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Abstract

In 2016 we proved that for every symmetric, repetition invariant and Jensen concave
mean M the Kedlaya-type inequality

A
(
x1,M(x1, x2), . . . ,M(x1, . . . , xn)

)
≤ M

(
x1,A(x1, x2), . . . ,A(x1, . . . , xn)

)

holds for an arbitrary (xn) (A stands for the arithmetic mean). We are going to prove
the weighted counterpart of this inequality. More precisely, if (xn) is a vector with
corresponding (non-normalized) weights (λn) and Mn

i=1(xi, λi) denotes the weighted
mean then, under analogous conditions on M, the inequality

An
i=1

(
Mi

j=1(xj , λj), λi

)
≤ Mn

i=1

(
Ai

j=1(xj , λj), λi

)

holds for every (xn) and (λn) such that the sequence ( λk

λ1+···+λk
) is decreasing.
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1 Introduction

In 1994 Kedlaya [21], justifying Holland’s conjecture [20], proved that

x1 +
√
x1x2 + · · ·+ n

√
x1x2 · · ·xn

n
≤ n

√
x1 ·

x1 + x2

2
· · · x1 + x2 + · · ·+ xn

n

for every x ∈ Rn
+ and n ∈ N.

It motivated us to consider the following definition [43]. Mean M :
⋃∞

n=1 I
n → I (I is an

interval) is a Kedlaya mean if (from now on A will denote arithmetic mean)

A
(
x1,M(x1, x2), . . . ,M(x1, x2, . . . , xn)

)
≤ M

(
x1,A(x1, x2), . . . ,A(x1, x2, . . . , xn)

)
(1.1)

for every n ∈ N and x ∈ In.
In this setting Kedlaya’s result could be express briefly as geometric mean is a Kedlaya

mean. Nevertheless, there appears a natural problem – to find a broad family of Kedlaya
means. For example, it is quite easy to prove that min and arithmetic means are Kedlaya
means. Moreover convex combination of Kedlaya means are again a Kedlaya mean.

Some approach to this problem was given recently by authors in [43]. We are going to
present this result in a while, but we need to introduce some properties of means first.

Let I ⊆ R be an interval and let M :
⋃∞

n=1 I
n → I be an arbitrary mean, i.e., for all

n ∈ N and (x1, . . . , xn) ∈ In, we assume that M satisfies the inequality

min(x1, . . . , xn) ≤ M(x1, . . . , xn) ≤ max(x1, . . . , xn).

We say that M is symmetric, (strictly) increasing, and Jensen convex (concave) if, for all
n ∈ N, the n-variable restriction M|In is a symmetric, (strictly) increasing in each of its
variables, and Jensen convex (concave) on In, respectively.

A mean M is called repetition invariant if, for all n,m ∈ N and (x1, . . . , xn) ∈ In, the
following identity is satisfied

M(x1, . . . , x1︸ ︷︷ ︸
m entries

, . . . , xn, . . . , xn︸ ︷︷ ︸
m entries

) = M(x1, . . . , xn).

Having this in hand, let us recall one of the most important result from this paper.

Theorem 1.1 ( [43], Theorem 2.1). Every symmetric, Jensen concave and repetition invari-
ant mean is a Kedlaya mean.

As symmetry and repetition invariance are very natural axiom of means, Jensen concavity
seamed to be the most restrictive one. Fortunately, it was characterized for many families
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of means. Many properties and characterizations are consequences of the general results
obtained in a series of papers by Losonczi [26–31] (for Bajraktarević means and Gini means)
and by Daróczy [9,10], Daróczy–Losonczi [11], Daróczy–Páles [12,13] (for deviation means)
and by Páles [36–42] (for deviation and quasi-deviation means), Páles and Pasteczka [44]
(for quasi-arithmetic and homogeneous deviation means). Some results concerning Gaussian
product were also given [43]. It gives us plenty of examples of Kedlaya means.

Five years later in 1999 Kedlaya [22] improved his result to a weighted setting. In more
details, he showed that

Theorem 1.2 (Kedlaya). Let x1, . . . , xn, λ1, . . . , λn be positive real numbers and define Λk :=
λ1 + · · ·+ λk. If the sequence (λi/Λi)

n
i=1 is nonincreasing then

n∏

i=1

( i∑

j=1

λj

Λi

xj

)λi/Λn

≥
n∑

j=1

λj

Λn

j∏

i=1

x
λi/Λj

i .

Motivated by these preliminaries, we are going to struggle with a weighted counterpart of
Kedlaya inequality. Before it could be done we need to make some introduction to weighted
means in abstract setting. We need to realize that there is no formal agreement concerning
this definition. They were introduced for particular families only.

In this situation let us present weighted deviation and quasi-deviation means only. Formal
definition of weighted means in the abstract setting will be introduced in the following
section.

For an interval I, and a deviation function E : I2 → R (E(x, ·) is continuous and strictly
increasing and E(x, x) = 0, x ∈ I), for x ∈ In, we define a mean y = DE(x) as a unique
solution of equation

n∑

i=1

E(xi, y) = 0. (1.2)

Its weighted counterpart is defined for any x ∈ In and λ ∈ Rn
+ as a unique solution of

equation
n∑

i=1

λi · E(xi, y) = 0. (1.3)

This definition could be generalized further; if a function E satisfying the following
properties:

(a) for all (x, t) ∈ I2, signE(x, t) = sign(x− t);
(b) for all x ∈ I, E(x, ·) is continuous;
(c) for all x, y ∈ I, the mapping I ∋ t 7→ E(x, t)/E(y, t), x < t < y is strictly increasing,
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then equalities (1.2) and (1.3) define the so-called quasi-deviation and weighted quasi-deviation
means, respectively.

At the moment, each time we are dealing with a family which is a particular case of
quasi-deviation means, weighted means are immediately defined. In this way, we can simply
obtain quasi-arithmetic means, Gini means, Bajraktarević means etc. (cf. [6] for definitions)
in their weighted setting.

Nevertheless, for the purpose of the present note, we need to separate the definition of
weighted means from any particular family. This will be accomplished in the forthcoming
section.

2 Weighted means

In this section we will introduce the notion of weighted means. Before we begin, let us
underline few important facts. Weighted means are used very often among the literature.
Most usually they are obtained by adding extra values to some symmetric operator (for
example λ1x1+···+λnxn

λ1+···+λn
instead of x1+···+xn

n
). It is done in this way that if we put λ1 = λ2 =

· · · = λn (very often weights are required to be normalized, that is
∑

λi = 1; see e.g. [19])
then weighted mean goes back to non-weighted one. Due to this fact, whenever we say about
weighted mean, its non-weighted counterpart is repetition invariant.

Let us also underline that in this definition weights are taken from some arbitrary ring
R ⊂ R. In fact, there are three particular rings which are significantly more important than
any other: the ring of integers and the fields of rational numbers and real numbers.

As we will see, every repetition invariant mean generate (in a unique way) a weighted
mean on rationals (roughly speaking it is implied by scaling invariance; see definition below).
Reals are also of special interest, because each time we are dealing with quasi-deviation mean,
we naturally request all real weights to be considered.

Definition (Weighted means). Let I ⊂ R be an arbitrary interval, R ⊂ R be a ring and,
for n ∈ N, define the set of n-dimensional weight vectors Wn(R) by

Wn(R) := {(λ1, . . . , λn) ∈ Rn | λ1, . . . , λn ≥ 0, λ1 + · · ·+ λn > 0}.

A weighted mean on I over R or, in other words, an R-weighted mean on I is a function

M :

∞⋃

n=1

In ×Wn(R) → I

satisfying the conditions (i)–(iv) presented below. Elements belonging to I will be called
entries ; elements from R – weights.
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(i) Nullhomogeneity in the weights: For all n ∈ N, for all (x, λ) ∈ In×Wn(R), and t ∈ R+,

M(x, λ) = M(x, t · λ),

(ii) Reduction principle: For all n ∈ N and for all x ∈ In, λ, µ ∈ Wn(R),

M(x, λ+ µ) = M(x⊙ x, λ⊙ µ),

where ⊙ is a shuffle operator 1 defined as

(p1, . . . , pn)⊙ (q1, . . . , qn) := (p1, q1, . . . , pn, qn).

(iii) Mean value property : For all n ∈ N, for all (x, λ) ∈ In ×Wn(R)

min(x1, . . . , xn) ≤ M(x, λ) ≤ max(x1, . . . , xn),

(iv) Elimination principle: For all n ∈ N, for all (x, λ) ∈ In × Wn(R) and for all j ∈
{1, . . . , n} such that λj = 0,

M(x, λ) = M
(
(xi)i∈{1,...,n}\{j}, (λi)i∈{1,...,n}\{j}

)
,

i.e., entries with a zero weight can be omitted.

For the sake of convenience, we will use the sum-type abbreviation

n

M
i=1

(xi, λi) := M
(
(x1, . . . , xn), (λ1, . . . , λn)

)
.

Let us begin with some technical lemma. To avoid misunderstanding, if we have a finite
sequence (a1, . . . , an) and k,m ∈ {1, . . . , n} such that k < m, then (am, . . . , ak) will be
interpreted as the empty sequence.

Lemma 2.1. Let I be an arbitrary interval, R ⊂ R be a ring, M be a weighted mean defined
on I over R. For every n ∈ N, k ∈ {1, . . . , n}, x ∈ In, λ ∈ Wn(R) and a nonnegative
number λ′

k ∈ R, we have

M
(
(x1, . . . , xk−1, xk, xk, xk+1, . . . , xn), (λ1, . . . , λk−1, λk, λ

′
k, λk+1, . . . , λn)

)

= M
(
(x1, . . . , xk−1, xk, xk+1, . . . , xn), (λ1, . . . , λk−1, λk + λ′

k, λk+1, . . . , λn)
)

1This definition comes from the theory of computation. Perhaps the most famous (folk) result states that
shuffling of two regular languages is again regular; see e.g. [4].
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Proof. If λ′
k = 0, then the statement follows from the elimination principle immediately.

In the other case, for i ∈ {1, . . . , n}, define λ′
i := δikλ

′
k, where δ stands for the Kronecker

symbol. Applying the elimination principle iteratively n − 1 times, and then using the
reduction principle, we obtain

M
(
(x1, . . . , xk−1, xk, xk, xk+1, . . . , xn), (λ1, . . . , λk−1,λk, λ

′
k, λk+1, . . . , λn)

)

= M(x⊙ x, λ⊙ λ′) = M(x, λ+ λ′),

which is exactly the identitity to be proved.

In the following theorem we will prove that a weighted mean defined on a ring can be
extended to its quotient field denoted as Quot(R).

Theorem 2.2. Let I be an interval, R ⊂ R be a ring, M be a weighted mean defined on I
over R. Then there exists a unique mean M̃ defined on I over Quot(R) such that

M̃|⋃+∞

n=1
In×Wn(R) = M.

Moreover if M is symmetric/monotone then so is M̃.

Proof. Fix n ∈ N, x ∈ In, and λ ∈ Wn(Quot(R)). Then there exists q ∈ R such that
qλ ∈ Wn(R) (for example a product of all denominators). We define

M̃(x, λ) := M(x, qλ). (2.1)

To prove the correctness of this definition, it suffices to show that it does not depend on the
selection of q. Indeed, take q′ ∈ R such that q′λ ∈ Wn(R). We need to verify if the equality
M(x, qλ) = M(x, q′λ) is valid. However, applying the nullhomogeneity of M (twice), we get

M(x, qλ) = M(x, q′qλ) = M(x, qq′λ) = M(x, q′λ).

In order to verify the nullhomogeneity of M̃, observe that every positive element of
Quot(R) can be represented as a/b for some a, b ∈ R+. Then, obviously, bq·(a/b)·λ ∈ Wn(R).
Thus

M̃(x, (a/b) · λ) = M(x, bq · (a/b) · λ) = M
(
x, a · (qλ)

)
= M(x, qλ) = M̃(x, λ).

To prove reduction principle, take λ, µ ∈ Wn(Quot(R)) arbitrarily. Then there exist
q, r ∈ R such that qλ, rµ ∈ Wn(R). In this case we also have qrλ, qrµ ∈ Wn(R). Then
(qrλ)⊙ (qrµ) ∈ W2n(R) and (qrλ)⊙ (qrµ) = qr · (λ⊙µ). Having these properties, we obtain

M̃(x⊙ x, λ⊙ µ) = M
(
x⊙ x, qr · (λ⊙ µ)

)

= M
(
x⊙ x, (qrλ)⊙ (qrµ)

)
= M

(
x, qrλ+ qrµ

)
= M̃(x, λ+ µ).
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The two remaining properties (mean value property, elimination principle) are obvious.
Moreover part is simply implied by (2.1).

What we are going to prove now is that every repetition invariant (non-weighted) mean
can be associated with a Z-weighted and, in the virtue of Theorem 2.2, a Q-weighted mean.
In fact this operation can be also reversed.

Theorem 2.3. If M :
⋃∞

n=1 I
n → I is a repetition invariant mean on I, then the formula

M̃
(
(x1, . . . , xn), (λ1, . . . , λn)

)
:= M

(
x1, . . . , x1︸ ︷︷ ︸
λ1 entries

, . . . , xn, . . . , xn︸ ︷︷ ︸
λn entries

)
(2.2)

defines a weighted mean M̃ :
⋃∞

n=1 I
n ×Wn(Z) → I on I over Z.

Conversely, if M̃ :
⋃∞

n=1 I
n ×Wn(Z) → I is a Z-weighted mean on I, then

M(x1, . . . , xn) := M̃
(
(x1, . . . , xn), (1, . . . , 1︸ ︷︷ ︸

n entries

)
)

(2.3)

is a repetition invariant mean on I. Furthermore these transformations are inverses of each
other.

Proof. Clearly, the transformations described in the theorem are inverses of each other.
Let M be a repetition invariant mean on I and let M̃ be given by (2.2). We need to

show that M̃ satisfies all properties (i)–(iv) listed in the definition of weighted means. First
observe that M̃ obviously admits the mean value property. Elimination principle is also
immediate because if λj = 0 then element xj does not appear on the right hand side of (2.2).

Let us now verify the nullhomogeneity in the weights. For t ∈ N+, we can apply repetition
invariance of M to get,

M̃
(
(x1, . . . , xn),(tλ1, . . . , tλn)

)
= M

(
x1, . . . , x1︸ ︷︷ ︸
t·λ1 entries

, . . . , xn, . . . , xn︸ ︷︷ ︸
t·λn entries

)

= M
(
x1, . . . , x1︸ ︷︷ ︸
λ1 entries

, . . . , xn, . . . , xn︸ ︷︷ ︸
λn entries

)
= M̃

(
(x1, . . . , xn), (λ1, . . . , λn)

)
.

Finally, we will prove the reduction principle. We may assume that λ, µ ∈ Nn. Then, for
all x ∈ In,

M̃(x, λ+ µ) = M
(
x1, . . . , x1︸ ︷︷ ︸
λ1+µ1 entries

, . . . , xn, . . . , xn︸ ︷︷ ︸
λn+µn entries

)

= M
(
x1, . . . , x1︸ ︷︷ ︸
λ1 entries

, x1, . . . , x1︸ ︷︷ ︸
µ1 entries

, . . . , xn, . . . , xn︸ ︷︷ ︸
λn entries

, x1, . . . , x1︸ ︷︷ ︸
µn entries

)

= M̃
(
(x1, x1, . . . , xn, xn), (λ1, µ1, . . . , λn, µn)

)
= M̃(x⊙ x, λ⊙ µ).
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Now we will prove the converse part. Let M̃ be a Z-weighted mean on I. By the definition,
we get

M(x1, . . . , xn) = M̃
(
(x1, . . . , xn), (1, . . . , 1)

)
≤ max(x1, . . . , xn);

similarly M(x1, . . . , xn) ≥ min(x1, . . . , xn).
To prove the repetition invariance of M, take any m ∈ N. By the definition M̃ and the

nullhomogeneity, this property is equivalent to

M̃
(
(x1, . . . , x1︸ ︷︷ ︸

m entries

, . . . , xn, . . . , xn︸ ︷︷ ︸
m entries

), (1, . . . , 1︸ ︷︷ ︸
mn entries

)
)
= M̃

(
(x1, . . . , xn), (m, . . . ,m︸ ︷︷ ︸

n entries

)
)
.

To see this equality, we shall apply Lemma 2.1 iteratively to encompass each block appearing
on the left hand side.

Let us now introduce some natural properties of weighted means. A weighted mean
M :

⋃∞
n=1 I

n ×Wn(R) → I is said to be symmetric, if for all n ∈ N, x ∈ In, λ ∈ Wn(R), and
for all permutations σ ∈ Sn,

M(x, λ) = M(x ◦ σ, λ ◦ σ).

We will call a weighted mean M Jensen concave if, for all n ∈ N, x, y ∈ In and λ ∈ Wn(R),

M

(x+ y

2
, λ
)
≥ 1

2

(
M(x, λ) +M(y, λ)

)
. (2.4)

If, on the above indicated domain, the reversed inequality is satisfied, then M is said to be
Jensen convex. First observe that, given a (symmetric) Jensen concave mean R weighted
mean M :

⋃∞
n=1 I

n ×Wn(R) → I, the mean M̂ :
⋃∞

n=1(−I)n ×Wn(R) → (−I) defined by

M̂(x, λ) := −M(−x, λ) (n ∈ N, x ∈ (−I)n, λ ∈ Wn(R)) (2.5)

is a (symmetric) Jensen convex R-weighted mean on (−I). Therefore, everything that we
obtain in terms of Jensen concavity, can be rewritten for Jensen convexity, and vice versa.

Another important observation is that, due to the mean value property, means are locally
bounded functions. Therefore, as a consequence of the celebrated Bernstein–Doetsch The-
orem (cf. [3], [25]), Jensen concavity or Jensen convexity is equivalent to their concavity or
convexity, respectively. Henceforth, it implies their continuity with respect to their entries
over the interior of In.

A weighted mean M is said to be continuous in the weights if, for all n ∈ N and x ∈ In,
the mapping λ 7→ M(x, λ) is continuous on Wn(R).

The following two statements are easy to see.
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Theorem 2.4. If M is a symmetric repetition invariant mean on I, then the function M̃

defined by the formula (2.2) is a symmetric weighted mean on I over Z.
Conversely, if M̃ is a symmetric Z-weighted mean on I, then the function M defined by

(2.3) is a symmetric repetition invariant mean on I.

Theorem 2.5. If M is a Jensen concave repetition invariant mean on I, then the function
M̃ defined by the formula (2.2) is a Jensen concave weighted mean on I over Z.

Conversely, if M̃ is a Jensen concave Z-weighted mean on I, then the function M defined
by (2.3) is a Jensen concave repetition invariant mean on I.

Usually, instead of explicitly writing down weights, we can consider a function with finite
range as the argument of the given mean. Let R be a subring of R. We say that D ⊆ R

is an R-interval if D is of the form [a, b), where a, b ∈ R. The Cartesian product of two
R-intervals will be called an R-rectangle. The length of an interval D will be denoted by
|D|.

Given an R-interval D, a function f : D → I is called R-simple if there exist n ∈ N and
a partition of D into R-intervals {Di}ni=1 such that supDi = infDi+1 for i ∈ {1, . . . , n− 1}
and f is constant on each subinterval Di. Then, for an R-weighted mean M on I, we set

M f(x)dx :=

n

M
i=1

(f |Di
, |Di|) = M((f |D1

, . . . , f |Dn
), (|D1|, . . . , |Dn|)).

Given an R-rectangle D×E, a function f : D×E → I is called R-simple if there exists
n ∈ N and a partition of D × E into R-rectangles {Di × Ei}ni=1 such that f is constant on
every Di × Ei. One can easily see that, for every x ∈ D, y ∈ E, the mappings f(x, ·) and
f(·, y) are R-simple functions on E and D, respectively.

A subset H ⊆ R or H ⊆ R2 will be called R-simple if its characteristic function is R-
simple. It is easy to see that a set H is R-simple if and only is it is the disjoint union of
finitely many R-intervals or R-rectangles, respectively.

For an R-simple set H ⊆ R, the sum of the lengths of the decomposing R-intervals will
be denoted by |H|. In fact, this is the Lebesgue measure of H .

In this section we will prove two important lemmas

Lemma 2.6. Let R be a ring such that QR ⊆ R. Then, for every R-rectangle D × E and
θ ∈ Q ∩ [0, 1], there exists a R-simple subset H ⊆ D ×E such that

1. for all x ∈ D, |{y : (x, y) ∈ H}| = θ · |E|,

2. for all y ∈ E, |{x : (x, y) ∈ H}| = θ · |D|.

9



A set H with the above properties will be called a θ-proportional subset of D ×E.

Proof. Let D and E be arbitrary R-intervals. Let us recall first that there exits an affine
bijection ϕ : [0, 1)2 → D × E. If D = [a, b) and E = [c, d), then such an affine bijection can
be given by

ϕ(t, s) := ((1− t)a+ tb, (1− s)c+ sd) ((t, s) ∈ [0, 1)2).

Assume that θ is of the form p/q, where q ∈ N, p ∈ {0, . . . , q}. Now set

Hi,j :=

[
i

q
,
i+ 1

q

)
×
[
j

q
,
j + 1

q

)
, i, j ∈ {0, . . . , q − 1}.

Finally, define the set H0 ⊆ [0, 1)2 by

H0 :=

q−1⋃

i=0

i+p−1⋃

j=i

Hi,j(mod q).

It is simple to verify that H0 is a θ-proportional subset of [0, 1)2. Therefore, the set H :=
ϕ(H0) is θ-proportional subset of D × E.

The inequality stated in the next result will be called the Jensen–Fubini inequality in the
sequel. We remind the reader that the symbol A stands for the arithemetic mean.

Lemma 2.7. Let D and E be Q-intervals. Let M :
⋃∞

n=1 I
n ×Wn(Q) → I be a Q-weighted

mean on I. Then, M is Jensen concave if and only if, for every Q-simple function f : D ×
E → I, we have

A
(
M f(x, y) dy

)
dx ≤M

(
A f(x, y) dx

)
dy. (2.6)

In addition, the validity of the reversed inequality in (2.6) characterizes the Jensen convexity
of M.

Proof. Assume first that M is Jensen concave. Let f : D × E → I be a Q-simple function.
Then D × E can be partitioned into a finite number of Q-rectangles {Di × Ei}Ni=1 such
that f |Di×Ei

is constant. Therefore there exists a number M ∈ N (being a product of all
denominators of the endpoints of Di and Ei) such that M ·Di and M ·Ei are Z-intervals for
all i ∈ {1, . . . , N}.

Having this, we can stretch f to a Z-simple function f̃ : (M ·D)× (M · E) → I defined
by

f̃(x, y) := f(x/M, y/M).
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On the other hand, the nullhomogeneity of M and also of A in the weights implies

M
(
A f(x, y) dx

)
dy =M

(
A f̃(x, y) dx

)
dy

and A
(
M f(x, y) dy

)
dx =A

(
M f̃(x, y) dy

)
dx.

Therefore we may assume that initial function f is Z-simple and D, E are Z-intervals.
Furthermore (just to make the notation simple) we can shift the left-bottom corner of D×E
to the origin, that is we assume that D = [0, n), E = [0, m) for some m,n ∈ N. Then we
can construct a matrix (ai,j) i∈{1,...,n}

j∈{1,...,m}

with entries in I such that

f̃(x, y) = ai,j for (x, y) ∈ [i− 1, i)× [j − 1, j), where i ∈ {1, . . . , n}, j ∈ {1, . . . , m}.
Then we have

MA f̃(x, y) dx dy =
m

M
j=1

(
a1,j + · · ·+ an,j

n
, 1

)
,

AM f̃(x, y) dy dx =
1

n

n∑

i=1

m

M
j=1

(ai,j, 1).

Finally, applying the Jensen concavity of M, we obtain the following inequality

1

n

n∑

i=1

m

M
j=1

(ai,j , 1) ≤
m

M
j=1

(
a1,j + · · ·+ an,j

n
, 1

)

which implies (2.6).
To complete the proof, assume that (2.6) holds for all Q-simple function f : D×E → I.

To prove the Jensen concavity of the mean M, let x, y ∈ In and λ ∈ Wn(Q). We may
assume that λi > 0 for all i ∈ {1, . . . , n}. Let E be a Q-interval which is partitioned into
some Q-intervals {Ei}ni=1 such that |Ei| = λi for all i ∈ {1, . . . , n}. Now construct the
function f : [0, 2)× E → I as follows:

f(u, v) =

{
xi if u ∈ [0, 1), v ∈ Ei,

yi if u ∈ [1, 2), v ∈ Ei.

Then, obviously, f is a Q-simple function. Applying (2.6) for this f , it follows that
1

2

(
M(x, λ) +M(y, λ)

)
=A

(
M f(u, v) dv

)
du ≤M

(
A f(u, v) du

)
dv = M

(x+ y

2
, λ
)
,

which shows that M is Jensen concave, indeed.
The last assertion of the theorem can be obtained by the transformation M 7→ M̂ defined

in (2.5).
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3 Results: The weighted Kedlaya inequality

We are heading toward the inequality which is main target for the present paper.
To have a weighed counterpart of the Kedlaya inequality, we have to take weight sequences

λ from R with a positive first member. Therefore, for a given ring R, we define

W 0
n(R) := {(λ1, . . . , λn) ∈ Rn | λ1 > 0, λ2, . . . , λn ≥ 0}, (n ∈ N),

W 0(R) := {λ ∈ RN | λ1 > 0, λ2, λ3, · · · ≥ 0}.

The nonincreasingness of the ratio sequence
(

λi

λ1+···+λi

)
will be a key assumption for Kedlaya

type inequalities, therefore, we also set

Vn(R) :=
{
λ ∈ W 0

n(R) |
(

λi

λ1+···+λi

)n
i=1

is nonincreasing
}
, (n ∈ N),

V (R) :=
{
λ ∈ W 0(R) |

(
λi

λ1+···+λi

)∞
i=1

is nonincreasing
}
.

Given n ∈ N and a weight sequence λ ∈ W 0
n(R), we say that a weighted mean M :

⋃∞
n=1 I

n×
Wn(R) → I satisfies the n variable λ-weighted Kedlaya inequality, or shortly, the (n, λ)-
Kedlaya inequality if

n

A
k=1

(
k

M
i=1

(xi, λi), λk

)
≤

n

M
k=1

(
k

A
i=1

(xi, λi), λk

)
(x ∈ In). (3.1)

If λ ∈ W 0(R) and this inequality holds for all n ∈ N, then we say that M satisfies the
λ-weighted Kedlaya inequality, or shortly, the λ-Kedlaya inequality. The main result of the
present note is to provide a sufficient condition for the weight sequence λ and the weighted
mean M such that the n variable λ-weighted Kedlaya inequality is satisfied by M.

Theorem 3.1. Let n ∈ N, λ ∈ Vn(Q) and let M :
⋃∞

n=1 I
n×Wn(Q) → I be a symmetric and

Jensen concave Q-weighted mean on I. Then M satisfies the n variable λ-weighted Kedlaya
inequality (3.1).

On the other hand, if M is a symmetric and Jensen convex Q-weighted mean on I, then
(3.1) holds with reversed inequality.

Proof. The statement of the theorem is trivial if n = 1. Therefore, we may assume that
n ≥ 2. Denote, for k ∈ {1, . . . , n}, the partial sum λ1 + · · ·+ λk by Λk and set Λ0 := 0.

First observe that if λi = 0 for some i ∈ {2, . . . , n}, then, for all j ∈ {i, . . . , n}, we get
λj/Λj ≤ λi/Λi = 0, that is λj = 0 for all j ∈ {i, . . . , n} and, consequently, the n variable
Kedlaya inequality is equivalent to the (i− 1) variable Kedlaya inequality. Thus, from now
on we assume that λi > 0 for all i ∈ {1, . . . , n}.

12



Take an arbitrary vector x ∈ In and, for k ∈ {1, . . . , n}, denote

mk :=

k

A
i=1

(xi, λi) =
λ1x1 + · · ·+ λkxk

Λk
.

In what follows, we are going to prove that, for all j ∈ {2, . . . , n},

Λj−1 ·
j−1

M
i=1

(mi, λi) + λj ·
j

M
i=1

(xi, λi) ≤ Λj ·
j

M
i=1

(mi, λi). (3.2)

Then, applying this inequality for all j ∈ {2, . . . , n}, summing up side by side, after simple
reduction, we get

n∑

j=1

λj ·
j

M
i=1

(xi, λi) ≤ Λn ·
n

M
i=1

(mi, λi).

Then, after dividing both sides of this inequality by Λn, we arrive at (3.1). For the sake of
convenience let us rewrite (3.2) into the following equivalent form

Λj−1

Λj
·

j−1

M
i=1

(mi, λi) +
λj

Λj
·

j

M
i=1

(xi, λi) ≤
j

M
i=1

(mi, λi). (3.3)

To prove this, we will define a Q-simple function f : [0,Λj)
2 → R+ such that respective sides

of the inequality (2.6) and (3.3) coincide with each other. This will complete the proof of
this theorem.

Consider a partition of the domain of f into the blocks Bk := [0,Λj−1)× [Λk−1,Λk) and
Ck := [Λj−1,Λj)× [Λk−1,Λk), where k ∈ {1, . . . , j}. Now, based on Lemma 2.6, let Hk be a
fixed λjΛk−1

λkΛj−1
-proportional subset of the block Bk for all k ∈ {1, . . . , j} and define

f(x, y) :=





mk−1 for (x, y) ∈ Hk, k = 2, . . . , j;

mk for (x, y) ∈ Bk \Hk, k = 1, . . . , j − 1;

xk for (x, y) ∈ Ck, k = 1, . . . , j.

To verify the correctness of this definition, we need to check λjΛk−1

λkΛj−1
≤ 1 for k ∈ {1, . . . , j}.

An elementary calculation shows that this inequality holds if and only if λk/Λk ≥ λj/Λj,
what is provided by the assumption on the weight vector λ.
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Fix x0 ∈ [0,Λj−1). By the construction of f , we have that, for k ∈ {1, . . . , j − 1},
f(x0, y) = mk if (x0, y) ∈ (Bk \Hk) ∪Hk+1. On the other hand,

|
{
y : (x0, y) ∈ (Bk \Hk) ∪Hk+1

}
| = λk

(
1− λjΛk−1

λkΛj−1

)
+ λk+1

λjΛk

λk+1Λj−1

=
λkΛj−1 − λjΛk−1 + λjΛk

Λj−1

=
λkΛj−1 + λjλk

Λj−1

=
Λj

Λj−1

λk.

Then, by the symmetry of M and the definition of the M-integral, for all x0 ∈ [0,Λj−1), we
have

M f(x0, y) dy =

j−1

M
k=1

(
mk,

Λj

Λj−1
λk

)
=

j−1

M
k=1

(mk, λk).

For x0 ∈ [Λj−1,Λj), we simply get

M f(x0, y) dy =

j

M
k=1

(xk, λk).

We can now calculate the weighted arithmetic mean with respect to x and obtain

A
(
M f(x, y) dy

)
dx =

Λj−1

Λj
·

j−1

M
k=1

(mk, λk) +
λj

Λj
·

j

M
k=1

(xk, λk).

This proves that the left hand sides of (3.3) and (2.6) are equal to each other.
Finally, we shall prove that it is also the case for the right hand sides. For, it suffices to

prove that

A f(x, y0) dx = mi, y0 ∈ [Λi−1,Λi), i ∈ {1, . . . , j}. (3.4)

For y0 ∈ [Λ0,Λ1), this equality is the consequence of the trivial equality m1 = x1. For
k ∈ {2, . . . , j} and y0 ∈ [Λk−1,Λk), we have that f(x, y0) equals mk−1, mk, or xk on Hk,
Bk \Hk, and Ck, respectively. But by the proportionality property of Hk, we know that

|{x : (x, y0) ∈ Hk}| =
λjΛk−1

λkΛj−1
· |{x : (x, y0) ∈ Bk}| =

λjΛk−1

λk
.

Therefore,

|{x : (x, y0) ∈ Bk \Hk}| = Λj−1 −
λjΛk−1

λk
,

and we also have
|{x : (x, y0) ∈ Ck}| = λj .
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Obviously the total length of the slice {x : (x, y0) ∈ Bk ∪ Ck} equals Λj . Using this and the
easy-to-see identity xk = (Λkmk − Λk−1mk−1)/λk, we get

A f(x, y0) dx =
1

Λj

(
λjΛk−1

λk
mk−1 +

(
Λj−1 −

λjΛk−1

λk

)
mk + λj ·

Λkmk − Λk−1mk−1

λk

)

=
mk

Λjλk

(
Λj−1λk − λjΛk−1 + λjΛk

)
=

mk

Λjλk

(
Λj−1λk + λjλk

)
= mk.

Therefore, the corresponding sides of (3.3) and (2.6) coincide. As the Jensen concavity of M
implies the Jensen–Fubini inequality (2.6), we obtain (3.3), and hence (3.2) and, finally, the
desired inequality (3.1).

The last assertion of the theorem can be obtained by the transformation M 7→ M̂ defined
in (2.5).

We have two immediate corollaries.

Corollary 3.2. Let λ ∈ V (Q) and let M :
⋃∞

n=1 I
n×Wn(Q) → I be a symmetric and Jensen

concave Q-weighted mean on I. Then M satisfies the λ-weighted Kedlaya inequality (3.1).
On the other hand, if M is a symmetric and Jensen convex Q-weighted mean on I, then

(3.1) holds with reversed inequality for all n ∈ N.

Taking the constant sequence λn = 1 in the above corollary, we arrive at a statement
which was one of the main results of the paper [43].

Corollary 3.3. Let M :
⋃∞

n=1 I
n → I be a symmetric and Jensen concave repetition invari-

ant mean on I. Then M satisfies the discrete Kedlaya inequality (1.1) for all n ∈ N and
x ∈ In.

On the other hand, if M is a symmetric and Jensen convex repetition invariant mean on
I, then (1.1) holds with reversed inequality for all n ∈ N and x ∈ In.

In our subsequent result we demonstrate the assumption that
(

λi

λ1+···+λi

)n
i=1

is nonincreas-
ing is not only a technical condition but, in some sense, it is an unavoidable condition.

Theorem 3.4. Let R ⊂ R be a subring, n ≥ 2 and let λ ∈ W 0
n(R) be a fixed sequence. Let

M :
⋃n

m=1[0,∞)m ×Wm(R) → [0,∞) be a homogeneous function with following properties:

(i) M((0, . . . , 0, 1), (λ1, . . . , λn−1)) = 1 and M((0, . . . , 0, 1), λ) = 1;

(ii) the mapping x 7→ µ(x) := M((0, . . . , 0, x, 1), λ) is differentiable at x = 0 with µ′(0) < 0.
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Assume that M satisfies the (n, λ)-weighted Kedlaya inequality (3.1) with reversed inequality
sign. Then

λn−1

λ1 + · · ·+ λn−1

≥ λn

λ1 + · · ·+ λn

. (3.5)

Proof. Substituting x1 = · · · = xn−2 = 0 and xn−1 := x, xn := 1 into inequality (3.1) with
reversed inequality sign, then using property (i) of M, we get

M

((
0, . . . , 0,

λn−1x

Λn−1

,
λn−1x+ λn

Λn

)
, λ

)
≤ λn−1x+ λnM((0, . . . , 0, x, 1), λ)

Λn

.

Therefore, by the homogeneity of M,

(λn−1x+ λn)M

((
0, . . . , 0,

λn−1Λnx

Λn−1(λn−1x+ λn)
, 1
)
, λ

)
≤ λn−1x+ λnM((0, . . . , 0, x, 1), λ),

which, using the notation in (ii), can be rewritten as

(λn−1x+ λn)µ

(
λn−1Λnx

Λn−1(λn−1x+ λn)

)
≤ λn−1x+ λnµ(x)

By the second condition of (i), we have that µ(0) = 1. Therefore, subtracting λn and then
dividing by x side by side, we get

λn−1µ

(
λn−1Λnx

Λn−1(λn−1x+ λn)

)
+

λn

x

(
µ

(
λn−1Λnx

Λn−1(λn−1x+ λn)

)
− 1

)
≤ λn−1 + λn

µ(x)− µ(0)

x

Upon taking the limit x → 0, using the differentiability of µ at 0, we arrive at

λn−1 +
λn−1Λn

Λn−1
µ′(0) ≤ λn−1 + λnµ

′(0).

Now, using µ′(0) < 0, we obtain that (3.5) holds true.

The following result is an immediate consequence of the latter theorem.

Corollary 3.5. Let R ⊂ R be a subring and let λ ∈ W 0(R) be a fixed sequence. Let
M :

⋃∞
n=1[0,∞)n ×Wn(R) → [0,∞) be a homogeneous function with following properties:

(i) for all n ∈ N, M((0, . . . , 0, 1), (λ1, . . . λn)) = 1;

(ii) for all n ≥ 2, the mapping x 7→ µn(x) := M((0, . . . , 0, x, 1), (λ1, . . . , λn)) is differen-
tiable at x = 0 with µ′

n(0) < 0.
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Assume that M satisfies the λ-weighted Kedlaya inequality (3.1) with reversed inequality sign.
Then the sequence

(
λn

λ1+···+λn

)∞
n=1

is nonincreasing, that is λ ∈ V (R).

Example 1. In this example we construct a homogeneous Jensen convex symmetric mean
M such that, for a positive sequence λ ∈ W (Q), the reversed λ-Kedlaya inequality can hold if
and only if the sequence

(
λn

λ1+···+λn

)∞
n=1

is nonincreasing. This shows that the latter condition
is not a technical one, but it is indispensable.

Consider the function M :
⋃∞

n=1[0,∞)n ×Wn(R) → [0,∞) defined by

M((x1, . . . , xn), (λ1, . . . , λn)) :=

{
λ1x2

1+···+λnx2
n

λ1x1+···+λnxn
if λ1x1 + · · ·+ λnxn > 0,

0 if λ1x1 + · · ·+ λnxn = 0.

We first show that M is a homogeneous Jensen convex symmetric mean. The homogeneity
and symmetry are obvious. For the proof of the Jensen convexity, let x, y ∈ [0,∞)n and
λ ∈ Wn(R). We have to verify that

M

(x+ y

2
, λ
)
≤ 1

2

(
M(x, λ) +M(y, λ)

)
. (3.6)

If the left hand side is zero, then there is nothing to prove. In the other case, by the definition
of the mean, we have that λ1(x1 + y1) + · · · + λn(xn + yn) > 0. If λ1x1 + · · · + λnxn = 0,
then M(x, λ) = 0 and, for all i ∈ {1, . . . , n}, we have that λixi = 0. Therefore,

M

(x+ y

2
, λ
)
=

λ1(x1 + y1)
2 + · · ·+ λn(xn + yn)

2

2(λ1(x1 + y1) + · · ·+ λn(xn + yn))

=
λ1y

2
1 + · · ·+ λny

2
n

2(λ1y1 + · · ·+ λnyn)
=

1

2

(
M(x, λ) +M(y, λ)

)
.

In the other subcase λ1y1 + · · · + λnyn = 0, a completely analogous argument yields that
(3.6) is valid, too. Therefore, in the rest of the proof of the Jensen convexity, we may assume
that λ1x1 + · · · + λnxn > 0 and λ1y1 + · · · + λnyn > 0. Denote M(x, λ) and M(y, λ) by u
and v, respectively. Then, it follows from the definition of the mean M that

n∑

i=1

λi

((xi

u

)2
− xi

u

)
= 0,

n∑

i=1

λi

((yi
v

)2
− yi

v

)
= 0.
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Now, using the convexity of the function x 7→ x2 − x, we get that

0 =
u

u+ v

n∑

i=1

λi

((xi

u

)2
− xi

u

)
+

v

u+ v

n∑

i=1

λi

((yi
v

)2
− yi

v

)

=
n∑

i=1

λi

(
u

u+ v

((xi

u

)2
− xi

u

)
+

v

u+ v

((yi
v

)2
− yi

v

))

≥
n∑

i=1

λi

(( u

u+ v

xi

u
+

v

u+ v

yi
v

)2
−
( u

u+ v

xi

u
+

v

u+ v

yi
v

))

=
n∑

i=1

λi

((xi + yi
u+ v

)2
− xi + yi

u+ v

)
.

After a simple calculation, this inequality implies that

M

(x+ y

2
, λ
)
≤ u+ v

2
,

which is equivalent to the inequality (3.6).
Let λ ∈ W (Q) be any sequence with positive terms. We show that the reversed λ-Kedlaya

inequality (3.1) is satisfied by M if and only if λ ∈ V (Q).
In view of the symmetry and the Jensen convexity of M, if λ ∈ V (Q), then, by Theo-

rem 3.1, M fulfills the reversed λ-Kedlaya inequality (3.1).
On the other hand, assume that M satisfies the reversed λ-Kedlaya inequality (3.1). In

order to obtain that λ ∈ V (Q), by Corollary 3.5 it suffices to verify that M satisfies conditions
(i) and (ii) of this result. Condition (i) is trivially valid. To see that (ii) also holds, observe
that

µn(x) =
λn−1x

2 + λn

λn−1x+ λn
(x ≥ 0).

Then
µ′(0) = −λn−1

λn
< 0.

Thus, by Corollary 3.5, the sequence
(

λn

λ1+···+λn

)∞
n=1

must be nonincreasing, i.e., λ ∈ V (Q)
should be valid.

At the very end of this section let us emphasize that the Kedlaya property is stable under
affine transformations of means. More precisely we can establish the following simple lemma.

Lemma 3.6. Let I be an interval R be a ring, n ∈ N and λ ∈ W 0
n(R). Let a, b ∈ R with

a 6= 0. If an R-weighed mean M on I satisfies the (n, λ)-Kedlaya inequality (3.1) and a > 0,
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then this inequality is also satisfied by the mean Ma,b :
⋃∞

k=1(aI + b)k × Wk(R) → aI + b
defined by

Ma,b(x, µ) := a ·M
((x1 − b

a
, . . . ,

xk − b

a

)
, µ
)
+ b, (k ∈ N, (x, µ) ∈ (aI + b)k ×Wk(R)).

If a < 0 then the sign in the inequality (3.1) is reversed.

We note that, similar invariance property holds concerning Jensen convexity and concav-
ity of means.

From now on, we will extensively use Proposition 3.7. To make the notation easier let us
define, for every n ∈ N,

(a) Qn to be the set of all λ ∈ W 0
n(Q) such that the (n, λ)-Kedlaya inequality is satisfied for

every symmetric and Jensen concave Q-weighted mean;

(b) Rn to be the set of all λ ∈ W 0
n(R) such that the (n, λ)-Kedlaya inequality is satisfied

for every symmetric and Jensen concave R-weighted mean which is continuous in the
weights.

It is quite easy to observe that this property does not depend on the selection of the domain
(cf. [34]). It will be mostly used to distinguish the (technical) assumptions of Theorem 3.1
and the requirements to the family of means. In fact requirements of Jensen concavity of
mean and its symmetry were taken just to provide assumption of these two results to be
satisfied. In fact, each collection of constraints leads us to an analogous family of sets.

Some properties of these sets are implied just by their definition. For example as an
immediate result of continuity in weights, we get that Rn is a closed subset of W 0

n(R).
Furthermore, the nullhomogeneity in the weights implies that Rn is a cone, that is, cλ ∈ Rn

for all c > 0 and λ ∈ Rn.
Having this notations already introduced, Theorem 3.1 and Example 1 imply

Vn(Q) ⊆ Qn ⊆
{
λ ∈ W 0

n(Q)
∣∣∣ λn−1

λ1 + · · ·+ λn−1

≥ λn

λ1 + · · ·+ λn

}
. (3.7)

But Qn ⊆ Rn and Rn is closed in W 0
n(R), therefore we obtain a generalization of Theorem 1.2

to a broad family of R-weighted means.

Proposition 3.7. For every n ∈ N with n ≥ 2, the following inclusions are valid

Vn(R) ⊆ Rn ⊆
{
λ ∈ W 0

n(R)
∣∣∣ λn−1

λ1 + · · ·+ λn−1
≥ λn

λ1 + · · ·+ λn

}
. (3.8)
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Proof. Like in the case of Qn, the second inclusion is the consequence of Example 1. We will
have to prove the first one only. Let us keep a notation that whenever sequence λ is defined,
Λ denotes its respective sequence of partial sums. Define the sets

A :=
{
λ ∈ Vn(R)

∣∣ λi > 0 for all i, λ1 = 1
}
,

B :=
{
x ∈ (0, 1]n

∣∣ x1 = 1 > x2 and x is nonincreasing
}
.

As λ1 = Λ1 for every λ ∈ A, we can define functions u : A → B and v : B → (0, 1) ×
(0, 1]n−2 by u(λ) := (λi/Λi)

n
i=1 and v(x) := (xi+1/xi)

n−1
i=1 , respectively. Then we have (with

the usual convention
∏0

j=1(·) := 1)

u−1(x) =
(
xi ·

i∏

j=2

1

1− xj

)n
i=1

, v−1(y) =
( i−1∏

j=1

yj

)n
i=1

.

Therefore, both u and v are homeomorphisms. So is w := v ◦ u : A → (0, 1) × (0, 1]n−2.
Moreover, by verifying both inclusions, we can see that w(Qn∩A) = Qn−1∩

(
(0, 1)×(0, 1]n−2

)
.

Now take any λ(0) ∈ Vn(R). If λ(0)
k = 0 for some k ≤ n then (n, λ)-Kedlaya inequality

reduces to (k−1, λ)-Kedlaya inequality. Therefore we may suppose that all entires of λ(0) are
positive. Equivalently, by the nullhomogeneity with respect to the weights, we may assume
that λ(0)

1 = 1, i.e., λ(0) ∈ A.
Define a(0) := w(λ(0)) ∈ (0, 1)× (0, 1]n−2. Take a sequence (a(k))∞k=1 having all elements

in
(
Q ∩ (0, 1)

)n−1 and convergent to a(0). For λ(k) := s−1(a(k)) ∈ Qn ∩ A, we immediately
obtain λ(k) → λ(0). However, by (3.7), we know that (Qn ∩ A) ⊆ Qn ⊆ Rn for all k ∈ N.
Therefore λ(k) ∈ Rn for all k ∈ N. Thus, as Rn is closed in W 0

n(R), we get λ(0) ∈ Rn, too.

4 Discussion

In this section we will apply results already obtained to a important families of means. Each
of subsection will consist of definition of the family, a characterization of Jensen concavity
and, finally, applications of the notation of Rn. Let us stress that to get some particular
examples we need to use Proposition 3.7. This purely technical operation will be however
omit just to keep the notation more compact.

4.1 Deviation means

Given a function E : I × I → R vanishing on the diagonal of I × I, continuous and strictly
decreasing with respect to the second variable (we will call such a function to be a deviation
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function), we can define a mean DE :
⋃∞

n=1 I
n → I in the following manner (cf. Daróczy [9]).

For every n ∈ N, for every vector x = (x1, . . . , xn) ∈ In and λ = (λ1, . . . , λn) ∈ Wn(R), the
weighted deviation mean (or Daróczy mean) DE(x, λ) is the unique solution y of the equation

λ1E(x1, y) + · · ·+ λnE(xn, y) = 0.

By [36] deviation means are symmetric weighted mean which is continuous in the weights.
The increasingness of a deviation mean DE is equivalent to the increasingness of the deviation
E in its first variable. All these properties and characterizations are consequences of the
general results obtained in a series of papers by Losonczi [26–31] (for Bajraktarević means
and Gini means) and by Daróczy [9, 10], Daróczy–Losonczi [11], Daróczy–Páles [12, 13] (for
deviation means) and by Páles [36–42] (for deviation and quasi-deviation means).

The only property which requires some calculations is the characterization of the Jensen
concavity of a deviation mean.

Lemma 4.1. Let E : I × I → R be a deviation function which is differentiable with respect
to its second variable and ∂2E(t, t) is nonvanishing for t ∈ I. Then DE is Jensen concave if
and only if the mapping E∗ : I2 → R defined by

E∗(x, t) := − E(x, t)

∂2E(t, t)
(4.1)

is Jensen concave.

Proof. Define Ê(x, t) := −E(−x,−t) for (x, t) ∈ (−I)2, and

Ê∗(x, t) = − Ê(x, t)

∂2Ê(t, t)
= −−E(−x,−t)

∂2E(−t,−t)
= −E∗(−x,−t).

In particular Ê∗ is Jensen convex if and only if E∗ is Jensen concave.
Furthermore, in view of the identity D̂E = DÊ , we have that DE is Jensen concave if

and only if DÊ is Jensen convex. Moreover, applying [40, Theorem 6] with appropriate
substitutions we obtain that DÊ is Jensen convex if and only if Ê∗ is Jensen convex.

Finally, binding all equivalences above, one can easily finish the proof.

Based on the above lemma, it is simple now to formulate a corollary which is important
in view of Proposition 3.7.

Proposition 4.2. Let E : I × I → R be a deviation function which is differentiable with
respect to its second variable such that ∂2E(t, t) is nonvanishing for t ∈ I and the mapping E∗

defined by (4.1) is Jensen concave. Then DE satisfies the (n, λ)-weighted Kedlaya inequality
for all n ∈ N and λ ∈ Rn.

21



Observe that if E(x, y) = f(x) − f(y) for some continuous, strictly monotone function
f : I → R, then the deviation mean DE reduces to the quasi-arithmetic mean Af . Therefore,
deviation means include quasi-arithmetic means. One can also notice that Bajraktarević
means and Gini means are also form subclasses of deviation means.

4.2 Homogeneous Deviation means

It is known [42] that a deviation mean generated by a continuous deviation function E : R2
+ →

R is homogeneous if and only if E is of the form E(x, y) = g(y)f(x
y
) for some continuous

functions f, g : R+ → R such that f vanishes at 1 and g is positive. Clearly, the deviation
mean generated by E is determined only by the function f , therefore, as we are going to
deal with homogeneous deviation means, let Ef denote the corresponding deviation mean.

Let us just mention that homogeneous deviation means generalize power means. Indeed,
whenever I = R+ and f = πp, where πp(x) := xp if p 6= 0 and π0(x) := ln x, then Eπp

coincide
with Pp for all p ∈ R. It is also known [44, Theorem 2.3]

Theorem 4.3. Let f : R+ → R a strictly increasing concave function with f(1) = 0. Then
the function E : R2

+ → R defined by E(x, y) := f
(
x
y

)
is a deviation and the corresponding

deviation mean Ef := DE is homogeneous, continuous, increasing and Jensen concave.

This theorem has an immediate corollary which is implied by the definition of Rn itself.
Its usefulness is provided by Proposition 3.7.

Proposition 4.4. Let f : R+ → R a strictly increasing concave function with f(1) = 0.
Then Ef satisfies the (n, λ)-weighted Kedlaya inequality for all n ∈ N and λ ∈ Rn.

4.3 Quasi-arithmetic means

Idea of quasi-arithmetic means first only glimpsed in a pioneering paper by Knopp [23].
Their theory was somewhat later axiomatized in a series of three independent but nearly
simultaneous papers by De Finetti [14], Kolmogorov [24], and Nagumo [32] at the beginning
of 1930s.

Let I be an interval and f : I → R be a continuous, strictly monotone function. For
n ∈ N and for a given vector x = (x1, . . . , xn) ∈ In and λ = (λ1, . . . , λn) ∈ Wn(R), set

Af(x, λ) := f−1

(
λ1f(x1) + · · ·+ λnf(xn)

λ1 + · · ·+ λn

)
.

The weighted mean Af :
⋃∞

n=1 I
n × Wn(R) → I defined this way is called the weighted

quasi-arithmetic mean generated by the function f . Quasi-arithmetic means are a natural
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generalization of power means. Indeed, like in the case of a deviation mean, for all p ∈ R,
means Aπp

and Pp are equal. These means share most of the properties of power means. In
particular, it is easy to verify that they are symmetric and strictly increasing. In fact, they
admit even more properties of power means (cf. [24], [1]). Let us recall some meaningful
result [44, Theorem 2.2]

Theorem 4.5. Let f : I → R be a twice continuously differentiable function with a non-
vanishing first derivative. Then the wighted quasi-arithmetic mean Af is Jensen concave if
and only if either f ′′ is identically zero or f ′′ is nowhere zero and the ratio function f ′

f ′′
is a

convex and negative function on I.

Similarly like it was done in the case of Theorem 4.3, this one could be also used to
obtain some results concerning Kedlaya inequality. Let us stress again meaningfulness of
Proposition 3.7.

Proposition 4.6. Let f : I → R be a twice continuously differentiable function with a non-
vanishing first derivative such that either f ′′ is identically zero or f ′′ is nowhere zero and
the ratio function f ′

f ′′
is a convex and negative function on I. Then Af satisfies the (n, λ)-

weighted Kedlaya inequality for all n ∈ N and λ ∈ Rn.

4.4 Gini means

Given two real numbers p, q ∈ R, define the function χp,q : R+ → R by

χp,q(x) :=





xp − xq

p− q
if p 6= q,

xp ln(x) if p = q.

In this case, the function Ep,q : R
2
+ → R defined by

Ep,q(x, y) := ypχp,q

(x
y

)

is a deviation function on R+. The wighted deviation mean generated by Ep,q will be denoted
by Gp,q and called the weighted Gini mean of parameter p, q (cf. [17]). One can easily see
that Gp,q has the following explicit form:

Gp,q(x, λ) :=





(
λ1x

p
1 + · · ·+ λnx

p
n

λ1x
q
1 + · · ·+ λnx

q
n

) 1

p−q

if p 6= q,

exp

(
λ1x

p
1 ln(x1) + · · ·+ λnx

p
n ln(xn)

λ1x
p
1 + · · ·+ λnx

p
n

)
if p = q.

(4.2)
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Clearly, in the particular case q = 0, the mean Gp,q reduces to the pth power mean Pp. It is
also obvious that Gp,q = Gq,p. It is known [27, 28] that Gp,q is concave if and only if

min(p, q) ≤ 0 ≤ max(p, q) ≤ 1. (4.3)

Therefore, as an immediate consequence, we have

Proposition 4.7. If p, q ∈ R satisfy (4.3), then Gp,q satisfies the (n, λ)-weighted Kedlaya
inequality for all n ∈ N and λ ∈ Rn.

4.5 Power means

Let just recall from the previous sections that Pp = Gp,0 = Aπp
, therefore it was already

covered in the previous results. In fact we can use either Proposition 4.6 or 4.7 to obtain

Proposition 4.8. For every p ≤ 1 the power mean Pp satisfies the (n, λ)-weighted Kedlaya
inequality for all n ∈ N and λ ∈ Rn.

Obviously for p = 1 the power mean P1 is just an arithmetic mean. Therefore in this case,
Kedlaya inequality (3.1) becomes an equality for all n ∈ N and a pair x ∈ Rn with weights λ ∈
W 0

n(R). In the case p = 0, the inequality (3.1) reduces to the inequality stated in Theorem 1.2
which was discovered by Kedlaya [22]. Further important extensions and generalizations of
the power mean Kedlaya inequality can be found in the papers [2,5,7,8,15,16,18,33,35,45,46].

5 Conclusions

The main result of the paper, the weighted Kedlaya inequality established in Theorem 3.1,
generalizes Kedlaya celebrated result of 1999, which was established for the geometric mean.
The inequality has several particular cases in the classes of deviation means, quasi-arithmetic
means, Gini means and power means.
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