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Abstract

Study and design of magneto-optically active single point defects in semiconductors are rapidly growing

fields due to their potential in quantum bit and single photon emitter applications. Detailed understanding

of the properties of candidate defects is essential for these applications, and requires the identification of

the defects microscopic configuration and electronic structure. Multi-component semiconductors often host

two or more non-equivalent configurations of point defects. These configurations generally exhibit similar

electronic structure and basic functionalities, however, they differ in details that are of great importance

whenever single defect applications are considered. Identification of non-equivalent configurations of point

defects is thus essential for successful single defect manipulation and application. A promising way to

identify defects is via comparison of experimental measurements and results of first-principle calculations.

We investigate a possibility to produce accurate ab initio data for zero-phonon lines and hyperfine coupling

parameters that are required for systematic quantum bit search. We focus on properties relevant for the

possible use of the divacancy defect in quantum bits in 4H-SiC. We provide a decisive identification of

divacancy configurations in 4H-SiC and clarify differences in prior predictions of 4H-SiC divacancy zero-

phonon photoluminescence lines.
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I. INTRODUCTION

The physics of semiconductor point defects is of outstanding importance for controlling their

optical and electrical properties1,2.The study of point defect properties is a field of much active

interest due to recent discoveries of numerous magnetically and optically active defect centers that

can act as a single photon source3–7 or a quantum bit (qubit)8–10. So far, the most thoroughly inves-

tigated point defect for use in qubits are the NV-center in diamond11–14, phosphor in silicon15–17 and

divacancy18–20 in silicon carbide (SiC). Furthermore, numerous other centers in various semicon-

ducting host materials are proposed as potential magneto-optical centers, such as silicon-vacancy

and germanium-vacancy centers in diamond21,22, silicon vacancy in SiC23,24, carbon anti-site va-

cancy pair in SiC25, Ce3+ and Pr3+ ions in yttrium aluminium garnet5,26, Eu and Nd3+ion in yttrium

orthosilicate27,28, Nd3+ yttrium orthovanadate29, defect spins in aluminum nitride30, etc.

To manipulate these centers on single defect level and to reconstruct their Hamiltonian, it is es-

sential to identify the microscopic structure, electronic structure, and spin-configuration of the cen-

ter. State-of-the-art experimental teqchniques used in experimental point defect investigation are

for instance, photoluminescence (PL) or absorption spectroscopy, electron spin resonance (ESR),

deep-level transient spectroscopy (DLTS), and Raman spectroscopy, that probe different character-

istics of the centers. Gathering all the available information about a considered center can provide

an appropriate working model. However, there are numerous unidentified defect centers in most

of the commercially available semiconductors31.

In semiconductors where multiple non-equivalent sites exist in the primitive cells, each point

defect can have several different configurations. These distinguishable configurations exhibit dif-

ferent properties and thus different applicability in qubit and single photon emitter applications.

The identification of such non-equivalent configurations is particularly challenging. For the non-

equivalent configurations of divacancy related qubits in 4H-SiC two contradictory identifications

have been presented, which rely on either the calculated zero-phonon photoluminescence (ZPL)

lines32 or the zero-field splitting parameter (ZFS)33. Furthermore, recently more divacancy re-

lated centers were reported than the possible number of non-equivalent divacancy configurations

in SiC18,19, which makes the identification even more puzzling.

Identification and characterization of point defects are greatly facilitated by first principles

theory. In supercell or cluster models, a small part of the material that embeds a single point defect

is directly modeled in electronic structure calculations. This way many properties of the defects,
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such as spectral properties, charge transition levels, ESR parameters can be obtained, etc. In the

literature, one can find different strategies how these quantities can be obtained in first principles

calculations34–38. However, when comparing computational results to experiments, special care

must be taken to account for numerical uncertainty and limitations in the theoretical methods38.

So far there has been limited discussion about how to generally achieve an accuracy sufficient for

identification of non-equivalent defects. In the present paper, we address this issue.

We assess the accuracy of first principle calculations of ZPL and hyperfine interaction param-

eters to create guidelines for theoretical point defect calculations that allow non-equivalent defect

configurations to be identified. In particular, we consider the divacancy defect in 4H-SiC and con-

sistently identify PL1-PL4 room temperature qubits by comparing convergent magneto-optical

date with the experiment. This defect has been studied with ab initio calculations before, but

the present study helps clarifying previous results that (as discussed above) have not been fully

consistent32,33. However, a main purpose of the present investigation is also to identify a scheme

capable of reliably generating data via high-throughput calculations39,40 useful for identification of,

essentially, any previously unknown point defect. For this intended use, it is imperative to identify

methods that reliably produce sufficiently accurate results, but also take minimal computational

effort.

The rest of this paper is organized as follows. Section II describes the basic properties of SiC

and divacancy point defect in 4H polytype of SiC. In Section III gives details on the first principle

methods used in this work. Section IV presents the results and discussion of our first principles

point defect calculations. In section V, we demonstrate how to use our results to identify divacancy

configurations in 4H-SiC. Finally, section VI summarizes our findings.

II. DIVACANCY IN SIC

SiC is a polytypic semiconductor with more than 250 polytypes synthesized. The most com-

monly used forms are 3C, 4H, and 6H-SiC. The 3C polytype, shown in Fig. 1(a), has cubic symme-

try with a single C and Si atom in the primitive cell. The 4H polytype, in Fig. 1(b), has hexagonal

symmetry and 8 atoms in the primitive cell of which 2 are non-equivalent for both Si and C (see

Fig. 1(a)). The 6H polytype is also of hexagonal symmetry, has 12 atoms in the primitive cell,

and 3 are non-equivalent for both Si and C (see Fig. 1(c)). Hence, a single site defect in 4H has

2 distinguishable configurations, and 3 in 6H. A pair defect then has 4 and 6 configurations, re-
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spectively. The non-equivalent sites in 4H and 6H-SiC are refered to as h and k (4H), and h, k1,

k2 (6H). Here, h refers to a site in an hexagonal-like environment, and k to a cubic-like environ-

ment. In this paper, we focus on the four possible configurations of divacancy in 4H-SiC; hh, kk,

hk, and kh, where the VSi−VC notation is used. For two of these configurations, hh and kk, the

VSi−VC axis of the defect is parallel to the hexagonal axis of 4H-SiC and possess C3v point group

symmetry. The other two, hk and kh, have lower C1h symmetry. hh and kk configurations are

often called as axial configurations, while hk and kh as basal configurations.
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FIG. 1: Structure and configuration of defects in SiC. Fig (a-c) show the primitive cells of 3C,

4H, and 6H-SiC. Red upper-case letters show the stacking of Si-C double layers, while

lower-case letters shows whether the double layers and their immediate surroundings follow a

cubic like (k) or in a hexagonal-like (h) stacking order. Green lower-case letter pairs show

variants of a pair defect. Figure (d) depicts hh divacancy configuration in 4H-SiC, the spatial

distribution of the spin density (orange lobes), and the important neighboring Si and C sites that

can give rise to notable hyperfine interaction. Figure (e) schematically shows the occupancy of

single-particle orbitals in the ground and excited states of the divacancy.
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Due to the C3v symmetry in hh and kk, the dangling bonds of silicon and carbon vacancies form

two fully symmetric a1 and two double degenerate e states, which are occupied by 6 electrons41.

The a1 states are fully occupied, with the one localized on the silicon dangling bonds falling into

the valence band, while the other one is localized on the carbon atoms and appears in the band gap

of 4H-SiC near the conduction band edge. The e state is localized on the carbon dangling bonds

and is located in the middle of the band gap and occupied by two electrons with parallel spin in

the spin-1 ground state the divacancy. The other empty e state falls into the conduction band, as

shown in Fig. 1(e). In the case of basal configurations, the low symmetry crystal field splits the e

states into a′ and a′′ and transforms a1 to a′.

Due to the spin-1 ground state and localized nature of the defect states, a strong dipole-dipole

interaction can be observed between the unpaired electrons which causes a splitting of the spin

sublevels even at zero magnetic field. For the divacancy defect, this zero-field-splitting is approx-

imately 1.3 GHz. In SiC there are two intrinsic paramagnetic nuclei, the spin-1/2 13C with 1.07%

natural abundance and the spin-1/2 29Si with 4.68% natural abundance, which can interact with the

spin of divacancy and cause hyperfine structure in ESR spectrum. The spin density and important

nuclei sites which yields resolvable hyperfine splitting of 10− 100 Mhz are shown in Fig. 1(d).

In the single particle picture, the optically excited state of lowest energy can be constructed by

a spin conserving promotion of the electron from the higher a1 state to the e state, see Fig. 1(e).

Due to the partial occupancy of the eC state, the excited state is Jahn-Teller unstable, which causes

spontaneous distortion of the atomic configurations of axial divacancies. In the many particle

picture, six multiplets form in the triplet excited state that split according to the spin-spin and

spin-orbit interactions. The divacancy in 4H and 6H-SiC has an electronic configuration similar

to that of the divacancy and NV-center in diamond11,18,41,42, thus the many particle picture derived

for the NV-center42–44 can be applied for the divacancy too.

The experimental divacancy related ZPL lines are named the UD-2 group31 and PL1-4 lines18,19,

the electron spin resonance lines as P6/P7 centers45,46.

III. METHODOLOGY

The ZPL line is the energy difference between the ground state and excited state. These states

can be seen in Fig. 1(e). The energy is obtained by using Kohn-Sham (KS) density functional

theory47,48 (DFT). In the excited state calculation, constrained occupation DFT scheme49 is ap-
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plied, and accordingly a KS particle is promoted from the a1 state to the empty e state in the

minority spin channel and self-consistent energy minimization, including geometry relaxation, is

carried out. In absolute values, one cannot expect better than 100 meV accuracy from this scheme,

due to the single Slater determinant description of the excited state. This uncertainty of the the-

oretical method is an order of magnitude larger than the accuracy requirement of non-equivalent

configuration identification (10 meV, which is the typical difference of ZPL energies for the di-

vacancy defect). On the other hand, as the crystal field potential differs qualitatively only from

the second neighbor shell and the defect state localization is decaying exponentially in this region,

the electronic structure of the non-equivalent configurations can be considered as nearly identi-

cal. Hence, ZPL energy differences follow from the potential perturbations acting on the defect

orbitals. Therefore, to identify the non-equivalent configurations, our DFT calculations must cap-

ture those effects that are caused by a perturbing crystal field potential. As the potential has a

direct effect on the density and energy, such identification is likely to be possible through DFT

ZPL energy calculations. In other words, for relative differences of the ZPL energies, one may

expect better than 100 meV in constrained occupation DFT calculations. In the following, this

topic is investigated in details by assessing technical and theoretical limitations of ZPL energy

calculations.

We apply three exchange-correlation functionals in our calculations; the semi-local functionals

of Perdew, Erzenerhof, and Burke (PBE)50 and of Armiento and Mattsson (AM05)51; and the

screened hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE06)52,53. The hybrid functional

is computationally much more expensive than the semi-local functionals, however, the band gap

of semiconductors are closer to experiment54 and accurate results in hyperfine field55 as well as in

zero-phonon line calculations37,49. All functionals are computed using the PBE pseudopotential

labeled 05jan2001 for C and 08april2002 for Si.

The recommended procedure for the HSE06 hybrid functional is to start from a semi-local

density, hence the following scheme is introduced. The ground state is converged by first running

a ground state PBE calculation then ground state HSE06 calculation. For the excited state, first,

an excited state PBE calculation is executed. Then, a single self-consistent ground state HSE06

calculation is performed to obtain a good starting wavefunction for the final HSE06 excited state

calculation.

In practice, we employ the Vienna Ab initio Simulation Package (VASP)56,57, which uses the

plane wave basis set and the projector augmented wave (PAW)58,59 method to describe the KS
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states and handle the effects of the core electrons. Since we need highly accurate results, we

use comparatively high settings for those convergence parameters that are not further discussed in

this study. The stopping criterion for the self-consistent field calculations and for the structural

minimization are 10−6 eV respectively 10−5 eV (energy difference) for the PBE functional. For

HSE06 functional, the settings are instead 10−4 eV and 10−2 eV/A (force difference). The grid

for the Fast Fourier transformation (FFT) is set to twice the largest wave vector in order to avoid

wrap around errors. For the HSE06 functional, the FFT grid for the exact exchange is set to

the largest wave vector. This produces some noises in the forces but good energies. The above-

described settings ensure a numerical accuracy in the order of 1 meV for the calculated total

energies. A Monkhorst-Pack60 k-point grid is used for those calculations that use more k-points

than the gamma point. In the rest this work, unit cell atom counts always refer to the number of

atoms in a pristine supercell, if not otherwise specfied.

The zero-point energy shift of the ZPL energies due to the different vibrational properties of

the ground and excited states is assumed to be small enough to not interfere with our conclusions.

It is neglected in the present study.

For hyperfine field calculations55, we use the implementation included in VASP, which gives

the hyperfine tensor that describes the interaction between nuclear spin and electronic spin. This

interaction produces a small splitting in energy levels which can be measured in experiments.

For zero-field-splitting, we follow the method of Ref.61 that requires Kohn-Sham wavefunctions

as obtained by VASP DFT calculations. Here, we use the plane wave part of PBE wavefunctions

to calculate the zero-field splitting tensor, the one center contributions from the PAW potentials

are neglected. This approximation give an error of a few perecent in the calculated values.61

IV. ACCURATE POINT DEFECT CALCULATIONS

In this section, results from zero-phonon line energy, hyperfine field, and stress calculations are

presented.

1. Supercell size

First, we demonstrate the convergence of ZPL energies on supercell size. We begin by using

supercells that retain the hexagonal symmetry of the primitive cell, the PBE functional, and Γ-point
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sampling of the Brillouin zone (BZ). We fixed the c-axis size of the supercell to 20.25 Å(twice of

the primitive cell in that direction) and varied the lateral size of the cell in the basal directions.

Figure 2 shows how the ZPL energies converge with increasing supercell sizes. With a supercell

of 10 × 10 copies of the primitive cell in the basal directions (ca 31 Å in the a1- and a2-axis)

the ZPL energies appear to converge to within 1 meV. Using this converged distance ≈ 30 Å in

the c-direction as well gives a supercell (10 × 10 × 3) consisting of 2400 atoms. We will use the

converged values at this size as a benchmark for with which to compare other methods.

ZP
L 

en
er

gy
 [e

V
] 

Basal supercell size [Å] 

No. of atoms 
400     576     784    1024   1296   1600 

15.5    18.6     21.7    24.7    27.8    30.9 

hh 
kk 
kh 
hk 

hh 

kk	
kh	
hk	

FIG. 2: Supercell size convergence of ZPL energies of divacancy configurations in 4H-SiC

calculated with the PBE functional and a Γ-point only k-point grid. Scaling is carried out in

hexagonal supercell only in the basal direction. The c-axis size of the supercell is fixed at

20.25 Å. The horizontal axis shows both the number of the atoms in the supercells and the basal

plane lateral size of the supercell are provided. The right axis shows the converged ZPL for the

2400 supercell.

As one can see in Fig. 2, different configurations exhibit different convergence behavior. Axial

configurations, hh and kk, are more sensitive to the supercell size in the basal plane than the low

symmetry basal configurations, hk and kh. As divacancy defect states have their largest expansion

in a plane perpendicularly to the symmetry of the axis of the defect (cf. Fig. 1) the observed
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behavior can be explained by the overlap of the wavefunction of the defect and its periodically

repeated images, due to the periodic boundary condition. The hh and kk defects extend most in

the basal plane, thus, their self-overlap error sensitively depends on the basal plane lateral size of

the supercell. For kh and hk the overlap is smaller, since these configurations have their largest

expansion in a plane with an angle to the basal plane, thus they are less sensitive to the supercell

size in the basal plane. It is clear that the ZPL energies only converges at very large supercell sizes.

Note that, the observed finite size dependence is a combination of several effects, including the

convergence of the charge density of 4H-SiC, exponential decrease of the self-interaction wave-

function of the defect, and the relaxation of the strain cased by the defect as the supercell size is

increased. In the following subsections, we investigate these effects separately.

2. Brillouin zone sampling

In contrast to the straightforward study above of the convergence of ZPL on supercell size in a

Γ-only k-point calculation, we now turn to convergence in smaller cells with higher Brillouin zone

sampling. While a smaller supercell will increase errors due to vacancy-vacancy interaction, the

aim is to investigate if one can still reach results that are accurate enough with significantly less

computational overhead. Fig. 3 shows the PBE ZPL energies for different supercells of hexagonal

and rectangular symmetry. As can be seen, the level of BZ sampling is important for all the con-

sidered supercells. The order of the ZPL energies of the non-equivalent divacancy configurations

largely depends on the k-point convergence. The 576 atom supercell requires a 2 × 2 × 2 BZ

sampling to provide the convergent order of PL lines, even though the absolute values are slightly

smaller than for those convergent 2400 atom supercell.

Fig. 4 shows the final result after k-point convergence of different hexagonal and symmetric

supercells. As can be seen, calculations with converged BZ sampling provide the same order for

the ZPL line energies as the fully converged 2400 atom supercell for supercells of 96 atoms and

larger. On the other hand, the absolute value of the ZPL energies can vary 50 - 100 meV with

supercell size.

These results indicate that careful convergence in k-point density can produce the same order

of ZPL energies for smaller supercells than calculations carried out with Γ-point sampling. The

only exception is the hexagonal 72 atom supercell, where either the overlap of the defect states or

the point defect caused stress turned to be ruinous.
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FIG. 3: Brillouin zone sampling convergence of ZPL energies for the divacancy defects in

different supercell models of 4H-SiC. The right axis shows the converged ZPL for the 2400

supercell.

The presented calculations use a consistent k-point set between the relaxation and ZPL calcu-

lation. However, relaxations can be done using only the Γ-point, with a relative change of the ZPL

of only 2%-4%. In contrast, the higher k-point sampling is critical for the ZPL energy calculations.
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0.58  0.3            5.52           9.28  0.29                                  3.54              

FIG. 4: K-point convergent divacancy ZPL energies for different (a) hexagonal and (b)

rectangular, as close to cubic as possible, supercells. The right axis shows the converged ZPL for

the 2400 supercell. Computational cost is shown on the top axis. {n} means n× n× n k-points.

The presented core-hours are the total amount of computer time needed to calculate one ZPL

value on a cluster with 2.2 GHz processors.

This may seem surprising at first, but we speculate that the widening of the bands beyond the zero

dispersion of the gamma calculation is important to reproduce the correct physics.

Next, we study the k-point convergence of the ZPL energies calculated by the HSE hybrid

functional. Due to the large computational cost of hybrid calculations, we are unable to carry out a

study of convergence as thorough as for PBE. Here, we investigate the BZ sampling convergence

for the smallest supercell that is sufficient for reproducing the lines in right order. The results for

cubic 96 atoms and hexagonal 128 atoms are presented in Fig. 5. As can be seen, the HSE06

functional exhibits similar k-point convergence as the PBE functional. The absolute values of the

ZPL are about 0.2 eV larger for the computational heavy HSE06 functional than compared with

the PBE functional, also the hh and kk switch order compared to the PBE results. The difference

between the ZPL results for the 96 and 128 atoms supercell is smaller for the HSE06 functional

than for the PBE functional. This would suggest that the HSE06 functional converges faster with

respect to supercell size than the PBE functional.
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FIG. 5: Brillouin zone sampling convergence of the HSE06 ZPL energies of divacancy

configurations in a rectangular 96 atoms and hexagonal 128 atoms supercell of 4H-SiC.
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FIG. 6: Divacancy ZPL energies calculated with various functionals using different strategies.

Values for PBE, AM05, and HSE06 have used those functionals for all steps in the calculation.

Values specified as ’A on B’ utilize the B functional for all relaxations, and the A functional for

the final static calculation to determine the ZPL.
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3. Functional and geometry dependence

Next, we investigate how the choice of the functional and the way how the geometry optimiza-

tion is performed affect the calculated ZPL energies. Fig. 6 shows the results of PBE, AM05,

and HSE06 ZPL calculations, as well as PBE, AM05, and HSE06 ZPL energies as obtained on

different geometries, i.e. PBE, AM05, or HSE06 relaxed structures. From these results, it is clear

that the functional used for the relaxations has a smaller effect on the results than the functional

used in the final static calculation of the ZPL energies. Most importantly, the functional used

for relaxation does not change the order of the ZPL lines. While the functional, which is used

to calculate the ZPL energies, has an important effect both on the absolute values as well as on

the relative positions of the ZPL lines. Concerning the semi-local functionals, use of the PBE

functional in all steps of the calculation brings the results closer to the HSE06 values compared

to AM05. However, this appears to be related to a cancellation of error effect, since, as shown in

Table I, the AM05 lattice constants are closer to the experimental ones than PBE.

In addition to the functionals shown in Fig. 6, we have also investigated the LDA functional

and only comment on the results briefly. Somewhat surprisingly, the LDA results are in significant

disagreement with the other functionals, with the final ZPL values of 1.50 for hh, 1.55 for hk,

1.50 for kh, and 0.87 for kk. Hence, LDA does not reproduce the experimental order, and, places

one of the lines far from the others (0.7 eV away). This can be explained by the underestimated

lattice parameter of LDA. Redoing the LDA calculation with the only difference of constraining

the lattice constant during relaxation to the PBE value, gives results much closer in agreement

with the others functionals (0.77, 0.83, 0.79, 0.78 for hh, hk, kh, and kk respectively). Hence, it

appears an incorrect geometry specifically towards a too small lattice constant is disastrous for the

end results. This warns against indiscriminate use of LDA in the determination of ZPL lines.

TABLE I: Lattice parameter for 4H-SiC for different functionals compared to experiment.

Lattice parameter LDA HSE06 Exp AM05 PBE

a 3.059 3.071 3.073 3.077 3.094

c 10.015 10.052 10.053 10.070 10.125
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4. Summary on ZPL line calculations
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FIG. 7: Comparison of convergent theoretical ZPL energies with the experimental values19.

Identification of the divacancy related PL centers in 4H-SiC is done based on the results of

section V.

To summarize our results on ZPL calculations, we depict the experimental and theoretical re-

sults of different computational strategies in Fig. 7. Due to our findings in the previous section, re-

laxing the structure with PBE, or perhaps preferably AM05, combined with a single self-consistent

HSE06 calculation is a fast alternative to running full relaxation with HSE06. As can be seen, in

absolute terms the HSE06 functional provides excellent agreement with the experiment values

even when PBE optimized geometries are used. PBE ZPL energies exhibit a notable finite-size

effect, while the convergent values still fall 20% below the experimental and HSE06 values. Con-

cerning the order of the PL lines, PBE and HSE06 functionals disagree in the order of the axial

divacancy configurations in all the different computational approaches. On the other hand, the

experimental energy difference between the axial, high symmetry configurations is only 1 meV,

which cannot be achieved by any of ZPL energy calculations strategies, partially due to the neglect

of the zero-point energy contribution. Therefore, we cannot decide if the HSE06 or the PBE func-

tionals perform better in non-equivalent configuration identification based on ZPL energies. On

the other hand, due to the non-local nature of HSE06 functional, it may provide a better descrip-

tion of the decaying region of the defect states with the rest of the defect states that can positively
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affect the predicted order of the ZPL energies.

The decreased computational time from running PBE functional on 96 atoms (5500 core-hours)

instead of 2400 atoms (9300 core-hours) is 40%. Running HSE on PBE for 1 k-point and 1536

atoms took approximately 36000 core-hours compared with HSE on PBE for 4 × 4 × 4 k-points

and 96 atoms which took approximately 27000 core-hours. This is a speedup of 25%. These core-

hours are the total amount of computer time needed to calculate one ZPL value on a cluster with

2.2 GHz processors.

Finally, our results indicate that the computational cost of large HSE06 point defect calculations

can be reduced substantially by using PBE or AM05 relaxed geometries with reasonable additional

uncertainties both in the absolute values and relative differences of the ZPL energies.

A. Hyperfine field calculations

In this section, we discuss the methodological requirements needed for accurate hyperfine ten-

sor calculations. As it was established previously, the most accurate values can be obtained by

HSE06 functional including core state polarization effects55. Previously, however, no supercell

size and BZ sampling tests were carried out.

First, we investigate the k-point convergence of hyperfine tensor elements. We use the PBE

functional and study different supercell sizes. In the tests we consider two hyperfine parame-

ters, the isotropic Fermi-contact contribution, AFc = (Axx + Ayy + Azz) /3, and the dipole-dipole

splitting, Add = |(Axx + Ayy) /2− Azz|. The obtained convergence curves for a set of 29Si and
13C sites close to a hh divacancy are depicted in Fig. 8. As one can see different sites exhibit

different convergence behavior, which can be explained by the fact that the defect has different

extension in different directions. In the basal plane, the extension is larger thus the defect states

may require denser k-point grid in this direction. Furthermore, one can see that the criteria of

complete convergence is similar to the criteria obtained for the ZPL energies.

Next, we investigate the supercell size dependence of AFc and Add hyperfine parameters. To do

so we calculate the deviation of hyperfine parameters for numerous sites from the values obtained

in a 2400 atom supercell calculation. In Fig. 9, relative errors of AFc and Add are shown for

three smaller supercells. For all considered sites, the distance from the silicon vacancy site of the

divacancy is also provided in the figure. As one can see, the relative error in the Fermi contact

term increases dramatically with increasing distance of the divacancy and nuclear spins. Similar
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FIG. 8: Brillouin zone sampling grid size convergence of hyperfine parameters for different 29Si

and 13C sites in 128 and 576 atom supercells. (a) and (b) show the Fermi contact parameter, while

(c) and (d) show the dipole-dipole splitting for 128 and 576 atom supercells, respectively. The

considered nuclei sites are marked in Fig. 1(d). The right axis shows the hyperfine parameters for

the 2400 supercell.

tendency can be observed for the dipole - dipole hyperfine term. Furthermore, relative errors

drastically decrease with increasing supercell size. The mean relative errors for different supercells

are provided in Table II. Note that substantial errors were obtained even in the 128 atom supercell,

while the 576 atom supercell results are nearly identical with the absolutely convergent 2400

atom supercell results. These observations can be explained by the overlap of the state from the

defect and its replicas. As further hyperfine interaction of the nuclei sensitively depends on the
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spin density localization in the farther neighbor shells, where defect state overlap can occur, they

exhibit an enhanced finite size effect.
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FIG. 9: Relative error of the calculated (a) Fermi contact and (b) dipole-dipole hyperfine

interactions strength for various sites around a hh divacancy in 4H-SiC. On the horizontal axis,

the distances of the considered sites from the silicon vacancy site of the divacancy are given.

Calculations were carried out in 72, 128, and 576 atom supercell by using the PBE functional.

In summary, our results indicate that accurate hyperfine field calculations require supercells as

large as 576 atoms or ≈ 20 Å lateral size. In smaller supercells, such as 128 atom supercell, only

closest hyperfine field of the nuclei can be determined with reasonable accuracy.

B. Defect induced stress in supercell calculations

Point defects induce a distortion in their host crystal, which relaxes with increasing distances

from the point defects. In finite supercell models, the size of the model is usually not sufficient to

17



TABLE II: Mean relative error (MRE) of the hyperfine interaction parameters presented in Fig. 9.

Deviation measured from the hyperfine parameters obtained in absolutely convergent 2400 atom

supercell calculations.

Supercell MRE of AFc [%] MRE of Add [%]

72 48.0 72.6

128 15.3 25.5

576 0.99 0.81

accommodate completely the induced strain field around a point defect, thus the atomic configu-

ration of the defect cannot reach the single defect configuration in such calculations. This finite

size effect also manifest itself as an artificial stress appears at the supercell surfaces. Here, we

investigate how the induced stress relaxes with increasing supercell size.
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FIG. 10: Trace norm of the diagonalized stress tensor measured at the borders of different

supercells of 4H-SiC embedding single divacancy defects.

As can be seen in Fig. 10, the stress indeed relaxes with increasing supercell size, however,

it does not reach zero even in the largest 2400 atom supercell. Furthermore, the small difference
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between the 576 and 2400 atom supercell results may suggest that 576 atom supercell is convergent

in terms of stress.

In order to make a rough estimate how the observed stress affects the ZPL energies, we imagine

that the NV center is subject to 10 kbar external pressure, which is approximately the difference

of the stress observed in the smallest and largest supercells. By using the experimental pressure

dependence of the ZPL energy, 0.575 meV/kbar62, we obtain 5.75 meV. In SiC the effect could be

larger, due to the smaller bulk modulus of SiC, however, presumably still remains in the order of

10 meV. Therefore, we conclude that the stress has a minor effect on the calculated ZPL energies.

V. IDENTIFICATION OF DIVACANCY RELATED ZERO-PHONON LINES IN 4H-SIC

In this section, we present an example of how accurate ZPL, ZFS, and hyperfine field splitting

calculations can be used for identification of the divacancy configurations in 4H-SiC. We now

consider a hypothetical case where one has been given the experimental ZPL lines in Table III

for the four different defect configurations. Our aim is to identify the type of defect (vacancy,

divacancy, interstitial, etc.), and match each line to a corresponding configuration (hh, hk, kh, and

kk.)

First, the variation of ZPL energies between different defect types are usually on a scale > 100

meV. Hence, it should be straightforward to make the identification of defect type with access to

k-point-converged results for HSE06 for the 96 atom unit cell with the geometry converged using

PBE or AM05. Even the PBE results for 96 atom supercell could work to identify the defect type,

even though the absolute error is larger, the relative error is on the same scale (cf. Fig. 3(b) and

Fig. 5(a)). Next, we turn to the identification of the defect configuration corresponding to each

line. The conclusion from the present work is that the accuracy of the ZPL energies with the

methods described here are not of sufficient quality to identify the configurations from them alone

(cf. Fig. 7). As has been discussed above, while PBE predicts the correct order for the ZPL, HSE06

does not. However, if we in addition to the ZPL also have experimental results for the ZFS and the

hyperfine tensor, they can be used to aid the identification. These quantities require calculations

using HSE06 with one k-point and a supercell converged in size (as described in Sec. IV A and

Ref.55,61). For the divacancy, we use 1538 atom supercell (8× 8× 3) with 24.7× 24.7× 30.4 Å3

volume, with Γ-point sampling. This calculation is converged in the c-axis direction and nearly

converged in basal directions. To reduce the demand of such calculations, we use PBE relaxed

19



atomic configurations and single self-consistent HSE06 calculations. This calculation provides

accurate hyperfine and ZFS results and also increases the accuracy of the ZPL lines. The results in

Table III show that the added data and accuracy is sufficient to identify each line. The ZFS result

for kh is far from experiment, this could be due to the neglect of the spin-orbit contribution.

Hence, we suggest a two-step process for defect identification. First, a database is needed for

ZPL lines for all relevant defects and configurations, produced by PBE calculations for 96 atom

supercells with 4×4×4 BZ-sampling at a cost of 300 core hours/defect configuration on a cluster

with 2.2 GHz processors. This database hopefully allows the identification of different defect

type. Second, to identify the defect configuration requires additional calculations of ZFS and the

hyperfine parameters. To produce accurate results, an HSE06 calculation on 1536 atom supercell,

with Γ-point sampling, relaxed using PBE functional is needed. This also produces more accurate

ZPL at a total cost of ca 35000 core hours/defect configuration.

To identify the defect, first, we chose an affordable but sufficiently accurate method to calculate

all the necessary parameters. By studying the ZPL data presented in Fig. 7, one can identify kh

and hk either from the PBE or HSE06 functional results. Even the results from a small supercell

with high k-point set can identify the different configuration. But the hh and kk identification

is conflicting between the functionals, then one needs other properties such as ZFS or hyperfine

tensor to be sure. As we have seen, the HSE06 functional is required for accurate hyperfine tensor

calculations55 and also provides better results for the ZPL energies, due to its non-local nature.

Furthermore, large supercells have many advantages that affect all the considered quantities and

are needed for calculating accurate hyperfine tensor, even doe they are more computational de-

manding. Here, we use 1538 atom supercell (8× 8× 3) with 24.7× 24.7× 30.4 Å3 volume, with

Γ-point sampling. This calculation is convergent in the c-axis direction and nearly convergent in

basal directions. In this non-completely convergent calculations small uncertainties are expected,

e.g. 10 meV in the ZPL energies, see Fig. 2, especially when axial and basal configurations are

compared. To reduce the demand of such calculations, we use PBE relaxed atomic configurations

and single self-consistent HSE06 calculations. ZFS is calculated using the method presented in

Ref.61. This property is assumed to have the same convergence as hyperfine field. The results of

these calculations are summarized in Table III.

Comparing with prior work, our identification agrees with that by Falk et al.33, which uses the

ZFS parameter and ab initio simulations. The ZFS parameter was calculated using the data from a

1200 atom supercell, with Γ-point sampling, using the PBE functional. Our computational results
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TABLE III: Identification of divacancy related PL and ESR centers in 4H-SiC.

Configuration PL line18,19 ESR45,46 Calc. ZPL Exp. ZPL19 Calc. ZFS Exp. ZFS19 Calc. Az Exp. Az
63

hh PL1 P6b 1.056 1.095 1.329 1.336 9.06 9.2

kk PL2 P6’b 1.044 1.096 1.307 1.305 9.99 10.0

kh PL3 P7’b 1.081 1.119 1.314 1.222 – –

hk PL4 P7b 1.103 1.150 1.363 1.334 – –

also agree with a calculation by Gordon et al.32 using the HSE06 functional on a 96 atom supercell

with 2× 2× 2 k-point grid. As the authors remarked it is not possible to use only ZPL to identify

the different configurations due to the low accuracy of the calculations. The HSE06 functional

predicts the wrong order and as discussed in the present work more accurate calculations do not

resolve this but additional properties is needed for a correct identification.

VI. SUMMARY

This work discusses how to appropriately use ab initio calculations to facilitate identification of

defect types and configurationsin semiconductors. Specifically, we have shown how to correctly

identify the different non-equivalent divacancy configurations in 4H-SiC using ZPL, ZFS, and

hyperfine field splitting calculations.

The value and order of the zero-phonon lines are dependent on the choice of functional, the way

the geometry is optimized, supercell size, and k-points density. A comparably small supercell that

has been converged with respect to the number of k-points produces sufficient accurate results at

lower computational cost than the typical setup of a large supercell with one k-point. The absolute

value of the zero-phonon line energy depends strongly on the lattice constant. A smaller lattice

constant gives larger zero-phonon line energy and vice versa. The functional affects both the order

and absolute value. It turns out that using only ZPL data is not enough to successfully identify

the different non-equivalent configurations, but ZFS and hyperfine field can provide additional

information.

For hyperfine field, the size of the supercell is the most important factor. Close to the defect, the

values do not vary as the supercell size changes. But as the supercell size decreases, the hyperfine

field gets less accurate the further away from the defect one calculates it.
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The approach that produces both most accurate zero-phonon lines and hyperfine field values,

at an affordable cost, is to use a large enough supercell that only Γ-point sampling is needed,

relax it with PBE or AM05 functional, and run a single self-consistent HSE06 calculation. Using

this proposed algorithm, we have shown how to correctly identify the different non-equivalent

divacancy configurations in 4H-SiC.
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