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S-PARTS OF VALUES OF UNIVARIATE

POLYNOMIALS, BINARY FORMS AND

DECOMPOSABLE FORMS AT INTEGRAL POINTS

YANN BUGEAUD, JAN-HENDRIK EVERTSE, AND KÁLMÁN GYŐRY

To Robert Tijdeman on his 75-th birthday

1. Introduction

Let S = {p1, . . . , ps} be a finite, non-empty set of distinct prime num-

bers. For a non-zero integer m, write m = pa11 . . . pass b, where a1, . . . , as
are non-negative integers and b is an integer relatively prime to p1 · · · ps.

Then we define the S-part [m]S of m by

[m]S := pa11 . . . pass .

The motivation of the present paper was given by the following result,

established in 2013 by Gross and Vincent [10].

Theorem A. Let f(X) be a polynomial with integral coefficients with

at least two distinct roots and S a finite, non-empty set of prime num-

bers. Then there exist effectively computable positive numbers κ1 and

κ2, depending only on f(X) and S, such that for every non-zero integer

x that is not a root of f(X) we have

[f(x)]S < κ2|f(x)|
1−κ1.

Gross and Vincent’s proof of Theorem A depends on the theory of

linear forms in complex logarithms, Under the additional hypotheses

that f(X) has degree n ≥ 2 and no multiple roots, we deduce an

ineffective analogue of Theorem A, with instead of 1− κ1 an exponent
1
n
+ǫ for every ǫ > 0 and instead of κ2 an ineffective number depending

on f(X), S and ǫ. This is in fact an easy application of the p-adic Thue-

Siegel-Roth Theorem. We show that the exponent 1
n

is best possible.
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Lastly, we give an estimate for the density of the set of integers x for

which [f(x)]S is large, i.e., for every small ǫ > 0 we estimate in terms

of B the number of integers x with |x| ≤ B such that [f(x)]S ≥ |f(x)|ǫ.

We considerably extend both Theorem A, its ineffective analogue,

and the density result by proving similar results for the S-parts of

values of homogeneous binary forms and, more generally, of values of

decomposable forms at integer points, under suitable assumptions. In

addition, in the effective results we give an expression for κ1, which is

explicit in terms of S. For our extensions to binary forms and decom-

posable forms, we use the p-adic Thue-Siegel-Roth Theorem and the

p-adic Subspace Theorem of Schmidt and Schlickewei for the ineffective

estimates for the S-part. The proof of the effective estimates is based

on an effective theorem of Győry and Yu [15] on decomposable form

equations whose proof depends on estimates for linear forms in com-

plex and in p-adic logarithms. Lastly, the proofs of our density results

on the number of integer points of norm at most B at which the value

of the binary form or decomposable form under consideration has large

S-value are based on a recent general lattice point counting result of

Barroero and Widmer [1] and on work in the PhD-thesis of Junjiang

Liu [16].

For simplicity, we have restricted ourselves to univariate polynomials,

binary forms and decomposable forms with coefficients in Z. With some

extra technical effort, analogous results could have been obtained over

arbitrary number fields.

In Section 2 we state our results, in Sections 3–6 we give the proofs,

in Sections 7 and 8 we present some applications, and in Section 9 we

give some additional comments on Theorem A.

2. Results

2.1. Results for univariate polynomials and binary forms. We

use notation ≪a,b,..., ≫a,b,... to indicate that the constants implied by the

Vinogradov symbols depend only on the parameters a, b, . . . . Further,

we use the notation A ≍a,b,... B to denote A ≪a,b,... B and B ≪a,b,... A.

We prove the following ineffective analogue of Theorem A mentioned

in the previous section.
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Theorem 2.1. Let f(X) ∈ Z[X ] be a polynomial of degree n ≥ 2

without multiple zeros.

(i) Let S = {p1, . . . , ps} be a non-empty set of primes. Then for

every ǫ > 0 and for every x ∈ Z with f(x) 6= 0,

[f(x)]S ≪f,S,ǫ |f(x)|
(1/n)+ǫ.

(ii) There are infinitely many primes p, and for every of these p,

there are infinitely many integers x, such that f(x) 6= 0 and

[f(x)]{p} ≫f |f(x)|1/n.

For completeness, we give here also a more precise effective version

of Theorem A, which is a consequence of Theorem 2.5 stated below on

the S-parts of values of binary forms.

Theorem 2.2. Let f(X) ∈ Z[X ] be a polynomial with at least two

distinct roots and suppose that its splitting field has degree d over Q.

Further, let S = {p1, . . . , ps} be a non-empty set of primes and put

P := max(p1, . . . , ps). Then for every integer x with f(x) 6= 0 we have

[f(x)]S ≤ κ2|f(x)|
1−κ1,

where

κ1 =
(

cs1
(

P (log p1) · · · (log ps)
)d
)−1

,

and c1, κ2 are effectively computable positive numbers that depend only

on f(X).

For variations on this result, and related results, we refer to Section

9.

For polynomials X(X + 1) and X2 + 7 and special sets S, Bennett,

Filaseta, and Trifonov [2, 3] have obtained stronger effective results.

As is to be expected, for most integers x, the S-part [f(x)]S is small

compared with |f(x)|. This is made more precise in the following result.

For any finite set of primes S and any ǫ > 0, B > 0, we denote by

N(f, S, ǫ, B) the number of integers x such that

(2.1) |x| ≤ B, f(x) 6= 0, [f(x)]S ≥ |f(x)|ǫ.

Denote by D(f) the discriminant of f and for a prime p, denote by gp
the largest integer g such that pg divides D(f).
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Theorem 2.3. Let f(X) ∈ Z[X ] be a polynomial of degree n ≥ 2

with non-zero discriminant. Further, let 0 < ǫ < 1/n, and let S be a

finite set of primes. Denote by s′ the number of primes p ∈ S such

that f(x) ≡ 0 (mod pgp+1) is solvable and assume that this number is

positive. Then

N(f, S, ǫ, B) ≍f,S,ǫ B
1−nǫ(logB)s

′−1 as B → ∞.

Remarks.

1. If s′ = 0 then [f(x)]S is bounded, and so the set of integers x with

[f(x)]S ≥ |f(x)|ǫ is finite.

2. In general, limB→∞N(f, S, ǫ, B)/B1−nǫ(logB)s
′−1 does not exist.

3. There are infinitely many primes p such that f(x) ≡ 0 (mod p) is

solvable. Removing from those the finitely many that divide D(f), there

remain infinitely many primes p such that gp = 0 and f(x) ≡ 0 (mod p)

is solvable.

We now formulate some analogues of the above mentioned results

for binary forms. Denote by Z2
prim the set of pairs (x, y) ∈ Z2 with

gcd(x, y) = 1.

Theorem 2.4. Let F (X, Y ) ∈ Z[X, Y ] be a binary form of degree

n ≥ 2 with non-zero discriminant.

(i) Let S = {p1, . . . , ps} be a non-empty set of primes. Then for

every ǫ > 0 and every pair (x, y) ∈ Z2
prim with F (x, y) 6= 0,

[F (x, y)]S ≪F,S,ǫ |F (x, y)|(2/n)+ǫ.

(ii) There are finite sets of primes S with the smallest prime in S

arbitrarily large, and for every of these S infinitely many pairs

(x, y) ∈ Z2
prim, such that F (x, y) 6= 0 and

[F (x, y)]S ≫F,S,ǫ |F (x, y)|2/n.

Our next result is an effective analogue of Theorem 2.2 for binary

forms. It is an easy consequence of Theorem 2.10 stated below on de-

composable forms. The splitting field of a binary form is the smallest

extension of Q over which it factors into linear forms.

Theorem 2.5. Let F (X, Y ) be a binary form of degree n ≥ 3 with

coefficients in Z and with splitting field K. Suppose that F has at least
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three pairwise non-proportional linear factors over K. Let again S =

{p1, . . . , ps} be a finite set of primes and [K : Q] = d. Then

[F (x, y)]S ≤ κ4|F (x, y)|1−κ3

for every (x, y) ∈ Z2
prim with F (x, y) 6= 0, where

κ3 =
(

cs2
(

(P (log p1) · · · (log ps)
)d)−1

and κ4, c2 are effectively computable positive numbers, depending only

on F .

We obtain Theorem 2.2 on polynomials f(X) ∈ Z[X ] by applying

Theorem 2.5 to the binary form Y 1+deg ff(X/Y ) with (x, y) = (x, 1) ∈

Z2
prim.

Let again F (X, Y ) ∈ Z[X, Y ] be a binary form of degree n ≥ 2 and

of non-zero discriminant. For any finite set of primes S and any ǫ > 0,

B > 0, we denote by N(F, S, ǫ, B) the number of pairs (x, y) ∈ Z2
prim

such that

(2.2) max(|x|, |y|) ≤ B, F (x, y) 6= 0, [F (x, y)]S ≥ |F (x, y)|ǫ.

Denote by D(F ) the discriminant of F and for a prime p, denote by gp
the largest integer g such that pg divides D(F ).

Theorem 2.6. Let F (X, Y ) ∈ Z[X, Y ] be a binary form of degree

n ≥ 3 with non-zero discriminant. Further, let 0 < ǫ < 1
n
, and let S be

a finite set of primes. Denote by s′ the number of primes p ∈ S such

that F (x, y) ≡ 0 (mod pgp+1) has a solution (x, y) ∈ Z2
prim and assume

that this number is positive. Then

N(F, S, ǫ, B) ≍F,S,ǫ B
2−nǫ(logB)s

′−1 as B → ∞.

Parts (i) of Theorems 2.1 and 2.4 are easy consequences of the p-adic

Thue-Siegel-Roth Theorem. Part (ii) of Theorem 2.1 is a consequence

of the fact that for a given non-constant polynomial f(X) ∈ Z[X ] there

are infinitely many primes p such that f(X) has a zero in Zp. The proof

of part (ii) of Theorem 2.4 uses some geometry of numbers.

There are two main tools in the proof of Theorem 2.6. The first is

a result of Stewart [24, Thm. 2] on the number of congruence classes

x modulo pk of f(x) ≡ 0 (mod pk) for f(X) a polynomial and pk a

prime power. The second is a powerful lattice point counting result of

Barroero and Widmer [1, Thm. 1.3]. The proof of Theorem 2.3 is very
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similar, but instead of the result of Barroero and Widmer it uses a

much more elementary counting argument.

2.2. Ineffective results for decomposable forms. We will state

results on the S-parts of values of decomposable forms in m variables

at integral points, where m ≥ 2.

We start with some notation and definitions. Let K be a finite, nor-

mal extension of Q. For a linear form ℓ = α1X1 + · · · + αmXm with

coefficients in K and for an element σ of the Galois group Gal(K/Q)

we define σ(ℓ) := σ(α1)X1 + · · ·+ σ(αm)Xm and then for a set of lin-

ear forms L = {ℓ1, . . . , ℓr} with coefficients in K we write σ(L) :=

{σ(ℓ1), . . . , σ(ℓr)}. A set of linear forms L with coefficients in K is

called Gal(K/Q)-symmetric if σ(L) = L for each σ ∈ Gal(K/Q),

and Gal(K/Q)-proper if for each σ ∈ L we have either σ(L) = L

or σ(L)∩L = ∅. We denote by [L] the K-vector space generated by L,

and define rankL to be the dimension of [L] over K. Finally, we define

the sum of two vector spaces V1, V2 over K by V1 + V2 := {x+ y : x ∈

V1, y ∈ V2}.

Recall that a decomposable form in Z[X1, . . . , Xm] is a homogeneous

polynomial that factors into linear forms in X1, . . . , Xm over some ex-

tension of Q. The smallest extension over which such a factorization is

possible is called the splitting field of the decomposable form. This is

a finite, normal extension of Q.

Let F ∈ Z[X1, . . . , Xm] be a decomposable form of degree n ≥ 3

with splitting field K. Then we can express F as

(2.3)











































F = cℓ
e(ℓ1)
1 · · · ℓe(ℓr)r with

c a non-zero rational,

LF = {ℓ1, . . . , ℓr} a Gal(K/Q)-symmetric set of pairwise

non-proportional linear forms with coefficients in K,

e(ℓ1), . . . , e(ℓr) positive integers, with e(ℓi) = e(ℓj)

whenever ℓj = σ(ℓi) for some σ ∈ Gal(K/Q).

Lastly, define Zm
prim to be the set of x = (x1, . . . , xm) ∈ Zm with

gcd(x1, . . . , xm) = 1 and define ‖x‖ to be the maximum norm of

x ∈ Zm
prim.
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Let S = {p1, . . . , ps} be a finite set of primes, and F ∈ Z[X1, . . . , Xm]

a decomposable form. For x ∈ Zm
prim with F (x) 6= 0, we can write

(2.4) F (x) = pa11 · · · pass · b,

where a1, . . . , as are non-negative integers and b is an integer coprime

with p1 · · · ps. Then the S-part [F (x)]S is pa11 · · · pass . We may view (2.4)

as a Diophantine equation in x ∈ Zm
prim and a1, . . . , as ∈ Z≥0, a so-

called decomposable form equation. Schlickewei [23] considered (2.4) in

the case that F is a norm form (i.e., a decomposable form that is ir-

reducible over Q) and formulated a criterion in terms of F implying

that (2.4) has only finitely many solutions. Evertse and Győry [7] gave

another finiteness criterion in terms of F , valid for arbitrary decom-

posable forms. Recently [8, Chap. 9, Thm. 9.1.1], they refined this as

follows. Call an integer S-free if it is non-zero, and coprime with the

primes in S.

Theorem B. Let F ∈ Z[X1, . . . , Xm] be a decomposable form with

splitting field K, given in the form (2.3), and let L be a finite set of

linear forms in K[X1, . . . , Xm], containing LF . Then the following two

assertions are equivalent:

(i) rankLF = m, and for every Gal(K/Q)-proper subset M of LF

with ∅⊂
6=
M⊂

6=
LF , we have

(2.5) L ∩
(

∑

σ∈Gal(K/Q)

[σ(M)] ∩ [LF \ σ(M)]
)

6= ∅;

(ii) for every finite set of primes S = {p1, . . . , ps} and every S-

free integer b, there are only finitely many x ∈ Zm
prim and non-

negative integers a1, . . . , as such that

(2.6) F (x) = pa11 · · ·pass b, ℓ(x) 6= 0 for ℓ ∈ L.

This theorem was deduced from a finiteness theorem of Evertse [5]

and van der Poorten and Schlickewei [20, 21] on S-unit equations over

number fields.

The following result gives an improvement of (ii). We denote by | · |∞
the standard archimedean absolute value on Q, and for a prime p by

| · |p the standard p-adic absolute value, with |p|p = p−1. Further, ‖x‖

denotes the maximum norm of x ∈ Zm
prim.
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Theorem 2.7. Let F ∈ Z[X1, . . . , Xm] be a decomposable form in m ≥

2 variables with splitting field K and L ⊇ LF a finite set of linear forms

in K[X1, . . . , Xm], satisfying condition (i) of Theorem B. Further, let

S be a finite set of primes and let ǫ > 0. Then there are only finitely

many x ∈ Zm
prim with

(2.7)







∏

p∈S∪{∞}

|F (x)|p ≤ ‖x‖(1/(m−1))−ǫ,

ℓ(x) 6= 0 for ℓ ∈ L.

Chen and Ru [4] proved a similar result with L = LF the set of

linear factors of F and with a stronger condition instead of (i), on the

other hand they considered decomposable forms with coefficients in an

arbitrary number field.

From Theorem 2.7 and Theorem B we deduce the following corollary.

Corollary 2.8. Let F ∈ Z[X1, . . . , Xm] be a decomposable form in

m ≥ 2 variables with splitting field K and L ⊇ LF a finite set of linear

forms in K[X1, . . . , Xm].

(i) Assume that F and L satisfy condition (i) of Theorem B. Sup-

pose F has degree n. Let S be a finite set of primes and let

ǫ > 0. Then for every x ∈ Zm
prim with ℓ(x) 6= 0 for ℓ ∈ L we

have

(2.8) [F (x)]S ≪F,L,S,ǫ |F (x)|1−(1/n(m−1))+ǫ.

(ii) Assume that F and L do not satisfy condition (i) of Theorem

B. Then there are a finite set of primes S and a constant γ > 0

such that

[F (x)]S ≥ γ|F (x)|

holds for infinitely many x ∈ Zm
prim with ℓ(x) 6= 0 for all ℓ ∈ L.

Indeed, if F , L satisfy condition (i) of Theorem B, S is a finite set of

primes and ǫ > 0 then

|F (x)|

[F (x)]S
=

∏

p∈S∪{∞}

|F (x)|p ≫ ‖x‖(1/(m−1))−ǫ ≫ |F (x)|(1/n(m−1))−ǫ/n

for all x ∈ Zm
prim with ℓ(x) 6= 0 for all ℓ ∈ L, where the implied constants

depend on F , S and ǫ. This implies part (i) of Corollary 2.8. If on the

other hand F and L do not satisfy condition (i) of Theorem B then
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there are a finite set of primes S and an S-free integer b such that (2.6)

has infinitely many solutions. This yields infinitely many x ∈ Zm
prim

such that ℓ(x) 6= 0 for all ℓ ∈ L and

[F (x)]S = |F (x)|/|b|.

Thus, part (ii) of Corollary 2.8 follows.

We can improve on Corollary 2.8 if we assume condition (i) of The-

orem B with L = LF , i.e.,

rankLF = m, and for every Gal(K/Q)-proper subset(2.9)

M of LF with ∅⊂
6=
M⊂

6=
LF we have

LF ∩
(

∑

σ∈Gal(K/Q)

[σ(M)] ∩ [LF \ σ(M)]
)

6= ∅

and in addition to this,

(2.10) F (x) 6= 0 for every non-zero x ∈ Qm.

Let D be a Q-linear subspace of Qm. We say that a non-empty sub-

set M of LF is linearly dependent on D if there is a non-trivial K-

linear combination of the forms in M that vanishes identically on D;

otherwise, M is said to be linearly independent on D. Further, for a

non-empty subset M of LF we define rankD M to be the cardinality

of a maximal subset of M that is linearly independent on D, and then

qD(M) :=

∑

ℓ∈M e(ℓ)

rankD M
.

For instance, rankD LF = dimD, so qD(LF ) = degF/ dimD. Then put

qD(F ) := max{qD(M) : ∅⊂
6=
M⊂

6=
LF , rankD M < dimD}.

Finally, put

c(F ) := max
D

qD(F )

qD(LF )
= max

D
qD(F ) ·

dimD

deg F
,

where the maximum is taken over all Q-linear subspaces D of Qm with

dimD ≥ 2. Lemma 5.2, which is stated and proved in Section 5 below,

implies that if F satisfies both (2.9) and (2.10), then c(F ) < 1. We

will not consider the problem how to compute c(F ), that is, how to
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determine a subspace D for which qD(F )/qD(LF ) is maximal; this may

involve some linear algebra that is beyond the scope of this paper.

Given a decomposable form F ∈ Z[X1, . . . , Xm], a finite set of primes

S, and reals ǫ > 0, B > 0, we define N(F, S, ǫ, B) to be the set of

x ∈ Zm
prim with [F (x)]S ≥ |F (x)|ǫ and ‖x‖ ≤ B.

Theorem 2.9. Let m ≥ 2 and let F ∈ Z[X1, . . . , Xm] be a decompos-

able form as in (2.3) satisfying (2.9) and (2.10).

(i) For every finite set of primes S, every ǫ > 0 and every x ∈ Zm
prim

we have

[F (x)]S ≪F,S,ǫ |F (x)|c(F )+ǫ;

(ii) There are infinitely many primes p, and for every of these primes

p infinitely many x ∈ Zm
prim, such that

[F (x)]{p} ≫F,p |F (x)|c(F );

(iii) For every finite set of primes S and every ǫ with 0 < ǫ < 1 we

have

N(F, S, ǫ, B) ≪F,S,ǫ B
m(1−ǫ) as B → ∞.

Assertions (i) and (iii) follow without too much effort from work in

Liu’s thesis [16], while (ii) is an application of Minkowski’s Convex

Body Theorem.

The constants implied by the Vinogradov symbols in Theorems 2.7

and part (i) of Theorem 2.9 cannot be computed effectively from our

method of proof. In fact, these constants can be expressed in terms

of the heights of the subspaces occurring in certain instances of the

p-adic Subspace Theorem, but for these we can as yet not compute an

upper bound. The constant in (ii) can be computed once one knows a

subspace D for which the quotient qD(F )/qD(LF ) is equal to c(F ). The

work of Liu from which part (iii) is derived uses a quantitative version

of the p-adic Subspace Theorem, giving an explicit upper bound for

the number of subspaces. This enable one to compute effectively the

constant in part (iii).

We mention that part (iii) of Theorem 2.9 can be proved by a similar

method as Theorem 2.5, using the lattice point counting result of Bar-

roero and Widmer, thereby avoiding Liu’s work and the quantitative

Subspace Theorem. But this approach would have been much lengthier.
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2.3. Effective results for decomposable forms. We consider again

S-parts of values F (x), where F is a decomposable form in Z[X1, . . . , Xm]

and x ∈ Zm
prim. Under certain stronger conditions on F , we shall give

an estimate of the form [F (x)]S ≤ κ6|F (x)|1−κ5, with effectively com-

putable positive κ5, κ6 that depend only on F and S. For applications,

we make the dependence of κ5 and κ6 explicit in terms of S. The decom-

posable forms with the said stronger conditions include binary forms,

and discriminant forms of an arbitrary number of variables.

Let again S = {p1, . . . , ps} be a finite set of primes and b an integer

coprime with p1 · · ·ps, and consider equation (2.4) in x ∈ Zm
prim and

non-negative integers a1, . . . , as. Under the stronger conditions for the

decomposable form F mentioned above, explicit upper bounds were

given in Győry [11, 12] for the solutions of (2.4), from which upper

bounds can be deduced for [F (x)]S. Later, more general and stronger

explicit results were obtained by Győry and Yu [15] on another version

of (2.4). These explicit results provided some information on the arith-

metical properties of F (x) at points x ∈ Zm
prim. In this paper, we deduce

from the results of Győry and Yu [15] a better bound for [F (x)]S; see

Theorem 2.10. This will give more precise information on the arith-

metical structure of those non-zero integers F0 that can be represented

by F (x) at integral points x; see Corollary 7.1.

To state our results, we introduce some notation and assumptions.

Let F ∈ Z[X1, . . . , Xm] be a non-zero decomposable form. Denote by

K its splitting field. We choose a factorization of F into linear forms

with coefficients in K as in (2.3), with LF a Gal(K/Q)-symmetric set

of pairwise non-propertional linear forms. Denote by G(LF ) the graph

with vertex set LF in which distinct ℓ, ℓ′ in LF are connected by an

edge if λℓ+ λ′ℓ′ + λ′′ℓ′′ = 0 for some ℓ′′ ∈ LF and some non-zero λ, λ′,

λ′′ in K. Let L1, . . . ,Lk be the vertex sets of the connected components

of G(LF ). When k = 1 and LF has at least three elements, LF is said

to be triangularly connected ; see Győry and Papp [14].

In what follows, we assume that F in (2.4) satisfies the following

conditions:

LF has rank m;(2.11)

either k = 1; or k > 1 and Xm can be expressed as a(2.12)

linear combination of the forms from Li, for i = 1, . . . , k.
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We note that these conditions are satisfied by binary forms with at

least three pairwise non-proportional linear factors, and also discrim-

inant forms, index forms and a restricted class of norm forms in an

arbitrary number of variables. As has been explained in [8, Chap. 9],

conditions (2.11), (2.12) imply condition (i) of Theorem B.

As before, let S = {p1, . . . , ps} be a finite set of primes, and put

P := max
1≤i≤s

pi. Further, let K denote the splitting field of F , and put

d := [K : Q]. Then we have

Theorem 2.10. Under assumptions (2.11), (2.12), we have

(2.13) [F (x)]S ≤ κ6|F (x)|1−κ5

for every x = (x1, . . . , xm) ∈ Zm
prim with F (x) 6= 0, and with xm 6= 0 if

k > 1, where

κ5 =
(

cs3
(

(P (log p1) · · · (log ps)
)d)−1

≥ (cs3(2P (logP )s)d)−1

and κ6, c3 are effectively computable positive numbers, depending only

on F .

It is easy to check that if F ∈ Z[X, Y ] is a binary form with at least

three pairwise non-proportional linear factors over its splitting field,

then it satisfies (2.11), (2.12) with m = 2 and k = 1. Thus, Theorem

2.5 follows at once from Theorem 2.10.

We shall deduce Theorem 2.10 from a special case of Theorem 3 of

Győry and Yu [15]. The constants κ5, κ6, c3 could have been made

explicit by using the explicit version of this theorem of Győry and

Yu [15]. Further, Theorem 2.10 could be proved more generally, over

number fields and for a larger class of decomposable forms.

Weaker versions of Theorem 2.10 can be deduced from the results of

Győry [11, 12].

3. Proofs of Theorems 2.1, 2.3, 2.4, 2.6

Let again S = {p1, . . . , ps} be a finite, non-empty set of primes. We

denote by | · |∞ the ordinary absolute value, and by | · |p the p-adic

absolute value with |p|p = p−1 for a prime number p. Further, we set

Q∞ := R, Q∞ := C.
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The following result is a very well-known consequence of the p-adic

Thue-Siegel-Roth Theorem. The only reference we could find for it is

[18, Chap.IX, Thm.3]. For convenience of the reader we recall the proof.

Proposition 3.1. Let F (X, Y ) ∈ Z[X, Y ] be a binary form of degree

n ≥ 2 and of non-zero discriminant. Then

|F (x, y)|

[F (x, y)]S
≫F,S,ǫ max(|x|, |y|)n−2−ǫ

for all ǫ > 0 and all (x, y) ∈ Z2
prim with F (x, y) 6= 0.

Proof. We assume that F (1, 0) 6= 0. This is no loss of generality. For if

this is not the case, there is an integer b of absolute value at most n

with F (1, b) 6= 0 and we may proceed with the binary form F (X, bX +

Y ). Our assumption implies that for each p ∈ S ∪ {∞} we have a

factorization F (X, Y ) = a
∏n

i=1(X − βipY ) with a ∈ Z and βip ∈ Qp

algebraic over Q for i = 1, . . . , n. For every (x, y) ∈ Z2
prim with F (x, y) 6=

0 we have

|F (x, y)|

[F (x, y)]S · (max(|x|, |y|)n
=

(

∏

p∈S∪{∞}

|F (x, y)|p
)

/max(|x|, |y|)n

≫F,S

∏

p∈S

min
1≤i≤n

|x− βipy|p
max(|x|p, |y|p)

≫F,S

∏

p∈S∪{∞}

min
(

1, |x
y
− β1p|p, . . . , |

x
y
− βnp|p

)

.

The latter is ≫F,S,ǫ max(|x|, |y|)−2−ǫ for every ǫ > 0 by the p-adic

Thue-Siegel-Roth Theorem. Proposition 3.1 follows. �

Proof of Theorem 2.1. Let f(X) ∈ Z[X ] be the polynomial from The-

orem 2.1.

(i). The binary form F (X, Y ) := Y n+1f(X/Y ) has degree n+ 1 and

non-zero discriminant. Now by Proposition 3.1, we have for every ǫ > 0

and every sufficiently large integer x,

|f(x)|

[f(x)]S
≫f,S,ǫ |x|

n−1−nǫ ≫f,S,ǫ |f(x)|
(n−1−nǫ)/n,

implying [f(x)]S ≪f,S,ǫ |f(x)|(1/n)+ǫ.

(ii). There are infinitely many primes p such that f(x) ≡ 0 (mod p)

is solvable. Excluding the finitely many primes dividing the leading
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coefficient or the discriminant of f(X), there remain infinitely many

primes. Take such a prime p. By Hensel’s Lemma, there is for every

positive integer k an integer xk such that f(xk) ≡ 0 (mod pk). We may

choose such an integer with pk ≤ xk < 2pk. Then clearly, x1 < x2 <

· · · and for k sufficiently large, f(xk) 6= 0 and f(xk) ≡ 0 (mod pk).

Consequently,

[f(xk)]{p} ≥ pk ≥ 1
2
|xk| ≫f |f(xk)|

1/n.

This proves Theorem 2.1. �

Proof of Theorem 2.4. Let F (X, Y ) ∈ Z[X, Y ] be the binary from The-

orem 2.4.

(i) By Proposition 3.1, we have for every ǫ > 0 and every pair (x, y) ∈

Z2
prim with F (x, y) 6= 0 and max(|x|, |y|) sufficiently large,

|F (x, y)|

[F (x, y)]S
≫F,S,ǫ max(|x|, |y|)n−2−nǫ ≫F,S,ǫ |F (x, y)|1−(2/n)−ǫ.

(ii) We assume that F (1, 0) 6= 0 which, similarly as in the proof

of Proposition 3.1, is no loss of generality. By Chebotarev’s Density

Theorem, there are infinitely many primes p such that F splits into

linear factors over Qp. From these, we exclude the finitely many primes

that divide D(F ) or F (1, 0). Let P be the infinite set of remaining

primes. Then for every p ∈ P, we can express F (X, Y ) as

F (X, Y ) = a

n
∏

i=1

(X − βipY )

with a ∈ Z with |a|p = 1, βip ∈ Zp for i = 1, . . . , n and |βip − βjp|p = 1

for i, j = 1, . . . , n with i 6= j.

We distinguish two cases. First assume that F does not split into

linear factors over Q. Take p ∈ P. Then without loss of generality,

β1p 6∈ Q. Let k be a positive integer. By Minkowski’s Convex Body

Theorem, there is a non-zero pair (x, y) ∈ Z2 such that

|x− β1py|p ≤ p−k, max(|x|, |y|) ≤ pk/2.

We may assume without loss of generality that gcd(x, y) is not divisible

by any prime other than p. Assume that gcd(x, y) = pu with u ≥ 0,

and let xk := p−ux, yk := p−uy. Then (xk, yk) ∈ Z2
prim and

|xk − β1pyk|p ≤ pu−k, max(|xk|, |yk|) ≤ p(k/2)−u.
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This clearly implies u ≤ k/2. We observe that if we let k → ∞ then

(xk, yk) runs through an infinite subset of Z2
prim. Indeed, otherwise we

would have a pair (x0, y0) ∈ Z2
prim with |x0 − β1py0|p ≤ p−k/2 for

infinitely many k which is impossible since β1p 6∈ Q. Next we have

F (xk, yk) 6= 0 for all k. Indeed, suppose that F (xk, yk) 6= 0 for some k.

Then xk/yk = βip for some i ≥ 2. Since βip ∈ Zp we necessarily have

|yk|p = 1. But then |xk − β1pyk|p = |βip − β1p|p = 1, which is again

impossible. Finally, since clearly |xk − βipyk|p ≤ 1 for i = 2, . . . , n, we

derive that for each positive integer k,

[F (xk, yk)]{p} = |F (xk, yk)|
−1
p ≥ pk−u ≥ max(|xk|, |yk|)

2

≫F,p |F (xk, yk)|
2/n.

Next, we assume that F (X, Y ) splits into linear factors over Q. Then

F (X, Y ) = a
∏n

i=1(X − βiY ) with a ∈ Z, |a|p = 1 for p ∈ P, βi ∈ Q

and |βi|p ≤ 1 for p ∈ P, i = 1, . . . , n, and |βi − βj|p = 1 for p ∈ P,

i, j = 1, . . . , n, i 6= j. Pick distinct p, q ∈ P and let S = {p, q}. Then

there is an integer u, coprime with pq, such that uβ1, uβ2 and u/(β2−β1)

are all integers. Choose positive integers k, l. Then

x :=
u(β2p

k − β1q
l)

β2 − β1

, y :=
u(pk − ql)

β1 − β2

are integers satisfying x − β1y = upk, x − β2y = uql. By our choice of

p, q ∈ P and by direct substitution, it follows that the numbers x−βiy

(i = 3, . . . , n) have p-adic and q-adic absolute values equal to 1. Thus,

|F (x, y)|p = p−k, |F (x, y)|q = q−l and so [F (x, y)]S = pkql.

Clearly, g := gcd(x, y) is coprime with pq. Let xk,l := x/g, yk,l := y/g

so that (xk,l, yk,l) ∈ Z2
prim. Then clearly, [F (xk,l, yk,l)]S = pkql. We now

choose k, l such that pk, ql are approximately equal, say pk < ql < q ·pk.

Then max(|xk,l|, |yk,l|) ≤ max(|x|, |y|) ≪F,S (pkql)1/2 and thus,

[F (xk,l, yk,l)]S ≫F,S max(|xk,l|, |yk,l|)
2 ≫F,S |F (xk,l, yk,l)|

2/n.

�

In the proofs of Theorems 2.3 and 2.6 we need a few auxiliary results.

Lemma 3.2. Let f(X) ∈ Z[X ] be a polynomial of non-zero discrim-

inant and a an integer and p a prime. Denote by gp the largest non-

negative integer g such that pg divides the discriminant D(f) of f .

For k > 0 denote by r(f, a, pk) the number of congruence classes x
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modulo pk with f(x) ≡ 0 (mod pk), x ≡ a (mod p). Then r(f, a, pk) =

r(f, a, pgp+1) for k ≥ gp + 1.

Proof. This is a consequence of [24, Thm. 2]. �

Given a positive integer h, we say that two pairs (x1, y1), (x2, y2) ∈

Z2
prim are congruent modulo h if x1y2 ≡ x2y1 (modh). With this notion,

for a given binary form F (X, Y ) ∈ Z[X, Y ] we can divide the solutions

(x, y) ∈ Z2
prim of F (x, y) ≡ 0 (modh) into congruence classes modulo h.

Lemma 3.3. Let F (X, Y ) ∈ Z[X, Y ] be a binary form of degree n ≥ 2

and of non-zero discriminant and p a prime. Denote by gp the largest

non-negative integer g such that pg divides the discriminant D(F ) of

F . For k > 0 denote by r(F, pk) the number of congruence classes

modulo pk of (x, y) ∈ Z2
prim with F (x, y)) ≡ 0 (mod pk). Then r(F, pk) =

r(F, pgp+1) for k ≥ gp + 1.

Proof. Neither the number of congruence classes under consideration,

nor the discriminant of F , changes if we replace F (X, Y ) by F (aX +

bY, cX + dY ) for some matrix
(

a b
c d

)

∈ GL2(Z). After such a replace-

ment, we can achieve that F (1, 0)F (0, 1) 6= 0, so we assume this hence-

forth. Let f(X) := F (X, 1) and f ∗(X) := F (1, X). The map (x, y) 7→

x · y−1 (mod pk) gives a bijection between the congruence classes mod-

ulo pk of pairs (x, y) ∈ Z2
prim with F (x, y) ≡ 0 (mod pk) and y 6≡

0 (mod p) and the congruence classes modulo pk of integers z with

f(z) ≡ 0 (mod p). Likewise, the map (x, y) 7→ y · x−1 (mod pk) estab-

lishes a bijection between the congruence classes modulo pk of (x, y) ∈

Z2
prim with F (x, y) ≡ 0 (mod pk) and y ≡ 0 (mod p) and the congru-

ence classes modulo pk of integers z with f ∗(z) ≡ 0 (mod pk) and

z ≡ 0 (mod p). Further, our assumption F (1, 0)F (0, 1) 6= 0 implies that

D(F ) = D(f) = D(f ∗). Now an application of Lemma 3.2 yields that

r(F, pk) =
∑p−1

a=0 r(f, a, p
k) + r(f ∗, 0, pk) is constant for k ≥ gp + 1. �

For a binary form F (X, Y ) ∈ R[X, Y ] and for positive reals B,M , we

denote by VF (B,M) the set of pairs (x, y) ∈ R2 with max(|x|, |y|) ≤

B and |F (x, y)| ≤ M , and by µF (B,M) the area (two-dimensional

Lebesgue measure) of this set.

Our next lemma is a consequence of a general lattice point counting

result of Barroero and Widmer [1, Thm. 1.3].
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Lemma 3.4. let n be an integer ≥ 2. Then there is a constant c(n) > 0

such that for every non-zero binary form F (X, Y ) ∈ R[X, Y ] of degree

n, every lattice Λ ⊆ Z2 and all positive reals B,M ,
∣

∣

∣

∣

#(VF (B,M) ∩ Λ)−
µF (B,M)

det Λ

∣

∣

∣

∣

≤ c(n)max(1, B/m(Λ)),

where m(Λ) is the length of the shortest non-zero vector of Λ.

Proof. We write points in Rn+3 × R2 as (z0, . . . , zn, u, v, x, y). The set

Z ⊆ Rn+3 × R2 given by the inequalities

|z0x
n + z1x

n−1y + · · ·+ zny
n| ≤ v, |x| ≤ u, |y| ≤ u

is a definable family in the sense of [1], parametrized by the tuple

T = (z0, . . . , zn, u, v). By substituting for this tuple the coefficients of

F , respectively B and M , we obtain the set VF (B,M) as defined above.

The sum of the one-dimensional volumes of the orthogonal projections

of VF (B,M) on the x-axis and y-axis is at most 4B, and the first

minimum of Λ is m(Λ). Now Lemma 3.4 follows directly from [1, Thm.

3.1]. �

A lattice Λ ⊆ Z2 is called primitive if it contains points (x, y) ∈ Z2
prim.

Lemma 3.5. Let again n be an integer ≥ 2. Then there is a constant

c′(n) > 0 such that for every binary form F ∈ Z[X, Y ] of degree n,

every primitive lattice Λ ⊆ Z2, and all reals B,M > 1,
∣

∣

∣

∣

∣

∣

#
(

VF (B,M) ∩ Λ ∩ Z2
prim

)

−
( 6

π2

∏

p|det Λ

(1 + p−1)−1
)

·
µF (B,M)

det Λ

∣

∣

∣

∣

∣

∣

≤ c′(n)B log 3B.

Proof. In the proof below, p, pi denote primes.

Let F (X, Y ) ∈ Z[X, Y ] be a binary form, Λ ⊆ Z2 a primitive lattice,

and B,M reals > 1. Put d := det Λ. For a positive integer h, define the

lattice Λh := Λ ∩ hZ2. Since Λ is primitive, there is a basis {a,b} of

Z2 such that {a, db} is a basis of Λ. Hence {ha, lcm(h, d)b} is a basis

of Λh, and so

(3.1) det Λh = h · lcm(h, d) = d ·
h2

gcd(h, d)
.
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Further, the shortest non-zero vector of Λh has length

(3.2) m(Λh) ≥ h.

We define ρ(h) := #(VF (B,M) ∩ Λh). Then by the rule of inclusion

and exclusion,

#
(

VF (B,M) ∩ Λ ∩ Z2
prim

)

= ρ(1)−
∑

p≤B

ρ(p) +
∑

p1<p2: p1p2≤B

ρ(p1p2)− · · ·

=
∑

h≤B

µ(h)ρ(h),

where µ(h) denotes the Möbius function. The previous lemma together

with (3.1), (3.2) implies
∣

∣

∣

∣

∣

#
(

VF (B,M) ∩ Λ ∩ Z2
prim

)

−
µF (B,M)

d
·
∑

h≤B

µ(h) ·
gcd(d, h)

h2

∣

∣

∣

∣

∣

≤ c(n)B ·
∑

h≤B

|µ(h)|

h
,

hence
∣

∣

∣

∣

∣

#
(

VF (B,M) ∩ Λ ∩ Z2
prim

)

−
µF (B,M)

d
·

∞
∑

h=1

µ(h) ·
gcd(d, h)

h2

∣

∣

∣

∣

∣

≤
µF (B,M)

d
·
∑

h>B

|µ(h)|
gcd(d, h)

h2
+ c(n)B ·

∑

h≤B

|µ(h)|

h
,

≤ c′(n)B log 3B,

where we have used
∑

h>B |µ(h)|
gcd(d,h)

h2 ≤ 2d/B, µF (B,M) ≤ 4B2,

and
∑

h≤B

|µ(h)|
h

≤ log 3B. Now the proof is finished by observing that

∞
∑

h=1

µ(h) ·
gcd(d, h)

h2
=

∏

p|d

(1− p−1) ·
∏

p∤d

(1− p−2) =
6

π2
·
∏

p|d

(1 + p−1)−1.

�

Lemma 3.6. Let α1, . . . , αt be positive reals. Denote by N(A) the num-

ber of tuples of non-negative integers (u1, . . . , ut) with

(3.3) A ≤ α1u1 + · · ·+ αtut ≤ A+ 2(α1 + · · ·+ αt).
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Then

N(A) ≍t,α1,...,αt
At−1 as A → ∞.

Proof. Constants implied by the Vinogradov symbols ≪, ≫ will depend

on t, α1, . . . , αt.

For u = (u1, . . . , ut) ∈ Zt, denote by Cu the cube in Rt consisting of

the points y = (y1, . . . , yt) with ui ≤ yi < ui + 1 for i = 1, . . . , t. Let C

be the union of the cubes Cu over all points u with non-negative integer

coordinates satisfying (3.3). Put α := α1 + · · ·+αt. Then C1 ⊆ C ⊆ C2,
where C1, C2 are the subsets of Rs given by

A+ α ≤ α1y1 + · · ·+ αtyt ≤ A + 2α, y1 ≥ 0, . . . , yt ≥ 0,

A ≤ α1y1 + · · ·+ αtyt ≤ A + 3α, y1 ≥ 0, . . . , yt ≥ 0,

respectively. Clearly N(A) is estimated from below and above by the

measures of C1 and C2, the first being ≫ (A+ 2α)t − (A+α)t ≫ At−1,

the second being ≪ At−1. The lemma follows. �

We first give the complete proof of Theorem 2.6. The proof of The-

orem 2.3 is then obtained by making a few modifications.

Proof of Theorem 2.6. Let F (X, Y ) ∈ Z[X, Y ] be a binary form of de-

gree n ≥ 3 with non-zero discriminant, ǫ a real with 0 < ǫ < 1
n

and

S = {p1, . . . , ps} a finite set of primes. Let S ′ = {p1, . . . , ps′} be the

set of p ∈ S such that F (x, y) ≡ 0 (mod pgp+1) has a solution in Z2
prim,

and let S ′′ = {ps′+1, . . . , ps} be the set of remaining primes. In what

follows, constants implied by Vinogradov symbols ≪, ≫ and by the

Landau O-symbol will depend only on F , S and ǫ.

We first prove that

N(F, S, ǫ, B) ≪f,S,ǫ B
2−nǫ(logB)s

′−1 as B → ∞.

The set of pairs (x, y) under consideration can be partitioned into sets

Nh, where h runs through the set of positive integers composed of

primes from S, and Nh is the set of pairs (x, y) ∈ Z2
prim with

max(|x|, |y|) ≤ B, [F (x, y)]S = h, |F (x, y)| ≤ h1/ǫ.

We first estimate #Nh from above by means of Lemma 3.5 where h

is any positive integer composed of primes from S. Notice that for

(x, y) ∈ Nh we have F (x, y) ≡ 0 (modh). By Lemma 3.3 and the Chi-

nese Remainder Theorem, the set of these (x, y) lies in ≪ 1 congruence
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classes modulo h. Each of these congruence classes is contained in a set

of the shape

{(x, y) ∈ Z2 : y0x ≡ x0y (mod h)}

with (x0, y0) ∈ Z2
prim, which is a primitive lattice of determinant h. So

Nh is contained in ≪ 1 primitive lattices of determinant h.

We next estimate the area µF (B, h1/ǫ) of V (B, h1/ǫ). There is a con-

stant cF > 0 such that

(3.4) |F (x, y)| ≤ cF (max(|x|, |y|)n for (x, y) ∈ R2.

If h ≥ (cFB
n)ǫ then the condition |F (x, y)| ≤ h1/ǫ is already implied

by max(|x|, |y|) ≤ B, and so µF (B, h1/ǫ) = 4B2. On the other hand, if

h < (cFB
n)ǫ, we have, denoting by µ the area,

µF (B, h1/ǫ) ≤ µ
(

{(x, y) ∈ R2 : |F (x, y)| ≤ h1/ǫ}
)

= h2/nǫ · µ
(

{(x, y) ∈ R2 : |F (x, y)| ≤ 1}
)

≪ h2/nǫ,

since the set of (x, y) ∈ R2 with |F (x, y)| ≤ 1 has finite area (see for

instance [17]). Now invoking Lemma 3.5, we infer

(3.5) #Nh ≪

{

B2/h+O(B logB) if h ≥ (cFB
n)ǫ,

h(2/nǫ)−1 +O(B logB) if h < (cFB
n)ǫ.

Finally, from (3.4) it is clear that Nh = ∅ if h > cFB
n.

Let α := log(p1 · · · ps′). For j ∈ Z, let Mj be the union of the sets

Nh with

(3.6) e2jα(cFB
n)ǫ ≤ h < e(2j+2)α(cFB

n)ǫ.

We restrict ourselves to j with

(3.7) e2jα(cFB
n)ǫ ≤ cFB

n, e(2j+2)α(cFB
n)ǫ > 1,

since for the remaining j the set Mj is empty. Thus,

(3.8) N(F, S, ǫ, B) ≪
∑

j

#Mj,

where the summation is over j with (3.7).

We estimate the number of h with (3.6). Write h = h′pu1

1 · · · p
us′

s′

where h′ is composed of primes from S ′′. Then h′ divides
∏

p∈S′′ pgp, so

we have ≪ 1 possibilities for h′. By applying Lemma 3.6 with t = s′,

A = e2jα(cFB
n)ǫ)/h′, αi = log pi for i = 1, . . . , s′, we infer from Lemma

3.6 that for given h′ the number of possibilities for (u1, . . . , us′) is ≪
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(logB)s
′−1. Hence the number of h with (3.6) is ≪ (logB)s

′−1. Now

from (3.5) it follows that for j with (3.7),

#Mj ≪

{

e−2jαB2−nǫ(logB)s
′−1 +O(B(logB)s

′

) if j ≥ 0,

e−2|j|α((2/nǫ)−1)B2−nǫ(logB)s
′−1 +O(B(logB)s

′

) if j < 0.

Finally, from these estimates and (3.8) we deduce, taking into con-

sideration that the number of j with (3.7) is ≪ logB, and also our

assumption 0 < ǫ < 1
n
,

N(F, S, ǫ, B) ≪
(

∑

j≥0

e−2jα +
∑

j<0

e−2|j|α((2/nǫ)−1)
)

· B2−nǫ(logB)s
′−1

+O(B(logB)s
′

)

≪ B2−nǫ(logB)s
′−1.

We next prove that

N(F, S, ǫ, B) ≫ B2−nǫ(logB)s
′−1 as B → ∞.

For i = s′+1, . . . , s, let ai be the largest integer u such that F (x, y) ≡

0 (mod pui ) is solvable in (x, y) ∈ Z2
prim. Let for the moment h be any

integer of the shape h = pu1

1 · · · pus
s where ui ≥ gpi + 1 for i = 1, . . . , s′

and ui = ai for i = s′ + 1, . . . , s, and where h ≥ (cFB
n)ǫ. By Lemma

3.5 and the Chinese Remainder Theorem, the number of congruence

classes modulo h of (x, y) ∈ Z2
prim with F (x, y) ≡ 0 (modh) is

r :=

s′
∏

i=1

r(F, p
gpi+1

i ) ·
s
∏

i=s′+1

r(F, paii ),

which is independent of h. As mentioned above, each of these congru-

ence classes is contained in a primitive lattice of determinant h. Fur-

thermore, since these lattices arise from different residue classes modulo

h of points in Z2
prim, the intersection of any two of these lattices does

not contain points from Z2
prim anymore. Since moreover by our assump-

tion h ≥ (cFB
n)ǫ the set V (B, h1/ǫ) has area (4B)2, an application of

Lemma 3.5 yields that the set of (x, y) ∈ Z2
prim with max(|x|, |y|) ≤ B,

|F (x, y)| ≤ h1/ǫ and F (x, y) ≡ 0 (modh) has cardinality

cr ·
(4B)2

h
+O(B logB),

where c = (6/π2)
∏

p∈S0
(1 + p−1)−1, with S0 the set obtained from S

by removing those primes pi from S ′′ for which ai = 0. By the rule
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of inclusion and exclusion, the set Nh, i.e., the set of (x, y) ∈ Z2
prim

as above with F (x, y) divisible by h but not by hp for p ∈ S ′, has

cardinality

cr ·
(4B)2

h
−

∑

p∈S′

cr ·
(4B)2

ph
+

∑

p,q∈S′,p<q

cr ·
(4B)2

pqh
− · · ·(3.9)

+O(B logB)

= cr
∏

p∈S′

(1− p−1) ·
(4B)2

h
+O(B logB) ≫

B2

h
+O(B logB).

We now consider the set of integers h of the shape pu1

1 · · · pus
s with

ui ≥ gpi + 1 for i = 1, . . . , s′ and ui = ai for i = s′ + 1, . . . , s, and with

(cFB
n)ǫ ≤ h ≤ e2α(cFB

n)ǫ, where again α = log(p1 · · · ps′). By Lemma

3.6, there are ≫ (logB)s
′−1 such integers. Using again 0 < ǫ < 1

n
, it

follows that

N(F, S, ǫ, B) ≥
∑

h

#Nh ≫ B2−nǫ(logB)s
′−1.

This completes the proof of Theorem 2.6. �

Proof of Theorem 2.3. Let f ∈ Z[X ] be a polynomial of degree n ≥

2 with non-zero discriminant, ǫ a real with 0 < ǫ < 1
n

and S =

{p1, . . . , ps} a finite set of primes. Similarly as above S ′ = {p1, . . . , ps′}

is the set of p ∈ S such that f(x) ≡ 0 (mod pgp+1) is solvable in Z and

S ′′ = {ps′+1, . . . , ps}.
The proof is the same as that of Theorem 2.3 except from a few

small modifications. The main difference is that instead of Lemma 3.5

we use the simple observation that if Vf(B,M) is the set of x ∈ R with

|x| ≤ B and |f(x)| ≤ M and µf (B,M) is the one-dimensional measure

of this set, then for all a, h ∈ Z with h > 0, the number of integers

x ∈ Vf(B,M) with f(x) ≡ a (modh) is

(3.10) µf(B,M)/h+ error term, with |error term| ≤ c(n)

for some quantity c(n) depending only on n = deg f .

We first prove that

(3.11) N(f, S, ǫ, B) ≪f,S,ǫ B
1−nǫ(logB)s

′−1 as B → ∞.

Let cf be a constant such that |f(x)| ≤ cf |x|n for x ∈ R. Consider the

set Nh of integers x with |x| ≤ B, [f(x)]S = h and |f(x)| ≤ h1/ǫ. Then if



S-PARTS OF VALUES OF POLYNOMIALS 23

h ≥ (cfB
n)ǫ we have µf(B, h1/ǫ) = 2B, while otherwise, µf(B, h1/ǫ) ≪

h1/nǫ, since |f(x)| ≫ |x|n if |x| ≫ 1. Now a similar computation as

in the proof of Theorem 2.6, using Lemma 3.2 instead of Lemma 3.3,

gives instead of (3.5),

#Nh ≪

{

B/h+O(1) if h ≥ (cfB
n)ǫ,

h(1/nǫ)−1 +O(1) if h < (cfB
n)ǫ,

and then the proof of (3.11) is completed in exactly the same way as

in the proof of Theorem 2.6.

The proof of

(3.12) N(f, S, ǫ, B) ≫f,S,ǫ B
1−nǫ(logB)s−1 as B → ∞

follows the same lines as that of Theorem 2.6. For i = s′ + 1, . . . , s

let ai be the largest integer u such that f(x) ≡ 0 (mod paii ) is solvable.

Let h = pu1

1 · · · pus
s with ui ≥ gpi + 1 for i = 1, . . . , s′ and ui = ai for

i = s′ + 1, . . . , s, and with h ≥ (cfB
n)ǫ. Then by combining (3.10)

with Lemma 3.2 one obtains that the set of integers x with |x| ≤ B,

f(x) ≡ 0 (modh) and |f(x)| ≤ h1/ǫ has cardinality

rB/h+O(1)

with r > 0 depending only on f , and then an inclusion and exclusion

argument gives

#Nh ≫ B/h+O(1).

Again, an argument completely similar to that in the proof of Theorem

2.6 gives (3.12). �

4. Proof of Theorem 2.7

The theorem can be proved by modifying the arguments from [4].

We prefer to follow [6, §8], which already contains the basic ideas. Let

F ∈ Z[X1, . . . , Xm] be a decomposable form of degree n with splitting

field K. We take a factorization of F as in (2.3). Assume that F satisfies

condition (i) of Theorem B.

Let D be a linear subspace of Qm of dimension ≥ 2. Denote by D∗ the

K-vector space of linear forms in K[X1, . . . , Xm] that vanish identically

on D. Then a set of linear forms in K[X1, . . . , Xm] is linearly dependent

on D if some non-trivial K-linear combination of these forms belongs to

D∗ and linearly independent on D if no such linear combination exists.

The D-rank rankD M of a set of linear forms M ⊂ K[X1, . . . , Xm], is
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the maximal number of linear forms in M that are linearly independent

on D. We have rankD LF = dimD.

We call a subset I of LF minimally linearly dependent on D, if I

itself is linearly dependent on D, but every proper, non-empty subset

of I is linearly independent on D. We define a(n undirected) graph GD

as follows. The set of vertices of GD is LF ; and {ℓ, ℓ′} is an edge of GD

if there is a subset of LF that is minimally linearly dependent on D

and contains both ℓ and ℓ′. Clearly, if {ℓ, ℓ} is an edge of GD, then so

is {σ(ℓ), σ(ℓ′)} for each σ ∈ Gal(K/Q), i.e., each σ acts on GD as an

automorphism.

Lemma 4.1. Let D be a linear subspace of Qm of dimension ≥ 2 such

that none of the linear forms in L vanishes identically on D. Then GD

is connected.

Proof. Assume that GD is not connected. Let M be the vertex set of

a connected component of GD. Then ∅⊂
6=
M⊂

6=
LF . Clearly, for each

σ ∈ Gal(K/Q), σ(M) is also the vertex set of a connected component

of GD, hence either σ(M) = M, or σ(M) ∩ M = ∅. That is, M is

Gal(K/Q)-proper.

By assumption (i) of Theorem B, the K-vector space
∑

σ∈Gal(K/Q)

[σ(M)] ∩ [LF \ σ(M)]

contains a linear form from L, which, by assumption, does not lie in

D∗. Hence there is σ ∈ Gal(K/Q) such that [σ(M)] ∩ [LF \ σ(M)]

contains a linear form outside D∗. But since D∗ is defined over Q, we

have σ(D∗) = D∗ and so [M] ∩ [LF \ M] contains a linear form not

in D∗, say ℓ0. Take maximal subsets M1, M2 of M and LF \ M,

respectively, that are both linearly independent on D. Then there are

λℓ ∈ K for ℓ ∈ M1 ∪M2 such that
∑

ℓ∈M1

λℓℓ ≡
∑

ℓ∈M2

λℓℓ ≡ ℓ0 (modD∗).

This implies that M1 ∪M2 is linearly dependent on D. We can take

a subset of M1 ∪M2 that is minimally linearly dependent on D. This

set necessary must have elements with both M1 and M2 in common.

But then there would be an edge connecting an element of M with one
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of LF \M, which contradicts that M is the vertex set of a connected

component of GD. �

Lemma 4.2. Let D be a linear subspace of Qm of dimension d ≥ 2

and M a non-empty subset of LF with rankD M < d. Then there is

a subset I of LF that is minimally linearly dependent on D, such that

M∩ I 6= ∅ and rankD M∪ I > rankD M.

Proof. Let M′ consist of all linear forms in LF that are linear combi-

nations of the linear forms in M and of the linear forms in D∗. Then

rankD M′ = rankD M < d, hence ∅⊂
6=
M′⊂

6=
LF . Take a maximal subset

M1 of M that is linearly independent on D; then it is also a maximal

subset of M′ that is linearly independent on D. Let M2 be a maximal

subset of LF \M′ that is linearly independent on D.

By Lemma 4.1 there is a set J ⊆ LF that is minimally linearly

dependent on D and contains elements of both M′ and LF \M′. This

gives a linear combination
∑

ℓ∈J λℓℓ ∈ D∗, with ℓ0 :=
∑

ℓ∈J∩M′ λℓℓ 6∈

D∗. Writing the linear forms in J ∩M′ as linear combinations modulo

D∗ of the linear forms in M1, and the linear forms in J ∩ (LF \M′) as

linear combinations modulo D∗ of the linear forms in M2, we obtain

a relation
∑

ℓ∈M1∪M2
µℓℓ ∈ D∗, with

∑

ℓ∈M1
µℓℓ ≡ ℓ0 6≡ 0 (modD∗).

Hence M1∪M2 is linearly dependent on D. Take a subset I of M1∪M2

that is minimally linearly dependent on D. We have I ∩M1 6= ∅ and

I ∩ M2 6= ∅ since M1 and M2 are linearly independent on D. This

implies I ∩M 6= ∅. Further, M2∩M′ = ∅, therefore each of the linear

forms in M2 is linearly independent on D of the linear forms in M.

Hence rankD M∪ I > rankD M. �

Denote by MK the set of places of K. We choose normalized absolute

values | · |v (v ∈ MK) in such a way that if v lies above p ∈ {∞} ∪

{primes}, then |x|v = |x|
[Kv:Qp]/[K:Q]
p for x ∈ Q. These absolute values

satisfy the product formula
∏

v∈MK
|x|v = 1 for x ∈ K∗. For a vector

y = (y1, . . . , yr) ∈ Kr, we define

‖y‖v := max
1≤i≤r

|yi|v (v ∈ MK), H(y) :=
∏

v∈MK

‖y‖v.

By the product formula, H(λy) = H(y) for y ∈ Kr, λ ∈ K∗.
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For x ∈ Zm
prim and a subset I of LF , we define

HI(x) :=
∏

v∈MK

max
ℓ∈I

|ℓ(x)|v.

Lemma 4.3. Let x ∈ Zm
prim with ℓ(x) 6= 0 for ℓ ∈ LF and let I, J be

subsets of LF with I ∩ J 6= ∅. Then

HI∪J (x) ≤ HI(x) ·HJ (x).

Proof. Let ℓ0 ∈ I ∩ J . Then by the product formula,

HI∪J (x) =
∏

v∈MK

max
ℓ∈I∪J

|ℓ(x)/ℓ0(x)|v

≤
(

∏

v∈MK

max
ℓ∈I

|ℓ(x)/ℓ0(x)|v
)

·
(

∏

v∈MK

max
ℓ∈J

|ℓ(x)/ℓ0(x)|v
)

= HI(x) ·HJ (x).

�

Lemma 4.4. Let D be a linear subspace of Qm of dimension ≥ 2 on

which none of the linear forms in L vanishes identically. Then for every

x ∈ Zm
prim∩D with ℓ(x) 6= 0 for ℓ ∈ LF , there is a subset I of LF that is

minimally linearly dependent on D such that HI(x) ≫F,D ‖x‖1/(m−1).

Proof. Let x ∈ Zm
prim ∩ D with ℓ(x) 6= 0 for ℓ ∈ LF . Start with a

linear form ℓ0 ∈ LF . By Lemma 4.2, there is a subset I1 of LF that

is minimally linearly dependent on D, that contains ℓ0 and for which

rankD I1 ≥ 2. Using Lemma 4.2, we choose inductively subsets I2, I3,

. . . of LF that are minimally linearly dependent on D as follows: if

rankD I1∪ · · ·∪ It < dimD, we choose It+1 such that It+1 ∩ (I1 ∪ · · ·∪

It) 6= ∅ and rankD I1∪· · ·∪It+1 > rankD I1∪· · ·∪It. It is clear that for

some s ≤ dimD− 1 ≤ m− 1 we get rankD I1∪ · · ·∪ Is = dimD. Then

X1, . . . , Xm can be expressed as linear combinations modulo D∗ of the

linear forms in I1 ∪ · · · ∪ Is, implying ‖x‖ = H(x) ≪F,D HI1∪···∪Is(x).

Now from Lemma 4.3 we infer

‖x‖ ≪F,D

s
∏

i=1

HIi(x) ≤ max
1≤i≤s

HIi(x)
s ≤ max

1≤i≤s
HIi(x)

m−1.

�
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Proof of Theorem 2.7. Without loss of generality, we assume that the

linear forms in (2.3) have their coefficients in the ring of integers OK of

K. We prove by induction on d that if D is a linear subspace of Qm of

dimension d on which none of the linear forms in L vanishes identically,

then (2.7) has only finitely many solutions in Zm
prim ∩D. For d = 1 this

is clear.

Assume that d ≥ 2 and that our assertion holds true for all linear

subspaces of Qm of dimension smaller than d. Let D be a linear sub-

space of Qm of dimension d on which none of the linear forms in L

vanishes identically and let 0 < ǫ < 1
m−1

. Take x ∈ Zm
prim ∩D satisfy-

ing (2.7). Choose a subset I of LF that is minimally linearly dependent

on D such that

(4.1) HI(x) ≫F,D ‖x‖1/(m−1).

Let T be the set of places of K lying above the places in S ∪ {∞}.

For v ∈ T , choose ℓv ∈ I such that |ℓv(x)|v = maxℓ∈I |ℓ(x)|v, and let

Iv := I \ {ℓv}. We have |ℓv(x)|v ≪F 1 for ℓ ∈ LF , v ∈ MK \ T since

x ∈ Zm. So by the product formula,
∏

v∈T |ℓ(x)|v ≫F 1 for ℓ ∈ LF .

Together with (4.1) this implies
∏

v∈T

∏

ℓ∈I

|ℓ(x)|v ≪F

∏

v∈T

|F (x)|v ≤ ‖x‖(1/(m−1))−ǫ

≪F,D HI(x)
1−(m−1)ǫ,

and subsequently, dividing both sides by
∏

v∈T |ℓv(x)|v,

(4.2)
∏

v∈T

∏

ℓ∈Iv

|ℓ(x)|v ≪F,D HI(x)
−(m−1)ǫ.

Write I = {ℓ0, . . . , ℓu}. Then ℓ0 ≡ β1ℓ1 + · · · + βuℓu (modD∗) with

βi 6= 0 for i = 1, . . . , u Put yi := ℓi(x) for i = 1, . . . , u, and y =

(y1, . . . , yu). Then y ∈ Ou
K . We can express ℓ(x) (ℓ ∈ Iv) as u linearly

independent linear forms in y, say ℓ1,v(y), . . . , ℓu,v(y), taken from the

set {Y1, . . . , Yu, β1Y1 + · · ·+ βuYu}. Now (4.2) translates into

∏

v∈T

u
∏

i=1

|ℓi,v(y)|v ≪F,D H(y)−(m−1)ǫ, y ∈ Ou
K .

Thus, we can apply the p-adic Subspace Theorem [22], and conclude

that the vectors y lie in finitely many proper linear subspaces of Ku.

It follows that the solutions x ∈ Zm
prim ∩ D of (2.7), corresponding to
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the same sets Iv (v ∈ T ) in (4.2), lie in finitely many proper linear

subspaces of D. Since there are only finitely many possibilities for the

sets Iv, it follows that the solutions x ∈ Zm
prim∩D altogether lie in only

finitely many proper linear subspaces of D. By applying the induction

hypothesis to each of these spaces, it follows that (2.7) has only finitely

many solutions in Zm
prim ∩D. This completes our proof. �

5. Proof of Theorem 2.9

Let F ∈ Z[X1, . . . , Xm] be a decomposable form in m ≥ 2 variables

with a factorization as in (2.3), satisfying (2.9) and (2.10). Our first

goal is to prove that c(F ) < 1. We have used some arguments from [16,

§3.3]. We start with some preparations.

For a subset M of LF we put |M| :=
∑

ℓ∈M e(ℓ). Let D be a linear

subspace of Qm of dimension d ≥ 2. A subset M of LF is called D-

critical if qD(M) is maximal among all non-empty subsets of LF . A

D-critical subset is called minimal if none of its proper subsets is D-

critical.

Lemma 5.1. Let M1, M2 be two D-critical subsets of LF .

(i) Assume that M1, M2 are minimal and M1 6= M2.

Then M1 ∩M2 = ∅.

(ii) Assume that M1 ∩M2 = ∅. Then M1 ∪M2 is D-critical.

Proof. We use that for any two subsets N1, N2 of LF we have

(5.1)

{

rankD N1 ∩N2 + rankD N1 ∪N2 ≤ rankD N1 + rankD N2,

|N1 ∩ N2|+ |N1 ∪N2| = |N1|+ |N2|.

(i) Let q0 := maxM qD(M), where the maximum is taken over all

non-empty subsets M of LF . Assume M1 ∩M2 6= ∅. Then by (5.1),

rankD M1 ∩M2

≤ rankD M1 + rankD M2 − rankD M1 ∪M2

= q−1
0 |M1|+ q−1

0 |M2| − qD(M1 ∪M2)
−1|M1 ∪M2|

≤ q−1
0 (|M1|+ |M2| − |M1 ∪M2|) = q−1

0 |M1 ∪M2|,

implying qD(M1 ∩M2) ≥ q0. This is clearly impossible.
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(ii) Again by (5.1),

rankD M1 ∪M2 ≤ rankD M1 + rankD M2

= q−1
0 (|M1|+ |M2|) = q−1

0 |M1 ∪M2|,

which implies qD(M1 ∪M2) ≥ q0. Hence M1 ∪M2 is D-critical. �

Lemma 5.2. We have c(F ) < 1.

Proof. We have to prove that for every Q-linear subspace D of Qm of

dimension ≥ 2 we have qD(F ) < qD(LF ) = n/d, where d = dimD

and n = deg F . Assume that for some of these subspaces D we have

qD(F ) ≥ n/d, i.e., there is a subset M1 of LF with rankD M1 < d and

qD(M1) ≥ n/d. Without loss of generality, we take for M1 a minimal

D-critical subset of LF .

Let D∗ be the K-vector space of linear forms in K[X1, . . . , Xm] that

vanish identically on D. Then for each σ ∈ Gal(K/Q), σ(M1) is also a

minimal D-critical set since rankD σ(M1) = rankD M1 and |σ(M1)| =
|M1|, and so by Lemma 5.1, we have either σ(M1) = M1 or σ(M1)∩

M1 = ∅. That is, M1 is Gal(K/Q)-proper. Let M1, . . . ,Mt be the

distinct sets among the σ(M1), σ ∈ Gal(K/Q). We first prove that

(5.2) LF = M1 ∪M2 ∪ · · · ∪Mt.

Suppose the contrary, i.e., M0 := M1 ∪ · · · ∪ Mt⊂
6=
LF . By Lemma

5.1, the set M0 is D-critical, hence qD(M0) ≥ d/n, which implies

rankD M0 < d. This, together with the fact that M0 is Gal(K/Q)-

symmetric, implies that there is a non-zero x ∈ D with ℓ(x) = 0 for

ℓ ∈ M0. This clearly contradicts (2.10). So indeed, (5.2) holds. By

Lemma 5.1 (ii), any non-empty union M of some of the sets Mi is

D-critical, implying qD(M) = qD(LF ) = d/n.

As observed above, the set M1 is Gal(K/Q)-proper. So by assump-

tion (2.9), the K-vector space

∑

σ∈Gal(K/Q)

[σ(M1)] ∩ [LF \ σ(M1)] =
t

∑

i=1

[Mi] ∩ [LF \Mi]

contains a linear form from LF . By assumption (2.10), this form does

not lie in D∗. Hence there is i ∈ {1, . . . , t} such that [Mi] ∩ [LF \Mi]

contains a linear form not in D∗. Moreover, qD(Mi) = qD(LF \Mi) =
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d/n. Hence

d = rankD LF < rankD Mi + rankD (LF \Mi)

= d
n
(|Mi|+ |LF \Mi|) = d,

which is impossible. Thus, our assumption that qD(F ) ≥ n/d is false.

�

We need a few other, much deeper auxiliary results, which are taken

from the literature. We keep the notation and assumptions from The-

orem 2.9. For each p ∈ S ∪ {∞}, we choose an extension of | · |p to the

splitting field K of F .

Lemma 5.3. Let D be a linear subspace of Qm of dimension d ≥ 2.

Then for every x ∈ Zm
prim ∩ D, there are subsets Lp (p ∈ S ∪ {∞}) of

LF of cardinality d that are linearly independent on D, such that
∏

p∈S∪{∞}

∏

ℓ∈Lp

|ℓ(x)|p(5.3)

≪F,S,D

(

(

∏

p∈S∪{∞}

|F (x)|p
)

· ‖x‖−(n−dqD(F ))
)1/qD(F )

.

Proof. In the case D = Qm this is a special case of [16, Lemma 2.2.4].

The case of arbitrary D can be reduced to this by choosing a Z-

basis {a1, . . . , ad} of Zm ∩D and working with the decomposable form

F (ϕ(y)), where ϕ(y) =
∑d

i=1 yiai. Note that ϕ establishes a bijection

between Zd
prim and Zm

prim ∩D. �

Lemma 5.4 (p-adic Minkowski). Let p be a prime number. Further,

let ℓ1, . . . , ℓm be linearly independent linear forms in m variables with

real coefficients and ℓ1,p, . . . , ℓm′,p (m
′ ≤ m) linearly independent linear

forms in m variables with coefficients in Qp. Then there are constants

γ1, γ2 > 1, depending only on p, m, ℓ1, . . . , ℓm, ℓ1,p, . . . , ℓm′,p, such that

if A1, . . . , Am, B1, . . . , Bm′ are any positive reals with

(5.4) A1 · · ·AmB1 · · ·Bm′ ≥ γ1, Bi ≤ γ−1
2 for i = 1, . . . , m′

then there is a non-zero x ∈ Zm with

(5.5) |ℓi(x)| ≤ Ai for i = 1, . . . , m, |ℓip(x)|p ≤ Bi for i = 1, . . . , m′.
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Proof. We augment ℓ1,p, . . . , ℓm′,p to a linearly independent set of m

linear forms ℓ1,p, . . . , ℓm,p with coefficients in Qp. Let C be the symmetric

convex body consisting of those x ∈ Rm with

|ℓi(x)| ≤ Ai for i = 1, . . . , m

and Λ the lattice consisting of those x = (x1, . . . , xm) ∈ Qm such that

|ℓip(x)|p ≤ Bi for i = 1, . . . , m′,

|ℓi,p(x)|p ≤ γ−1
2 for i = m′ + 1, . . . , m,

|xi|q ≤ 1 for i = 1, . . . , m and all primes q 6= p,

with γ2 yet to be chosen. By choosing γ2 sufficiently large, we can

guarantee that Λ ⊆ Zm for all B1, . . . , Bm′ ≤ γ−1
2 and by choosing

γ1 sufficiently large, we can guarantee that vol(C)/ det Λ ≥ 2m for all

A1, . . . , Am with A1 · · ·AmB1 · · ·Bm′ ≥ γ1. Minkowski’s Theorem im-

plies that for such Ai, Bi there is a non-zero x ∈ C ∩Λ. This x satisfies

(5.5) and lies in Zm. �

Proposition 5.5. Let F ∈ Z[X1, . . . , Xm] be a decomposable form of

degree n with (2.9) and (2.10). Then the number of x ∈ Zm
prim with

∏

p∈S∪{∞} |F (x)|p ≤ M is ≪n,S Mm/n as M → ∞.

Proof. Liu proved this in his thesis for all decomposable forms F with

c(F ) < 1 and with (2.10), see [16, Theorem 2.1.3]. As observed in

Lemma 5.2, the condition c(F ) < 1 follows from (2.9) and (2.10). Liu’s

theorem and its proof are a p-adic generalization of Thunder’s theorem

[26, Theorem 2] and its proof. �

Proof of Theorem 2.9. (i). Let 0 < ǫ < 1−c(F ). We prove by induction

on d that if D is any d-dimensional Q-linear subspace of Qm, then

[F (x)]S ≪F,S,D |F (x)|c(F )+ǫ for all x ∈ Zm
prim∩D. For d = 1 this is clear.

Let d ≥ 2, and assume the assertion is true for all linear subspaces of

Qm of dimension < d. Let D be a Q-linear subspace of Qm of dimension

d. Take x ∈ Zm
prim ∩D for which

(5.6) [F (x)]S ≥ |F (x)|c(F )+ǫ.

Then
∏

p∈S∪{∞}

|F (x)|p =
|F (x)|

[F (x)]S
≤ |F (x)|1−c(F )−ǫ ≪F,S,D ‖x‖n(1−c(F )−ǫ).



32 Y. BUGEAUD, J.-H. EVERTSE, AND K. GYŐRY

Take subsets Lp (p ∈ S ∪ {∞}) of LF as in Lemma 5.4 and insert the

above inequality into (5.3). Then since c(F ) ≥ qD(F ) · d/n,

∏

p∈S∪{∞}

∏

ℓ∈Lp

|ℓ(x)|p ≪F,S,D

(

‖x‖n(1−c(F )−ǫ) · ‖x‖−(n−dqD(F ))
)1/qD(F )

≪F,S,D ‖x‖−nǫ/qD(F ).

By the p-adic Subspace Theorem, the points x ∈ Zm
prim ∩D with (5.6)

lie in finitely many proper linear subspaces of D. By applying the in-

duction hypothesis with each of these subspaces, we infer that for the

points x ∈ Zm
prim ∩ D with (5.6) we have [F (x)]S ≪F,S,D |F (x)|c(F )+ǫ.

This completes our induction step, and hence the proof of (i).

(ii). Let K = Q(θ). By Chebotarev’s Density Theorem there are

infinitely many primes p such that the minimal polynomial of θ over Q

has all its roots in Qp. Take such a prime p. Then in the factorization

(2.3) we may assume that the linear forms in LF have their coefficients

in Qp. Let D be a linear subspace of Qm of dimension d ≥ 2, and M a

subset of LF with rankD M =: d′ < d for which qD(M) · d/n = c(F ).

Choose a subset M′ of M of cardinality d′ that is linearly independent

over D. By Lemma 5.4 there is for every sufficiently large Q a non-zero

point x ∈ Zm ∩D such that

‖x‖ ≪ Q, |ℓ(x)|p ≪ Q−d/d′ for ℓ ∈ M′,

where here and below, the constants implies by ≪ depend on F,D and

p and in fact only on F and p since D depends on F . Without loss

of generality, we may assume that the greatest common divisor of the

coordinates of x does not contain factors coprime with p. Let pk be the

greatest common divisor of the coordinates of x and put x′ := p−kx

Then x′ ∈ Zm
prim ∩D, pk ≪ Q, and

(5.7)
‖x′‖ ≪ p−kQ,

|ℓ(x′)|p ≪ pkQ−d/d′ = (p−kQ)−d/d′(pk)1−(d/d′) for ℓ ∈ M′.

Now if we let Q → ∞, then x′ runs through an infinite set. Indeed,

otherwise there were a non-zero x′ ∈ Zm
prim∩D such that (5.7) holds for

arbitrarily large Q. But by letting Q → ∞, we can make max(p−kQ, pk)

arbitrarily large and thus |ℓ(x′)|p arbitrarily small for every ℓ ∈ M′.

But then it would follow that ℓ(x′) = 0 for ℓ ∈ M′, which is however

excluded by assumption (2.10).
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From the above we conclude that there are infinitely many x′ ∈

Zm
prim ∩D such that

|ℓ(x′)|p ≪ ‖x′‖−d/d′ for ℓ ∈ M′.

Since the other linear forms in M are linear combinations modulo D∗

of the linear forms in M′ , these x′ satisfy

|ℓ(x′)|p ≪ ‖x′‖−d/d′ for ℓ ∈ M,

and moreover, trivially, |ℓ(x′)|p ≪ 1 for ℓ ∈ LF \M. Using the decom-

position (2.3), it follows that these x′ satisfy

|F (x′)|p ≪ ‖x′‖−(d/d′)|M| = ‖x′‖−dqD(M) = ‖x′‖−nc(F ),

hence

[F (x′)]{p} = |F (x′)|−1
p ≫ |F (x′)|c(F ).

This proves (ii).

(iii) Let 0 < ǫ < 1 and B > 1. Then every x ∈ Zm
prim with [F (x)]S ≥

|F (x)|ǫ and ‖x‖ ≤ B satisfies

∏

p∈S∪{∞}

|F (x)|p =
|F (x)|

[F (x)]S
≤ |F (x)|1−ǫ ≪F,ǫ B

n(1−ǫ),

where n := degF . Hence N(F, S, ǫ, B) is at most the number of solu-

tions in x ∈ Zm
prim of this last inequality. Now Proposition 5.5 implies

N(F, S, ǫ, B) ≪F,S,ǫ (B
n(1−ǫ))m/n ≪F,S,ǫ B

m(1−ǫ)

as B → ∞. This proves (iii). �

6. Proof of Theorem 2.10

Theorem 2.10 will be deduced from Proposition 6.1 below, which

is a special case of a non-explicit version of Theorem 3 of Győry and

Yu [15]. Its proof is based on effective results of Győry and Yu [15]

for unit equations, and ultimately depends on Baker’s method, more

precisely on explicit estimates of Matveev [19] concerning linear forms

in complex logarithms of algebraic numbers and similar such estimates

by Yu [27] for p-adic logarithms.
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Let F ∈ Z[X1, . . . , Xm] be a decomposable form, S = {p1, . . . , ps}

a finite non-empty set of primes, and b a non-zero integer. Let ZS :=

Z[(p1 · · · ps)−1] be the ring of S-integers in Q, and consider the equation

(6.1) F (x) = b in x ∈ Zm
S .

Let p1, . . . , pt be the prime ideals in K that divide p1, . . . , ps, and let

P ′ = max
1≤i≤t

N(pi), where N(a) := #OK/a denotes the absolute norm of

a non-zero ideal a of OK . Further, denote by h the absolute logarithmic

height.

Proposition 6.1. Let F be a decomposable form as above with prop-

erties (2.11) and (2.12). With the above notation, every solution x =

(x1, . . . , xm) ∈ Zm
S of (6.1) with xm 6= 0 if k > 1 satisfies

(6.2)
max
1≤j≤m

h(xj) < ct4(P
′/ logP ′)

t
∏

i=1

logN(pi)·

· (c5 + logN(p1 · · · pt) + h(b)),

where c4, c5 are effectively computable positive numbers that depend

only on F .

We mention that Theorem 3 of [15] implies Proposition 6.1 with

explicit expressions for c4, c5 in terms of the heights of the coefficients

of F and the degree and regulator of the splitting field K of F .

We now prove Theorem 2.10 by means of Proposition 6.1.

Proof of Theorem 2.10. Let x ∈ Zm
prim with F (x) 6= 0, and put b :=

F (x)/[F (x)]S. Then F (x) = pa11 · · · pass b for certain non-negative inte-

gers a1, . . . , as. We can write ai = na′i + a′′i with a′i, a
′′
i ∈ Z≥0 such that

a′′i < n for each i. Then (2.4) implies that

(6.3) F (x′) = b′,

where

(6.4) x′ = x/p
a′
1

1 · · · pa
′
s

s and b′ = bp
a′′
1

1 · · ·pa
′′
s

s .

Here x′ = (x′
1, . . . , x

′
m) is a solution of (6.3) in Zm

S .

We apply now Proposition 6.1 to the equation (6.3). Let p1, . . . , pt
and P ′ as above. Then we get

max
1≤j≤m

h(x′
j) < C1,
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for every solution x = (x′
1, . . . , x

′
m) ∈ Zm

S of (6.3) with x′
m 6= 0 if k > 1,

where C1 denotes the upper bound occuring in (6.2) but with b replaced

by b′.

Since t ≤ sd, P ′ ≤ P d where d = [K : Q], and h(b′) ≤ ns logP +

log |b|, we infer that

(6.5) max
1≤j≤m

h(x′
j) < C2(c6 + log |b|),

where C2 = cs7(P (log p1) · · · (log ps))d and c6, c7 are effectively com-

putable positive numbers that depend only on F . It is easy to deduce

from (6.5) and (6.4) that

p
a′
1

1 · · · pa
′
s

s ≤ C3|b|
mC2 ,

where C3 = emC2c6 . This gives

pa11 · · · pass < (p1 · · · ps)
n(p

a′
1

1 · · ·pa
′
s

s )n ≤ C4|b|
mnC2

with C4 = P snCn
3 . Multiplying both sides by (pa11 · · · pass )mnC2 and then

raising to the power 1/(mnC2 + 1), we infer that

[F (x)]S ≤ (P sC3)
1

mC2 |F (x)|
1− 1

mnC2+1 .

But (P sC3)
1

mC2 ≤ κ6, while mnC2 + 1 ≤ cs3(P (log p1) · · · (log ps))d with

effectively computable κ6, c3 depending only on F . This gives (2.13).

�

7. Lower bound for the greatest prime factors of

decomposable forms at integral points

We now deduce over Z an improved and more explicit version of

Corollary 5 of Győry and Yu [15] on the greatest prime factors of de-

composable forms at integral points. We note that in Győry and Yu

[15] it was more complicated to deduce Corollary 5 from Theorem 3

of that paper. The next corollary gives some useful information about

those non-zero integers that can be represented by decomposable forms

of the above type.

For a positive integer a we denote by P (a) and ω(a) the greatest

prime factor and the number of distinct prime factors of a with the

convention that P (1) = 1, ω(1) = 0. Further, we denote by logi the

i-th iterated logarithm.
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Corollary 7.1. Let F (X1, . . . , Xm) ∈ Z[X1, . . . , Xm] be a decomposable

form as in Theorem 2.10, and let F0 be a non-zero integer that can be

represented by F (x) with some x = (x1, . . . , xm) ∈ Zm
prim with xm 6= 0

if k > 1. Then

(7.1) (P (logP )2ω)d > log |F0|

and

(7.2) P >

{

(log |F0|)1/3d if ω ≤ logP/ log2 P,

C5 log2 |F0| · log3 |F0|/ log4 |F0| otherwise,

provided that |F0| ≥ C6, where P = P (F0), ω = ω(F0). Here C5, C6

are effectively computable positive numbers that depend only on F .

Proof. Let F0 be a non-zero integer such that F0 = F (x) for some

x = (x1, . . . , xm) ∈ Zm
prim with xm 6= 0 if k > 1. Write

F (x) = pa11 · · · pass

with distinct primes p1, . . . , ps. Then P = P (F0) = max
1≤i≤s

pi and ω =

ω(F0) = s. Put S := {p1, . . . , ps}. In this case [F (x)]S = |F (x)|. Now

(2.13) immediately gives

|F0| ≤ κ6|F0|
1−κ5

with κ5, κ6 specified in Theorem 2.10. This implies that

|F0| ≤ κ
1/κ5

6 ,

whence

log |F0| ≤ cs8(2P (logP )s)d

with an effectively computable positive c8 that depends only on F .

We know from prime number theory that s < 2P
logP

. Hence, if |F0| ≥

C7 with a large and effectively computable C7 = C7(F ) > 0, then P

must be also large and so (c8(logP )d)s ≤ (logP )2ds and (7.1) follows.

If s ≤
logP
log

2
P

then it follows from (7.1) that

log2 |F0| < d logP + 2ds log2 P ≤ 3d logP,

which gives the first inequality in (7.2), provided that C7 is sufficiently

large. Otherwise, we deduce from (7.1) that

log2 |F0| < d logP + 4d
P

logP
log2 P,
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which gives the second inequality in (7.2), provided that C7 is suffi-

ciently large. �

8. Applications to discriminants of algebraic integers

As was mentioned above, Theorem 2.10 and its corollaries can be

applied to discriminant forms, index forms and a large class of norm

forms. We now present some applications to discriminants of algebraic

integers. Similar consequences can be obtained for indices of algebraic

integers.

Let L be a number field of degree n ≥ 3 with ring of integers OL,

and suppose that K is the normal closure of L over Q. Further, let

S = {p1, . . . , ps} be a finite, non-empty set of primes. We define the

discriminant of an algebraic integer to be the discriminant of its monic

minimal polynomial over Z. Consider the discriminant equation

(8.1) DL/Q(α) = pa11 · · ·pass · b in α ∈ OL, a1, . . . , as ∈ Z≥0,

where b is an S-free integer, i.e., coprime with p1, . . . , ps. Clearly, α and

α+ a with a ∈ Z have the same discriminant. Such elements of OL are

called equivalent. Denote by S the set of positive integers composed of

primes from S. We claim that any solution of (8.1) can be derived from

one which is not equivalent to any element of OL that is divisible in

OL by any η > 1 from S . Indeed, if α satisfies (8.1) then, by Theorem

3 of Győry [13], α can be written in the form

α = ηα′ + a

with some a ∈ Z, η ∈ S and α′ ∈ OL. This representation is not

necessarily unique. For fixed α, choose η, α′, a such that η is maximal.

Since DL/Q(α) = ηn(n−1)DL/Q(α
′), α′ is also a solution of (8.1) with

other a1, . . . , as. Further, by the choice of η, the number α′ cannot be

equivalent to any η′α′′ in OL with α′′ ∈ OL and η′ ∈ S with η′ > 1,

since otherwise α would be equivalent to ηη′α′′ with ηη′ > η. This

proves our claim.

Note that in the representation (8.1), the S-part of the discriminant

of α is

[DL/Q(α)]S = pa11 · · · pass .

As a consequence of Theorem 2.10, we want to estimate [DL/Q(α)]S
from above in terms of |DL/Q(α)|1−κ7 for some constant κ7 > 0. In
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view of the above we require that α not be equivalent to any element

of the form ηα′ where α′ ∈ OL and η is an integer from S with η > 1.

Corollary 8.1. Assume that α in (8.1) is not equivalent to any element

of OL that is divisible in OL by an η ∈ S greater than 1. Then

(8.2) [DL/Q(α)]S ≤ κ8 · |DL/Q(α)|
1−κ7,

where

κ7 =
(

cs9
(

(P (log p1) · · · (log ps)
)d)−1

≥ (cs9(2P (logP )s)d)−1,

and κ8, c9 are effectively computable positive numbers depending only

on L.

Proof. If L is effectively given in the sense of e.g., Evertse and Győry

[9, §3.7], an integral basis of OL of the form {1, ω2, . . . , ωn} can be

effectively determined. Then we can write α = a + x2ω2 + · · · + xnωn

with appropriate integers a, x2, . . . , xn. Using the fact that DL/Q(α) =

DL/Q(α− a) we get

DL/Q(α) = DL/Q(x2ω2 + · · ·+ xnωn).

By the assumption made on α we infer that p1, . . . , ps do not divide

gcd(x2, . . . , xn). Moreover, we may assume without loss of generality

that gcd(x2, . . . , xn) = 1. The discriminant form DL/Q(ω2X2 + · · · +

ωnXn) satisfies (2.11) and (2.12) with k = 1, see e.g. Győry and Yu

[15], so we can apply Theorem 2.10 with this discriminant form. By

observing that the dependence of the constants in Theorem 2.10 can

be replaced by a dependence on L, Corollary 8.1 follows. �

Corollary 8.1 has similar consequences as Theorem 2.10 for arith-

metical properties of non-zero integers D0 that are discriminants of

some α ∈ OL, but are not the discriminants of any kβ with β ∈ OL

and rational integer k > 1. Then it follows from Theorem 2.10 that

(P (logP )2ω)d > |D0|

provided that |D0| ≥ C(L), where P = P (D0), ω = ω(D0) and C(L)

is effectively computable in terms of L. We can get also inequalities

similar to (7.2). We note that more general but weaker results of this

type can be found in Győry [13] and Evertse and Győry [9].
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9. Additional comments

Let f(X) be an integer polynomial with at least two distinct roots,

and S = {p1, . . . , ps} a finite set of primes. According to the result of

Gross and Vincent [10] quoted as Theorem A in the Introduction, we

have

[f(x)]S ≤ κ2|f(x)|
1−κ1 for every x ∈ Z with f(x) 6= 0,

where κ1, κ2 are positive numbers, effectively computable in terms of

f and S. As mentioned in Theorem 2.2, in this estimate we can take

κ1 =
(

cs1
(

((max
i

pi)(log p1) · · · (log ps)
)d)−1

,

where d is the degree of the splitting field of f and c1 depends only

on f . The factor maxi pi comes from the use of linear forms in p-adic

logarithms in our argument. If we follow instead the proof of [10], by

applying a result of Matveev [19] replacing the older and less sharp

estimate for linear forms in logarithms due to Alan Baker that was

used by Gross and Vincent, we would have obtained an estimate of the

above type with

κ1 =
(

cs2
(

(log p1) · · · (log ps)
)c3)−1

,

where c2, c3 (as well as the other constants c4, c5, . . . , c8 below) are

effectively computable in terms of f . Taking for p1, . . . , ps the first s

prime numbers, an easy computation using the Prime Number Theorem

shows that, for every positive ǫ, we have

P (f(x)) ≥ (1− ǫ) log2 x · log3 x/ log4 x ,

for x ∈ Z with f(x) 6= 0 and |x| sufficiently large in terms of ǫ.

For a positive integer a we denote by Q(a) its greatest square-free

factor. Let again x be an integer with f(x) 6= 0 and p1, . . . , ps the prime

divisors of f(x). Proceeding as in [10], but applying a result of Matveev

[19] instead of one of Baker, we get

log |x| ≤ cs4
(

(log p1) · · · (log ps)
)c5

.

Using the arithmetico-geometric inequality as in Stewart’s paper [25],

we deduce that

log log |x|

s
≤ c6

(

1 + log
( logQ(f(x))

s

)

+
log3Q(f(x))

s

)

.
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We then conclude that

logQ(f(x)) ≥ c7 log2 |x| · log3 |x|/ log4 |x|.

With the approach followed in the present paper, we would only get

that

logQ(f(x)) ≥ c8 log2 |x|,

that was already known.

Let F ∈ Z[X1, . . . , Xm] be a decomposable form as in Theorem 2.10,

and let F0 be a non-zero integer that can be represented by F (x) with

some x = (x1, . . . , xm) ∈ Zm
prim with xm 6= 0 if k > 1. We are not able to

prove the existence of effectively computable positive numbers c9, c10,

which depend only on F , such that

logQ(F0) > c9 log2 |F0| · log3 |F0|/ log4 |F0|,

provided that |F0| > c10.
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