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Abstract

We present a measurement of azimuthal correlations between inclusive J/y and charged hadrons in
p—Pb collisions recorded with the ALICE detector at the CERN LHC. The J/y are reconstructed at
forward (p-going, 2.03 < y < 3.53) and backward (Pb-going, —4.46 < 'y < —2.96) rapidity via their
Ut~ decay channel, while the charged hadrons are reconstructed at mid-rapidity (|17| < 1.8). The
correlations are expressed in terms of associated charged-hadron yields per J/y trigger. A rapidity
gap of at least 1.5 units is required between the trigger J/y and the associated charged hadrons.
Possible correlations due to collective effects are assessed by subtracting the associated per-trigger
yields in the low-multiplicity collisions from those in the high-multiplicity collisions. After the
subtraction, we observe a strong indication of remaining symmetric structures at A@ ~ 0 and A@ ~
7, similar to those previously found in two-particle correlations at middle and forward rapidity. The
corresponding second-order Fourier coefficient (v,) in the transverse momentum interval between 3
and 6 GeV/c is found to be positive with a significance of about 5o. The obtained results are similar
to the J/y v, coefficients measured in Pb—Pb collisions at /sy = 5.02 TeV, suggesting a common
mechanism at the origin of the J/y v,.
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1 Introduction

The measurement of angular correlations between particles produced in hadron and nucleus collisions
is a powerful tool to study the particle production mechanisms. Usually the two-particle correlation
function is expressed in terms of differences in the azimuthal angle (A@) and pseudorapidity (An) of
the emitted particles. In minimum-bias proton—proton (pp) collisions, the dominant structures in the
correlation function are a near-side peak at (A@,An) ~ (0,0) and an away-side ridge located at A ~
7 and elongated in An [1]. The near-side peak originates from jet fragmentation, resonance decays and
femtoscopic correlations. The away-side ridge results from fragmentation of recoil jets. In collisions of
heavy ions, the two-particle correlation function exhibits additional long-range structures elongated in
An [2]. These structures are usually interpreted as signatures of collective particle flow produced during
the hydrodynamic evolution of the fireball. They are analyzed in terms of the Fourier coefficients of
the relative angle distributions. Assuming factorization, these coefficients are then related to the Fourier
coefficients (v,) of the particle azimuthal distribution relative to the common symmetry plane of the
colliding nuclei’s overlap area.

The discovery of a near-side ridge in high-multiplicity pp [3] and p—Pb [4] collisions has increased the
interest in two-particle angular correlations in small collision systems. These discoveries were followed
by the observation that the near-side ridge in p—Pb collisions is accompanied by an away-side one [3,
6]. Long-range structures have also been reported in two-particle correlations in d—Au collisions at
RHIC [7,8]. Further studies using multi-particle correlations have proven that the observed long-range
correlations are of a collective origin [9-{11]]. Moreover, the transverse-momentum and particle-mass
dependencies of the v, coefficients in p—Pb collisions have been found to be similar to those measured
in A—A collisions, suggesting a common hydrodynamic origin of the observed correlations [12, [13].
Alternative interpretations, including Color-Glass Condensate based models [14] and final-state parton-
parton scattering [[15], have also been proposed. Long-range correlations of forward and backward muons
with mid-rapidity hadrons have also been found in p—Pb collisions at a centre-of-mass energy per nucleon
pair \/syn = 5.02 TeV [16]. The results show that these correlations persist across wide rapidity ranges
and extend into the high muon transverse-momentum interval, which is dominated by decays of heavy
flavours.

In pp collisions, the J/y resonance is formed mainly from pairs of ¢ and ¢ quarks produced in hard
scattering reactions during the initial stage of the collision. The theoretical models describing the J/y
production combine calculations of the production of cC pairs within a perturbative Quantum Chromo-
dynamics approach with the subsequent non-perturbative formation of the cC bound state [17]. In p—Pb
collisions, the production is affected by the modification of parton distribution functions inside the nu-
cleus [18] as well as possible energy loss and inelastic scattering inside nuclear matter [19,20]. In A-A
collisions, there are two additional competing phenomena that influence the J/y production. First is the
suppressed production due to the dissociation of the cC pairs in the quark-gluon plasma [21]. Second
is the J/y enhancement via recombination of charm quarks thermalized in the medium [22, [23]. The
recombination is expected to become prevalent in central collisions at the LHC energies.

Recently, the ALICE Collaboration has published a precise measurement of the second-order Fourier
coefficient, v, of the azimuthal distribution of the J/y production in Pb—Pb collisions at /sxy = 5.02
TeV [24]. The results show significant v, in central and semi-central collisions. The measured J/y v, at
low and intermediate transverse momentum can be qualitatively described by a transport model in which
the J/y azimuthal anisotropy is inherited from that of recombined charm quarks [23, 26]. However, at
higher transverse momentum the data still indicates significant v, while the transport model predicts sig-
nificantly smaller values coming mostly from path-length dependent suppression in the almond-shaped
interaction region of the colliding nuclei and from non-prompt J/y produced from b-hadron decays
assuming thermalized b quarks. Given these results in Pb—Pb collisions, it is of interest to study the J/y-
hadron azimuthal correlations also in the smaller p—Pb system. The recombination of charm quarks, if
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any, should have much smaller impact, due to the smaller number of initially produced charm quarks with
respect to Pb—Pb collisions. The small system size should not lead to a sizeable path-length dependent
suppression. Nevertheless, the study of the J/y-hadron azimuthal correlations could allow to determine
whenever J/y production is affected by the medium possibly created in these collisions [27-29].

In this Letter, we present results for long-range correlations between forward (p-going, 2.03 <y < 3.53)
and backward (Pb-going, —4.46 <y < —2.96) inclusive J/y and mid-rapidity charged hadrons in p-Pb
collisions at /sxy = 5.02 and 8.16 TeV. Inclusive J/y refers to both prompt J/y (direct and decays from
higher mass charmonium states) and non-prompt J/y (feed down from b-hadron decays).

2 Experimental setup and data samples

A detailed description of the ALICE apparatus can be found in Ref. [30]. Below, we briefly describe the
detector systems essential for the present analysis.

In the following, 1 and yj,, Will denote the pseudorapidity and rapidity in the ALICE laboratory system.
The muons are reconstructed in the muon spectrometer covering the range of —4 < 1 < —2.5. The
spectrometer contains a front absorber located between 0.9 and 5 m from the nominal interaction point.
The absorber is followed by five tracking stations, each made of two planes of Cathode Pad Chambers.
The third station is placed inside a dipole magnet with 3 Tm field integral. The tracking stations are
followed by an iron wall with a thickness of 7.2 interaction lengths and two trigger stations, each one
consisting of two planes of Resistive Plate Chambers.

The position of the interaction point is obtained using the clusters reconstructed in the Silicon Pixel
Detector (SPD) [31),132]. The SPD is located in the central barrel of the ALICE apparatus and operated
inside a large solenoidal magnet providing a uniform 0.5 T magnetic field parallel to the beam line. The
SPD consists of two cylindrical layers which cover |n| < 2.0 and |n| < 1.4 with respect to the nominal
interaction-point, for the inner and outer layer, respectively. The associated charged hadrons at mid-
rapidity are reconstructed via the so called SPD tracklets, short track segments formed from the clusters
in the two layers of the SPD and the primary vertex [32].

The VO detector [33] consists of two rings of 32 scintillator counters each, covering 2.8 < n < 5.1
(VO-A) and —3.7 < n < —1.7 (VO-C), respectively. It is used for triggering and event-multiplicity
estimation.

The data samples presented here were collected during the 2013 and 2016 p—Pb LHC runs. The collision
energy was /snn = 5.02 and 8.16 TeV for the 2013 and 2016 data samples, respectively. Part of the
5.02 TeV data were collected during the 2016 p—Pb run. Data with both beam configurations, namely
Pb-nucleus momentum (denoted as Pb—p collisions) or proton momentum (denoted as p—Pb collisions)
oriented towards the muon spectrometer, have been analyzed. The asymmetric beam energies, imposed
by the two-in-one LHC magnet design, resulted in collisions whose nucleon-nucleon centre-of-mass
reference system is shifted in rapidity by 0.465 in the direction of the proton beam with respect to the
ALICE laboratory system. The data were taken with a trigger that required coincidence of minimum-bias
(MB) and dimuon triggers. The MB trigger was provided by the VO detector requesting a signal in both
VO0-A and VO-C rings. Its efficiency is found to be about 98% [34]. The dimuon trigger required at least a
pair of opposite-sign track segments in the muon trigger system, each with a transverse momentum (pt)
above the threshold of the online trigger algorithm. This threshold was set to provide 50% efficiency for
muon tracks with pr = 0.5 GeV/ec.

The collected data samples of p—Pb and Pb—p collisions at 5.02 TeV (8.16 TeV) correspond to inte-
grated luminosities of 8.1 and 5.8 (8.7 and 12.9) nb~!, respectively. The maximum interaction pile-up
probability ranged up to 3% and 8% during 2013 and 2016 data taking, respectively.
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3 Event, track and dimuon selection

The beam-induced background is rejected by requiring that the timing signals from both rings of the
VO detector are compatible with particles coming from collision events. Events containing multiple
collisions (pile-up) are rejected by requiring one single interaction vertex reconstructed in the SPD and
by exploiting the correlation between the number of clusters in the two layers of the SPD and the number
of the reconstructed SPD tracklets.

The longitudinal position of the reconstructed primary vertex (zy) is required to be within +10 cm from
the nominal interaction point. The reconstructed SPD tracklets are selected by applying a zyx-dependent
pseudorapidity cut. The cut is adjusted to exclude the contribution from the edges of the SPD where the
detector acceptance is low. For example, we select tracklets within —1.8 <1 < 0.5, —1.3 <1 < 1.3 and
—0.5 < n < 1.8 for events with zy = 10, 0 and —10 cm, respectively. The contribution from fake and
secondary tracklets is reduced by applying a |A®| < 5 mrad cut on the difference between the azimuthal
angles of the clusters in the two layers of the SPD with respect to the primary vertex. With this cut, the
mean pr of the selected charged hadrons is found to be approximately 0.75 GeV/c [[16].

The tracks reconstructed in the muon spectrometer are required to emerge at a radial transverse position
between 17.6 and 89.5 cm from the end of the front absorber in order to avoid regions with higher material
budget. The tracks reconstructed in the tracking chambers are identified as muons by requiring their
matching with corresponding track segments in the trigger chambers. Background tracks are removed
with a selection on the product of the total track momentum and the distance of closest approach to
the primary vertex in the transverse plane [35]. The selected dimuons are defined as pairs of opposite-
sign muon tracks having —4 < yﬁ{f < —2.5, transverse momentum p‘TL“ between 0 and 12 GeV/c and
invariant mass M, between 1 and 5 GeV/c?. Only events with at least one dimuon satisfying these
selection criteria are considered.

The data samples are split into multiplicity classes based on the total charge deposited in the two rings
(VO-A and VO-C) of the VO detector (VOM) [34]. The high-multiplicity (low-multiplicity) event class is
defined as 0-20% (40-100%) of the MB trigger event sample.

4 Analysis

The My, distribution in each event-multiplicity class and p#“ bin is fit with the combination of an
extended Crystal Ball (CB2) function for the J/y signal and a Variable-Width Gaussian (VWG) function
for the background [36]. The tail parameters of the CB2 function were fixed to the values used in [37,38].
The J/y peak position and width were obtained from the fit in the 0—-100% event class and fixed to these
values in the other event-multiplicity classes. Examples of the My, fit in the 0-20% and the 40-100%
event classes in the 3 < p#“ < 6 GeV/c interval are shown in Fig[Il

The angular correlations between J/y and charged hadrons are obtained from the associated-particle
(SPD tracklets) yields per dimuon trigger. The yields are defined as

2 n7i MU
Yi(thX7Myy7pfftu7A(p7An) — i 1 - d N;llssoc(zvthIJLHPT )
Ntlrig(ZVtXaM[J[JapT ) dA(pdAT'
1 SEi(thX7M[,L,LL7p’Ii“m7A(p7An)

- — , ; )]
Ntlrig(ZVtxaM[J[Jap’li‘tu) MEI(ZVtx,M,U.,U.,p##aA(paAn)

where Néig (Zvixs My, p#“ ) is the number of dimuons, N (Zvix; Mup, p#“ ) is the number of associated
SPD tracklets corrected for acceptance and combinatorial effects (as shown in the second line of the
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Fig. 1: The M}, distribution in the 3 < p#” < 6 GeV/c interval fitted with a combination of a CB2 function for
the signal and a VWG function for the background, for high-multiplicity (left panel) and low-multiplicity (right
panel) p—Pb collisions at ,/syn = 8.16 TeV.

equation and described below), A@ and An = yﬁﬁ — Nuacklet are the azimuthal angle and (pseudo)rapidity
difference between the trigger dimuon and the associated SPD tracklet. The yields are calculated sepa-
rately in each event-multiplicity class (index i) and 1 cm-wide zy interval. The distribution
dstiarne(ZVtX’Mll#’pfftu)
dApdAn

SEi(zvtx,Muu,péL“,A(PaAﬂ) =

is the yield of associated SPD tracklets from the same event. The distribution
d2Nrir1ixed(ZVtX7Muuap'li“m)

MEi(zth,Muu,p!fm,A(p,AT]) = (Xi(thxaMlvllvlap’li“m) dA@dAn

is constructed using the event-mixing technique, i.e. combining dimuons from one event with SPD track-
lets from other events selected in the same event-multiplicity class and zy interval. It serves both to
correct for detector acceptance and efficiency and to take into account the combinatorial background.
The normalization factor @' (zyx, Myy, py') is defined as 1/(d*NZ ;. (zvixs My, p" ) /dA@dAT) in the
An region corresponding to the maximal acceptance [16].

Within each event-multiplicity class and bin of My, p#“ , A and An, the yields Y’ averaged over zy
are obtained by fitting the distribution Y iNtrig (zvix'ME(zyx) to the distribution SE'(zy). A Poisson
likelihood fit is used in order to properly deal with the cases of low number of tracklets. Then, the
average yields are projected on the A axis in the range of 1.5 < |An| < 5 using the method described
in [16].

In order to extract the yields per J/y trigger, the yields per dimuon trigger in each event-multiplicity
class, p#” and A@ bins are fit as a function of My, using the following superposition

s . B .
1 Yp(Myy), 2

YiMy,) = —— —
(Myu) S+B v SiB

where § and B are the number of J/y and the background dimuons in each bin of M, obtained from
the invariant mass fit (using a CB2 function for the J/y signal and a VWG function for the background)
described above, Yy, is the associated yield corresponding to the J/y trigger and Y(Mp,,) is a second-
order polynomial function aimed to describe the associated yields corresponding to the background. The
fit range is chosen between 1.5 and 4.5 GeV/c?. Examples of fits in high-multiplicity and low-multiplicity
event classes are shown in Fig. 2l
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Fig. 2: Example of associated tracklet yields per dimuon trigger in the 3 < p#” < 6 GeV/c interval for high-
multiplicity (left panel) and low-multiplicity (right panel) p—Pb collisions at \/sxy = 8.16 TeV. The result of the
fit with the function from Eq. @) is represented with the blue solid line. The dashed red line corresponds to the
associated tracklet yields per background dimuon.

Figure 3] shows the obtained associated tracklet yields per J/y trigger for p—Pb and Pb—p collisions at
V/SNN = 5.02 and 8.16 TeV. As expected, in low-multiplicity collisions we observe a significant corre-
lation structure on the away side (Fig.[3| top panels), presumably originating from the fragmentation of
recoil jets. In high-multiplicity collisions (Fig. 3l middle panels), a possible enhancement on both near
(Agp =~ 0) and away (A@ =~ ) side can be spotted on top of the away-side structure. In order to isolate
possible correlations due to collective effects between the J/y and the associated tracklets, we apply the
same subtraction method as in previous measurements [3, 16,112, [16], namely subtracting the Y, yields
in low-multiplicity collisions from those in high-multiplicity collisions (Fig.[3l bottom panels). The sub-
traction method relies on the assumptions that the jet correlations on the away side remain unmodified as
a function of the event multiplicity and that there are no significant correlations due to collective effects
in low-multiplicity collisions (see discussion in Section [6)).

In order to quantify the remaining correlation structures, the subtracted yields Yf/“qb,(A(p) are fit with

ao+2a; cosAQ +2a; cos2A@. 3)

The second-order Fourier coefficient V,{J/y — tracklet,sub} of the azimuthal correlation between the
J/y and the associated charged hadrons is finally calculated as a,/ bgigh. The denominator bgigh =ap+
b})"w corresponds to the combinatorial baseline of the high-multiplicity collisions, where the parameter
b%)ow is the combinatorial baseline of the low-multiplicity collisions obtained at the minimum of the per-
trigger yields, namely in AQ < /6. The parameter b})"w is the normalization factor used in Fig.[3 The
parameter a;, which describes the strength of the remaining away-side correlation structure, is found to
be compatible with zero in practically all pJT/ ¥ intervals, in both p—Pb and Pb—p collisions at both 5.02
and 8.16 TeV.

As an alternative extraction method, the calculation of b})"w, the subtraction of low-multiplicity from
high-multiplicity collision yields and the fit to Eq. (3) is done in each bin of My, separately. Then the
Vo{J/y — tracklet,sub } coefficient is extracted by fitting V> {pu — tracklet,sub } (M,,,,) with a superposi-
tion similar to the one defined in Eq. (2))

Va{up — tracklet,sub} (M) = S »{J/y — tracklet,sub} +

Sy Vo {uu — tracklet, sub} (M),

“)

B
S+B
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Fig. 3: Associated tracklet yields per J/y trigger in 3 < pJT/ ¥ < 6GeVicin p—Pb and Pb—p collisions at |/snn

= 5.02 TeV (left panels) and 8.16 TeV (right panels). The top and the middle panels correspond to the low-
multiplicity and the high-multiplicity event classes, respectively. The bottom panels show the yields after the
subtraction of the low-multiplicity collision yields from the high-multiplicity collision ones. The solid line rep-
resent the fit to the data as described in the text. The dashed, dot-dashed and dotted lines correspond to the
individual terms of the fit function defined in Eq. (@). All the yields are normalized to the value in AQ < 7/6 in
the low-multiplicity (40-100%) event class. Only the statistical uncertainties are shown.

where the V£ {upu — tracklet,sub}(My,,) is the second-order Fourier coefficient of the azimuthal corre-
lation between the background dimuons and associated tracklets. The background coefficient VE{uu —
tracklet,sub }(My,,) is parameterized with a second-order polynomial function. This parameterization
is chosen since it reproduces the dimuon v,(M,,) constructed from the measured muon v, coeffi-
cient [16] assuming that the dominant part of the background is combinatorial. An example of the
Vo{up — tracklet,sub} (M) fit is shown in Fig. @l

Following the procedure used in Refs. [5, 12, [16], the V>{J/y — tracklet,sub} coefficient is factorized
into a product of J/y and charged-hadron v, coefficients. Thus, the J/y second-order Fourier azimuthal

coefficient vi/ Y12, sub} is obtained as

v;/w{l sub} = V»{J/y — tracklet, sub} /v5**¥'{2 sub}, )

where the viaet{2 sub} is the tracklet second-order Fourier azimuthal coefficient obtained by perform-

ing the analysis considering SPD tracklets as both trigger and associated particles. The obtained values of
vgaCk]e‘{2, sub} are between 0.067 and 0.069 depending on the beam configuration and collision energy,
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Fig. 4: Example of the fit from Eq. @) in the 3 < p#” < 6 GeV/c interval for p—Pb collisions at /sny = 8.16 TeV.
The dashed line corresponds to the V2 {uu — tracklet, sub} (My,).

with 1-2% relative statistical uncertainty and 5-6.5% relative systematic uncertainty.

5 Systematic uncertainties

The combined statistical and systematic uncertainties of the measured vi*Ket{2 sub} coefficient for each
beam configuration and collision energy are taken as global systematic uncertainties of the corresponding

V;/ lV{2, sub} coefficients.

All the other systematic uncertainties of the vi/ Y12, sub} coefficients are obtained for each data sample
and pr interval separately. The following sources are considered.

A possible inaccurate correction for the SPD acceptance is assessed by varying the z, range between
+8 and +12 cm. Systematic uncertainties are assigned only in the cases of a significant change of the
results. The significance is defined according to the procedure described in Ref. [39].

The systematic effect related to the uncertainty of the shape of the dimuon background yields Yz(M,;,,) is
estimated by performing the fit with Eq. (2)) using a linear function for the background term and varying
the fit range. The systematic effect coming from the uncertainty of the signal-to-background ratio S/B
is checked by employing various invariant mass fit functions, both for the background and for the J/y
signal. The maximal difference of the results obtained with the above checks with respect to the default
approach is taken as the corresponding systematic uncertainty.

The uncertainty arising from the employed analysis approach is obtained as the difference between the
two extraction methods described in Section [4

As described in Section 4] by default the mixed-event distribution ME (A¢@,An) is normalized to unity
in the An region corresponding to the maximal acceptance. As an alternative approach, normalizing the
integral of ME(A@,An) to unity is used. No significant effect on the obtained results is observed and
thus no systematic uncertainty is assigned.

The used event-mixing technique can introduce systematic biases. The event multiplicity distribution of
the selected dimuons (1 <M, <5 GeV/c?) differs from that of the J/y signal. Since the charged-hadron
spectra and the charged-hadron density as a function of 11 change with event multiplicity [34], the non-
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Source of systematics p—Pl\)/SW =3.02 Te\lgb—p p—Pl;/ﬁ =816 Te\lib—p
Acceptance correction 0to0 0.019 0to 0.057 0to 0.011 0 to 0.007
Background shape 0.007 to 0.013 0.015 to 0.056 0.011 t0 0.013 0.003 to 0.012
Extraction method 0.003 to 0.015 0.010 to 0.040 0.002 to 0.011 0.008 t0 0.018
Event mixing 0.003 to 0.015 0.004 to 0.025 0.002 to 0.008 0.004 to 0.012
Residual away-side - —0.030t0 0 —0.018t0 0 -

jet correlation

-+0.009 to +0.024  40.024 to +-0.084 40.013 to +-0.019  4-0.015 to 4-0.021

Total —0.009 to —0.024 —0.024 to —0.090 —0.015to —0.026 —0.015 to —0.021

Table 1: Summary of absolute systematic uncertainties of the vi/ l’/{2, sub} coefficients. The uncertainties vary
within the indicated ranges depending on pJT/ Y. The values not preceded by a sign represent double-sided uncer-

tainties.

uniform (both in the azimuthal and longitudinal directions) SPD acceptance can introduce a bias. The
corresponding systematic uncertainty is evaluated by doing the event mixing in finer event-multiplicity
bins.

The non-uniform acceptance of the muon spectrometer coupled to sizeable correlations between the
dimuons and SPD tracklets can bias azimuthally the sample of SPD tracklets used for event mixing. In
order to check for possible effects on our measurement, the event mixing is performed in intervals of
azimuthal angle of the selected dimuons. We observe no significant systematic effect as the obtained
results show negligible deviations with respect to the results using the default event-mixing technique.

The effect of a possible residual near-side peak is checked by varying the rapidity gap between the trigger
dimuons and associated charged-hadrons from 1.0 to 2.0 units. We observe no indication of increasing
v, with reduced gap and thus consider the default gap of 1.5 units sufficient to eliminate any significant
residual near-side peak contribution.

As shown in Section [4] the recoil-jet away-side correlation structure in the high-multiplicity event class
is greatly diminished after the subtraction of the low-multiplicity event class. By default, any remaining
away-side structure is supposed to be taken into account by the cos A@ term in Eq. (3). In order to check
for residual effects we proceed in the following way. First, the correlation function in the low-multiplicity
event class is fit with a Gaussian function centered at A¢ = 7. Then, the correlation function in the high-
multiplicity event class is fit with the function from Eq. (3), where the cosA¢ term is replaced by a
Gaussian function with a width fixed to the value obtained from the fit in the low-multiplicity collisions.
No clear signature of systematic change of the results is seen, except some hints of a possible effect in the
highest pJT/ ¥ interval. Conservatively, we assign systematic uncertainty as the difference with respect to
the default analysis approach. Since the typical values of the Gaussian width are around 1 rad, one-sided
(negative) systematic uncertainty is assigned.

In Table [1] we present a summary of the assigned systematic uncertainties of the vi/ Y12, sub} coeffi-

cients. No sizeable correlations between the pJT/ ¥ intervals are observed and therefore in the following

the uncertainties are considered uncorrelated.

Our measurement is for inclusive J/y. The fraction of J/y from decays of b-hadrons reaches up to
about 15% at pJT/ V'~ 6 GeV/c in p—Pb collisions at /sy = 5.02 [40] and 8.16 TeV [41]. Therefore
the feed-down contribution is unlikely to influence significantly our results. In principle, a possible
strong multiplicity dependence of the feed-down fraction can potentially affect the subtraction approach.
However, no evidence for such a strong dependence is observed in pp collisions [42].

As additional cross-checks the analysis is done using alternative event-multiplicity estimators, varying
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the tracklet |A®| cut, applying a cut on the asymmetry of transverse momentum of the two muon tracks,
removing the pile-up cuts and excluding the SPD regions with non-uniform acceptance in pseudorapid-
ity. The corresponding results are found to be compatible with those obtained with the default analysis
approach and therefore no further systematic uncertainties are assigned.

6 Results

In Fig. 5/ we report the measured vg/ l’/{2,sub} coefficients as a function of pJT/ ¥ for p—Pb and Pb—p
collisions at /sy = 5.02 and 8.16 TeV. Up to pJT/ ¥ of 3 GeV/c, no significant deviation from zero is

= -
B —&— ALICE Pb-Pb ® |5, =5.02 TeV - W {55502 TeV
02 Vs =502 TeV, 5-20% VOM i N "
My 2.03<y "¥<3.53 - -4.46<y ""<-2.96
v, {EP} jAn>1.1 L
2.5<y <4 -
0.1 -

| Global syst. uncertainty 7%

Global syst. uncertainty 5%
1 1 1 1 1 1 1

=
B
ial
¥
i
&
=

=2
P p = ALICE p-Pb ¢ {5,816 TeV —— ALICE Pb-p # |5 ,,=8.16 TeV
0.2 (0-20%)-(40-100%) VOM o (0-20%)-(40-100%) VOM o
o 2.03<y”¥<3.53 -4.46<y”¥<-2.96
V5 "{2,sub}, 1.5<|An|<5.0
0.1

B v2¥2,5ub}, 1.5<An|<5.0

o
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7 8 7 8
p¥ (GeVic) p2* (GeVic)

Fig. 5: v/ ¥{2,sub} in bins of p¥" for p-Pb, 2.03 < y < 3.53, (left panels) and Pb—p, —4.46 < y < —2.96,
(right panels) collisions at /sy = 5.02 TeV (top panels) and 8.16 TeV (bottom panels). The results are compared
to the vjz/ W{EP} coefficients measured in central Pb—Pb collisions at /sy = 5.02 TeV in forward rapidity (2.5
<y < 4) using event plane (EP) based methods [24]. The statistical and uncorrelated systematic uncertainties
are represented by lines and boxes, respectively. The quoted global systematic uncertainties correspond to the
combined statistical and systematic uncertainties of the measured v§*K€t{2 sub} coefficient.

observed for either p—Pb or Pb—p collisions at the two collision energies. On the contrary, in the pJT/ v

interval between 3 and 6 GeV/c, the vg/ l’/{2, sub} is found to be positive although with large uncertainties.
As also shown in Fig.[3 the vi/ ¥ coefficients in 2.5 < y < 4 in central Pb—Pb collisions at ,/syy = 5.02

TeV reach maximal values in the same pJT/ Y interval [24].

Two methods are employed in order to obtain the probability that the vi/ l"{2, sub} is zero in the 3 <
pJT/ ¥ < 6 GeV/c interval. In the first method, the vé/ ¥{2,sub} values in the two pJT/ ¥ intervals (3 <
pJT/ V' < 4 GeV/c and 4 < pJT/ ¥ < 6 GeV/c) are combined into a weighted average for each rapidity
and collision energy. The obtained probabilities are 0.13% and 0.13% (7.8% and 0.23%) for p—Pb and
Pb-p collisions, respectively, at \/syn = 8.16 TeV (5.02 TeV). Combining all eight v;/ lV{2, sub} values
yields a total probability of 1.7 x 10~7. This corresponds to a 5.1 significance of the measured positive
vé/ ¥{2,sub} coefficient. The second method is Fisher’s combined probability test [43]. With this method
one obtains probabilities of 0.14% and 0.23% (10.3% and 0.41%) for p—Pb and Pb—p collisions at ,/sNn
= 8.16 TeV (5.02 TeV), respectively. The total probability is 1.4 x 10~® which corresponds to a 4.7¢
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significance. In the calculation of the above probabilities, both statistical and systematic uncertainties of
the measured values are taken into account. The global systematic uncertainty is not taken into account
as it is irrelevant in the case of the zero hypothesis.

The analysis method presented in this Letter relies on the assumption that there are no significant cor-
relations due to collective effects in the low-multiplicity event class. In case of a presence of such
correlations, the measured V,{J/y — tracklet,sub} is equal to

low

Vo2{J/y — tracklet,high} — %Vz {J/y — tracklet,low }, (6)
0

where V,{J/y — tracklet, high} and V,{J/y — tracklet,low} are the second-order Fourier coefficients of
the azimuthal correlation between the J/y and the associated charged hadrons in the high-multiplicity
and the low-multiplicity collisions, respectively, and b})"w /bglgh ~1/3 is the ratio of the combinatorial
baseline in the low-multiplicity and high-multiplicity collisions (see Fig. [3). As is demonstrated in
Ref. [44], the assumption of no significant collective correlations in the low-multiplicity collisions is
certainly questionable for light-flavour hadrons. Our data indicates the same, as we observe a statistically
significant increase of the measured values of vgaCk]e‘{2, sub} when subtracting a lower event-multiplicity,
e.g. 60-100%, class. Ultimately, the value of the vi*Ket coefficient is found to be about 17% higher in
case no subtraction is applied. Therefore, replacing the subtracted vgaCk]e‘{2, sub} coefficient in Eq. (3))
Iy
2

by the non-subtracted coefficient would mean that the v,/ * coefficients are up to 17% lower with respect

to the measured vi/ Y12, sub} coefficients. However, assuming that the v;/ ¥ coefficients follow the same
trend as a function of event multiplicity as the vgaCk]e‘ coefficient, they would be up to 17% higher with

respect to the measured vi/ Y12, sub} coefficients. Subtracting lower event-multiplicity classes in the

measurement of the v;/ ¥{2,sub} coefficient does not improve the precision of our measurement, because
of the limited amount of J/y signal in the low-multiplicity collisions.

The nuclear modification factor of J/y in p—Pb and Pb—p collisions [37, 38] as well as the charged-
particle v, coefficient [45-47] in pp collisions show no significant /sy dependence. As seen in Fig.[3]

the measured vi/ Y12, sub} coefficients at V/SNN = 5.02 and 8.16 TeV also appear to be consistent with
each other. The largest absolute difference between the results at the two collision energies is observed
in Pb—p collisions in the 3 < pJT/ ¥ < 6 GeV/c interval. The significance of this difference is rather
low (below 1.50), because of the large uncertainties of the measurement at /sy = 5.02 TeV. Hence, the
data for the two collision energies are combined as a weighted average taking into account both statistical
and systematic uncertainties. In Fig.[6] we present these combined results for p—Pb and Pb—p collisions

together with measurements and model calculations for Pb—Pb collisions at /syn = 5.02 TeV [25].

In Pb-Pb collisions, the positive vg/ YV coefficients at pJT/ ¥ below 3-4 GeV/c are believed to originate

from the recombination of charm quarks thermalized in the medium and are described fairly well by the
transport model [23] (see Fig. [6). In p—Pb collisions, the amount of produced charm quarks is small
and therefore the contribution from recombination should be negligible. Our measured values at pJT/ v
< 3 GeV/c are compatible with zero, in line with this expectation. There is one publication [28] which
suggests that even in p—Pb collisions a sizeable contribution from recombination could occur due to
canonical enhancement effects. The uncertainties of our results do not allow to confirm or to rule out this

scenario.

In Pb-Pb collisions, the measured vg/ Y coefficients exceed substantially the theoretical predictions at

pJT/ ¥ > 4 GeV/c, where the main contribution to vi/ ¥ is expected to come from path-length dependent

suppression inside the medium [25] (see Fig. [6). In p—Pb collisions, the medium, if any, has a much
smaller size [48] and hence very little, if any, path-length dependent effects are expected. In principle,
Iy
2

the feed-down from decays of b-hadrons can give a positive v,'” at high transverse momentum in case
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Fig. 6: Combined vjz/ W{Z, sub} coefficients in p—Pb and Pb—p collisions compared to the results in central and
semi-central Pb—Pb collisions at /sy = 5.02 TeV [24] and the transport model calculations for semi-central Pb—
Pb collisions at /sy = 5.02 TeV [25]. The solid line corresponds to the contribution from path-length dependent
suppression inside the medium. The band shows the resulting vjz/ v including also the recombination of thermalized

charm quarks and the feed-down from b-hadron decays assuming thermalization of b quarks.

of a positive b quark v,. However, the latter would have to reach unreasonably high values given the
magnitude of the measured vg/ ¥{2,sub} and the small feed-down fraction. Despite these considerations,
the measured positive vi/ ¥ coefficients would imply that the J/y participates in the collective behavior
of the p—Pb collision system.

7 Summary

We presented a measurement of the angular correlations between forward and backward J/y and mid-
rapidity charged hadrons in p-Pb and Pb—p collisions at \/syn = 5.02 and 8.16 TeV. The data indi-
cate persisting long-range correlation structures at A@ ~ 0 and A¢ =~ 7, reminiscent of the double
ridge previously found in charged-particle correlations at mid- and forward rapidity. The corresponding
v;/ l’/{2,sub} coefficients in 3 < pJT/ ¥ < 6 GeV/c are found to be positive with a total significance of
4.70 to 5.10. The obtained values, albeit with large uncertainties, are comparable with those measured
in Pb—Pb collisions at /snn = 5.02 TeV in forward rapidity. Although the underlying mechanism is not
understood, the comparable magnitude of the v;/ ¥ coefficients at high transverse momentum in p—Pb and
Pb—Pb collisions indicates that this mechanism could be similar in both collision systems.
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