REAL

Diffusion and Mixing in Globular Clusters

Meiron, Yohai and Kocsis, Bence (2018) Diffusion and Mixing in Globular Clusters. ASTROPHYSICAL JOURNAL, 855 (2). ISSN 1538-4357

[img]
Preview
Text
1801.01123.pdf

Download (782kB) | Preview

Abstract

Collisional relaxation describes the stochastic process with which a self-gravitating system near equilibrium evolves in phase-space due to the fluctuating gravitational field of the system. The characteristic timescale of this process is called the relaxation time. In this paper, we highlight the difference between two measures of the relaxation time in globular clusters: (1) the diffusion time with which the isolating integrals of motion (i.e., energy E and angular momentum magnitude L) of individual stars change stochastically and (2) the asymptotic timescale required for a family of orbits to mix in the cluster. More specifically, the former corresponds to the instantaneous rate of change of a star's E or L, while the latter corresponds to the timescale for the stars to statistically forget their initial conditions. We show that the diffusion timescales of E and L vary systematically around the commonly used half-mass relaxation time in different regions of the cluster by a factor of ∼10 and ∼100, respectively, for more than 20% of the stars. We define the mixedness of an orbital family at any given time as the correlation coefficient between its E or L probability distribution functions and those of the whole cluster. Using Monte Carlo simulations, we find that mixedness converges asymptotically exponentially with a decay timescale that is ∼10 times the half-mass relaxation time. © 2018. The American Astronomical Society. All rights reserved..

Item Type: Article
Subjects: Q Science / természettudomány > Q1 Science (General) / természettudomány általában
SWORD Depositor: MTMT SWORD
Depositing User: MTMT SWORD
Date Deposited: 06 Mar 2023 08:58
Last Modified: 06 Mar 2023 08:58
URI: http://real.mtak.hu/id/eprint/161445

Actions (login required)

Edit Item Edit Item