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Abstract

The dissociation of N2 and N+
2 has been studied by using the ab initio Density Matrix Renormal-

ization Group (DMRG) method. Accurate Potential Energy Surfaces (PES) have been obtained

for the electronic ground states of N2 (X 1Σ+
g ) and N+

2 (X 2Σ+
g ) as well as for the N+

2 excited state

B 2Σ+
u . Inherently to the DMRG approach, the eigenvalues of the reduced density matrix (ρ) and

their correlation functions are at hand. Thus we can apply Quantum Information Theory (QIT)

directly, and investigate how the wave function changes along the PES and depict differences be-

tween the different states. Moreover by characterizing quantum entanglement between different

pairs of orbitals and analyzing the reduced density matrix, we achieved a better understanding of

the multi-reference character featured by these systems.
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I. INTRODUCTION

Accurate descriptions of the electronic structure for chemical systems are important for

predicting molecular properties and reactivities. However, this requires numerically feasible

methods for solving the electronic Schrödinger equation, which are difficult to obtain. A

basic method for this task is the Hartree-Fock (HF) method, which represents the total

electronic wave function as a single determinant (configuration) build up as a product

of one-electron wave functions (orbitals). This mean-field approximation to the electron-

electron interaction is computationally feasible, but introduces a systematic error, known as

electron correlation. A general and exact method, capable of correcting this error, is long

known with the Full Configuration Interaction (FCI) approach. Unfortunately its factorial

scaling with the size of the problem (i.e. the number of electrons) makes these calculations

only feasible for very small systems. Systematic approximations, which are required for

larger systems, result in a variety of methods with different advantages and disadvantages,

making them only applicable for suitable systems.

In these systematic approximations one restricts the calculation to only include certain

electron configurations (determinants or configuration state functions). Single-reference

methods (e.g. CISD, CCSD(T), Many-Body Perturbation Theory) [1] manage to describe

the major part of the electron correlation by improving the wave function based on one

reference configuration (usually the HF configuration). Systems inadequately described

by these methods are called strongly correlated and require multi-configurational and sub-

sequent multi-reference methods (e.g. MCSCF, MR-CI, MR-CC) including much more

determinants or configuration state functions (CSF) [2].

To develop new efficient approaches for systematic approximations one can investigate and

analyze the contribution of different configurations to the total electronic wave function.

Therefore these configurations may be assigned according to an (artificial) classification.

Bartlett and Stanton [3], Bartlett and Musia l [4] provided a classification into dynamic

(or weak), static (or strong) and nondynamic correlation. The dynamic correlation is sub-

ject to a large number of configurations, each with only a small contribution to the total

wave function, and can be recovered by single-reference methods. The other two require
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multi-configuration approaches, and usually depend on a smaller number of configuration,

which have a larger amplitude instead. However, within this classification, there are no strict

definitions for the different cases and some configurations may be assigned to multiple types.

The most popular approaches for dealing with multi-reference problems are the Complete

Active Space Self-Consistent Field (CASSCF) method for static correlation [5, 6] and the

Multi-Reference Configuration Interaction (MR-CI) method for dynamic correlation on top

of a multi-configurational wave function [6]. The criterion to decide which configuration

will be included in the wave function, depends on the choice for the active space and/or

the restrictions to certain levels of excitations (Singles, Doubles, Triples, etc.). Thus the

decision is biased and made before performing the actual calculation, possibly omitting

unexpected, yet important, configurations.

A promising alternative approach to this is the Density Matrix Renormalization Group

(DMRG) approach[7–9], which tries to find the most important configurations during its

iterative procedure, thus resulting in an unbiased truncation to the FCI wave function[10–

15]. The advantage of DMRG is, that during this iterative procedure, the density matrix

corresponding to the electronic wave function, is calculated. It can thus directly be used to

analyze the different contributions to the wave function by applying Quantum Information

Theory (QIT)[15–18]. This gives us a measure of how important an orbital is for the different

configurations required in the CI expansion. Studies using DMRG and QIT to investigate

strongly correlated systems include Heisenberg spin chains [19], extended periodic Anderson

model [20], graphene nanoribbons [21], Be6 rings [22], iron nitrosyl complexes [23], uranium

carbide oxide CUO [24], photosystem II [25], and Ru-NO bond in a Ruthenium nitrosyl

complex [26]. Additionally Boguslawski et al. [27] analyzed the dissociation of the electronic

ground states of N2, F2 and CsH by comparing DMRG calculations with different active

spaces. Furthermore, QIT results for localized orbitals can be used as a tool to analyze the

bonding character and identify covalent, dative or delocalized (e.g. aromatic) bonds[28, 29].

A popular example for strongly correlated systems is the nitrogen molecule N2. Especially

when considering bond stretching up to dissociation, non-dynamic and static correlations

become non-negligible. The electronic structure of this molecule and its singly charged
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i = 1 2 3 . . . d− 1 d

FIG. 1. Schematic representation of the block chain. Each dot represents one orbital (site).

The rectangle represents a sub-block, in this case it contains 2 orbitals, thus 42 = 16 possible

configurations can be formed within the sub-block.

cation was already subject to numerous studies [18, 30–37]. Here we want to study the

ground states together with some selected excited states of N2 and N+
2 by applying DMRG

and QIT, and investigate the multi-reference character of the wave function with the ul-

timate aim of improving correlation methods. The presented results include full Potential

Energy Surfaces (PES) as well as eigenvalue spectra of reduced density matrices for a de-

tailed analysis of electron correlation effects.

II. DENSITY MATRIX RENORMALIZATION GROUP (DMRG) AND QUAN-

TUM INFORMATION THEORY (QIT)

A detailed description of Density Matrix Renormalization Group (DMRG) and Quantum

Information Theory (QIT) may be found various reviews by Legeza et al. [10], Marti and

Reiher [12], Wouters et al. [13], Szalay et al. [15], Kurashige et al. [25], Olivares-Amaya et al.

[38], Wouters et al. [39]. In the quantum chemistry version of the DMRG a one dimensional

tensor topology is formed from molecular orbitals as shown in Fig. 1. More complex tensor

networks like in the tree-tensor-network state (TTNS) algorithm are possible as well [15, 40–

42]. The CI wave function can then be written as

|Ψ〉 =
∑

α1,...,αd

U(α1, . . . , αd)|φ{1}α1
〉 ⊗ · · · ⊗ |φ{d}αd

〉 (1)

where αi labels the d single-orbital basis states |φ{i}αi 〉 with the superscript {i} indicating

the orbitals position in the block chain and U(α1, . . . , αd) are the coefficients arranged in a

tensor of order d. Each index αi goes over the q = 4 spin occupations of a spatial orbital

(or “single-orbital basis states”): |φ(1)
α 〉 ≡ |−〉, |φ(2)

α 〉 ≡ | ↓〉, |φ(3)
α 〉 ≡ | ↑〉 and |φ(4)

α 〉 ≡ | ↑↓〉.
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Thus U(α1, . . . , αd) has qd coefficients in total. Note, that these configurations can have any

numbers of electrons from 0 to 2d.

Since the memory requirements of the d-order tensor U(α1, . . . , αd) grows exponentially

with the number of orbitals d, it is required to factorize it as a product of low order tensors

and with controlled rank. The simplest case is the so-called Matrix Product State (MPS)

representation, where

U(α1, . . . , αd) = A1(α1)A2(α2) · · ·Ad−1(αd−1)Ad(αd). (2)

Each matrix Ai(αi) thus corresponds to one molecular orbital (or site). Note, that the

size of the matrices still grows exponentially with increasing system size [43], thus the MPS

itself does not reduce the memory requirements. Instead we can define an upper limit to

the matrix dimensions called number of block states or virtual bond dimensions M . It is,

however, a non-trivial procedure how to choose a proper M value.

In practice, the DMRG method provides an optimized set of Ai(αi) matrices. The

quantum correlations are taken into account by an iterative procedure that variationally

minimizes the energy of the Hamiltonian. The method converges to the full Configuration

Interaction (CI) solution within the selected active orbital space. In the two-site DMRG

variant [7, 43], the Hilbert space of Ne electrons correlated on d orbitals, Λ(d), is approxi-

mated by a tensor product space of four tensor spaces defined on an ordered orbital chain,

i.e., Ξ
(d)
DMRG = Ξ(l) ⊗ Λi+1 ⊗ Λi+2 ⊗ Ξ(r). The basis states of the Ξ(l) comprises i orbitals to

the left of the chain (l ≡ left ) and Ξ(r) comprises d− i− 2 orbitals to the right of the chain

(r ≡ right). These states are determined through a series of unitary transformations based

on the singular value decomposition (SVD) theorem by going through the ordered orbital

space from left to right and then sweeping back and forth [15, 43]. The number of block

states, Ml = dim Ξ(l) and Mr = dim Ξ(r), required to achieve sufficient convergence can be

regarded as a function of the level of entanglement among the orbitals [16, 44]. The max-

imum number of block states Mmax = max (Ml,Mr) required to reach an a priory defined

accuracy threshold, is inherently determined by truncation error, δεTR, when the Dynamic
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Block State Selection (DBSS) approach is used [17, 45]. During the initial sweeps of the

DMRG algorithm the accuracy is also influenced by the environmental error, δεsweep[46].

The latter error can be reduced significantly by taking advantage of the CI based Dynam-

ically Extended Active Space procedure (CI-DEAS) [16, 47] and using a large number of

DMRG sweeps until the energy change between two sweeps is negligible. In the CI-DEAS

procedure the active space of orbitals is extended dynamically based on the orbital entropy

profile [15, 48]. Mmax depends strongly on the orbital ordering along the one-dimensional

chain topology of the DMRG method [16, 48–50]. There exist various extrapolation schemes

to determine the truncation-free solution [13, 46].

To analyze the CI wave functions by means of QIT the n-orbital density matrix is needed.

Formally it is obtained by a summation over all but n orbitals, e.g. the one-orbital density

matrix is given by

ρi(αi, α
′
i) = Tr1,..., 6i,...,d|Ψ〉〈Ψ| (3)

=
∑

α1,..., 6αi,...,αd

U(α1, . . . , αi, . . . , αd)U(α1, . . . , α′i, . . . , αd). (4)

In DMRG this is quite easily obtained by contracting the MPS with itself over all indices

except for αi and α′i.

One can quantify the contribution of an orbital i to the correlation energy by means of

the one-orbital von Neumann entropy [16]

Si = −Tr (ρi ln ρi) = −
∑
α

ωi,α lnωi,α, (5)

where ωi,α are the eigenvalues of the one-orbital density matrix ρi(α, α
′), and give the

probability amplitudes of the single-orbital spin states. A small entropy is connected to

small correlation effects of the corresponding orbital. Highest entropy is achieved when

the 4 possible spin states are evenly distributed, i.e. when ωi,α = 0.25 for all α, then

Si = −4 × 0.25 × ln 0.25 = ln 4 ≈ 1.39. The sum of all one-orbital entropies gives a

measure for the total correlation

Itot =
∑
i

Si (6)

of the wave function [17, 29].
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Similarly the two-orbital von Neumann entropy Sij is obtained from the two-orbital den-

sity matrix ρij [51].

ρi(αi, αj, α
′
i, α
′
j) = Tr1,..., 6i,..., 6j,...,d|Ψ〉〈Ψ| (7)

Sij = −Tr (ρij ln ρij) = −
∑
α

ωij,α lnωij,α. (8)

It gives the contribution of two combined orbitals to the correlation energy. If both orbitals

are not correlated with each other, the two-orbital entropy becomes the sum of both single-

orbital entropies. Any correlation between these two orbitals reduces the entropy of the two

combined orbitals with the rest of the system, hence we can define the two-orbital mutual

information [18] as

Iij = Si + Sj − Sij (9)

describing the correlation of both classical and quantum origin between the two orbitals i

and j.

More detailed information is included in the eigenvalues ωi,α of the one-orbital density ma-

trix ρi, representing the probability (amplitude) of the spin occupations |φα〉. Similar, from

the two-orbital density matrix ρij one obtains the eigenvalues ωij,α and eigenvectors φij,α,

giving information about the spin probabilities of the orbital pair ij. Note that α for the two-

orbital density matrix ρij goes over 4× 4 = 16 states, expressed in a basis obtained by com-

bining the 4 possible spin states for each orbital (|φαi
〉|φαj

〉 = {|−,−〉, |−, ↓〉, | ↓,−〉, . . . }).

These information are complemented by the generalized correlation functions [18, 19, 22],

which tells us about the important excitations (or transitions) an orbital pair can do. Con-

sider the transition between an initial state |φα〉 and final state |φα′〉 of orbital i. The

transition operators are defined as

T (m) = |φα′〉〈φα| for m = 1, . . . , q2, (10)

where the index m numbers the possible transitions between the q = 4 states of each orbital

(a convention for the numbering can be found in Ref. [15]). As the transition operators act

on a general n-orbital wave function, the operators are modified such that they only act on

the i-th orbital

T
(mi)
i = I⊗ · · · ⊗ I⊗ T (mi) ⊗ I⊗ · · · ⊗ I (11)
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where T (mi) is on the i-th position and I being the q× q identity matrix. Combining two of

these operators we can express the transition of electrons from orbital i to j and calculate

the expectation value 〈T (mi)
i T

(mj)
j 〉, resulting in the generalized correlation functions. Note,

that only some combinations of these operators (mi and mj) result in non-zero values, due

to electron number and spin conservation. For example, a transition from | ↓〉 to |−〉 in

orbital i would require the creation of a down-spin electron in orbital j to conserve quantum

numbers of the total electronic wave function (see Ref. [15] for more details).

As a simple example consider two sets of configurations

|A〉 = |φαi
, φαj

, φβ〉 = | ↑, ↓, φβ〉 (12)

|B〉 = |φα′
i
, φα′

j
, φβ〉 = | ↓, ↑, φβ〉 = T

(7)
i T

(10)
j |A〉 (13)

which are part of the CI basis set. Here |φβ〉 represents the environment consisting of all

orbitals excluding i and j. The operator with m = 7 corresponds to the spin flip from | ↑〉
to | ↓〉 (in orbital i) and the m = 10 operator flips in the other direction (in orbital j). Their

CI coefficients are a(β) = U(αi, αj, β) and b(β) = U(α′i, α
′
j, β) respectively. The generalized

correlation function can then be expressed as

〈T (7)
i T

(10)
j 〉 =

∑
α′
i,α

′
j ,β

∑
αi,αj ,β

b(β)∗a(β)〈↓, ↑, φβ|T (7)
i T

(10)
j | ↑, ↓, φβ〉 (14)

=
∑
β

b(β)∗a(β) (15)

In Eq. (14) all configurations not matching 〈B| and |A〉, in the bra and ket vector re-

spectively, will vanish when the double transition operator T
(7)
i T

(10)
j acts on |Ψ〉. Thus a

generalized correlation function will vanish if a(β) or b(β) are orthogonal to each other. For

diagonal transition operators, that leave the spin states unchanged, we obtain the summed

amplitude of all matching configurations. For a more general treatment see Ref. [19].

To determine the correlation between two subsystems, one has to consider the connected

part of the generalized correlation function

〈T (mi)
i T

(mj)
j 〉C = 〈T (mi)

i T
(mj)
j 〉 − 〈T (mi)

i 〉〈T (mj)
j 〉 (16)

which is constructed similar to the mutual information in Eq. (9), i.e. the uncorrelated part
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is substracted.

In summary, the one-orbital quantities Si and ωi,α are obtained from the one-orbital

density matrix and give information about the correlation and occupations of a single or-

bital. From the two-orbital density-matrix we obtain the quantities Sij, ωij,α, φij,α, Iij and

〈T (mi)
i T

(mj)
j 〉C , telling us which orbitals are correlated with each other and which transitions

(combination of two configurations) are most important.

Such concepts of quantum information theory, have already been applied successfully to

spin and ultra-cold atomic systems [19], extended Anderson model [20], topological Kondo

insulators [21], graphene nanoribbons [52], Be-rings [22] and diatomic chemical compounds

[28] in the ground state in order to reveal the entanglement structure and examine the

spectrum of subsystem density matrices to understand the origin of entanglement.

III. MODEL AND COMPUTATIONAL DETAILS

To study the multi-reference character of the wave function we calculate and investigate

the dissociation of N2 and N+
2 for different electronic states of increasing complexity. For

each state a PES will be calculated along the internuclear distance R between the two

nitrogen atoms. We start with the closed-shell singlet electronic ground state of N2 labeled

by the term symbol X 1Σ+
g and compare the results to the N+

2 open-shell electronic ground

state X 2Σ+
g . Both states belong to the irreducible representation (IRREP) Ag of the D2h

point group. Following this we extend the discussion to the higher excited N+
2 state B 2Σ+

u

with IRREP B1u. All regarded states are summarized in Fig. 2.

To obtain a suitable state average at the CASSCF level, we consider the different dissoci-

ation limits of the states of interest (see Fig. 2), and obtain all relevant electronic states by

applying the Wigner-Witmer-Rules[53]. Further details for this specific example may also

be found in a recent article by Liu et al. [54].

Calculation are performed using Molpro2012[55] and applying the Dunning basis sets

aug-cc-pVTZ (AVTZ), aug-cc-pVQZ (AVQZ) as well as aug-cc-pV5Z (AV5Z)[56]. For the
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1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

R/Å

−109.0

−108.8

−108.6

−108.4

−108.2

−108.0
T

O
TA

L
E

N
E

R
G

Y
/E

h

N(4Su) + N(4Su)

N(4Su) + N+(3Pg)

N2 X1Σ+
g

N+
2 X2Σ+

g

N+
2 B2Σ+

u

FIG. 2. Potential Energy Surfaces (PES) for the electronic states considered in this work. Results

for CASSCF(9,8)/AV5Z and CASSCF(10,8)/AV5Z for N+
2 and N2 respectively. The atomic states

of the fragments are given for each dissociating limit.

DMRG calculations the Budapest DMRG program [57] was used. The results are plotted

using Python’s Matplotlib library[58].

Two different active spaces are used, with 8 and 16 active orbitals respectively. In both

cases the lowest lying core orbitals 1σg and 1σu are closed. The choice of both active spaces

is illustrated in Fig. 3, together with the orbital labels. In the following we use a notation

where the used method is appended by the size of the active space in parenthesizes (e.g.

DMRG(16)). The number of electrons within these active orbitals is omitted, as it is always

10 in case of the neutral N2 molecule or 9 for the N+
2 cation.

10



E

3p

5σu

2π′
g 2π′′

g

2π′
u 2π′′

u

5σg

3p

3s

4σu

4σg

3s

2p ↑ ↑ ↑

3σu

1π′
g 1π′′

g

1π′
u↑↓
1π′′

u↑↓

3σg

↑↓

↑ ↑ 2p↑

2s ↑↓
2σu↑↓

2σg

↑↓ 2s↑↓

1s ↑↓
1σu↑↓

1σg

↑↓ 1s↑↓

AS(8)

AS(16)

closed

FIG. 3. Schematic Molecular Orbital (MO) scheme for N2 with the occupation pattern of the

electronic ground state configuration. Labels and plots of the orbitals as well as the used Active

Spaces (AS), including 8 and 16 orbitals, are indicated.
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As a first step orbitals are optimized in a CASSCF(8) calculation including all states of

same symmetry dissociating to the same asymptotic limit. After transforming to natural

orbitals, the required electron integrals for the DMRG calculation are exported to an in-

tegral file and include 16 active orbitals. Thus the DMRG calculations include 16 active

orbitals (DMRG(16)), which corresponds to an CASCI(16) if the number of blockstates M

in the DMRG calculations are at the numerical exact limit. As a reference for the DMRG

calculations CASCI(16) calculations were performed, by requesting a MRCI calculation

without external excitations (i.e. excitations into orbitals not part of the active space)

were performed. Furthermore we performed MRCI(8) calculations, to evaluate the effect of

dynamical correlation. In all cases MRCI refers to MRCI-SD without Davidson correction.

To illustrate the basis set effect, we present PES for the AVTZ, AVQZ as well as AV5Z basis

sets in Fig. 4. All DMRG and QIT results are obtained using aug-cc-pV5Z (AV5Z).

The DMRG calculations have been performed in two runs. In the first run the orbitals

are ordered as given by Molpro and a small number of blockstates M = 256 is used, as

this is sufficient for qualitative QIT results. Those can then be used to optimize the orbital

ordering along the 1-dimension block chain according to the Fiedler vector[15, 48]. This

ordering may change for different internuclear distances R. In a second run the number of

blockstates is set to M = 4096, being close to the numerical exact limit of CASCI(16).

IV. RESULTS

We start the discussion by presenting the PES for the three states N2 X 1Σ+
g , N+

2 X 2Σ+
g

and N+
2 B 2Σ+

u in Section IV A. We compare different methods and basis sets.

Next the orbitals are characterized in terms of atomic basis functions contribution and

their energies in Section IV B. These information will be helpful when analyzing the QIT

results in the next sections, where we will see how strong each orbital is entangled by looking

at the spin state probabilities ωi,α and orbital entropies Si. Furthermore we present for se-

lected pairs of orbitals the mutual information Iij, the correlation functions 〈T (mi)
i T

(mj)
j 〉C as

well as the eigenvalues and eigenvectors of the two-orbital density matrix ρij to investigate

their correlation. For simplicity we restrict the discussion here to the orbitals included in
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0.6
0.7
0.8
0.9
1.0
1.1
1.2

E
N

E
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G
Y

/E
h

N+
2 B2Σ+

u

0.6
0.7
0.8
0.9
1.0
1.1
1.2

E
N

E
R

G
Y

/E
h

N+
2 X2Σ+

g CASSCF(8)
CASCI(16)
MRCI(8)
AVTZ
AVQZ
AV5Z

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

R/Å

0.0
0.1
0.2
0.3
0.4
0.5
0.6

E
N

E
R

G
Y

/E
h

N2 X1Σ+
g

FIG. 4. Reference Calculations for the Potential Energy Surfaces (PES) calculated with the differ-

ent methods (CASSCF(8) (dotted), CASCI(16) (dashed) and MRCI(8) (continuous)) and basis sets

(AVTZ (blue), AVQZ (green) and AV5Z(red)). Electronic states from top to bottom: N+
2 B 2Σ+

u ,

N+
2 X 2Σ+

g and N2 X 1Σ+
g . The AV5Z calculations are essentially at the complete basis set limit.

Static correlation is slightly improved when choosing the larger active space (∆E < 0.01 Eh), while

including dynamic correlation improves the energies by 0.2 to 0.3 Eh. The reference energy is set

to the minimum of the N2 X 1Σ+
g at the CASCI(16)/A5VZ level.

the AS(8), contributions form the AS(16) orbitals are much smaller in magnitude.
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1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

R/Å

10−9

10−8

10−7

10−6

∆
E

=
|E

D
M

R
G
−
E

C
A

S
C

I|/
E

h

N+
2 B2Σ+

u

N+
2 X2Σ+

g

N2 X1Σ+
g

FIG. 5. Energy difference between DMRG(16) and the CASCI(16) for all three states. With the

largest value being smaller than 10−6Eh, both methods are identical within numerical accuracy.

DMRG calculations are performed using DBSS with a maximum limit for the blockstates ofMmax =

4096 blockstates, which is close to the exact limit of CASCI(16).

TABLE I. Well Depths De in Hartree (Eh) for the different methods used.

a calculated based on Dunham expansion and experimental values reported in ref [59]

CAS(8) DMRG(16) CASCI(16) MRCI(8) lit.a

N+
2 B 2Σ+

u AVTZ 0.2088 0.2007 0.1990

AVQZ 0.2088 0.2045 0.2076

AV5Z 0.2114 0.2059 0.2062 0.2101

N+
2 X 2Σ+

g AVTZ 0.3244 0.3159 0.3167 }
0.3256AVQZ 0.3262 0.3193 0.3243

AV5Z 0.3264 0.3200 0.3208 0.3265

N2 X 1Σ+
g AVTZ 0.3379 0.3396 0.3493 }

0.3638AVQZ 0.3397 0.3416 0.3581

AV5Z 0.3399 0.3411 0.3411 0.3608

A. Potential Energy Surfaces (PES)

First, let us consider the PESs. In Fig. 4 the electronic state are compared for different

methods. In all three cases (from top to bottom N+
2 B 2Σ+

u , N+
2 X 2Σ+

g and N2 X 1Σ+
g ) the

picture is very similar: The energy difference between AVQZ and AV5Z is negligible, thus
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FIG. 6. Coefficients of the most important configurations building up the CI wave function as

obtained by CASSCF(9,8) and MRCI(8) calculations. In all cases the leading configuration has

a very large coefficients around the equilibrium distance, but decreases when approaching the

dissociation limit.

AV5Z is close to the complete basis set limit. The description of static correlation is only

slightly improved when including more orbitals in the active space. The energy differences

between CASSCF(8) and CASCI(16) are below 0.01 Eh. Major improvements in the energy

are obtained by including dynamical correlation on the MRCI(8) level, yielding energy dif-

ferences up to 0.02 Eh.

In Fig. 5 the DMRG(16) PES is compared to the CASCI(16) energies by showing their

energy difference ∆E = EDMRG − ECASCI. The two methods yield the same energies

(within numerical accuracy). They are thus in perfect agreement, as expected for a large
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enough number of blockstates M . Here, the DMRG(16) would be identical (i.e. include

exactly the same configurations) to CASCI(16) for a symmetric superblock configuration

with M = 47 = 16384 by partitioning seven orbitals to the left block and seven orbitals

to the right block according to Fig. 1. Note, that the complete tensor U(α1, . . . , αd) stores

416 ≈ 4.3×109 configurations out of which only
(
16
10

)
= 8008 and

(
16
9

)
= 11440 are of interest

for N2 and N+
2 , respectively, due to conservation of total quantum numbers. Using the

DBSS approach with a density matrix truncation limit of 10−8, the number of blockstates

is limited to values below 4096.

Though the main features of the PESs can be obtained by all methods, the well depths

obtained with different methods show deviations (up to 0.02 Eh) as summarized in Table I.

Best agreement with literature values is obtained on the MRCI(8)/AV5Z level.

The coefficients of the CI wave function for the CAS(8) and MRCI(8) methods are plotted

in Fig. 6, where we restrict ourselves to the most important ones, i.e. those where |ci| > 0.05

for any point along R. All pictures are rather similar, the leading configuration dominates

the CI wave function around the equilibrium distance, then decreases with varying slopes.

At the dissociation limit no single leading configuration can be determined, expressing the

multi-reference character of the system.

B. Orbital Characterization

Before investigating the entanglement patterns of the orbitals, it is helpful to characterize

the orbitals in terms of their contributing atomic basis functions (i.e. s, p and d character)

as well as energies. As the orbital energies and basis function character are very similar for

the different electronic states we restrict the discussion here to the N2 ground state X 1Σ+
g .

The occupation patterns will be discussed for the other two states (N+
2 X 2Σ+

g and N+
2 B 2Σ+

u )

as well.

The atomic basis function character of the molecular orbitals is obtained by summation
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FIG. 7. Character of the molecular orbitals for N2 (lower panels) and N+
2 (upper panels) in terms

of contribution of the atomic s, p and d orbitals as a function of the internuclear distance R. Only

the most important σ orbitals are shown, the π orbitals have χp(π) ≈ 1. Orbitals optimized on

the CAS(10,8)/AVQZ level.

over the contributions of each type

χs =
∑
i

|cs,i|2 , χp =
∑
i

|cp,i|2 , χd =
∑
i

|cd,i|2 (17)

and renormalization to the constraint

χtot = χs + χp + χd = 1. (18)

It is evident from Fig. 7, that the 2σg and 2σu are dominated by s character which increases

with the internuclear distance R until the molecular orbitals have evolved into the atomic 2s

orbitals of each fragment at the dissociation limit. Similar the 3σg and 3σu are dominated

by p character and evolve into pz orbitals at the dissociation limit (cf. Fig. 3). The 3σu

starts with a larger χs contribution than the 3σg, but the behavior at the dissociation limit
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FIG. 8. Energies of the molecular orbitals for the N2 (right) and N+
2 (left). Orbitals optimized on

the CAS(10,8)/AVQZ level.

remains the same for both, as they become degenerate. The different π orbitals are not

shown, as their p contribution χp is virtually 1 for all internuclear distances due to symmetry

constraints.

The orbital energies presented in Fig. 8 nicely show how all pairs of gerade and ungerade

molecular orbitals largely differ at small internuclear distances and are slowly evolving to

degenerate orbitals at the dissociate limit. Additionally to the gerade-ungerade-pairs, the 3σ

orbitals become degenerate with the 1π orbitals at the dissociation limit, as they represent

the three fold degenerate atomic 2p orbitals.

C. Entanglement and Correlation of Single Orbitals and Orbital Pairs

Let us now investigate the entanglement and correlation effects of orbitals, by analyzing

the QIT quantities introduced in Section II. We will discuss the three selected electronic

states one by one. Combined for all three states, the spin occupation probabilities ωi,α are

shown in Fig. 9, while the single-orbital entropy Si and mutual information Iij between pairs

of orbitals are shown in Fig. 10. For two selected orbital pairs, the diagonalized 2-orbital

reduced density matrices and the connected part of the generalized correlation functions are

presented in Fig. 11 and Fig. 13 respectively. For the latter two quantities further orbital
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FIG. 9. Eigenvalues of the one-orbital density matrix as a function of the internuclear distance

R, representing the amplitude of the different spin occupation probabilities (distinguished by line

styles) of each spatial orbital (distinguished by different colors). For simplicity, the values for the

empty spin occupations |−〉 are omitted. For the singlet state in the bottom panel (X 1Σ+
g ), up-spin

occupations (| ↑〉) are omitted as they are degenerate to their corresponding down-spin occupations

(| ↓〉). The dotted lines represent coinciding curves, as indicated by the box in the lower right. The

sum over all spin states for each orbital is always |−〉+ | ↓〉+ | ↑〉+ | ↑↓〉 = 1. The two horizontal

lines in each plot mark 1/3 and 1/6.

pairs are presented in the Supplementary Information (Figs. S1 to S5).
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0.0

0.2

0.4

0.6

0.8

1.0

1.2

O
R

B
IT

A
L

E
N

T
R

O
P

Y
S
i

1π′g, 1π
′′
g

1π′u, 1π
′′
u

3σg

3σu

2σg

2σu

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

R/Å
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FIG. 10. One orbital entropy Si (left column) and mutual information Iij (right column) for the

most important orbitals of the three lowest states (from bottom to top: N2 X 1Σ+
g , N+

2 X 2Σ+
g and

N+
2 B 2Σ+

u ). Mutual Informations Iij of the considered orbitals pairs are printed in color, black

lines indicate orbital pairs with less entanglement and are not further specified. Information that

is redundant due to degeneracies is omitted.

1. N2 X 1Σ+
g ground state

Let us start with the simplest case, the N2 X 1Σ+
g ground state. We will first look at

the spin state probability in the lower plot of Fig. 9. Since the N2 ground state is a spin

singlet state, the spin occupations for up-spin and down-spin are identical for all orbitals

(dotted lines). Due to degeneracy the spin occupations for 1π′g/u and 1π′′g/u coincide as well.

Additionally the 1π and 3σ orbitals converge towards the same two common dissociation

limits, where we have in total a 6-fold degeneracy corresponding to the 2× 3 = 6 2p atomic

orbitals of the two N(4Su) fragments. The two asymptotic limits are 1/3 and 1/6 for doubly
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and singly occupied states respectively and indicated by black horizontal lines. Adding

together, we obtain for each spin (up or down) 1/6 + 1/3 = 1/2 probability for the 2p orbitals

of the separated fragments. On the other hand, around equilibrium distance, we can ob-

serve high double occupations for the bonding orbitals, and close to zero occupations for

the anti-bonding orbitals. This simply reflects the occupation pattern of the leading HF

configuration (cf. Fig. 6). Furthermore, while the 3σ and 1π orbitals change drastically

with increasing internuclear distance R, the 2σg and 2σu occupations remain close to the full

and empty spin states respectively. Hence their contribution to the correlation energy will

be small and rather constant with respect to R. Finally, comparing the 3σ and 1π orbitals,

we observe the convergence of the 3σ orbitals to be shifted to slightly larger internuclear

distances. This effect can be explained with the larger overlap of the pz orbitals as they are

aligned along the molecular axis. Thus the π bonds are broken sooner than the σ bond.

This was already previously recognized and described by Boguslawski et al. [27] for the

one-orbital entropy.

After analyzing the occupation numbers, the one-orbital entropy (lower left plot in

Fig. 10) can be easily understood. We observe only small entropies at the equilibrium

distance, where the HF configuration captures most of the electron-electron interaction. At

the dissociation limit, where we have more electron correlation, the entropies achieve values

close to their maximum of ln 4 ≈ 1.39 for the 3σ and 1π orbitals, while the 2σ entropies

start small and decrease even further. Additionally, just as for the orbital occupations ωi,α,

we observe the 3σ curves to be shifted towards larger bond lengths (when compared to the

1π ones). This again indicates the π bonds to be broken before the σ bond [27].

Furthermore, the 3σg and 3σu entropies are very similar, with small deviations for small

R. A closer look at the occupations reveals their occupations to be nearly symmetric,

i.e. the up and down-spin occupations are almost identical (in fact there are very small

deviations for small R, but those are neglected in Fig. 9 for a better visibility). Similarly,

the double occupation of 3σg is almost identical to the empty occupation of 3σu (again

not shown explicitly). Consequently the orbital entropies are (almost) identical. A similar

discussion can be conducted for the 1πg/u orbitals.
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The single orbital picture only tells us, which orbitals are highly correlated. If we also

wish to understand with what other orbitals they are mainly entangled, we can analyze

the orbitals pairs in terms of the mutual information Iij, eigenvalues ωij and corresponding

eigenvectors φij of the diagonalized 2 orbital reduced density matrices ρij as well as the

connected contributions of the generalized correlation functions 〈T (mi)
i T

(mj)
j 〉C .

The mutual information Iij is presented next to the single orbital entropy in Fig. 10.

In general, the correlation effects increase towards the dissociation limit. This effect is

connected to the choice of canonical, i.e. delocalized, orbitals. A reversed effect has been

observed for localized orbitals in Be6 rings [22], where entropies are large at equilibrium

distance and small at the separated atom limit. We observe that most correlation is be-

tween the 3σ and 1π bonding/anti-bonding (gerade/ungerade parity) pairs: 1π′u + 1π′g and

1π′′u + 1π′′g (blue) and 3σg + 3σu (green). As before, the curve for the 3σ pair is shifted

towards larger bond distances, but ends up at the same dissociation limit. Smaller con-

tribution arise from correlations between the degenerate 1π pairs of same parity, with a

maximum at R ≈ 1.90 Å: 1π′u + 1π′′u and 1π′g + 1π′′g (red). Interestingly, these two pairs

have almost the same mutual informations, even though the pairs have different energies

and occupations. This follows from the very symmetric behavior of the 3σ and 1π orbitals,

as discussed above for the one orbital entropies.

Slightly smaller and with the maximum slightly shifted to a larger distance (R ≈ 2.00 Å)

is the mutual information for the 1π′u + 1π′′g and 1π′g + 1π′′u pairs (cyan). Both lines end up

in the same dissociation limit as the different combination of 3σ and 1π orbitals, since they

evolve towards the degenerate 2p orbitals of the isolated fragments.

For the diagonalized two-orbital reduced density matrix ρij and the connected part of

the generalized correlation functions a lot of data is obtained. To simplify the discus-

sion here, we restrict ourselves to the two orbital pairs with highest mutual information:

1π′u+1π′g and 3σg+3σu. For further orbital pairs we refer to the Supplementary Information.

For a compact graphical representation of the diagonalized two-orbital reduced density

matrix, only eigenvalues with largest contribution are considered. Characteristic eigenvec-
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TABLE II. Assignment of labels to characteristic eigenvectors φij,α of the two-orbital density

matrix. Further possible eigenvectors are the basis vectors itself, which are indicated by their

corresponding label directly.

φij,α 〈S2〉 label

1√
2
(|−, ↑↓〉+ | ↑↓,−〉) 0 | ↑↓,−〉+

1√
2
(|−, ↑↓〉 − | ↑↓ −〉) 0 | ↑↓,−〉−
1√
2
(| ↑, ↓〉 − | ↓, ↑〉) 0 singlet

1√
2
(| ↑, ↓〉+ | ↓, ↑〉) 2 }

triplet| ↑, ↑〉 2

| ↓, ↓〉 2

tors which are constant over the internuclear distance R are labeled according to Table II,

others are represented by a plot of their non-zero coefficients cij,α. Please note, that a

“triplet” contribution in a given orbital pair does not necessarily indicate a triplet character

of the wave function, as the spin states of the remaining orbitals in a given configuration

contribute to the total spin as well. Spin states higher than triplet cannot be formed from

just two orbitals.

The diagonalized two-orbital reduced density matrix for the N2 ground state is presented

in Fig. 11 (bottom row). Both orbital pairs show similar occupations, starting with high

double occupancy of the energetically lower, bonding orbital for small R and evolving to-

wards the superposition 1√
2
(|−, ↑↓〉 − | ↑↓,−〉) = | ↑↓,−〉− at dissociation limit. During

bond breaking they gain some single occupations character, as indicated by the singlet and

triplet eigenstates (red and green respectively), as we could already observe for eigenvalues

of the one-orbital density matrix (cf Fig. 9). However, this time we gain some information on

their relative spin (up/down). First, during bond breaking, we get some singlet character,

which then quickly changes to a triplet contribution towards the dissociate limit, accounting

for the quadruplet spin state of the N(4Su) fragments. However, contributions to electron

correlation are dominated by configurations where one orbital is doubly occupied while the

other one is empty.
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The remaining pairs (Fig. 12) have one major eigenstate for small R as well, allowing to

easily identity the leading HF configuration at equilibrium distance. As electron correlation

increases towards the dissociate limit, we can identify a number of many degenerate eigen-

states representing all kinds of different occupations.

Static, non-dynamic and dynamic correlations can be characterized by the value of

the mutual information Iij in certain extend (0 < Iij < 2 × ln(16) ≈ 2.77). Large Iij

corresponds to static, intermediate values to non-dynamic and small values to dynamic

correlations [23, 60]. Taking a look at Fig. 10 for orbitals pair 1π′u + 1π′g, the mutual

information changes from almost zero to ≈ 1.6, correspondingly in Fig. 12 for large R we

have 2 finite eigenvalues and around equilibrium distance only one eigenvalue remains finite

and, being close to 1, indicating a pure state for the two-orbital subsystem. In contrast to

this, for 1π′u + 1π′′u the mutual information remains small for all R values, corresponding to

dynamic and non-dynamic correlations. In Fig. 12 for large R we have 2 highly degenerate

levels (showing that the 2 orbital subsystem is in a highly mixed state) with finite but small

values and for smaller distances the degeneracy is lifted until around equilibrium distance

only one eigenvalue is approximately 1, again indicating a pure state for the two-orbital

subsystem. Therefore we can identify static correlations for the pairs 1π′u + 1π′g, 1π′′u + 1π′′g

and 3σg + 3σu shown in Fig. 11, and dynamic correlations for all remaining pairs.

In Fig. 13 (bottom row) the connected contributions of the generalized correlation func-

tions 〈T (mi)
i T

(mj)
j 〉C are presented, for the same two orbital pairs as for φij. Note, that

disconnected contributions are subtracted out. For example the major contributions of

the diagonal | ↓↑,−〉 → | ↓↑,−〉 transition operator for the 1π′u + 1π′g pair, mostly arising

from the HF configuration, would be clearly visible in 〈T (mi)
i T

(mj)
j 〉 but does not show up

in 〈T (mi)
i T

(mj)
j 〉C . The diagonal elements, e.g. |−, ↓↑〉 → |−, ↓↑〉 and | ↓↑,−〉 → | ↓↑,−〉

provide information on the occupation of the orbital pair. While the off-diagonal elements

shows the resonance between the different basis configurations.

As above for φij, we can observe increasing correlation effects towards the dissociation

limit. The 1π′u+ 1π′g and 3σg + 3σu (top row) show largest magnitudes (about 3 times larger

than for other pairs) and, as expected, are very similar to each other. In accordance with
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the above identification of static and dynamic correlation effects, the largest correlation

functions are the | ↓↑,−〉 → |−, ↓↑〉 (and vice versa) resonances. In general only few and

small contributions are observable for around equilibrium distance, but are rapidly increas-

ing during bond breaking as correlation effects increase.

The only other appearing off-diagonal transition operator are | ↑, ↓〉 → | ↓, ↑〉 and

| ↓, ↑〉 → | ↑, ↓〉. These have a positive sign, again matching the triplet character observed

in φij above.

Additionally, some emerging patterns in the correlation functions plots are very similar,

e.g. 1π′u + 1π′g and 3σg + 3σu show only minor differences. Both pairs come from the 2p

shell of the atomic fragments and combine orbitals of different parity (g/u) but otherwise

same symmetry. Similar patterns can also be observed for 1π′u + 1π′′u and 1π′u + 1π′′g as well

as 1π′u + 3σu and 3σu + 1π′g (cf. Fig. S1).

2. N+
2 X 2Σ+

g ground state

Next, we investigate the N+
2 X 2Σ+

g doublet ground state (middle row in Figs. 9 to 11

and 13), which shares some similarities with the N2 singlet ground state: the entropy in-

creases during dissociation and the entanglement of the 1π orbitals remains about the same.

Major differences are observed for the 3σg/u orbitals, which are no longer doubly occupied.

This represents the electron hole arising for the positive charge of the cation. Both orbitals

remain mainly in a singly occupied state, even at the dissociation limit. Accordingly the

3σg and 3σu entropies drop down by about a factor of 2 compared to the N2 X 1Σ+
g ground

state. Instead 2σg/u entropies are increased, as the 3σg orbital, being close in energy, opened

up, allowing for possible excitations. This effect is larger for the 2σu, which is much closer

in energy to the 3σg (cf. Fig. 8). Towards the dissociation limit the 2σg/u orbitals show the

same entropy, as they become degenerate.

For the calculation the total spin of the doublet state was chosen to be in the spin up
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FIG. 11. Largest eigenvalues ωij,α and their corresponding eigenvectors φij,α =
∑

α cij,α|φαi〉|φαj 〉

of the two-orbital reduced density matrices, plotted over the internuclear distance R. Selected

orbital pairs are 1π′u+1π′g and 3σg +3σu, left and right columns respectively. The electronic states

from top to bottom are N+
2 B 1Σ+

u , N+
2 X 1Σ+

g and N2 X 1Σ+
g . Labels for eigenvectors which do not

change with respect to R are assigned according to Table II, s indicates ↑ and ↓ yield same results.

For eigenvectors depending on R their coefficients are plotted.

state. A closer look to the single spin occupations (cf Fig. 9) reveals that the electron hole

leaves a pronounced up-spin character in the 3σg orbital, corresponding to the total spin of

the electronic state. Similarly the 1πg/u have more up-spin than down-spin character, while

the 3σu orbital surprises with down-spin character.

In the mutual information (middle right panel in Fig. 10) the 1π bonding/anti-bonding

26



0.0
0.2
0.4
0.6
0.8
1.0

ω
ij
,α

1π′u + 1π′g
see plot

singlet

triplet

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

R/Å
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−1.0
−0.5

0.0
0.5
1.0

c i
j,
α

| ↑↓,−〉
|−, ↑↓〉

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

R/Å
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FIG. 12. Largest eigenvalues ωij,α and their corresponding eigenvectors φij,α =
∑

α cij,α|φαi〉|φαj 〉

of the two-orbital reduced density matrices as a function of internuclear distance R for the N2

X 2Σ+
g state. Labels for eigenvectors which do not change with respect to R are assigned according

to Table II, s indicates a single electron which can have up (↑) or down (↓) spin. For eigenvectors

depending on R their coefficients are plotted.
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FIG. 13. Correlations functions 〈T (mi)
i T

(mj)
j 〉C(R) as a function of internuclear distance R for the

two orbital pairs 1π′u + 1π′g and 3σg + 3σu, left and right columns respectively. Only the connected

contributions (cf. Eq. (16)) where max(|〈T (mi)
i T

(mj)
j 〉C(R)|) > 10−6 are shown. The electronic

states from top to bottom are N+
2 B 1Σ+

u , N+
2 X 1Σ+

g and N2 X 1Σ+
g .

pairs (blue) are very similar to the N2 ground state. However, the 3σg + 3σu reduces to

about one third, due to the electron hole being located in the 3σg orbital (cf. Fig. 9). In

turn the 1π′u + 1π′′u (red) and 1π′g + 1π′′g (black) mutual information increase by a factor

of two for small and intermediate R, but remain about the same at the dissociation limit.

Additionally, those two orbital pairs are no longer close in their mutual information, but

show a very small deviation, since the occupations of the 3σ orbitals are not symmetric

anymore. Furthermore, we observe a number of smaller additional contributions (thin black

lines). Thus we observe higher electron correlations.
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Accordingly, the diagonalized two-orbital reduced density matrices in Fig. 11 (middle

row) share some similarities with the N2 ground state as well (see Fig. S2), e.g. 1π′g + 1π′′g

and 1π′u+1π′′u. But they also show some interesting new features: For example the 1π′u+1π′g

pair follows a similar trend with respect to the singlet and triplet contributions. However,

the previously degenerate triplet components now split towards the dissociation limit: while

the 1√
2
(| ↓, ↑〉+ | ↑, ↓〉) component remains about the same, the | ↑, ↑〉 component increases

at the cost of the | ↓, ↓〉 component, due to the overall spin doublet character of the X 2Σ+
g

state. Accordingly, for R < 1.6 Å, the small singlet contribution 1√
2
(| ↑, ↓〉 − | ↓, ↑〉), as

observed for N2, now slightly changed to around 0.55| ↑, ↓〉 − 0.84| ↓, ↑〉 which contributes

〈S2〉 = 0.08 to the total spin.

Other major changes occur for pairs connected to the electron hole, most importantly

for 3σg + 3σu, where most singlet and triplet contributions are replaced by contributions

that account for the doublet state. Furthermore, as already observed for ωi above, the 3σg

orbital is dominated by up-spin character while 3σu has down-spin character.

The connected part of the generalized correlations in Fig. 13 (middle row) are almost

identical to the N2 case for the 1π orbital pairs. Pairs including 3σ orbitals are smaller

in magnitude for small R but similar at dissociation limit, though the transition operators

are different due to different occupations in the corresponding configurations. The similar

patterns, as observed for the N2 ground state, are still observable but less pronounced.

3. N+
2 B 2Σ+

u excited state

A much more complex picture is observed for the N+
2 B 2Σ+

u excited state (upper row in

Figs. 9 to 11 and 13). Biggest differences are found during bond breaking, i.e. from R ≈ 1.1

to R ≈ 4 Å, which relates to the change of the leading configuration as already apparent in

the CI vector (cf. Fig. 6). The situation at the dissociation limit is almost the same as for

the N+
2 ground state, since both states dissociate into the same atomic fragments (cf. Fig. 2).

Starting the discussion again with the spin state probability (Fig. 9), we see some steep
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changes just after the equilibrium distance (Re = 1.1 Å): The 2σu orbital goes from a high

up-spin occupation (the corresponding curve overlaps to a large extend with the 3σg double

occupation) to double occupation, while the 3σg and 1πu orbitals evolve from a doubly to a

mixture of doubly and singly occupied states. The same effect is observed in Fig. 6, where

the leading configuration switches somewhere shortly before R = 1.5 Å. Accordingly, we see

a peak in the 2σu orbital entropy and fluctuating values for the 3σ and 1π orbital entropies

(Fig. 10).

A closer look to the single occupations reveals high down-spin character in the bonding

3σg orbital, accompanied by up-spin character in the 3σu and all 1π orbitals. Overall a total

up-spin doublet state is retained, just as for the N+
2 ground state. At dissociation limit both

states show the same spin occupations, just with the roles of the, here becoming degenerate,

3σg/u orbitals exchanged.

The mutual information (top row in Fig. 10) is dominated by the 1π′u + 1π′g pair, similar

to the N+
2 X 2Σ+

u ground state. Secondary contributions are quite different for intermediate

R (during bond breaking): The 3σg has increased entropy and is entangled with many

different orbitals. Please note, that the red line represents three orbital pairs, which have

only small differences and are represented as one for better visibility.

The diagonalized two-orbital density matrices (top row in Fig. 11) reflect the more

complex occupations patterns around bond breaking as well. The triplet splitting in the

1π′u + 1π′g is much larger as for the N+
2 ground state and has maximum around 1.8 Å. In

the 3σg + 3σu pair we can see how the 3σg starts for short distances being mainly doubly

occupied, then becomes singly occupied, with down-spin contribution being about twice as

large as up-spin, and ends up with a mixture of single and empty occupation states at the

dissociation limit. At the same time the 3σu evolves from an empty spin occupation towards

single occupation. The correlation functions are quite similar to the ones of the N+
2 ground

state.
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V. SUMMARY AND DISCUSSION

Highly accurate potential energy surfaces for N2 and N+
2 including excited states have

been calculated, both on the MRCI-SD and DMRG level demonstrating the current capa-

bilities. Furthermore we showed how the application of quantum information theory can

give insights about the electronic structure of strongly correlated system. Obviously, to

describe electron correlation in the N2 ground state X 1Σ+
g , the 3σ and 1π orbitals are most

important. While the 2σ orbitals only play a minor role, but are increasingly important for

the energetically higher lying N+
2 ground state X 2Σ+

g and excited state B 2Σ+
u .

By comparing the QIT results between different states and charged species it is easily

possible to locate the electron hole as differentiating different spin multiplicities. We could

show that orbital correlations are primarily between pairs overlapping in space and differing

in symmetry only by gerade/ungerade parity.

Furthermore we can use the diagonalized two-orbital reduced density matrices ρij in

connection with the mutual informations to classify dynamic, non-dynamic and static corre-

lations and the corresponding relevant configurations. Applying such an analysis to strongly

correlated and large systems, may lead to truncation schemes neglecting all dynamic cor-

relations, by not only selecting an active space, but further restricting systematically the

occupations of these orbitals.

In general the QIT quantities have a rather simple and ordered structure for the N2

ground state, but more complex patterns emerge when going to higher excited systems and

states which are more strongly correlated.

ACKNOWLEDGMENTS

We gratefully acknowledge financial support from the International Max Planck Research

School “Functional Interfaces in Physics and Chemistry”. The high performance computing

facilities of the Freie Universität Berlin (ZEDAT) are acknowledged for computing time. O.L.

acknowledges support in part by the Hungarian Research Fund (OTKA) through Grant No

31



NN110360, the National Research, Development and Innovation Office (NKFIH) through

Grant No K120569) and the Hungarian Quantum Technology (HunQtech) through Grant

No 2017-1.2.1-NKP-2017-00001.

[1] R. J. Bartlett, Annu. Rev. Phys. Chem. 32, 359 (1981).

[2] R. Pauncz, Spin Eigenfunctions - Construction and Use (Plenum Press, 1979).

[3] R. J. Bartlett and J. F. Stanton, Reviews in Computational Chemistry: Applications of Post-

Hartree-Fock Methods: A Tutorial., edited by K. B. Lipkowitz and D. B. Boyd, Vol. 5 (VCH

Publishers, 1994) pp. 65–169.

[4] R. J. Bartlett and M. Musia l, Rev. Mod. Phys. 79, 291 (2007).

[5] B. O. Roos, P. R. Taylor, and P. E. Siegbahn, Chem. Phys. 48, 157 (1980).

[6] P. G. Szalay, T. Müller, G. Gidofalvi, H. Lischka, and R. Shepard, Chem. Rev. 112, 108

(2012), pMID: 22204633, http://dx.doi.org/10.1021/cr200137a.

[7] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).

[8] S. R. White, Phys. Rev. B 48, 10345 (1993).

[9] S. R. White and R. L. Martin, The Journal of Chemical Physics 110, 4127 (1999).
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[47] O. Legeza and J. Sólyom, in International Workshop on Recent Progress and Prospects in

Density-Matrix Renormalization (Lorentz Center, Leiden University, The Netherlands, 2004).

[48] G. Barcza, O. Legeza, K. H. Marti, and M. Reiher, Phys. Rev. A 83, 012508 (2011).

[49] G. K.-L. Chan and M. Head-Gordon, The Journal of Chemical Physics 116, 4462 (2002).

[50] G. Moritz, B. A. Hess, and M. Reiher, The Journal of Chemical Physics 122, 024107 (2005).
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D. P. O’Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll,

A. J. Stone, R. Tarroni, T. Thorsteinsson, and M. Wang, “Molpro, version 2012.1, a package

of ab initio programs,” (2012).

34

http://dx.doi.org/ 10.1063/1.4905329
http://dx.doi.org/ 10.1063/1.4905329
http://arxiv.org/abs/https://doi.org/10.1063/1.4905329
http://dx.doi.org/ 10.1103/PhysRevB.82.205105
http://dx.doi.org/10.1063/1.4798639
http://dx.doi.org/ 10.1021/ct501187j
http://dx.doi.org/ 10.1021/ct501187j
http://arxiv.org/abs/http://dx.doi.org/10.1021/ct501187j
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/ 10.1103/PhysRevLett.90.227902
http://dx.doi.org/10.1103/PhysRevB.67.125114
http://dx.doi.org/10.1103/PhysRevB.53.14349
http://www.itp.uni-hannover.de/~jeckelm/dmrg/workshop/proceedings.html
http://www.itp.uni-hannover.de/~jeckelm/dmrg/workshop/proceedings.html
http://dx.doi.org/10.1103/PhysRevA.83.012508
http://dx.doi.org/10.1063/1.1449459
http://dx.doi.org/10.1063/1.1824891
http://dx.doi.org/10.1103/PhysRevLett.96.116401
http://dx.doi.org/ 10.1016/j.jqsrt.2014.05.031
http://dx.doi.org/ 10.1016/j.jqsrt.2014.05.031


[56] R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).

[57] O. Legeza, “Qc-dmrg-budapest, a program for qauntum chemical dmrg calculations,” HAS

RISSPO Budapest (2000-2016).

[58] J. D. Hunter, Computing In Science & Engineering 9, 90 (2007).

[59] K. Huber and G. Herzberg, ”Constants of Diatomic Molecules” (data prepared by J.W.

Gallagher and R.D. Johnson, III) in NIST Chemistry WebBook, NIST Standard Ref-

erence Database Number 69, edited by P. Linstrom and W. Mallard (K.P. Huber and

G. Herzberg, National Institute of Standards and Technology, Gaithersburg MD, 20899,

http://webbook.nist.gov, (retrieved July 21, 2015).).
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