maximum posterior 
value (MAP) while providing information about the uncertainty in
tervals like highest posterior density interval (HPDI). However, if our 
only expectation from the method is to produce reliable prediction, 
instead of using the MAP value, Bayesian Model Averaging (BMA) would 
be the best solution (Hinne et al., 2020), as it uses all information from 
the posterior distribution to predict the output compared to the simpler 
ensemble method. Furthermore, the posterior distribution is directly 
useable for hypothesis testing for example through Bayesian Factors 
(BF) (Gelman et al., 1995). 

Despite all of their strengths – if executed properly – Bayesian 
methods are undoubtedly complicated. Thus, during the inverse 
modelling process excessive number of assumptions and numerous 
choices have to be made. First, proper likelihood and prior functions 
have to be chosen. The choice is always connected to the problem, but 
not always obvious. For example, universally applicable uninformative 
prior distribution does not exist (Pericchi and Walley, 1991), although 
many use a uniform prior distribution for this purpose due to its 
simplicity (Pericchi and Walley, 1991; Gelman, 1996; Gelman and Yao, 
2020; Wallach et al., 2021). Furthermore, in spite of the fact that 
choosing the proper likelihood function is one of the most important 
decision to be made (Trudinger et al., 2007; Dumont et al., 2014), 
modelers still usually use normal likelihood (Wallach et al., 2021). 
However, choosing the likelihood function family is still not sufficient to 
define the right priors or the global likelihood function. There are 
several additional assumptions, such as the independency of measure
ments, and also the independency of the measurement and model errors 
(Tarantola, 2005). The most frequent assumption by far is that gaining 
reliable inference about the input parameter space is possible by 
examining only the marginal posterior distributions. There are few at
tempts to deal with the interdependence of the posterior distribution, 
but these are usually examined pairwise or in a few cases by 3D scatter 
plots (Sadegh and Vrugt, 2013; Beven and Binley, 2014; Her and 
Chaubey, 2015) which clearly cannot capture higher dimensional re
lationships. The assumptions about the sampling procedure are similar: 
most of the proposed values for the parameters are sampled 
independently. 

Depending on the dimensionality of the parameter space probabi
listic calibration is computationally expensive. Thus, the methods which 
sample less while getting the most informative results are preferable. If 
input parameter dependence is taken into account, less simulations are 
needed (Bloom and Williams, 2015). For example, if the model has two 
input parameters and the sum of the parameters must equal 1, the 
probability of getting the affordable parameter with random uniform 
sampling is virtually 0. Because convex relationships are the most 
widespread, using a sampling method designed specifically for convex 
cases can have a huge positive impact on the effectivity of the procedure. 
Otherwise, every concave region can be split into disjoint convex re
gions, where the input parameters can be sampled independently. If the 
convex region is not a polytope, it can be approximated with polytopes. 
Therefore, techniques used to sample convex polytope regions are 
general enough to be good candidates to sample any parameter region. 
One of these algorithms is the Hit and Run sampling (Lovász and 
Vempala, 2003), which (according to our best knowledge) has not been 
used for process based models yet. 

At this point it is important to note that it is still an open question 
whether the Bayesian method has advantages over the frequentist 
method even if Bayesian methods are not used properly (Gelman and 
Yao, 2020). Many studies focus on the practical application of different 
methods but we are very far from offering “best practices” or universally 
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applicable solutions to the modeler community. 
There are attempts to improve the success of optimization. Because 

of the complexity of the models and the related high dimensionality of 
the parameterization, more and more observations are needed to 
confidently perform inverse modeling, and most of the time the problem 
is still underdetermined (Sadegh and Vrugt, 2013). The modeler can 
theoretically tackle this problem by introducing additional information 
about the modelled system. Providing information about the relation
ship of the input parameters is a recently proposed new direction 
(Richardson et al., 2010; Bloom and Williams, 2015). This approach is 
based on the recognition that not every parameter combination is 
feasible based on the expert knowledge. 

Conditioning the input parameter space is not the only option to 
improve the results of model optimization. Process-based models are 
inherently complex and produce more than one output streams. Cali
brating models considering only one of these can result in “good results 
for wrong reasons” (Beven and Binley, 2014). As a consequence, with 
the resulting parameterization the model can predict the given variable 
reasonably well on the training data but might fail on the validation data 
(that is the typical case with overfitting). The chance of overfitting is the 
highest if the parameters are associated with equifinality which means 
that in the predefined interval the likelihood of different parameter 
values is similar. In the case of equifinality we cannot choose objectively 
from the posterior parameters which means that the parameter uncer
tainty cannot be constrained (Beven and Freer, 2001). Equifinality does 
not necessarily mean failure of the simulation but rather it is a limitation 
of the inversion method. 

One possible solution to avoid equifinality is the application of multi- 
objective calibration. By using multiple objective functions based on 
multiple observation data streams the result can be more stable with 
fewer parameters in equifinality (Her and Seong, 2018). However, 
multi-objective calibration needs good quality observation data streams 
to ensure a successful inversion. Because of the output stream interde
pendence, adding one more data stream to the process can lead to a 
complicated workflow. The noise of multiple data streams is not additive 
(c.f. error covariance matrix). In real life cases generally we do not have 
enough data for multi-objective calibration, or the data is too noisy. 

In conjunction with multi-objective calibration, the modeler can use 
some rejection filtering techniques. One of the main advantage of these 
approaches is the resilience against correlations between the different 
statistics of the model outputs (Hartig et al., 2011). However, applying 
rejection filtering alone does not shrink the parameter space, and these 
methods cannot be easily interpreted, hence the modelers who tradi
tionally use trial-and-error approach with (implicit) rejection filtering 
do not have enough control over the inverse modeling procedure. 
Furthermore, if the ratio of the filtered, acceptable simulations is too 
low, the convergence of the posterior sampling methods can be excep
tionally slow or even questionable. 

The complexity of the implementation of probabilistic methods and 
the possibility to get unusable results (i.e. equifinality) might be the 
main reasons why the majority of the researchers still prefer the trial- 
and-error method in model optimization (Wallach et al., 2021). 
Clearly, there is a great need to develop interpretable, easy-to-use and 
effective methods that support modelers to improve the optimization of 
the models especially in high dimensional cases. 

In this study we introduce a novel method which can resolve some 
ongoing issues that are described above in probabilistic, process-based 
model optimization. The method uses observations supplemented by 
expert knowledge on the simulated system. Unlike in case of the previ
ously proposed methods (Richardson et al., 2010; Bloom and Williams, 
2015) conditioning (rejection filtering) on the output data streams is 
introduced in our novel method. A decision tree based algorithm is 
presented that reduces a priori input parameter intervals during the 
calibration of deterministic models and increases the reliability of 
simulation results of the calibrated model. In this study we apply the 
GLUE method for its simplicity, supported by an implementation of the 

Hit and Run algorithm. Our method can be easily combined with any 
Bayesian or frequentist inverse modeling method and can contribute to 
improved and more efficient model optimization results in an array of 
scientific disciplines. 

2. Material and methods 

2.1. Experimental data 

In the present study maize yield observations were used from 
Martonvásár (47◦19′56.97"N, 18◦47′50.61"E), Hungary (Central 
Europe). The climate of Martonvásár is continental with Mediterranean 
and oceanic influences. Mean annual temperature is 11.2 ◦C, while long 
term mean precipitation is around 550 mm. According to the FAO-WRB 
classification system (IUSS Working Group, 2015), the soil type of the 
area is a Haplic Chernozem, with an average of 51.4% sand, 34% silt and 
14.6% clay content. Bulk density is 1.47 g cm− 3, pH is 7.3, CaCO3 
content is 0–1%, and the mean soil organic matter content in the topsoil 
is 3.2%. The plant-available macronutrient supply in the soil is poor for 
Phosphorus and medium to good for Potassium, based on the ProPlanta 
plant nutrition advisory system (Fodor et al., 2011). In the LTFEs every 
treatment is arranged in a random block design with 20–40 m2 plots in 
four replicates. 

Experimental data were collected in long-term field experiments 
(LTFE) that were set up at the Centre for Agricultural Research in the 
1960s. Maize is grown in several LTFE sites within and around the city of 
Martonvásár. Some of the experiments focus on the effect of organic and 
mineral fertilizer application on crop yield. Others focus on the effect of 
soil cultivation, hybrid selection, planting date and plant density on crop 
physiology and yield. In the present study, a composite maize yield 
dataset was used by retrieving the yield data of FAO350-400 hybrids in 
high Nitrogen level (at least 160 kgN ha− 1 year− 1) treatments of four 
LTFEs, characteristic to the Hungarian maize production system in the 
1994–2018 period (plant density: 70.000 plant per hectare; planting 
date: second decade of April; harvest date: mid-October). The average 
yield was calculated from 16 yield data of the four selected LTFEs (with 
4 repetitions in each treatment with the parcel size of 20–40 m2) for each 
year. Average maize yield (calculated from all plots and all years) in the 
experiments was 7.7 t ha− 1 with a relatively large uncertainty (SD =
1.58 t ha− 1; min = 0.96 t ha− 1; max = 13.57 t ha− 1). Note that the 
observations refer to dry matter of the grain yield. 

NUTS3 level (EuroStat, 2021) maize yield data from Fejér county 
(where the experimental site is located) was also used in the study. 
Census data were retrieved from the database of the Hungarian Central 
Statistical Office for the period of 1991–2018. The average maize yield 
for the study period was 6.36 t ha− 1 in Fejér county (SD = 1.92 t ha− 1; 
min = 2.89 t ha− 1; max = 10.06 t ha− 1). 

2.2. Biome-BGCMuSo biogeochemical model 

The novel method introduced in the present study was linked with 
the Biome-BGCMuSo process-based model. Biome-BGCMuSo is a general 
purpose, process-based, biogeochemical model that simulates the full 
carbon, nitrogen and water budget of terrestrial ecosystems (Hidy et al., 
2012, 2016, 2021, 2022). Biome-BGCMuSo is a branch of the 
well-known Biome-BGC model (Running and Hunt, 1993; Thornton, 
1998; Thornton et al., 2002; Churkina et al., 2009; Di Vittorio et al., 
2010). Biome-BGC was significantly improved and extended in many 
terms relative to the original model. Developments addressed soil pro
cesses, introduction of management options, quantification of distur
bance effect on plant physiology, and many other processes. One major 
milestone of the model development was the construction of a 10-layer 
soil submodule with sophisticated soil water balance routine, the 
layer-by-layer representation of C and N dynamics within the soil, and 
the implementation of detailed nitrification/denitrification routine. 
Improvement of different stress factors (drought stress, nitrogen stress, 
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heat stress) was also a major improvement. Growing-degree-day based, 
phenophase specific allocation option was also included that enabled 
the detailed simulations of crops. In cropland simulations detailed 
management information is essential for proper results (including the 
timing and amount of applied fertilizer, planting date, soil cultivation 
type and date, harvest date, residue management). The present 
Biome-BGCMuSo model can be considered as a combined 
biogeochemical-crop model with state-of-the-art process representation 
at both scientific fields. 

In this study Biome-BGCMuSo v6.3 was used. Detailed description 
about the developments can be found in Hidy et al. (2012, 2016, 2022), 
Fodor et al. (2021), while additional details are available in the User’s 
Guide (Hidy et al., 2021). 

The parameterization of Biome-BGCMuSo is a complex task not only 
because of the high number of adjustable ecophysiological parameters, 
but also because of the existence of some rules (i.e. constraints) that 
have to be fulfilled in order to ensure a successful simulation (Hidy et al., 
2021). For some parameters these rules are relatively simple (e.g. C:N 
ratio of leaf litter must be greater than the C:N ratio of leaves), but in 
some cases they are relatively complex (e.g. the sum of the parameters 
that control the allocation of carbon to the different plant compartments 
must sum up to 1). These rules complicate the optimization of the model 
since in the Monte Carlo framework random numbers are generated 
within predefined intervals of selected parameters that drive the model. 
Clearly, for example in the case of the allocation parameters random 
numbers will not sum up to 1 in the majority of the cases which will 
result in a large number of unsuccessful simulations. 

2.3. Parameterization and model setup 

2.3.1. A priori parameterization 
For the construction of the a priori maize ecophysiological parame

terization literature search was conducted first for maize related data 
such as specific leaf area, maximum stomatal conductance, canopy light 
interception coefficient etc. In the case of the empirical parameters 
(Hidy et al., 2021) optimization was performed using a multi-step pro
cedure. Parameter adjustment was performed based on eddy covariance 
data (gross primary production (GPP) and evapotranspiration (ET)) 
from the Klingenberg cropland site (DE-Kli FluxNet code, 50◦53′35"N; 
13◦31′20.6"E) in Germany (Prescher et al., 2010) based on the maize 
years (2007, 2012 and 2018). Additionally, leaf area index (LAI) data 
was also used from the site for years when it was available. Phenological 
phase dependent allocation parameters were set based on a manual (trial 
and error) adjustment. Parameters for the Penman-Monteith equation 
based evapotranspiration routine were also set using eddy covariance ET 
data from Klingenberg. 

As part of previous modeling exercises, maize parameterization was 
further evaluated previously and adjusted at other data rich experi
mental sites in the USA (Bushland lysimeter site in Texas, and Mead 
eddy covariance site in Nebraska (US-Ne2 and US-Ne3 FluxNet codes)). 
It means that maize parameterization was tested for sites with different 
climatic conditions, management types and with different maize culti
vars characterized by a diversity of FAO numbers. The model optimi
zation/validation efforts revealed that it is not possible to construct a 
single, universally applicable maize parameterization that is useable in 
different climatic and agro-management conditions. Some of the pa
rameters were highly site (and in some cases year) dependent (senes
cence related parameter, allocation parameters and plant tissue lifetime 
related parameters). These previous experiences paved the way for the a 
priori parameterization of the model. 

Unfortunately, at present there is no maize related eddy covariance 
data available for Hungary in spite of the fact that 3 sites are running at 

present above croplands. It means that optimization of the model is 
highly needed based on other available data. 

2.3.2. Model setup 
Biome-BGCMuSo was run at a plot level simulating a single generic 

maize parcel at Martonvásár using 220 kgN ha− 1 y− 1 mineral fertilizer 
amount applied at the beginning of April. Planting and harvest dates 
were set according the reported dates. Driving meteorological data was 
retrieved from the FORESEE database (Open Database FOR ClimatE 
Change-Related Impact Studies in CEntral Europe) which is a free 
meteorological database for Central Europe with 0.1◦ × 0.1◦ spatial 
resolution (Dobor et al., 2015). 

The soil input file of the model was constructed based on observa
tions about the soil texture and soil water retention curve measurements 
using the pipette method (ISO 11277) on disturbed and sand/kaolin-box 
method (ISO 11274) on 100 cm3 undisturbed core samples collected 
from the LTFEs. For most of the nitrogen cycle parameters values pro
posed by Hidy et al. (2021) were used. 

For the NUTS3 level simulations the FORESEE database provided the 
meteorological data. The DOSoReMI database (Pásztor et al., 2020) was 
the source for the gridded soil data. The simulations for the Fejér county 
were performed on a predefined 0.1◦ × 0.1◦ resolution grid that was 
used in Fodor et al. (2021). Fertilization was set according to data from 
the Hungarian Central Statistical Office. Planting data was 15 April, and 
harvest date was 10 October in all simulations. We used 51 grid cells 
covering an area of 4358 km2. The simulated yield data was aggregated 
at the county level by simple averaging of cell-specific yields per year. 

2.4. Description of the conditional interval reduction method 

2.4.1. Problem overview 
Let M : S →O be an arbitrary process-based model that estimates 

some output data (O ) based on some input parameters (θ ∈ S), where 
S ⊂Rn is the n dimensional input parameter space, and O ⊂Rl×k is the 
matrix of model output, where l is the number of time steps and k is the 
number of output data streams (representing the simulated variables). 
Note that in this study the word ‘parameter’ means adjustable input 
data. In some cases, convex constraints have to be defined over the S (i. 
e. to handle dependencies between the input parameters; see Section 
2.2). This can be done by introducing matrices (G, E), and vectors (e, h) 
for which 

Gθ ≤ h
Eθ = e

(1)  

In the present study G controls the parameter ranges and the de
pendencies between parameters with relations (i.e. one parameter must 
be smaller than the other one; see Section 2.2). E in this context is used 
for the allocation related parameters where the sum of all considered 
parameters must equal 1 (Hidy et al., 2021), but of course the applica
bility of the constraint can be more general (Bloom and Williams, 2015). 
Supplementary material contains the mathematical representation of 
the above-described, matrix-based parameter dependencies with two 
examples. 

Inverse modeling has two major objectives (Tarantola, 2005). The 
first one corresponds to the practical application of the model which 
needs proper parameterization to achieve reliable simulation results 
that are in optimal agreement with the observations. This aim means 
that we need point estimation for the parameters (single parameter set 
for all θ ∈ S). The second one is the estimation of the uncertainty in
tervals of the parameters for future applications. The intervals indicate 
our imperfect knowledge of the parameter values (van Oijen et el., 
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2005). Uncertainty intervals can be used to define uncertainty ranges of 
the simulated output variables. 

Given the observations (D ) about the modelled system with pre
determined uncertainties and the scientific knowledge of the environ
ment, the modeler can sample from a probability density function (pdf) 
for the model input parameters (p(θ|d), d ∈ D ). During the sampling 
procedure the model is evaluated against D . This pdf is the so-called 
posterior function, and intuitively if the parameter space can be 
described by a continuous random variable, it is the probability that θ 
lies in the interval of (θ, θ+ε) given the measured data d, where ε is an 
infinitesimally small vector. Using the posterior distribution we can 
achieve both objectives defined above. 

Usually, the posterior distribution cannot be sampled directly, 
because its distribution is not known (previous experience might be 
invalid in new optimization exercises; van Oijen et al., 2005). However, 
when the likelihood function (L = p(d|θ), d ∈ D ; that is a probabilistic 
model for the model error; Gelman et al., 1995) and the prior knowledge 
p(θ) (called prior distribution) is given during a Monte Carlo (MC) 
experiment, the Bayesian rule can be used for updating: 

p(θ|d)=
p(θ|d)p(θ)

p(d)
(2)  

p(d)=
∫

p(θ)p(θ|d)dθ= c ∈ R (3) 

Because p(d) is a constant p(θ|d) ∼ p(θ|d)p(θ). Usually in the 
frequently used Markov Chain Monte Carlo (MCMC) sampling, p(d) is 
eliminated by a division (after the detailed balance equation). In a 
Bayesian workflow it is rather typical that the modeler chooses a uni
form prior (p(θi) ∼ U(Ii,1, Ii,2)), although this choice can be inadequate 
because uniform prior is not invariant under reparameterization there
fore sensitive to the choice of its defining lower (Ii,1) and upper bounds 
(Ii,2). 

From the practical point of view, choosing the right prior can help to 
avoid overfitting by regularizing the likelihood functions. Using uniform 
prior adds no regularization, thus the maximum posterior values will be 
the maximum likelihoods, leading to inappropriately strong conclusions 
(Gelman, 1996). In the case of high amount of observation data, the 
prior choice is less important, and the maximum likelihood estimates are 
(approximately) the same as the maximum posterior estimates inde
pendently from the choice of the prior function. 

Despite the obvious drawbacks, uniform priors are frequently used in 
Bayesian frameworks, because of their simplicity, and because of the 
fact that it is easier to think about the parameters in a bounded space 
(Gelman, 1996; Stedinger et al., 2008; Gelman and Yao, 2020; Wallach 
et al., 2021). One other possible way to avoid inappropriately strong 
conclusions is to use other methods of regularization. For example in the 
Generalized Likelihood Uncertainty Estimation method (GLUE; Pri
hodko et al., 2008; Beven and Binley, 2014) likelihood filtering is 
applied. Only the likelihood values above the previously determined 
quantile (95th percentile is common choice) are retained and considered 
as behavioral, and the optimum is considered as the median of the 
filtered parameters. The key advantage of this approach is its simplicity 
and flexibility, and some degree of resistance against overfitting (note 
that the method is sensitive to the choice of the “quantile” meta 
parameter). This method is not considered as a Bayesian one, because 
we cannot interpret the results as probabilities; it means that we do not 
have the proper posterior density function, albeit it can be easily 
extended to be an Approximate Bayesian Computation (ABC) method 
(Sadegh and Vrugt, 2013). 

In this paper a novel method is introduced that can be used for 

updating prior distributions. Here we used the GLUE method for 
demonstration purposes and for simplicity (exploiting also the typical 
visualization method for GLUE in the form of the so-called dotty plots 
where equifinality can easily be recognized based on the marginal dis
tributions). In the following section a detailed description of the new 
method is provided. 

2.4.2. Core logic of the output constraint approach 
Let f : O →{0,1} be a function where f∘M categorizes model results 

into two classes: feasible (1) and infeasible (0) output. Feasible in this 
context means that O is in accordance with expectations of the modeler. 
We would like to stress that feasibility is not judged directly based on the 
quantitative comparison of the observation and the simulation but 
rather it is based on some additional knowledge about the simulated 
system. This kind of knowledge can originate from the scientific litera
ture, from almanacs, or from the everyday practice of the modeler. The 
model has to be set so that O contains information about the process that 
is evaluated by f . 

For a given θ parameter 

θ ∈ S is feasible⟺(f ∘M )(θ) = 1 (4) 

For simplicity f is called the output conditioning (or filtering) func
tion. As we are interested only in parameter values that provide feasible 
output (hereafter referred as feasible parameters), f is used to filter out 
infeasible parameter combinations (constraining the sampling proced
ure from the initial set). 

Although the classifier can help filtering out unrealistic simulations, 
the ratio of the number of “good” simulations compared to all simula
tions (cr) can be low in some cases. This ratio is defined as 

cr =
# feasible simulations

# all simulations
(5) 

This means that the parameter intervals defined by the posterior 
distribution contain a lot of parameter values that represent “good re
sults for wrong reasons”, which means that we cannot use the whole 
distribution for gaining scientific knowledge because of the lack of 
confidence in getting feasible and stable results. We need a further in
spection of our parameter values and understand why we get a lot of 
infeasible results (note that from this point parameter values associated 
with infeasible results are referred as infeasible parameters). In such 
cases the researcher has to make an effort by manually looking into the 
parameter intervals and the input parameters to search for possible 
mistakes on setting the prior intervals or running more simulations to 
get more feasible output values. 

In our approach f∘M is considered as a black-box classifier of the 
input parameter space which is one of the most fundamental recogni
tions of the presented algorithm. If we approximate f∘M with a white- 
box classifier (g), the interpretation of g is isomorphic with the inter
pretation of f∘M . Isomorphic in this context means that decisions made 
by the white-box classifier are the same as those provided by the black- 
box classifier. Thus, we can use g to modify the prior input parameter 
intervals to achieve the high cr. 

The simplest yet still flexible and interpretable white-box classifiers 
are decision trees (DT). This is the reason why they have recently been 
used for interpreting the decision-making procedure of deep neural 
networks, and support vector machines (Di Castro and Bertini, 2019; Lee 
and Kim, 2016). Decision trees used for classification can capture 
complex relationships between the feature space and the output cate
gories (i.e. discriminate feasible and infeasible parameter values). As a 
result, they are not much sensitive to collinearities, and they can make 
complex relationships easily interpretable too. 
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In our method the so-called CART algorithm (James et al., 2013) was 
used to generate the trees because of its simplicity. Note that other al
gorithms such as ID3, C4.5, C5.0 (James et al., 2013) could have been 
also used. Gini impurity index (Gi) was used to quantify the impurity of a 
split in making the DT, while the complexity based pruning was used to 
avoid overfitting (Nobel, 2002). After creating the DT, the accuracy (A) 
was determined in the following way: 

A=
TP + TN

TP + TN + FP + FN
(6)  

where TP means number of true positive cases, FN means number of 
false negative cases, FP means number of cases identified as false posi
tive while TN means number of true negative decision for the f∘M . 

Low accuracy (A< 0.5) means that the model performance was worse 
than the random decision. In the case of low performance (A< 0.7) the 
algorithm is not applicable to parameter-interval change. If the accuracy 
is high, we can trust our white-box model since it behaves similarly as 
the black-box. 

The leaf nodes of a decision tree are continuous domains in the 
parameter space defined by its corresponding decision nodes. If R1,R2,

…,Rb are the input domains for leaf nodes y1,y2,…,yb, we are interested 
in the domains with the highest number of feasible parameters. If there 
is more than one region with the highest number of feasible parameter 
values, we can have 3 possibilities to decide which one is the region of 
interest:  

1. Chose the region with the least amount of connected decision nodes 
and apply the validation to this region  

2. Chose the region with the lowest FP rate and apply the validation to 
this region.  

3. Choose both above mentioned regions and apply validation in the 
next step 

With this method, the selected region (Ru) is defined by the decisions 
at the decision nodes. The region is the maximum-volume- 
hyperrectangle inscribed into the constrained region (Rc; sides parallel 
to the parameter vectors) over the original parameter region (Ro) 

(Fig. 1). The updated parameter intervals are the orthogonal segments 
which define the hyperrectangle. 

If we have multiple output-constraint functions, we create multiple 
DTs and go through the updating process sequentially. If there is an 
inconclusive update, we roll back the changes and continue the pro
cedure. In the next step we can shrink the intervals further if there is 
more information available for that region. The intervals specified by 
applying individual constraints must overlap to provide updated 
parameter intervals for the next step. 

Note that since in this paper the issue with the similar sized feasible 
region was not addressed, the above mentioned solution is not part of 
the current implementation. 

2.4.3. Model optimization 
Here we combine the GLUE frequentist model optimization method 

(Prihodko et al., 2008; Stedinger et al., 2008; Beven and Binley, 2014) 
with the application of the above-described, DT-based classification 
method. We named this procedure as conditional interval refinement 
method (CIRM). 

It is easy to extend the f∘M classifier to support multiple output- 
constraint functions. If we have m output-constraint functions (fi, i ∈ 1,
…,m) we can define f as the following: 

f (x) :=
∏m

i=1
fi(x) (7)  

After the parameter sampling and model simulations, behavioral 
parameter choice can be done with quantile filtering (described above) 
with an additional filtering according to the conditioning (retaining 
feasible parameter values where f(x) = 1). 

It is assumed that the modelization uncertainties are negligible here 
compared to observational uncertainties, and observational un
certainties follow a normal distribution. Furthermore, if the observa
tions are independent from each other the likelihood function is defined 
as: 

L (θ|d ∈D)=
∏nd

i=1

1
σ

̅̅̅̅̅
2π

√ e
− 1

2

(
M (θ)− di

σ

)2

(8)  

where σ refers to observation uncertainty. For practical considerations 
(e.g. arithmetic underflow) we used the loglikelihood instead of the 
likelihood (note that in this case the maxima places are unchanged). For 
the prior function uniform prior on convex polytope was used. In order 
to support successful Monte Carlo experiment a novel algorithm was 
developed and applied here based on the Hit and Run algorithm with 
mirroring optimization (Lovász and Vempala, 2003; Meersche et al., 
2009). 

Note that model optimization with GLUE (or with any other opti
mization method) can be applied at each step of the proposed approach. 
It is mandatory to perform it only for the last step. 

2.4.4. Summary of the proposed method 
Algorithm 1 presents the proposed constrained calibration method. 

The workflow summarizes the methods detailed above also revealing the 
consecutive steps with all related input and output data. In this paper, 
for demonstration purposes we performed GLUE in each iteration step. 

Algorithm 1. (Workflow of the proposed method including model optimi
zation and parameter interval update. Meaning of the symbols is defined in 
the text)  

Fig. 1. Overview of the Decision Tree-based updating algorithm on an example 
of a two-dimensional parameter space. Ro is the original parameter space 
defined by the parameter intervals [a, b] for θ1 and [c, d] for θ2. After applying 
the constraints, the decision tree defines the constraint region Rc (grey region). 
The original interval can be updated by selecting the largest rectangular region 
(Ru) which is inside of Rc. The updated interval that corresponds to Ru for θ1 is 
[a’, b’], and [c’, d’] for θ2 
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2.5. Implementation of the method 

We used the above proposed method to optimize Biome-BGCMuSo 
v6.3 for maize in a low-data situation (which means low amount of 
good quality observation data) when only final crop yield data was 
available, supplemented with some additional information about overall 
crop properties (that represent constraints. 

Biome-BGCMuSo has 120 maize-related ecophysiological 

parameters that have to be set by the modeler prior to the simulations. 
Some of the parameters are generic plant parameters (like C:N ratio of 
plant compartments; maximum stomatal conductance; maximum root
ing depth; root distribution parameter; canopy water interception co
efficient etc.), while some of them are specific to maize (parameters 
affecting e.g. heat stress during anthesis, germination as the function of 
soil water content etc.; Hidy et al., 2021). Among the 120 parameters 42 
are affected by some rules (see above). 28 out of the 42 rule-affected 

Table 1 
Complete list of model parameters that were selected for optimization with the prior parameter ranges. MIN represents I.,1, MAX represents I.,2  

Abbreviation Description MIN MAX 

Rubisco The percent of leaf N content in the Rubisco enzyme. It controls potential rates of carboxylation (White et al., 2000) 0.07 0.12 
root_distribution_parameter Empirical parameter to calculate the distribution of roots within the soil layers (Jarvis, 1989) 2 6 
root_weight_to_max_root_depth This parameter is used in the empirical rooting depth calculation of plants. The parameter controls the dependence of rooting 

depth on the allocated carbon pool associated with the root system. 
0.08 0.14 

root_depth_function_shape This parameter is used in the empirical rooting depth calculation of plants (based on the method of 4M model). The 
parameter controls the temporal profile of the root depth (can be convex or concave as the function of time). 

0.4 1.6 

senescence_coeff_for_leaf Soil moisture stress related mortality coefficient that controls the extent of leaf senescence (fraction of leaf tissue that dies 
during one day due to stress caused by a prolonged drought event). 

0.001 0.04 

water stress_effect_on 
photosynthesis 

Empirical parameter that controls the non-stomatal soil water content (SWC) stress effect on photosynthesis (i.e. down- 
regulation of carbon assimilation). 

0 0.7 

length_of_phenophase_3 Length of the 3rd phenophase expressed in growing-degree-days (GDD). In the case of maize this refers to early vegetative 
growth. 

240 450 

length_of_phenophase_4 Length of the 4th phenophase expressed in GDDs. In the case of maize this refers to late vegetative growth (this phenophase 
ends with anthesis). 

240 450 

length_of_phenophase_6 Length of the 6th phenophase expressed in GDDs. In the case of maize this refers to grain filling after anthesis. 850 1200 
leaf_allocation_3 Fraction of total daily allocation that is associated with leaf growth in the 3rd phenophase. 0.4 0.5 
root_allocation_3 Fraction of total daily allocation that is associated with root growth in the 3rd phenophase. 0.3 0.5 
stem_allocation_3 Fraction of total daily allocation that is associated with stem growth in the 3rd phenophase. 0.2 0.5 
leaf_allocation_4 Fraction of total daily allocation that is associated with leaf growth in the 4th phenophase. 0.2 0.5 
root_allocation_4 Fraction of total daily allocation that is associated with root growth in the 4th phenophase. 0.2 0.4 
stem_allocation_4 Fraction of total daily allocation that is associated with stem growth in the 4th phenophase. 0.3 0.5 
root_allocation_6 Fraction of total daily allocation that is associated with root growth in the 6th phenophase. 0.05 0.15 
fruit_allocation_6 Fraction of total daily allocation that is associated with grain filling in the 6th phenophase. 0.5 0.8 
stem_allocation_6 Fraction of total daily allocation that is associated with stem growth in the 6th phenophase. 0.1 0.4 
maxlifetime_3 Maximum, genetically determined lifetime of new leaf tissue in the 3rd phenophase expressed in GDDs. 500 1300 
maxlifetime_4 Maximum, genetically determined lifetime of new leaf tissue in the 4th phenophase expressed in growing-degree-days. 500 1300  
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parameters are related to allocation. 
Similarly to other models that are characterized with a high number 

of parameters (e.g. Bilionis et al., 2015), it is impossible to optimize the 
model for all parameters. Instead, we used previous experience and the 
outcome of several previous model evaluations for the parameter se
lection and parameter setting. During previous model optimization ef
forts (see Methods) the selection of the most relevant parameter values 
were done partly using objective sensitivity analysis, and partly by 
manual parameter adjustment. Many parameters were fixed because of 
available observation data (like leaf, stem and fine root C:N ratios), and 
the results of experience at the German and USA experimental sites 
(maximum stomatal conductance, canopy light extinction coefficient, 
etc). The remaining parameters were found to be variable between the 
sites and the model showed sensitivity to the proper setting of the pa
rameters (see Table 1 for a full list). 

For the selected parameters, prior to model optimization the upper 
and lower bounds were set based on literature values (Stöckle and 
Nelson, 2013; White et al., 2000). Expert knowledge of the co-authors 
and previous experience was also used to set the intervals (Table 1). 
Note that the complete prior ecophysiological parameterization for the 
simulations of maize is presented in the Supplementary material. 

For the practical implementation of the procedure with Biome- 
BGCMuSo at the Martonvásár LTFE site we used a uniform distribu
tion as prior over convex polytope. We used a normal likelihood function 
(Eq. (8)) and we assumed that modelization uncertainties are negligible 
compared to observational uncertainties. We used 0.01 for the 
complexity based pruning factor for the DT as it was the default value in 
the rpart package (Therneau et al., 2022). The white box model was the 
decision tree with CART as described above. 

We used 4 output-constraint functions (f) to evaluate feasible or 
infeasible simulations. The first constraint is related to the annual Har
vest Index (HI) that is defined by the ratio of the final grain yield and 
total aboveground biomass at harvest (Goudriaan et al., 2001). The 

median of the simulated HI values is required to be in the range of [0.40, 
0.55] defined based on several scientific publications (Hütsch and 
Schubert, 2018; Ion et al., 2015; Li et al., 2015, 2017; Liu et al., 2020). 
The median of the annual maximum Leaf Area Index (LAImax) is 
requested to be between 2.7 and 5 m2/m2 that is an observation based 
setting for Hungary (see e.g. Pokovai and Fodor, 2019). The long term 
median value of the rooting depth at the beginning of the flowering 
phenophase should be larger than 1.4 m but should be less than 1.8 m 
(those values are based on expert knowledge). The median of anthesis 
days (expressed in day-of-year: DOY) should be between 180 and 190 
that is a typical range for Hungary. 

The output-constraint functions are defined by a simple algorithm 
based on the model outputs. For example, if annual LAImax is a vector 
containing annual maximum values of the Biome-BGCMuSo simulated 
LAI, f is defined as: 

f (x) =
{

1 med(LAImax) ∈ [2.7, 5]
0 otherwise (9)  

where med represents the median of the values from the simulated years 
during the point simulation. 

Biome-BGCMuSo simulations were performed within the 
RBBGCMuso software environment (https://github.com/hollorol/ 
RBBGCMuso). RBBGCMuso is an open source R package supporting 
the easy and user-friendly application of the model. We used the CIRM 
branch of RBBGCMuso for the case study presented in this paper. The 
output conditioning method was implemented using 10 iterative steps. 
In each step the automated algorithm performed post-processing of the 
decision trees using the method described above (i.e. the interval 
refinement was done automatically taking into account the overlaps in 
the calculated thresholds; Step 4 in Algorithm 1). 10 000 simulations 
were done for each iteration step. Standard R was used mostly in the 
work (R Core Team, 2021) Additionally, the rpart package was used to 
construct the decision trees (Therneau et al., 2022). 

Fig. 2. Selected dotty plots from the optimization 
after the first iteration step (all simulation results are 
plotted including behavioral and non-behavioral 
ones). Grey dots represent the likelihood values for 
all simulations (marginal distributions), while red 
dots show the likelihood values that are associated 
with constrained simulations. Black vertical line 
represents the parameter value based on the 
maximum likelihood estimator, while blue vertical 
line is associated with the median value of the 
behavioral parameters of the constrained simulations 
after the first iteration step.   
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In each iteration step the maximum likelihood parameter set was 
stored. A posteriori parameter intervals were estimated based on 
behavioral (top 5%) parameter values that matched the predefined 
conditioning. During the first 9 iteration steps parameter interval 
reduction was performed based on the decision tree update algorithm. 
GLUE-based a posteriori interval reduction was considered only in the 
final iteration step. Optimum parameter set was calculated as the me
dian of the behavioral parameters. Here we refer to these intervals and 
optimum parameter set as GLUE-based, constrained intervals. 

Optimized model performance was evaluated using the square of the 
linear correlation coefficient (R2), bias (systematic error), root mean 
square error (RMSE) and Nash-Sutcliffe modelling efficiency (ME) (Ma 
et al., 2011; Sándor et al., 2016). The performance indicators were 
calculated based on the observed and the simulated maize yield time 
series. The optimized model was evaluated based on the training data
set, and also on the NUTS3 level simulation using independent data. In 
this latter case mean annual maize yield was calculated from the model 
simulations and the final time series was evaluated against the observed 
census data. We also quantified the percent of change in the final (GLUE) 
parameter intervals relative to the a priori intervals. 

3. Results 

3.1. GLUE and post-processing via the DTs 

Fig. 2 shows selected dotty plots from the first iteration step. From 
the 20 studied parameters (Table 1) we selected 4 that represent typical 
patterns (characteristic to all cases) from the final (10th) iteration step 
(see below). Supplementary material Fig. S1 shows the complete set of 
dotty plots for the first step. 

The most prominent feature of the dotty plots is equifinality based on 
the grey dots that represent all simulations. This is the case for almost all 
other parameters that are presented in Fig. S1. There are a few excep
tions where some pattern can be recognized on the graphs (maxlife
time4, leaf_allocation_3, leaf_allocation_4, stem_allocation_3, and 
Rubisco to some extent; Fig. S1), but the distribution of the grey dots 
support only a slight interval reduction (for e.g. stem_allocation_3, 
leaf_allocation_4). For other parameters such as maxlifetime4, even if 
some pattern can be recognized in the dotty plots, posterior intervals 
based on the behavioral grey dots will not result in parameter interval 
reduction. Note that in a typical Bayesian calibration this is the final 

stage of the optimization which is clearly not satisfying and unsuccessful 
in terms of pursuing an interval reduction. 

After we decided to check the consistency of the results based on the 
predefined constraints (using HI, LAImax, anthesis date and rooting 
depth), the overall picture changed (Fig. 2, Fig. S1; red dots). However, 
likely given the large degree of freedom of the optimization, after the 
first iteration only 596 simulations were feasible, which is clearly a low 
success rate (cr = 5.96%). With the output constraint filtering the dotty 
plots still show equifinality for most of the cases. There are some ex
ceptions like Rubisco, maxlifetime4, leaf_allocation_3, root_allocation_3, 
stem_allocation_3, leaf_allocation_4, root_allocation_4, fruit_allocation_6 
and stem_allocation_6 for which the algorithm based on constraints 
suggests that they should have narrower ranges (Fig. 2; Fig. S1). For 
example, in the case of Rubisco the parameter range ~ [0.7,0.11] seems 
to be reasonable based on the red dots. We would like to stress here 
again that in a typical optimization exercise the user neglects some or all 
above mentioned constraints and conclusions are drawn based on the 
grey dots only. In this sense information extracted from the feasible 
simulations is already one step forward. 

One can recognize that because of the small cr we do not have a 
sufficient number of feasible simulations to trust the goodness of the 
GLUE optimum values and the GLUE uncertainty ranges. In order to 
increase cr, further refinement of the parameter intervals is a reasonable 
next step. The constructed decision trees provide information about the 
possible relationships between the parameters and the feasible/infea
sible simulations, thus they can be useful for updating the parameter 
intervals. Given the fact that we have 4 output constraints, 4 DTs were 
constructed. 

Fig. 3 shows the DT that was constructed based on the first constraint 
(HI) after iteration step #1. The top level of the DT is called the root 
node (in the case of Fig. 3 this is represented by stem_allocation_6). This 
top level always shows the most important parameter that affects the 
feasibility of the simulation (in this case in terms of HI). The lower part 
of the DT is divided into different layers (or levels) where internal nodes 
are located. The importance of the parameters associated with the 
different internal nodes is decreasing with the layer number (i.e. the 
importance decreases from top to bottom). Internal nodes represent 
additional decisions revealing the parameter value that splits the 
parameter range into two parts depending on the feasible/infeasible 
character of given simulations. For example, at layer 2 the cutting 
threshold value for the length_of_phenophase_4 parameter is 372. If the 

Fig. 3. Decision tree after the first iteration step based on the Harvest Index constraint. Note that the sum of the percentage values inside the leaf nodes is not 100% 
due to rounding. 
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parameter is less than 372 then we can reach the right branch with the 
rest of the levels. At the bottom of the DT the leaf nodes are located. Leaf 
nodes represent the results of the classification due to the homogeneity 
of the leaf nodes. In Fig. 3 blue leaf nodes (i.e. rounded squares at the 
bottom marked with 0 which is the result of f○M ) indicate infeasible 
simulations, while green leaf nodes represent feasible simulations 
(marked with 1). The percentage values inside the leaf nodes show the 
fraction of simulations that is associated with a given branch. 

According to Fig. 3, due to the applied HI constraint 58% of the 
sampled parameter combinations were infeasible (sum of the percent
ages in the blue boxes). As it was explained in section 2.4.2. in our 
approach we always focus on the leaf node with the highest percentage 
of feasible simulations. In this sense the DT suggests that the most 
important parameters associated with the HI constraint in the 
decreasing order are stem_allocation_6, length_of_phenophase_4, 
length_of_phenophase_3, and maxlitefime_4 (this is the path from the top 
to the leaf node with the highest % after excluding the repeated occur
rence of the parameters in the lower layers of DT). Those parameters 
indirectly affect grain allocation in the model, and thus HI. It is some
what surprising that fruit_allocation_6 parameter is not included in the 
DT in this path (but it is included in other paths leading to other leaf 

nodes). Maxlifetime4 affects leaf senescence dynamics prior to and 
during grain filling thus interacts with HI. The lengths of phenophases 3 
and 4 affect the leaf dynamics that clearly influence assimilation thus 
grain allocation during the 6th phenophase. The information gained 
from the DT is essentially useful and provides insights into the complex 
process of plant growth and final yield that is implemented in Biome- 
BGCMuSo. 

Based on the decisions across the path from top to the leaf node 
associated with the largest success rate (21%, rightmost leaf node) we 
can extract the thresholds and update the original parameter intervals 
(see Table 1). Stem allocation in the 6th phenophase should be less than 
0.31 and greater than 0.16 (the original interval was [0.1,0.4]; see 
Table 1). The length of the 3rd phenophase should be smaller than 405, 
and the length of the 4th phenophase should be smaller than 372. 
Maxlifetime4 should be set larger than 693. 

Note that at any time of the procedure a user might select a different 
leaf node with a lower success rate if the expert knowledge supports an 
alternative choice. In this case manual adjustment might be needed in 
the parameter ranges and the iteration should be restarted using the 
adjusted intervals. 

Fig. 4 shows the DT for the LAImax constraint after iteration step #1. 

Fig. 4. Decision tree after the first iteration step based on the LAImax constraint. Note that the sum of the percentage values inside the leaf nodes is not 100% due 
to rounding. 

Fig. 5. Decision tree after the first iteration step based on the root depth constraint. Note that the sum of the percentage values inside the leaf nodes is not 100% due 
to rounding. 
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The figure shows that 58% of the sampled parameter combinations is 
infeasible. The tree suggests that the most important parameters (in a 
decreasing order) are Rubisco, leaf_allocation_4 and length_
of_phenophase3. At lower layers Rubisco and leaf_allocation_4 appear 
again. As Rubisco ultimately controls the maximum photosynthesis rate 
(White et al., 2000), its importance is straightforward in terms of leaf 
development. The role of leaf allocation in the 4th phenophase (which 
determines the peak LAI) is also clear and easily interpretable. The 
length of the 3rd phenophase is less intuitive but it is reasonable since it 
affects the initial condition of leaf development in the 4th phenophase 
when LAI reaches its maximum. 

Using the DT and the path to the rightmost leaf node (that is asso
ciated with the highest success rate with 16%) we can set new intervals 
for the parameters. Based on all decision nodes from the DT in Fig. 4, 
Rubisco should be less than 0.097 and greater than 0.079, leaf_
allocation_4 should be less than 0.34, and length_of_phenophase3 should 
be larger than 296. Note that the DT presented in Fig. 3 already set a new 
upper limit for length_of_phenophase3 which is further refined here. 

Fig. 5 presents the DT for the rooting depth constraint based on the 
results from the 1st iteration step. In this case only 29% of the sampled 
parameter combinations were infeasible. The tree suggests that the most 

important related parameters are Rubisco and length_of_phenophase_3. 
This is reasonable considering the determinant role of Rubisco in terms 
of overall productivity, and considering the importance of the 3rd 
phenophase in terms of root establishment. 

Rubisco interval can be further refined here (it should be larger than 
0.09 and according to the previous tree in Fig. 4 it should be less than 
0.097). Length_of_phenophase3 should be greater than 294 which is in 
fact not used at this stage as it was already set to be larger than 296 
(Fig. 4). 

Fig. 6 presents the DT for the last, anthesis date based constraint. 
Using the anthesis date DT 42% of the sampled parameter combinations 
turned out to be infeasible. The tree suggests that the most important 
parameters are the length of phenophases 3 and 4. This is in perfect 
agreement with the expectations as the anthesis date is driven by the 
length of the previous phenophases expressed in GDD (note that the 
length of the first two phenophases is fixed in the simulations). 

The DT provides guidelines for updating the two parameters. Ac
cording to the path leading to the rightmost leaf node length_
of_phenophase3 should be set larger than 318, and 
length_of_phenophase4 should be larger than 313. These new settings 
further constrain these parameters as they were already refined to some 

Fig. 6. Decision tree representing the first iteration step based on the anthesis date constraint. Note that the sum of the percentage values inside the leaf nodes is not 
100% due to rounding. 

Fig. 7. a) Success rate as the function of the number of iteration steps based on the automated workflow. b) Accuracy of the DTs as the function of the itera
tion number. 
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extent. 
At this stage the most important recognition is the usefulness of the 

DTs that can be used for manual updating of the parameter intervals. 
This kind of information was “hidden” so far as the marginal distribu
tions did not reveal parameter interval reduction possibilities. After 
performing the DT analyses of individual constraints, the conditions 
from individual DT are combined, and the parameter intervals are 
modified. 

3.2. Results of the iterations and automatic interpretation of the DTs 

One might recognize at this point that the new interval settings might 
be used as the new prior of another Monte Carlo-based GLUE experi
ment. As it was described above, a custom procedure was developed to 
automatically interpret the DTs by finding the path to the leaf node that 
contains the highest percentage of feasible simulations. Based on this 
method the above described interval refinement became unattended. If 
the next iterations turn out to provide better success rates, and if the 
parameter interval reduction can be further refined, the procedure can 
be transformed into a multi-step, iterative method. 

In our case, after the first iteration step another nine were performed. 
During the iterations the success rate (Fig. 7a) increased monotonically 
indicating that the introduced algorithm worked well on improving the 
success rate. As Fig. 7b shows, the white-box approximation was also 
correct, because on average the approximation’s accuracy mono
tonically increased, although it can be attributed to the large success rate 
after step 4. 

Supplementary material Fig. S2 shows the complete set of dotty plots 
for the 10th iteration step. Fig. 8 shows selected dotty plots that repre
sent typical patterns from the final step. The graph is in accordance with 
Fig. 7 revealing that almost all simulations were feasible at this stage 
(grey dots are hardly detectable). Although most of the parameters still 

show equifinality, the parameter intervals are considerably smaller than 
after the first step (Fig. 2; Fig. S1). Some of the parameters provide well 
detectable optimum (e.g. max_lifetime_4 at Fig. 8) with typical param
eter distribution. Other parameters show well-bounded points like in 
case of stem_allocation_4. Parameters controlling the length of the 
phenophases 3 and 4 show an unusual distribution that is the clear 
consequence of the cutoff values defined by the DTs (see above). In those 
plots the behavioral parameters localize the optimum value. 

After the 10th iteration step almost all sampled parameters were 
feasible (95.45%, i.e. 9545 iterations out of 10 000). It means that 
almost all simulations satisfied the predefined constraints thus provide 
results according to the expectations of the user. Given the large number 
of successful and meaningful simulations the high sample number 
clearly improves the confidence of the user about the statistical prop
erties of the results (most of all the optimum and the uncertainty 
ranges). 

Considering the optimum values of the parameters (represented by 
vertical lines in Fig. 8) the maximum likelihood values typically differed 
from those calculated from the behavioral data (i.e. GLUE median) 
similarly to step 1 (Fig. 2, Fig. S1). 

Fig. 9 shows the summary of the inversion in the form of a special 
plot type that is referred to as “kitchen sink plot”. The figure provides 
easily interpretable information about the multiple-step iteration in 
terms of DT-based parameter interval reduction as a function of iteration 
step number, and it also shows the position of the maximum likelihood 
estimation relative to the parameter ranges. Note that in the 10th iter
ation step the GLUE-based interval reduction was also considered. The 
GLUE-based optimum is not indicated but this can be approximated by 
the mid-point of the actual interval. 

Fig. 9 clearly shows that parameter intervals were significantly 
reduced in many cases. For some parameters such as Rubisco and 
length_of_phenophase4 interval reduction was more profound in the first 

Fig. 8. Selected dotty plots from the optimization after iteration step 10. The meaning of the symbols and the vertical lines is the same as in Fig. 2.  
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iteration step. For other parameters such as root_depth_function_shape, 
leaf_allocation_3 and stem_allocation_6 the reduction was gradual and 
not necessarily associated with one iteration step. This indicates the 
utility of the multiple-step approach. In case of some parameters the 
prior interval remained unchanged (e.g. root_allocation_3, stem_alloca
tion_3). The plot also shows that in some cases the ML value was out of 
the final parameter interval (i.e. in step 10) that indicates an infeasible 
solution. As the first iteration step is the one which is performed in a 
usual Bayesian experiment, this clearly shows the „good results for 
wrong reasons” situation. 

Table 2 summarizes the model optimization exercise providing in
formation about the posterior parameter intervals, the parameter set 
representing the maximum likelihood estimation in the final step, and 
the GLUE-based parameter ranges. Average interval percentage change 
was 44% for the 20 studied parameters (the maximum was 88% asso
ciated with Rubisco). 

Parameter range reduction did not occur for length_
of_phenophase_6, root_allocation_3, stem_allocation_3, root_allocation_6 
and maxlifetime_3. Stem and root allocation in the 3rd phenophase seem 
to be less determinant in terms of the final crop yield which is an 
interesting outcome. The interpretation of this parameter behavior from 

the 6th phenophase is easier. Estimation of the exact length of this 
phenophase might be impossible since after leaf senescence during grain 
filling the final crop yield cannot change anymore, so its value cannot be 
set by any observation or constraint. Root allocation in the 6th pheno
phase is small and seems to have no substantial effect on the final crop 
yield. 

Table 2 suggests that additional constraints might support the 
reduction of the intervals in the parameters where 0% reduction is 
present. Note that in some cases this is not a problem as the other 
dependent parameters already set the value for these parameters (like in 
case of the allocation when the sum of the parameters must sum up to 1). 

Overall, the parameter interval reduction have led to 42.3% decrease 
in the simulated yield uncertainty quantified by the mean of the annu
ally calculated standard deviation of the modeling results based on 1000 
simulations performed by Monte-Carlo based sampling from the original 
and reduced parameter ranges (Fig. S3 in the Supplementart material). 

3.3. Performance analysis on the calibration dataset and validation 

Fig. 10 shows the model results for the prior parameterization and 
for the GLUE-based, optimized parameter set. Uncertainty of the 

Fig. 9. “Kitchen sink plots” showing the performance of the introduced novel method. Lines indicate the lower and upper bounds for a given parameter and their 
changes between successive iteration steps, while circles indicate ML estimation results for the given iteration step. The abbreviations are defined in Table 1. 
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observations is high given that the maize yield dataset is a composite of 
many small experimental plots (see Methods). The figure indicates that 
in many cases the optimized model estimated yield within the uncer
tainty ranges. Improvements were quantified by using statistical 

indicators. 
Table 3 shows the results of the statistical evaluation of the simula

tions. Here we include performance metrics from the maximum likeli
hood simulations as well. The table shows considerable improvements of 

Table 2 
List of the optimized parameters with constrained intervals after 10 iterations. Maximum likelihood and GLUE-based optimized parameter values are provided as well. 
Percentage change of the interval is provided for the results of the final (10th) iteration step (see Fig. 5) relative to the prior range (c.f. Table 1).  

Abbreviation MIN MAX ML GLUE percentage change 

Rubisco 0.09029 0.09615 0.0903 0.0929 88 
root_distribution_parameter 2 4.966 4.8722 3.629 26 
root_weight_to_max_root_depth 0.08 0.1053 0.09973 0.0920 58 
root_depth_function_shape 0.4 1.118 0.7649 0.7583 40 
senescence_coeff_for_leaf 0.001 0.03323 0.00255 0.01469 17 
water stress_effect_on photosynthesis 0 0.4 0.3654 0.1886 43 
length_of_phenophase_3 334.2 367.4 345.96 342.63 84 
length_of_phenophase_4 313.9 362.8 314.279 320.392 77 
length_of_phenophase_6 851.3 1200 968.46 1007.82 0 
leaf_allocation_3 0.4 0.4412 0.4096 0.417 59 
root_allocation_3 0.3 0.5 0.3429 0.339 0 
stem_allocation_3 0.2 0.5 0.2473 0.244 0 
leaf_allocation_4 0.2537 0.2932 0.2709 0.273 87 
root_allocation_4 0.2689 0.4 0.3987 0.334 34 
stem_allocation_4 0.306 0.4841 0.3302 0.393 11 
root_allocation_6 0.05 0.15 0.1234 0.095 0 
fruit_allocation_6 0.6299 0.6933 0.64670 0.657 79 
stem_allocation_6 0.2149 0.2824 0.22983 0.248 78 
maxlifetime_3 500 1300 540.46 930.70 0 
maxlifetime_4 866.8 1300 1018.27 965.83 46  

Fig. 10. Time series of the mean observed maize yield (filled circles; uncertainty is±one standard deviation), the a priori simulated (empty triangles) and the 
optimized (GLUE-based; green filled triangles) maize yield at Martonvásár from 1991 to 2018. 

Table 3 
Statistical evaluation of the model performance after individual iteration steps using the long-term (1991–2018) field experiment data of maize yield from 
Martonvásár.  

Parameter estimation ML GLUE 

R2 RMSE bias ME R2 RMSE bias ME 

a priori 0.16 4.752 − 4.448 − 5.793 0.16 4.752 − 4.448 − 5.793 
Step 1 0.37 1.548 0.486 0.279 0.07 2.209 0.324 − 0.468 
Step 2 0.41 1.411 − 0.003 0.401 0.28 1.675 0.051 0.156 
Step 3 0.51 1.326 0.176 0.471 0.02 2.408 − 0.063 − 0.744 
Step 4 0.44 1.458 0.449 0.360 0.33 1.689 0.268 0.142 
Step 5 0.45 1.388 0.043 0.421 0.33 1.678 0.158 0.153 
Step 6 0.36 1.552 0.478 0.275 0.41 1.552 0.269 0.276 
Step 7 0.41 1.461 0.167 0.358 0.38 1.573 0.377 0.256 
Step 8 0.46 1.391 0.002 0.418 0.38 1.548 0.270 0.280 
Step 9 0.40 1.465 − 0.045 0.354 0.39 1.558 0.292 0.270 
Step 10 0.48 1.358 − 0.102 0.446 0.38 1.585 0.395 0.244  
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the quality of the simulations in the consecutive iterations steps. The 
explained variance was typically higher for the maximum likelihood 
parameterization than for GLUE. For maximum likelihood R2 substan
tially increased already after 1st iteration while this was achieved only 
after the 6th iteration for GLUE. RMSE was lower for the maximum 
likelihood than for GLUE (exception is step 6). The bias was variable but 
basically became close to 0 in the case of maximum likelihood while 
remained positive for GLUE. ME was better in the case of the maximum 
likelihood parameterization than in the case of GLUE. In summary, all 
parameter values show better performance in the case of the maximum 
likelihood parameterization which might indicate overfitting. 

Table 4 shows the performance metrics of the model output for maize 
yield at Martonvásár and for the independent validation experiment 
(NUTS3 level model simulation). Both for the calibration set 
(Martonvásár) and the validation set the optimized simulation results 
were significantly closer to the observations than the a priori simula
tions. It means that the calibrated model is more appropriate to apply to 
the NUTS3 level independent dataset. 

Maximum likelihood parameterization from the 10th step over- 
performed the GLUE-based simulations in terms of bias and ME, while 
the difference between the RMSE values was small. In terms of R2 the 
GLUE-based method performed better. The explained variance (48%) 
was in fact higher here than in the case of the training dataset for GLUE. 
Note that ME was negative in both cases because the magnitude of the 
yield was different at Martonvásár and at the county-level likely due to 
the different N fertilization level and agrotechnology. The better per
formance of GLUE in the validation experiment in terms of R2 indicates 
that maximum likelihood was associated with over-fitting and the 
GLUE-based method might be more feasible. Note that at this stage the 
modeler might perform a hybrid parameterization using the maximum 
likelihood values for some parameters that are associated with small or 
zero interval reduction, and GLUE-based, more constrained parameters 
in other cases. Maximum likelihood values for some parameters might 
be informative if there is consensus in their values across the multiple 
iterations steps. 

Note that the low explained variance does not necessary mean bad 
simulation. In our case the likelihood (optimum) function was normal so 
during the training procedure the main goal was to minimize the error 
and not to maximize R2. 

3.4. Limitations and outlook 

Like all optimization methods, CIRM also has limitations. The 
method assumes that the DT white-box model is an adequate approxi
mation to the black box model (M ∘f). Similarly to any machine learning 
classifiers, DTs have problems with unbalanced datasets, because these 
are heavily biased towards the majority classes (Hoens and Chawla, 
2013). However, quantifying the goodness of the approximation can be 
accomplished easily by checking the accuracy of the DT while simulta
neously checking the success rate. If the success rate monotonically in
creases while the accuracy is above a predefined threshold (e.g., 0.7 is 
considered high enough), the DT approximation is considered adequate 

through the updating procedure. Another problem is that the DTs are 
prone to overfitting. Traditionally, the solution for the overfitting is the 
application of ensemble methods such as Random Forest, or AdaBoost 
(James et al., 2013). However, applying these solutions may result in 
loss of interpretability and might complicate the interval update algo
rithm. Additional research should focus on this issue in the future. 
Another direction of development can focus on the application of other 
performance metrics (such as recall that uses TP/(TP + FN)) for the 
decision trees that are more suitable for unbalanced datasets. In this 
paper, DTs are trained on the full available dataset because the success 
rate calculation and the accuracy value in the consecutive iteration can 
be considered as a simple validation. 

In this study the introduction of the CIRM method was done using 
uniform priors coupled with the widely used GLUE probabilistic 
method. CIRM can be used with other priors and also with other prob
abilistic model optimization methods. In such cases the prior update rule 
has to be defined based on the DTs. For example, for normal prior dis
tributions μ and σ parameters can be determined in a way that the 0.95 
Highest Density Interval’s endpoints are generated by the DT update 
rule as defined earlier. This method is applicable for every two- 
parameter unimodal distribution function (e.g Beta distribution). 

It is also important to emphasize that there are alternatives to the 
interval update algorithm while processing the DT (see section 2.4.2.). 
The algorithm presented here selects the maximal volume inner 
hyperrectangle inscribed into the resulting polytope described by the DT 
(Fig. 1). Alternatively, the bounding hyperrectangle could also be used. 
Further research is needed to compare these two simple alternatives and 
see their effect on the results. 

In this study the demonstration of the introduced new method was 
done at a single site with few available observations. In spite of the poor 
situation, the method could provide useful results which means poten
tial in other similar, or more data-rich cases. Most importantly, the 
method has to be tested at experimental sites equipped with eddy 
covariance measurements and ancillary measurements. 

Data retrieved from the TRY database can be included in the model 
optimization with predetermined ranges for some plant traits (Kattge 
et al., 2011). According to the introduced method it is possible to handle 
observations as additional constraints, together with another observa
tion data stream that is used for the construction of the likelihood 
function. 

4. Concluding remarks 

In this study we presented a novel approach for the inversion of 
process-based models that goes beyond the traditional probabilistic 
methods. Although the basic aim is unchanged (i.e. constraining 
parameter uncertainty), the method is markedly different and can be 
best described as a combination of the traditional probabilistic methods 
and the application of an interpretable machine learning method. 

Up to the knowledge of the authors there is no similar approach 
published in the literature. Although the concept of “reality constraints” 
as part of the model optimization is already introduced in the literature, 
the previously proposed methods deal exclusively with the input model 
parameter constraints, and no conditioning is present regarding the 
output data streams. Note that input data conditioning is an implicit 
feature of our procedure and is implemented in the RBBGCMuso pack
age that was used to execute the optimization. 

The so-called Bayesian filtering technique shows some similarity to 
our method This method implements conditioning of the output streams, 
but as their convergence speed is proportional to the ratio of realistic/all 
simulations, they can be very slow. Additionally, this method requires 
in-depth knowledge from the user regarding the underlying (inter)de
pendencies of the parameter space. 

Interpretability is a remarkable advantage of the CIRM method. In 
this regard, the output conditioning introduced in this study is a novel 
technique. Another advantage of the proposed method is that it has two 

Table 4 
Comparison of error metrics for the different maize yield simulations. 
Martonvásár represents the point simulation (training) dataset, while Fejér 
county means the independent, census data based model evaluation using the 
different parameterizations. For Fejér county the final parameter set was used. 
See text for details.   

R2 RMSE bias ME 

a priori at Martonvásár 0.16 4.752 − 4.45 − 5.793 
a priori at Fejér county 0.15 3.500 − 3.08 − 2.658 
step 10 ML at Martonvásár 0.48 1.358 − 0.10 0.446 
step 10 GLUE at Martonvásár 0.38 1.585 0.39 0.244 
step 10 ML at Fejér county 0.37 1.986 1.28 − 0.109 
step 10 GLUE at Fejér county 0.48 2.028 1.49 − 0.157  
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modes: a manual and an automatic one. In the manual mode the user can 
examine the relationships represented by the constructed DTs and 
perform the interval refinement accordingly, or the proposed refinement 
can be accepted or modified based on additional scientific knowledge. 
The automatic interval refinement needs no supervision. In this way this 
method could be a potential candidate for researchers who used the trial 
and error approach for model inversion so far. The new method requires 
minimal extra knowledge about the technical implementation of the 
method from the user and as the method is fully automatic inexperi
enced researchers might still use it successfully concentrating mainly on 
the scientific questions. 

The focus of the study was a low-data situation when the model had 
to be optimized against maize yield data with relatively large uncer
tainty. The study demonstrated that the traditional probabilistic method 
(GLUE) resulted in unconstrained parameter intervals suggesting that 
the low-data situation leads to a large uncertainty of optimized param
eter values. This problem was solved by applying the proposed CIRM 
method that eventually led to successful interval reduction with almost 
100% realistic simulation score (before the calibration only 6% of the 
simulations were acceptable). 

Despite all of the achievements and proposed solutions in the field of 
model optimization, reality is sobering. Most of the scientists still use 
trial-and-error model optimization (Wallach et al., 2021), and the mi
nority who preferred some probabilistic methods typically use only prior 
knowledge. There is a clear and well-recognized need for simple, 
easy-to-use and interpretable software solutions that can be used for 
parameter estimation of a wide array of process-based models. CIRM 
might represent a remarkable major step forward to support improved 
model optimization and application. Given the fact that CIRM is a 
model-independent method, it can be easily implemented in any 
modelling environment. 
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