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Atomic Physics Constraints on the X Boson
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Recently, a peak in the light fermion pair spectrum at invariant q2 ≈ (16.7MeV)2 has been
observed in the bombardment of 7Li by protons. This peak has been interpreted in terms of a
protophobic interaction of fermions with a gauge boson (X boson) of invariant mass ≈ 16.7MeV
which couples mainly to neutrons. High-precision atomic physics experiments aimed at observing
the protophobic interaction need to separate the X boson effect from the nuclear-size effect, which
is a problem because of the short range of the interaction (11.8 fm), which is commensurate with a
“nuclear halo”. Here, we analyze the X boson in terms of its consequences for both electronic atoms
as well as muonic hydrogen and deuterium. We find that the most promising atomic systems where
the X boson has an appreciable effect, distinguishable from a finite-nuclear-size effect, are muonic
atoms of low and intermediate nuclear charge numbers.

PACS numbers: 12.20.Ds, 12.60.Cn, 06.20.Jr, 11.40.-q

I. INTRODUCTION

Recently, the reaction

7Li + p→ 8Be∗ → 8Be + γ → 8Be + e+e− (1)

has been observed at the MTA ATOMKI (Institute for
Nuclear Research of the Hungarian Academy of Sciences)
in Debrecen, and deviations from Standard Model predic-
tions have been recorded [1–3]. While the primary aim of
the study had been the hunt for a massive (“dark”) pho-
ton, the experimental data are described satisfactorily in
terms of a new (“fifth-force”) X boson (vector boson)
which couples to fermions according to [4, 5]

L = −e
∑

f

εf ψf γµX
µ ψf , (2)

where Xµ is the spin-1 X boson field, f sums over
the fermions (fermion flavors), and the εf coefficients
describe the flavor-dependent couplings to the X bo-
son. A family-dependence is disfavored by the authors of
Refs. [4, 5]. Rather, the X boson is advocated as a possi-
ble partial explanation for the observed 3.6σ discrepancy
of the observed muon g factor [6], while assuming a fam-
ily independence (electron versus muon) of the couplings
εf (i.e., in particular, εe ≈ εµ for electron and muon).
If, accidentally, the following combination of couplings

to the up and down quarks add to a value close zero,

2 εu + εd ≈ 0 , (3)

then the interaction with theX boson becomes protopho-
bic, i.e., protons are effectively decoupled. By contrast,
a numerical value of

|εn| = |εu + 2εd| ≈

∣

∣

∣

∣

3

2
εd

∣

∣

∣

∣

≈
1

100
(4)

explains the observed 6.1σ peak seen in the experi-
ments [1–5] [see Eq. (10) of Ref. [4]]. The proposed vector
boson has a mass of mX = 16.7MeV/c2. Light particles
similar to dark photons in this mass range have been
considered a possible solution to problems related to the
understanding of certain isotope abundances in the Uni-
verse [7], and other experiments have been designed to
cover the conjectured parameter range of the X boson [8]
(for a more detailed discussion of the particle physics as-
pects of the proposed boson, see the Appendix).
From below, the parameter εe for the electrons is fur-

ther constrained by electron beam dump experiments,
which search for dark photons [4, 5], while a high bound
on εe is set by electron g − 2 experiments. Numerically,
one finds that [4, 5],

2× 10−4 < εe < 1.4× 10−3 . (5)

Traditionally, atomic high-precision experiments have
been used with good effect to constrain any conjectured
additions to the low-energy sector of the Standard Model
(see, e.g., Refs. [9, 10]). Moreover, it has been one of the
goals of high-precision atomic spectroscopy to explore the
low-energy sector of the Standard Model, and to possi-
bly discover a “hidden” sector of fundamental interac-
tions at low energy [11]. Several recent papers explore
the consequences of the proposed X boson for atomic
spectroscopy, notably, isotope shifts [12–14]. The pur-
pose of the current paper is twofold. First, we briefly
discuss possible implications of the X boson for the pro-
ton and deuteron radius puzzle, which still has not been
completely solved [12, 15] (see Sec. III). Second, we at-
tempt to find a simple atomic system, in which the effect
of theX boson could be discerned, based on a straightfor-
ward theoretical analysis, without resorting to numerical
many-body calculations of isotope shifts [12–14] (see the
discussion in Sec. V).

http://arxiv.org/abs/1804.03096v1


2

Also, we shall attempt to develop an intuitive under-
standing for the observation [14] that it is rather difficult
to obtain a signal from the X boson in electronic bound
systems (as discussed in Sec. II). A promising alterna-
tive appears to involve muonic systems with medium and
high nuclear charge numbers, for reasons to be discussed
in the following.

II. ENERGY SCALES

In order to obtain a somewhat intuitive understanding
of the X boson in terms of atomic physics, it is instruc-
tive to explore the energy scales involved in the prob-
lem. Indeed, the proposed vector boson mass of mX =
16.7MeV/c2 is much larger than both the effective mass
αme of bound electronic systems, as well as the momen-
tum scale 〈p〉 = Z αme c ≈ 0.343MeV/c of hydrogenlike
Uranium (Z = 92), and also larger than the bound-state
momentum 〈p〉 = αmµ c ≈ 0.772MeV/c of muonic hy-
drogen [16], but not necessarily larger than the momen-
tum scale 〈p〉 = Z αmµc of a one-muon ion with medium
charge number Z. E.g., for muonic carbon, one has a
momentum scale 〈p〉 = 6αmµ c ≈ 4.63MeV/c which is
commensurate with the X boson mass. For muonic mag-
nesium, one has 〈p〉 = 12αmµ c ≈ 9.25MeV/c. These
considerations are relevant because the X boson mass
determines the range of the interaction mediated by the
new particle, which is 〈r〉 = ~/〈p〉.
For electronic systems, the energy scale of the X bo-

son is “detached” from both electronic bound systems
as well as low-Z muonic bound systems. The range of
the X boson interaction is equal to its reduced Compton
wavelength,

λX =
~

mXc
= 11.8 fm , (6)

which has to be compared to the generalized Bohr radius
for muonic hydrogen,

λµH =
~

αmµc
= 256 fm , (7)

and the (ordinary) hydrogen atom,

λH =
~

αmec
= a0 = 52917.7 fm , (8)

where a0 is the (ordinary) Bohr radius. As already indi-
cated, the Bohr radius for a one-muon carbon ion,

λµ12C =
~

6αmµ c
= 42.6 fm , (9)

is closer to the range of the X boson interaction. In
the following, we refer to the bound system with a sin-
gle, negatively charged muon circling around a carbon
nucleus, as “muonic carbon”. For muonic magnesium,

as defined analogously, we have λµ24Mg = 21.3 fm (with
nuclear charge number Z = 12).
From now on, we shall use natural units with ~ = c =

ε0 = 1. By matching the scattering amplitude gener-
ated by the Lagrangian (2) to an effective Hamiltonian in
the no-retardation approximation (zero energy of the vir-
tual boson), we obtain the following interaction Hamilto-
nian HX for electronic bound systems (in the low-energy
limit),

H
(e)
X = εe εn (A− Z) (4πα)

δ(3)(~r)

m2
X

. (10a)

Here, A is the mass number of the nucleus, while Z is
the charge number, so that A − Z counts the number
of neutrons in the nucleus. If the orbiting particle is a
muon, then we need to replace εe → εµ and obtain

H
(µ)
X = εµ εn (A− Z) (4πα)

δ(3)(~r)

m2
X

. (10b)

The finite-nuclear-size (FNS) Hamiltonian is [17]

HFNS =
2π

3
Zα r2n δ

(3)(~r) , (11)

where rn =
√

〈r2n〉 is the root-mean-square charge radius
of the nucleus. The two Hamiltonians (10) and (11) are
both proportional to a Dirac-δ function.

III. X BOSON AND DEUTERON RADIUS

Let us explore a possible role of the X boson in the
proton and deuteron radius puzzle [16, 18, 19], and take
into account a possible family dependence of the interac-
tion, i.e., ask the question of whether a coupling constant
dependence εe 6= εµ could contribute to an explanation
of the puzzle. The current status of this puzzle can be
summarized as follows: For the proton, a recent measure-
ment [20] of the 2S–4P transition has indicated a pos-
sible reconciliation, by analyzing a cross-damping term
(“nonresonant shift”) of the transition due to neighbor-
ing fine-structure states [21]. The revised value of the
proton radius [20], derived from hydrogen spectroscopy,
is rp = 0.8335(95) fm and in better agreement with the
muonic hydrogen value rp = 0.84087(39) fm than the pre-
vious CODATA value of rp = 0.8775(51) fm, which is pri-
marily derived from an analysis of the most accurately
measured hydrogen transitions (see Table XXXVIII of
Ref. [22]). One notes that the “larger” proton radius
of rp ≈ 0.88 fm is mainly derived in combining very
accurate 1S–2S measurements [23] with 2S–nD mea-
surements [24, 25] and 1S–3S atomic hydrogen measure-
ments [15] of the Paris group. One might speculate about
an incomplete analysis of the systematic effects in the
measurements of the Paris group; however, a very re-
cent work [15] reaffirms the correctness of the analysis
performed for the 2S–8D and 2S–12D transitions, and
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1S–3S transitions [15]. One can thus, at present, not
conclusively confirm that the proton radius puzzle has
been solved. In any case, for the proton, it turns out
that the X boson cannot contribute to an explanation of
the puzzle, because of the protophobic character of the
proposed interaction [see Eq. (3)].
For the deuteron, the CODATA value of rd =

2.1424(21) fm is primarily derived from (ordinary) deu-
terium spectroscopy [19]. It has to be compared to the
value rd = 2.12562(78) fm derived from muonic deu-
terium spectroscopy [19]. The relative difference of these
values is

δr2d
r2d

= 0.016(2) . (12)

Let us assume, for the moment, that this difference is
due to a lepton family non-universality of the X boson
interaction. To this end, we evaluate the ratio of the
energy shift due to the X boson, to the finite-size energy
shift. This ratio is equal to the ratio of the change δr2d
in the root-mean-square radii to the root-mean-square
charge radius of the deuteron itself,

〈H
(e)
X −H

(µ)
X 〉

〈HFNS〉
=

6 (εe − εµ) εn
m2

X r2n

A− Z

Z
=
δr2d
r2d

, (13)

where A = 2, Z = 1, εn ≈ 1/100 [see Eq. (32) of Ref. [5]].
Plugging in values, one obtains

(εe − εµ) ≈ 0.012 . (14)

The sign can be understood from the fact that the con-
ceivable existence of the X boson, for electronic sys-
tems, would enhance the finite-size Dirac-δ potential, for
εe > 0, and thus lead to a larger value of the deuteron ra-
dius, if determined from electronic bound systems. The
result (14) is incompatible with the bound (5) for the
coupling parameter of the electron, assuming an approx-
imate family independence εe ≈ εµ of the couplings. Fur-
thermore, assuming εe ≈ 0, the value εµ = −0.012 leads
to a severe discrepancy with the muon g− 2 experiment,
inducing a contribution to the muon anomaly (g−2)/2 of
about 1.58× 10−7 [see Eq. (4) of Ref. [6]]. The X boson
can thus be excluded as an explanation for the deuteron
radius puzzle.
However, the conceivable existence of the X boson

would (slightly) affect the determination of the deuteron
radius from experiments. Namely, one normally defines
the deuteron radius as the slope of the charge form factor
GC of the deuteron at zero momentum transfer, after all
QED effects and effects of “external” interactions (virtual
gauge bosons, etc.) have been subtracted [see Eq. (13) of
Ref. [26]]. The slope of the charge form factor GC leads
to the deuteron radius (see [27] and Sec. 4.2 of Ref. [28])

r2d = 6
dGC(q

2)

dq2

∣

∣

∣

∣

q2=0

= −6
dGC(Q

2)

dQ2

∣

∣

∣

∣

Q2=0

, (15)

where Q2 = −q2 is the squared four-momentum transfer.
Taking the X boson into account, the deuteron radius
would shift according to the replacements

r2d → r2d −
6 εµ εn
m2

X

(16)

for the determination from muonic deuterium, and ac-
cording to

r2d → r2d −
6 εe εn
m2

X

(17)

for determinations involving ordinary deuterium atoms.
Taking into account the bound (5) and assuming that
εe ≈ εµ, the shifts (16) and (17) are seen not to ex-
ceed 0.003 fm when expressed in terms of the root-mean-
square radius rd.
Finally, let us note that the X boson does not affect

the determination of the Rydberg constant from hydro-
gen and deuterium spectroscopy [29]. We recall that the
Rydberg constant is one of the most accurately known
physical constants, with a relative accuracy on the level
of 10−12 [20, 22]. However, one notes that the inclusion
of the X boson Hamiltonian (10) in the theoretical model
for the determination of the Rydberg constant from hy-
drogen and deuterium spectroscopy would not affect the
Rydberg constant, because the additional term is of the
same functional form as the finite-size Hamiltonian (11)
and thus reabsorbed in the nuclear radius.

IV. X BOSON AND MUONIC IONS

In principle, one might hope to determine the coupling
parameter εe from isotope shifts of atomic transitions.
The essential idea is to write the isotope shift as a linear
combination of the mass shift of a transition (due to the
change in the reduced mass of the system), of the field
shift (due to the isotopic change in the nuclear radius),
and due to the X boson [see Eq. (2) of Ref. [14]]. We
note that in principle, the mass shift could be obtained
by very accurate Penning trap measurements and thus
subtracted. However, the observation of a single isotope
shift does not determine the X boson coupling because
of the unknown field shift, i.e., the unknown radius dif-
ference. One might think that the radius could be de-
termined independently by a scattering experiments and
subtracted. However, in scattering experiments, the X
boson term (10) modifies the scattering cross section just
like the finite-nuclear-size term (11) and thus could not
be subtracted separately.
Measurements of isotope shifts between the same iso-

topes but more and different atomic transition also do not
help because in the leading-order approximation, both
the X boson Hamiltonian (10) as well as the finite-size
Hamiltonian (11) are proportional to a Dirac-δ. One
might observe isotope shifts involving more than two iso-
topes, considering that the prefactor of the X boson term
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depends on the isotope (via the change in the neutron
number, which enters the nuclear mass number A). Even
so, within the Dirac-δ approximation, one still cannot ac-
curately determine the X boson coupling because each
addition of an isotope also implies the addition of a field
shift term, i.e., an additional radius difference which can-
not be determined independently.

For electronic bound systems, the reduced Compton
wavelength λH/(1 + ne) [see Eq. (8)], where ne is the
charge number of the ion, is much larger than the re-
duced Compton wavelength λX of the X boson, as given
in Eq. (6). Thus, for electronic bound systems, the X bo-
son potential remains a Dirac-δ to good approximation.
If at all, then the X boson coupling could be determined
based on higher-order terms beyond the Dirac–δ approx-
imation used in Eqs. (10) and (11) (see Refs. [13, 14]
for a comprehensive discussion, especially in the context
of “King linearity violation” as envisaged originally in
Ref. [30]). In the end, even under the optimistic assump-
tion of an increase in the precision of isotope spectroscopy
to better than 1Hz, the range of coupling parameters
and masses for the conjectured X boson [4, 5] remains
out of the observable range of high-precision isotope shift
measurements (specifically, see the black bar in the right
panel Fig. 3.2 of Ref. [14]). A more optimistic point is
taken by Ref. [13], where in Fig. 3, it is claimed that
a measurement of isotope shifts in Yb+, involving nu-
clei with A = 168, 170, 172, 174, 176, could potentially
resolve the X boson if an experimental accuracy of 1Hz
is reached. This would correspond to an increase in the
current level of experimental accuracy by four to five or-
ders of magnitude. Additionally, the drastic difference
between the resolving power of Sr+ and Yb+ reported
in Fig. 3 of Ref. [13] might be considered as a little sur-
prising because both ions have ne = 1, and so the re-
duced Compton wavelength (effective length scale of the
atomic binding, effective nuclear charge number) is the
same for the outer electrons in both systems. It would
be somewhat awkward if the electron density in Yb+,
which has a nuclear charge radius of about 5.3 fm [31]
for the isotopes in question, remains essentially constant
over the nuclear volume, while displaying a drastic de-
viation from the value inside the nucleus on a distance
scale of 11.8 fm, which is the range of the X boson in-
teraction. Such a behavior would be required in order to
substantially invalidate the Dirac–δ approximation used
in Eqs. (10) and (11), thus explaining the resolving power
of isotope shifts in Yb+ as compared to Sr+, reported in
Fig. 3 of Ref. [13]. In any case, the precise understanding
of the expansion coefficients used in Ref. [13] may depend
on the details of the many-body atomic structure code
used in Ref. [13].

Here, we pursue a different route and attempt to find
a simple atomic system where the X boson contribution
could naturally be extracted based on a straightforward
analytic model. We need to find an atomic system where
the Dirac–δ approximation to the X boson term (10) is

insufficient, and the X boson Hamiltonian changes into

H
(e,Y )
X = εe εn (A− Z)α

e−mX r

r
, (18)

H
(µ,Y )
X = εµ εn (A− Z)α

e−mX r

r
. (19)

Here, the superscript Y reminds us of the Yukawa charac-
ter of the potential. If the functional form of the X boson
term (10) and the finite-size term (11) are different for
a particular atomic system, then we can distinguish the
two effects. For muonic carbon, according to Eq. (9), we
have λµ 12C = 42.6 fm, which is commensurate with the
reduced Compton wavelength of the X boson given in
Eq. (6), but much larger than the 12C radius of about
2.4 fm. Hence, we have

r12C ≪ λµ 12C , λX . λµ 12C . (20)

This implies that in 12C, the finite-nuclear-size Hamil-
tonian can still be approximated by a Dirac-δ potential,
while the X boson Hamiltonian changes into the form
given in Eq. (19).
We note that at nuclear charge number Z = 6, one

can still use nonrelativistic (Schrödinger) wave functions
to good approximation. In the relevant spectroscopic ex-
periments on muonic carbon [32, 33] (for scattering data,
see Ref. [34]), one observes the 1S–2P transition, where
the main nuclear-size effect is generated by the expecta-
tion value of the finite-nuclear-size potential (11) in the
ground state. The ratio of the expectation values of the
exact X boson potential to the Dirac–δ approximation in
the ground state is

ξnS =
〈nS|H

(µ,Y )
X |nS〉

〈nS|H
(µ)
X |nS〉

, (21a)

ξ1S =
χ2

(χ+ 2)2
, (21b)

ξ2S =
χ2 (1 + 2χ2)

2 (1 + χ)2
, (21c)

ξ3S =
3χ2

[

16 + 27χ2 (8 + 9χ2)
]

(2 + 3χ)6
, (21d)

where χ is the ratio of the generalized Bohr radius to the
reduced Compton wavelength of the X boson,

χ =
λµ 12C

λX
=

mX

6αmµ

≈ 3.610 , (22)

and so we have ξ1S = 0.4140, ξ2S = 0.3904, and
ξ3S = 0.3865. Of course, we have ξnS → 1 for χ → ∞
(mX → ∞). In momentum space, the suppression of the
correction for muonic carbon can be traced to the im-
portance of spatial exchange momenta in excess of mX ,
which are important in the Coulomb exchange in the dis-
cussed atomic system.
In the 1970s, there has been some discussion regarding

a possible discrepancy in the determination of the charge
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radius of the 12C nucleus, with values from electron scat-
tering (without dispersion corrections) converging to a
root-mean-square value of r12C = 2.471(6) fm [34, 35],
while muonic spectroscopy led to a value of r12C =
2.4829(19) fm [33, 34]. Under the assumption that this
discrepancy is due to X boson, an analysis similar to the
one carried out in Eqs. (13) and (14) leads to a value of

(εµ − εe) = 0.0070(46) , (23)

which deviates from zero by more than one standard
deviation. However, the large absolute magnitude of
the required coupling coefficients excludes the X bo-
son as a viable explanation for the carbon charge ra-
dius discrepancy. After the (somewhat ad hoc) applica-
tion of dispersion corrections to the scattering data, the
value as determined from scattering has been shifted to
r12C = 2.478(9) fm [34], corresponding to

(εµ − εe) = 0.0029(64) , (24)

which is fully compatible with zero.

Obviously, in order to access physically sensible values
of the coupling constant [see Eq. (5)],

2× 10−4 < εe ≈ εµ < 1.4× 10−3 , (25)

one needs to increase the experimental precision. In view
of the inequality (20), muonic carbon appears to be well
suited for an extraction of the X boson contribution,
based on spectroscopic data alone. The idea is to use the
state dependence of the ξ parameter, in order to be able
to write a non-singular system of the equations which can
be solved for the nuclear radius and the coupling param-
eters of the X boson. Let us denote by ν1S 2P and ν2S 2P

the remainder frequencies obtained after subtracting all
known relativistic and quantum electrodynamic (QED)
contributions to the transition frequencies. Because the
finite-size effect and the X boson Hamiltonian primarily
shift S states, one may write for the nS–2P transition,

νnS 2P = ξ1S

〈

1S
∣

∣

∣
H

(µ)
X

∣

∣

∣
1S

〉

+ 〈1S |HNFS| 1S〉

= r212C
2

3

(Zα)4m3
µ

n3

+ εµ ξnS
4(A− Z) (Zα)3 α εn

m2
X n3

. (26)

We here ignore reduced-mass corrections. The system of
equations

ν1S 2P = ξ1S

〈

1S
∣

∣

∣
H

(µ)
X

∣

∣

∣
1S

〉

+ 〈1S |HNFS| 1S〉 , (27a)

ν2S 2P = ξ2S

〈

2S
∣

∣

∣
H

(µ)
X

∣

∣

∣
2S

〉

+ 〈2S |HNFS| 2S〉 , (27b)

can be solved for εµ and r12C, because of ξ1S 6= ξ2S 6= 1.

The solution is

εµ =
(ν1S 2P − 8 ν2S 2P )m

2
X

2(A− Z)(Zαmµ)3 αεn
f(χ) , (28a)

f(χ) =
(1 + χ)4 (2 + χ)2

χ2 [χ(4 + 3χ)− 2]
, (28b)

r212C =
3 ν1S 2P

2(Zα)4m3
µ

+
3 (ν1S 2P − 8 ν2S 2P )

(Zα)4m3
µ

g(χ) , (28c)

g(χ) =
(1 + χ)4

2− χ(4 + 3χ)
, (28d)

where χ has been defined in Eq. (22). Plugging in the
parameters for 12C (see Ref. [31]), one obtains for the
sensitivity

δεµ ≈ 31.234
δ(ν1S 2P − 8 ν2S 2P )

ν1S 2P
≈ 31.234

δr212C
r212C

, (29)

where δ(ν1S 2P − 8 ν2S 2P ) is the uncertainty with which
ν1S 2P − 8 ν2S 2P could be determined experimentally.
Also, we should clarify that δr212C is the difference in the
nuclear radii, determined from the two transitions sepa-
rately, assuming that one ignores the possible presence of
the X boson. A comparison to recent determinations of
nuclear radii for simple atomic systems [16, 18, 19] reveals
that an increase in the current experimental accuracy by
about two orders of magnitude will be sufficient to dis-
cern the X boson from atomic spectroscopy. For muonic
magnesium, the sensitivity coefficient in Eq. (29) changes
according to the replacement 31.234 → 58.515.
Various generalizations of the system of equations (27)

are possible. One obvious generalization would concern
additional carbon isotopes such as 13C, for which the ex-
pansion coefficients are a little different. In this case, if
one obtains a consistent result for εµ from two different
isotopes, this will serve as an independent confirmation
of the result. Other generalizations would include combi-
nations of transitions in muonic systems (ξnS 6= 1) with
electronic bound systems, where ξnS is nearly equal to
unity, in view of the relation λX ≪ λH [see Eqs. (6)
and (8)]. Also, generalizations to transitions involving
the 3S state are straightforward [see Eq. (21d)].

V. CONCLUSIONS

In this article, we have studied the X boson [4, 5] from
the point of view of atomic physics, both in terms of
possible connections to the proton and deuteron charge
puzzles [16, 18, 19] (see Sec. III) as well as muonic bound
systems (see Sec. IV). As outlined in Sec. II, the pa-
rameter range of the X boson is energetically somewhat
outside of the range of atomic physics and therefore, the
particle is hard to detect by pure atomic physics tech-
niques. This fact, in particular, explains why it has not
been seen in atomic experiments, despite heroic efforts
of experimentalists to increase the precision of measure-
ments in simple atomic systems (see, e.g., Ref. [23]). In
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fact, the range of theX boson interaction somewhat over-
laps with the atomic nucleus; it can be characterized as
an interaction present in some extended “nuclear halo”
with a range of about 11.8 fm [see Eq. (6)].

For interactions involving bound muons, one has to use
the Yukawa potential (18) instead of the Dirac-δ approxi-
mation (10b). This, however, does not imply an electron-
muon nonuniversality; it simply means that the X boson
effect has to be evaluated differently for bound electrons
as opposed to muons. The same phenomenon is observed
(for electronic systems) with vacuum polarization, where
a good approximation is formed by a Dirac-δ potential for
ordinary hydrogen, but one has to carry out a detailed
integration for muonic systems (see Ref. [36]), because
the length scale of the bound muonic system is commen-
surate with the electron Compton wavelength, which in
turn defines the extent of the vacuum-polarization medi-
ated modification of the Coulomb interaction.

This latter observation leads to a possible pathway to-
ward the observation of the X boson in atomic systems,
as described in Sec. IV. A model calculation involving
muonic carbon illustrates that a nontrivial dependence
of the X boson effect on the principal quantum number
is introduced for S states in muonic systems, which leads
to a separation of the effect from the nuclear-size con-
tribution, rendering the X boson effect observable [see
Eq. (28)].
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APPENDIX: COUPLINGS IN THE NEUTRINO

SECTOR

This brief appendix is devoted to the discussion of the
X boson model in a particle physics context, with a par-
ticular emphasis on the neutrino sector. We recall that
in Eq. (2), the couplings to the fermion fields are left as
free parameters in the X boson coupling Lagrangian. In
Sec. I, we have discussed constraints on these parame-
ters for electrons, protons and neutrons, the latter being
determined according to their quark content [4, 5].

Important constraints on the coupling parameters for

neutrinos have been discussed in Sec. VI.C of Ref. [5].
Namely, according to Sec. VI.C.1 of Ref. [5], some of the
most stringent constraints come from the TEXONO ex-
periment, where electron (anti-)neutrinos scatter off elec-
trons. Because of a relatively small length of the interac-
tion region (of about 28 meters), the electrons (of energy
1–2MeV) remain in pure electronic flavor eigenstates.
Depending on the sign of the coupling parameters of

electrons and neutrinos, the interference of the X bo-
son term can lead to constructive or destructive interfer-
ence with the Standard Model prediction. According to
Sec. VI.C.1 of Ref. [5], for the electron coupling parame-
ter range given in Eq. (5), one finds bounds for |εν | in the
range from 10−6 to 10−4 for constructive and destructive
interference alike. Here, εν is the electron (anti-)neutrino
coupling parameter.
Neutrino-nucleus scattering has not yet been observed,

but it is the target of a number of upcoming experiments
that use reactors as sources. According to Sec. VI.C.2 of
Ref. [5], from SuperCDMS, CDMSlite, and LUX, one ob-
tains bounds for |εν | in the range from 10−5 to 10−4 for
the electron neutrino coupling parameter εν , assuming
that |εn| = 1/100. These constraints are not in disagree-
ment with any other experimental observations.
Interesting connections to the neutrino sector have also

been pointed out in Ref. [37], where a dark matter parti-
cle D with mass 8.4MeV is being proposed, which would
give rise to the reaction D +D → X , where the X par-
ticle has a predicted mass of 16.8MeV, just twice the D
mass, almost perfectly matching the proposed X boson
mass [4, 5]. The D particle is required for the interpreta-
tion of the Mont Blanc neutrino burst [38], as proposed
in Ref. [37].
In Ref. [39] (see also Ref. [40]), the authors identify the

X boson as the massive vector boson of a new U(1) gauge
group, which, by virtue of the interaction Lagrangian
[see Eq. (2) of Ref. [39]], is called a baryon minus lep-
ton (B − L) symmetry. In addition to explaining the
ATOMKI anomaly [1–3], the U(1)B−L also provides a
possible explanation for the lightness of the neutrinos,
by proposing a radiative seesaw model in which neutri-
nos acquire their tiny masses only by a one-loop diagram
whose value is proportional to the vacuum expectation
value vs of a scalar field S which takes the role of an added
Higgs-like particle [see Eq. (5) of Ref. [39]]. Likewise, the
mass of the X boson is proportional to vs [see Eq. (12b)
of Ref. [39]]. In the context of the U(1)B−L models, the
authors of Ref. [41] point out that it could be quite nat-
ural to assume a protophobic interaction (εp ≃ εe ≪ 1),
but then, it would be more natural to assume that the
couplings to neutrinos are not as suppressed as indicated
in Sec. VI.C of Ref. [5], but rather, that εn ≃ −εν . Fi-
nally, according to Ref. [42], the new X boson could also
help in resolving a 2–3σ discrepancy between theory [43]
and experiment [44] for the rare decay π0 → e+ e−.
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