Classes and equivalence of linear sets in $PG(1, q^n)$

Bence Csajbók, Giuseppe Marino and Olga Polverino*

Abstract

The equivalence problem of \mathbb{F}_q -linear sets of rank n of $\mathrm{PG}(1,q^n)$ is investigated, also in terms of the associated variety, projecting configurations, \mathbb{F}_q -linear blocking sets of Rédei type and MRD-codes.

1 Introduction

Linear sets are natural generalizations of subgeometries. Let $\Lambda = \operatorname{PG}(W, \mathbb{F}_{q^n})$ = $\operatorname{PG}(r-1, q^n)$, where W is a vector space of dimension r over \mathbb{F}_{q^n} . A point set L of Λ is said to be an \mathbb{F}_q -linear set of Λ of rank k if it is defined by the non-zero vectors of a k-dimensional \mathbb{F}_q -vector subspace U of W, i.e.

$$L = L_U = \{ \langle \mathbf{u} \rangle_{\mathbb{F}_{q^n}} \colon \mathbf{u} \in U \setminus \{\mathbf{0}\} \}.$$

The maximum field of linearity of an \mathbb{F}_q -linear set L_U is \mathbb{F}_{q^t} if t is the largest integer such that L_U is an \mathbb{F}_{q^t} -linear set. In the recent years, starting from the paper [18] by Lunardon, linear sets have been used to construct or characterize various objects in finite geometry, such as blocking sets and multiple blocking sets in finite projective spaces, two-intersection sets in finite projective spaces, translation spreads of the Cayley Generalized Hexagon, translation ovoids of polar spaces, semifield flocks and finite semifields. For a survey on linear sets we refer the reader to [24], see also [14].

One of the most natural questions about linear sets is their equivalence. Two linear sets L_U and L_V of $\operatorname{PG}(r-1,q^n)$ are said to be $\operatorname{P\Gamma L}$ -equivalent (or simply equivalent) if there is an element φ in $\operatorname{P\Gamma L}(r,q^n)$ such that $L_U^{\varphi}=L_V$. In the applications it is crucial to have methods to decide whether two linear

^{*}The research was supported by Ministry for Education, University and Research of Italy MIUR (Project PRIN 2012 "Geometrie di Galois e strutture di incidenza") and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INdAM).

sets are equivalent or not. For $f \in \Gamma L(r, q^n)$ we have $L_{Uf} = L_U^{\varphi_f}$, where φ_f denotes the collineation of $\operatorname{PG}(W, \mathbb{F}_{q^n})$ induced by f. It follows that if U and V are \mathbb{F}_q -subspaces of W belonging to the same orbit of $\Gamma L(r, q^n)$, then L_U and L_V are equivalent. The above condition is only sufficient but not necessary to obtain equivalent linear sets. This follows also from the fact that \mathbb{F}_q -subspaces of W with different ranks can define the same linear set, for example \mathbb{F}_q -linear sets of $\operatorname{PG}(r-1,q^n)$ of rank $k \geq rn-n+1$ are all the same: they coincide with $\operatorname{PG}(r-1,q^n)$. As it was showed recently in [6], if r=2, then there exist \mathbb{F}_q -subspaces of W of the same rank n but on different orbits of $\Gamma L(2,q^n)$ defining the same linear set of $\operatorname{PG}(1,q^n)$.

Suppose that $L_U^{\varphi_f} = L_V$ for some collineation, but there is no \mathbb{F}_{q^n} -semilinear map between U and V. Then the \mathbb{F}_q -subspaces U^f and V define the same linear set, but there is no invertible \mathbb{F}_{q^n} -semilinear map between them. This observation motivates the following definition. An \mathbb{F}_q -linear set L_U with maximum field of linearity \mathbb{F}_q is called simple if for each \mathbb{F}_q -subspace V of W with $\dim_q(U) = \dim_q(V)$, $L_U = L_V$ only if U and V are in the same orbit of $\Gamma L(W, \mathbb{F}_{q^n})$. Natural examples of simple linear sets are the subgeometries (cf. [17, Theorem 2.6] and [13, Section 25.5]). In [5] it was proved that \mathbb{F}_q -linear sets of rank n+1 of $\mathrm{PG}(2,q^n)$ admitting (q+1)-secants are simple. This allowed the authors to translate the question of equivalence to the study of the orbits of the stabilizer of a subgeometry on subspaces and hence to obtain the complete classification of \mathbb{F}_q -linear blocking sets in $\mathrm{PG}(2,q^4)$. Until now, the only known examples of non-simple linear sets are those of pseudoregulus type of $\mathrm{PG}(1,q^n)$ for $n \geq 5$ and $n \neq 6$, see [6].

In this paper we focus on linear sets of rank n of $\operatorname{PG}(1,q^n)$. Such linear sets are related to \mathbb{F}_q -linear blocking sets of Rédei type, MRD-codes of size q^{2n} with minimum rank distance n-1 and projections of subgeometries. We first introduce a method which can be used to find non-simple linear sets of rank n of $\operatorname{PG}(1,q^n)$. Let L_U be a linear set of rank n of $\operatorname{PG}(W,\mathbb{F}_{q^n}) = \operatorname{PG}(1,q^n)$ and let β be a non-degenerate alternating form of W. Denote by \bot the orthogonal complement map induced by $\operatorname{Tr}_{q^n/q} \circ \beta$ on W (considered as an \mathbb{F}_q -vector space). Then U and U^\bot defines the same linear set (cf. Result 2.1) and if U and U^\bot lie on different orbits of $\Gamma L(W,\mathbb{F}_{q^n})$, then L_U is non-simple. Using this approach we show that there are non-simple linear sets of rank n of $\operatorname{PG}(1,q^n)$ for $n \ge 5$, not of pseudoregulus type (cf. Proposition 3.9). Contrary to what we expected initially, simple linear sets are harder to find. We prove that the linear set of $\operatorname{PG}(1,q^n)$ defined by the trace function is simple (cf. Theorem 3.7). We also show that linear sets of rank n of $\operatorname{PG}(1,q^n)$ are simple for $n \le 4$ (cf. Theorem 4.5).

Moreover, in $PG(1, q^n)$ we extend the definition of simple linear sets and introduce the $\mathcal{Z}(\Gamma L)$ -class and the ΓL -class for linear sets of rank n. In Section 5 we point out the meaning of these classes in terms of equivalence of the associated blocking sets, MRD-codes and projecting configurations.

2 Definitions and preliminary results

2.1 Dual linear sets with respect to a symplectic polarity of a line

For $\alpha \in \mathbb{F}_{q^n}$ and a divisor h of n we will denote by $\operatorname{Tr}_{q^n/q^h}(\alpha)$ the trace of α over the subfield \mathbb{F}_{q^h} , that is, $\operatorname{Tr}_{q^n/q^h}(\alpha) = \alpha + \alpha^{q^h} + \ldots + \alpha^{q^{n-h}}$. By $\operatorname{N}_{q^n/q^h}(\alpha)$ we will denote the norm of α over the subfield \mathbb{F}_{q^h} , that is, $\operatorname{N}_{q^n/q^h}(\alpha) = \alpha^{1+q^h+\ldots+q^{n-h}}$. Since in the paper we will use only norms over \mathbb{F}_q , the function $\operatorname{N}_{q^n/q}$ will be denoted simply by N.

Starting from a linear set L_U and using a polarity τ of the space it is always possible to construct another linear set, which is called dual linear set of L_U with respect to the polarity τ (see [24]). In particular, let L_U be an \mathbb{F}_q -linear set of rank n of a line $\operatorname{PG}(W,\mathbb{F}_{q^n})$ and let $\beta:W\times W\longrightarrow \mathbb{F}_{q^n}$ be a non-degenerate reflexive \mathbb{F}_{q^n} -sesquilinear form on the 2-dimensional vector space W over \mathbb{F}_{q^n} determining a polarity τ . The map $\operatorname{Tr}_{q^n/q}\circ\beta$ is a non-degenerate reflexive \mathbb{F}_q -sesquilinear form on W, when W is regarded as a 2n-dimensional vector space over \mathbb{F}_q . Let \bot_β and \bot'_β be the orthogonal complement maps defined by β and $\operatorname{Tr}_{q^n/q}\circ\beta$ on the lattices of the \mathbb{F}_q -subspaces and \mathbb{F}_q -subspaces of W, respectively. The dual linear set of L_U with respect to the polarity τ is the \mathbb{F}_q -linear set of rank n of $\operatorname{PG}(W,\mathbb{F}_{q^n})$ defined by the orthogonal complement $U^{\bot'_\beta}$ and it will be denoted by L_U^τ . Also, up to projectively equivalence, such a linear set does not depend on τ .

For a point $P = \langle \mathbf{z} \rangle_{\mathbb{F}_{q^n}} \in \mathrm{PG}(W, \mathbb{F}_{q^n})$ the weight of P with respect to the linear set L_U is $w_{L_U}(P) := \dim_q(\langle \mathbf{z} \rangle_{\mathbb{F}_{q^n}} \cap U)$. Note that when $P \in L_U$, then the weight depends on the subspace U and not only on the set of points of L_U . It can happen that for two \mathbb{F}_q -subspaces U and V of W we have $L_U = L_V$ with $w_{L_U}(P) \neq w_{L_V}(P)$. When we write "the weight of $P \in L_U$ ", then we always mean $w_{L_U}(P)$ and hence when we speak about the weight of a point, we will never omit the subscript.

Result 2.1. From [24, Property 2.6] (with r=2, s=1 and t=n) it can be easily seen that if L_U is an \mathbb{F}_q -linear set of rank n of a line $\mathrm{PG}(W,\mathbb{F}_{q^n})$ and L_U^{τ} is its dual linear set with respect to a polarity τ , then $w_{L_U^{\tau}}(P^{\tau}) = w_{L_U}(P)$

for each point $P \in \mathrm{PG}(W, \mathbb{F}_{q^n})$. If τ is a symplectic polarity of a line $PG(W, \mathbb{F}_{q^n})$, then $P^{\tau} = P$ and hence $L_U = L_U^{\tau} = L_{I^{\perp_{\beta}}}$.

2.2 \mathbb{F}_q -linear sets of $PG(1, q^n)$ of class r

In this paper we investigate the equivalence of \mathbb{F}_q -linear sets of rank n of the projective line $\operatorname{PG}(W,\mathbb{F}_{q^n})=\operatorname{PG}(1,q^n)$. As we have seen in the introduction, two \mathbb{F}_q -linear sets L_U and L_V of rank n of $\operatorname{PG}(1,q^n)$ are equivalent if there is an element φ_f in $\operatorname{P\GammaL}(2,q^n)$ such that $L_U^{\varphi_f}=L_{U^f}=L_V$, where $f\in \operatorname{\GammaL}(W,\mathbb{F}_{q^n})$ is the semilinear map inducing φ_f . Hence the first step is to determine the \mathbb{F}_q -vector subspaces of W defining the same linear set. This motivates the definition of the $\mathcal{Z}(\operatorname{\GammaL})$ -class and $\operatorname{\GammaL}$ -class of a linear set L_U of $\operatorname{PG}(1,q^n)$ (cf. Definitions 2.3 and 2.4). The next proposition relies on the characterization of functions over \mathbb{F}_q determining few directions. It states that the \mathbb{F}_q -rank of L_U of $\operatorname{PG}(1,q^n)$ is uniquely defined when the maximum field of linearity of L_U is \mathbb{F}_q . This will allow us to state our definitions and results without further conditions on the rank of the corresponding \mathbb{F}_q -subspaces.

Proposition 2.2. Let L_U be an \mathbb{F}_q -linear set of $PG(W, \mathbb{F}_{q^n}) = PG(1, q^n)$ of rank n. The maximum field of linearity of L_U is \mathbb{F}_{q^d} , where

$$d = \min\{w_{L_U}(P) \colon P \in L_U\}.$$

If the maximum field of linearity of L_U is \mathbb{F}_q , then the rank of L_U as an \mathbb{F}_q -linear set is uniquely defined, i.e. for each \mathbb{F}_q -subspace V of W if $L_U = L_V$, then $\dim_q(V) = n$.

Proof. First assume that $\langle (0,1) \rangle_{\mathbb{F}_{q^n}} \notin L_U$, i.e. $U = \{(x, f(x)) : x \in \mathbb{F}_{q^n}\}$ for some q-polynomial f over \mathbb{F}_{q^n} .

Consider the following map, $U \to \operatorname{PG}(2, q^n) : (x, f(x)) \mapsto \langle (x, f(x), 1) \rangle_{\mathbb{F}_{q^n}}$. We will call this q-set of $\operatorname{PG}(2, q^n)$ the graph of f and we will denote it by G_f . Let X_0, X_1, X_2 denote the coordinate functions in $\operatorname{PG}(2, q^n)$ and consider the line $X_2 = 0$ as the line at infinity, denoted by ℓ_{∞} . The points of ℓ_{∞} are called directions, denoted by $(m) := \langle (1, m, 0) \rangle_{\mathbb{F}_{q^n}}$ and by $(\infty) := \langle (0, 1, 0) \rangle_{\mathbb{F}_{q^n}}$. The set of directions determined by f is

$$D_f := \left\{ \left(\frac{f(x) - f(y)}{x - y} \right) : x, y \in \mathbb{F}_{q^n}, \ x \neq y \right\} = \left\{ \left(\frac{f(z)}{z} \right) : z \in \mathbb{F}_{q^n}^* \right\}.$$

It follows that $\langle (x, f(x)) \rangle_{q^n} \mapsto \langle (x, f(x), 0) \rangle_{\mathbb{F}_{q^n}}$ is a bijection between the point set of L_U and the set of directions determined by f. The point $P_m := \langle (1, m) \rangle_{\mathbb{F}_{q^n}}$ is mapped to the direction (m).

For each line ℓ through (m) if ℓ meets the graph of f, then it meets it in q^t points, where $t = w_{L_U}(P_m)$. Indeed, suppose that ℓ meets the graph of f in $\langle (x_0, f(x_0), 1) \rangle_{\mathbb{F}_{q^n}}$. To obtain the number of the other points of $\ell \cap G_f$ we have to count

$$\left| \left\{ x \in \mathbb{F}_{q^n} \setminus \{x_0\} \colon \frac{f(x) - f(x_0)}{x - x_0} = m \right\} \right| = \left| \left\{ z \in \mathbb{F}_{q^n}^* \colon \frac{f(z)}{z} = m \right\} \right|,$$

which is $q^t - 1$.

Let $d = \min\{w_{L_U}(P) \colon P \in L_U\}$. If $q = p^e$, p prime, then p^{de} is the largest p-power such that every line meets the graph of f in a multiple of p^{de} points. Then a result on the number of direction determined by functions over \mathbb{F}_q due to Ball, Blokhuis, Brouwer, Storme and Szőnyi [2], and Ball [1] yields that either d = n and $f(x) = \lambda x$ for some $\lambda \in \mathbb{F}_{q^n}$, or \mathbb{F}_{q^d} is a subfield of \mathbb{F}_{q^n} and

$$q^{n-d} + 1 \le |D_f| \le \frac{q^n - 1}{q^d - 1}.$$
 (1)

Moreover, if $q^d > 2$, then f is \mathbb{F}_{q^d} -linear. In our case we already know that f is \mathbb{F}_q -linear, so even in the case $q^d = 2$ it follows that U is an \mathbb{F}_{q^d} -subspace of W and hence L_U is an \mathbb{F}_{q^d} -linear set. We show that \mathbb{F}_{q^d} is the maximum field of linearity of L_U . Suppose, contrary to our claim, that L_U is \mathbb{F}_{q^r} -linear of rank z for some r > d. Then L_U is also \mathbb{F}_q -linear of rank rz. It follows that $rz \leq n$ since otherwise $L_U = \mathrm{PG}(1,q^n)$. Then for the size of L_U we get $|L_U| \leq (q^{rz} - 1)/(q^r - 1) \leq (q^n - 1)/(q^r - 1)$. To get a contradiction, we show that this is less than $q^{n-d} + 1$, which is the lower bound obtain for $|L_U|$ in (1). After rearranging we get

$$\frac{q^n - 1}{q^r - 1} < q^{n-d} + 1 \Leftrightarrow q^{n-d}(q^d + 1) < (q^{n-d} + 1)q^r.$$

The latter inequality always holds because of $r \ge d + 1$. This contradiction shows r = n.

Now suppose that \mathbb{F}_q is the maximum field of linearity of L_U and let V be an r-dimensional \mathbb{F}_q -subspace of W such that $L_U = L_V$. We cannot have r > n since $L_U \neq \mathrm{PG}(1, q^n)$. Suppose, contrary to our claim, that $r \leq n-1$. Then $|L_U| \leq (q^{n-1}-1)/(q-1)$ contradicting (1) which gives $q^{n-1}+1 \leq |L_U|$.

Now suppose that $\langle (0,1) \rangle_{\mathbb{F}_{q^n}} \in L_U$. After a suitable projectivity φ_f we have $\langle (0,1) \rangle_{\mathbb{F}_{q^n}} \notin L_{U^f}$. Of course the maximum field of linearity of L_U and L_{U^f} coincide and for each point P of L_U we have $w_{L_U}(P) = w_{L_{U^f}}(P^{\varphi_f})$. Hence the first part of the theorem follows. The second part also follows

easily since $L_U = L_V$ with $\dim_q(U) \neq \dim_q(V)$ would yield $L_{U^f} = L_{V^f}$ with $\dim_q(U^f) \neq \dim_q(V^f)$, a contradiction.

Now we can give the following definitions of classes of an \mathbb{F}_q -linear set of a line.

Definition 2.3. Let L_U be an \mathbb{F}_q -linear set of $PG(W, \mathbb{F}_{q^n}) = PG(1, q^n)$ of rank n with maximum field of linearity \mathbb{F}_q . We say that L_U is of $\mathcal{Z}(\Gamma L)$ -class r if r is the largest integer such that there exist \mathbb{F}_q -subspaces U_1, U_2, \ldots, U_r of W with $L_{U_i} = L_U$ for $i \in \{1, 2, \ldots, r\}$ and $U_i \neq \lambda U_j$ for each $\lambda \in \mathbb{F}_{q^n}^*$ and for each $i \neq j$, $i, j \in \{1, 2, \ldots, r\}$.

Definition 2.4. Let L_U be an \mathbb{F}_q -linear set of $PG(W, \mathbb{F}_{q^n}) = PG(1, q^n)$ of rank n with maximum field of linearity \mathbb{F}_q . We say that L_U is of ΓL -class s if s is the largest integer such that there exist \mathbb{F}_q -subspaces U_1, U_2, \ldots, U_s of W with $L_{U_i} = L_U$ for $i \in \{1, 2, \ldots, s\}$ and there is no $f \in \Gamma L(2, q^n)$ such that $U_i = U_j^f$ for each $i \neq j$, $i, j \in \{1, 2, \ldots, s\}$.

Simple linear sets (cf. Section 1) of $PG(1, q^n)$ are exactly those of Γ L-class one. The next propositions are easy to show.

Proposition 2.5. Let L_U be an \mathbb{F}_q -linear set of $\operatorname{PG}(W, \mathbb{F}_{q^n}) = \operatorname{PG}(1, q^n)$ of rank n with maximum field of linearity \mathbb{F}_q and let P be a point of $\operatorname{PG}(1, q^n)$. Then for each $f \in \operatorname{\Gamma L}(2, q^n)$ we have $w_{L_U}(P) = w_{L_{I,f}}(P^{\varphi_f})$.

Proposition 2.6. Let L_U be an \mathbb{F}_q -linear set of $\operatorname{PG}(W, \mathbb{F}_{q^n}) = \operatorname{PG}(1, q^n)$ of rank n with maximum field of linearity \mathbb{F}_q and let φ be a collineation of $\operatorname{PG}(W, \mathbb{F}_{q^n})$. Then L_U and L_U^{φ} have the same $\mathcal{Z}(\Gamma L)$ -class and ΓL -class. \square

Remark 2.7. Let L_U be an \mathbb{F}_q -linear set of rank n of $PG(1, q^n)$ with Γ Lclass s and let U_1, U_2, \ldots, U_s be \mathbb{F}_q -subspaces belonging to different orbits of Γ L $(2, q^n)$ and defining L_U . The $P\Gamma$ L $(2, q^n)$ -orbit of L_U is the set

$$\bigcup_{i=1}^s \{L_{U_i^f} \colon f \in \Gamma L(2, q^n)\}.$$

3 Examples of simple and non-simple linear sets of $PG(1, q^n)$

Let $\mathbb{V} = \mathbb{F}_{q^n} \times \mathbb{F}_{q^n}$ and let L_U be an \mathbb{F}_q -linear set of rank n of $\mathrm{PG}(1,q^n) = \mathrm{PG}(\mathbb{V},\mathbb{F}_{q^n})$. We can always assume (up to a projectivity) that L_U does not contain the point $\langle (0,1) \rangle_{\mathbb{F}_{q^n}}$. Then $U = U_f = \{(x,f(x)): x \in \mathbb{F}_{q^n}\}$, for some

q-polynomial $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$ over \mathbb{F}_{q^n} . For the sake of simplicity we will write L_f instead of L_{U_f} to denote the linear set defined by U_f .

According to Result 2.1 and using the same notations as in Section 2.1 if L_U is an \mathbb{F}_q -linear set of rank n of $\mathrm{PG}(1,q^n)$ and τ is a symplectic polarity, then $U^{\perp'_{\beta}}$ defines the same linear set as U. Since in general $U^{\perp'_{\beta}}$ and U are not equivalent under the action of the group $\mathrm{\Gamma L}(2,q^n)$, simple linear sets of a line are harder to find.

Consider the non-degenerate symmetric bilinear form of \mathbb{F}_{q^n} over \mathbb{F}_q defined by the following rule

$$\langle x, y \rangle := \operatorname{Tr}_{q^n/q}(xy). \tag{2}$$

Then the adjoint map \hat{f} of an \mathbb{F}_q -linear map $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$ of \mathbb{F}_{q^n} (with respect to the bilinear form \langle,\rangle) is

$$\hat{f}(x) := \sum_{i=0}^{n-1} a_i^{q^{n-i}} x^{q^{n-i}}.$$
(3)

Let $\eta: \mathbb{V} \times \mathbb{V} \longrightarrow \mathbb{F}_{q^n}$ be the non-degenerate alternating bilinear form of \mathbb{V} defined by $\eta((x,y),(u,v)) = xv - yu$. Then η induces a symplectic polarity on the line $\mathrm{PG}(\mathbb{V},\mathbb{F}_{q^n})$ and

$$\eta'((x,y),(u,v)) = \text{Tr}_{q^n/q}(\eta((x,y),(u,v)))$$
(4)

is a non-degenerate alternating bilinear form on \mathbb{V} , when \mathbb{V} is regarded as a 2n-dimensional vector space over \mathbb{F}_q . We will always denote in the paper by \bot and \bot' the orthogonal complement maps defined by η and η' on the lattices of the \mathbb{F}_{q^n} -subspaces and the \mathbb{F}_q -subspaces of \mathbb{V} , respectively. Direct calculation shows that

$$U_f^{\perp'} = U_{\hat{f}}.\tag{5}$$

Result 2.1 and (5) allow us to slightly reformulate [3, Lemma 2.6].

Lemma 3.1 ([3]). Let $L_f = \{\langle (x, f(x)) \rangle_{\mathbb{F}_{q^n}} : x \in \mathbb{F}_{q^n}^* \}$ be an \mathbb{F}_q -linear set of $\mathrm{PG}(1, q^n)$ of rank n, with f(x) a q-polynomial over \mathbb{F}_{q^n} , and let \hat{f} be the adjoint of f with respect to the bilinear form (2). Then for each point $P \in \mathrm{PG}(1, q^n)$ we have $w_{L_f}(P) = w_{L_{\hat{f}}}(P)$. In particular, $L_f = L_{\hat{f}}$ and the maps defined by f(x)/x and $\hat{f}(x)/x$ have the same image.

Lemma 3.2. Let φ be an \mathbb{F}_q -linear map of \mathbb{F}_{q^n} and for $\lambda \in \mathbb{F}_{q^n}^*$ let φ_{λ} denote the \mathbb{F}_q -linear map: $x \mapsto \varphi(\lambda x)/\lambda$. Then for each point $P \in \mathrm{PG}(1,q^n)$ we have $w_{L_{\varphi}}(P) = w_{L_{\varphi_{\lambda}}}(P)$. In particular, $L_{\varphi} = L_{\varphi_{\lambda}}$.

Proof. The statements follow from $\lambda U_{\varphi_{\lambda}} = U_{\varphi}$.

Remark 3.3. The results of Lemmas 3.1 and 3.2 can also be obtained via Dickson matrices. For a q-polynomial f let D_f denote the Dickson matrix associated with f. When $f(x) = \lambda x$ for some $\lambda \in \mathbb{F}_{q^n}$ we will simply write D_{λ} . We will denote the point $\langle (1, \lambda) \rangle_{q^n}$ by P_{λ} .

Transposition preserves the rank of matrices and $D_f^T = D_{\hat{f}}, D_{\lambda}^T = D_{\lambda}$. It follows that

$$\dim_q \ker(D_f - D_\lambda) = \dim_q \ker(D_f - D_\lambda)^T = \dim_q \ker(D_{\hat{f}} - D_\lambda),$$

and hence for each $\lambda \in \mathbb{F}_{q^n}$ we have $w_{L_f}(P_{\lambda}) = w_{L_f}(P_{\lambda})$.

Let
$$f_{\mu}(x) = f(x\mu)/\mu$$
. It is easy to see that $D_{1/\mu}D_fD_{\mu} = D_{f\mu}$ and

$$\dim_q \ker(D_f - D_\lambda) = \dim_q \ker D_{1/\mu}(D_f - D_\lambda)D_\mu = \dim_q \ker(D_{f\mu} - D_\lambda),$$

and hence $w_{L_f}(P_{\lambda}) = w_{L_{f_{\mu}}}(P_{\lambda})$ for each $\lambda \in \mathbb{F}_{q^n}$.

From the previous arguments it follows that linear sets L_f with $f(x) = \hat{f}(x)$ are good candidates for being simple. In the next section we show that the trace function, which has the previous property, defines a simple linear set. We are going to use the following lemmas which will also be useful later.

Lemma 3.4. Let f and g be two linearized polynomials. If $L_f = L_g$, then for each positive integer d the following holds

$$\sum_{x \in \mathbb{F}_{q^n}^*} \left(\frac{f(x)}{x} \right)^d = \sum_{x \in \mathbb{F}_{q^n}^*} \left(\frac{g(x)}{x} \right)^d.$$

Proof. If $L_f = L_g =: L$, then $\{f(x)/x : x \in \mathbb{F}_{q^n}^*\} = \{g(x)/x : x \in \mathbb{F}_{q^n}^*\} =: H$. For each $h \in H$ we have $|\{x : f(x)/x = h\}| = q^i - 1$, where i is the weight of the point $\langle (1,h) \rangle_{q^n} \in L$ w.r.t. U_f , and similarly $|\{x : g(x)/x = h\}| = q^j - 1$, where j is the weight of the point $\langle (1,h) \rangle_{q^n} \in L$ w.r.t. U_g . Because of the characteristic of \mathbb{F}_{q^n} , we obtain:

$$\sum_{x \in \mathbb{F}_{q^n}^*} \left(\frac{f(x)}{x}\right)^d = -\sum_{h \in H} h^d = \sum_{x \in F_{q^n}^*} \left(\frac{g(x)}{x}\right)^d.$$

Lemma 3.5 (Folklore). For any prime power q and integer d we have $\sum_{x \in \mathbb{F}_q^*} x^d = -1$ if $q - 1 \mid d$ and $\sum_{x \in \mathbb{F}_q^*} x^d = 0$ otherwise.

Lemma 3.6. Let $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$ and $g(x) = \sum_{i=0}^{n-1} b_i x^{q^i}$ be two q-polynomials over \mathbb{F}_{q^n} , such that $L_f = L_q$. Then

$$a_0 = b_0, (6)$$

and for k = 1, 2, ..., n - 1 it holds that

$$a_k a_{n-k}^{q^k} = b_k b_{n-k}^{q^k}, (7)$$

for $k = 2, 3, \ldots, n-1$ it holds that

$$a_1 a_{k-1}^q a_{n-k}^{q^k} + a_k a_{n-1}^q a_{n-k+1}^{q^k} = b_1 b_{k-1}^q b_{n-k}^{q^k} + b_k b_{n-1}^q b_{n-k+1}^{q^k}.$$
 (8)

Proof. We are going to use Lemma 3.5 together with Lemma 3.4 with different choices of d.

With d = 1 we have

$$\sum_{x \in \mathbb{F}_{n}^*} \sum_{i=0}^{n-1} a_i x^{q^i - 1} = \sum_{x \in \mathbb{F}_{n}^*} \sum_{i=0}^{n-1} b_i x^{q^i - 1},$$

and hence

$$\sum_{i=0}^{n-1} a_i \sum_{x \in \mathbb{F}_{q^n}^*} x^{q^i - 1} = \sum_{i=0}^{n-1} b_i \sum_{x \in \mathbb{F}_{q^n}^*} x^{q^i - 1}.$$

Since q^n-1 cannot divide q^i-1 with $i=1,2,\ldots,n-1$, $a_0=b_0=:c$ follows. Let φ denotes the \mathbb{F}_q -linear map which fixes (0,1) and maps (1,0) to (1,-c). Then $U_f^{\varphi}=U_{f'}$ and $U_g^{\varphi}=U_{g'}$ with $f'=\sum_{i=1}^{n-1}a_ix^{q^i}$, $g'=\sum_{i=1}^{n-1}b_ix^{q^i}$ and of course with $L_{f'}=L_{q'}$. It follows that we may assume c=0.

First we show that (7) holds. With $d = q^k + 1$, $1 \le k \le n - 1$ we obtain

$$\sum_{1 \leq i,j \leq n-1} a_i a_j^{q^k} \sum_{x \in \mathbb{F}_{q^n}^*} x^{q^i-1+q^{j+k}-q^k} = \sum_{1 \leq i,j \leq n-1} b_i b_j^{q^k} \sum_{x \in \mathbb{F}_{q^n}^*} x^{q^i-1+q^{j+k}-q^k}.$$

 $\sum_{x \in \mathbb{F}_{q^n}^*} x^{q^i - 1 + q^{j+k} - q^k} = -1 \text{ if and only if } q^i + q^{j+k} \equiv q^k + 1 \pmod{q^n - 1},$ and zero otherwise. Suppose that the former case holds.

First consider $j + k \leq n - 1$. Then $q^i + q^{j+k} \leq q^{n-1} + q^{n-1} < q^k + 1 + 2(q^n - 1)$ hence one of the following holds.

- If $q^i + q^{j+k} = q^k + 1$, then the right hand side is not divisible by q, a contradiction.
- If $q^i + q^{j+k} = q^k + 1 + (q^n 1) = q^n + q^k$, then j + k = n, a contradiction.

Now consider the case $j+k \geq n$. Then $q^i+q^{j+k}\equiv q^i+q^{j+k-n}\equiv q^k+1$ (mod q^n-1). Since $j+k \leq 2(n-1)$, we have $q^i+q^{j+k-n}\leq q^{n-1}+q^{n-2}< q^k+1+2(q^n-1)$, hence one of the following holds.

- If $q^i + q^{j+k-n} = q^k + 1$, then j + k = n and i = k.
- If $q^i + q^{j+k-n} = q^k + 1 + (q^n 1) = q^n + q^k$, then there is no solution since $j + k n \notin \{k, n\}$.

Hence (7) follows. Now we show that (8) also holds. Note that in this case $n \geq 3$, otherwise there is no k with $2 \leq k \leq n-1$. With $d=q^k+q+1$, we obtain

$$\sum_{1 \le i, j, m \le n-1} a_i a_j^q a_m^{q^k} \sum_{x \in \mathbb{F}_{q^n}^*} x^{q^i - 1 + q^{j+1} - q + q^{m+k} - q^k} =$$

$$\sum_{1 \leq i,j,m \leq n-1} b_i b_j^q b_m^{q^k} \sum_{x \in \mathbb{F}_{q^n}^*} x^{q^i-1+q^{j+1}-q+q^{m+k}-q^k}.$$

 $\sum_{x \in \mathbb{F}_{q^n}^*} x^{q^i - 1 + q^{j+1} - q + q^{m+k} - q^k} = -1 \text{ if and only if } q^i + q^{j+1} + q^{m+k} \equiv q^k + q + 1 \pmod{q^n - 1}, \text{ and zero otherwise. Suppose that the former case holds.}$

First consider $m+k \le n-1$. Then $q^i+q^{j+1}+q^{m+k} \le q^{n-1}+q^n+q^{n-1} < q^k+q+1+2(q^n-1)$ hence one of the following holds.

- If $q^i + q^{j+1} + q^{m+k} = q^k + q + 1$, then the right hand side is not divisible by q, a contradiction.
- If $q^i + q^{j+1} + q^{m+k} = q^k + q + 1 + (q^n 1) = q^n + q^k + q$, then m + k = n, i + 1 = k and i = 1, a contradiction.

Now consider the case $m + k \ge n$. Then $q^i + q^{j+1} + q^{m+k} \equiv q^i + q^{j+1} + q^{m+k-n} \equiv q^k + q + 1 \pmod{q^n - 1}$. We have $q^i + q^{j+1} + q^{m+k-n} \le q^{n-1} + q^n + q^{n-2} < q^k + q + 1 + 2(q^n - 1)$ hence one of the following holds.

- If $q^i + q^{j+1} + q^{m+k-n} = q^k + q + 1$, then j+1 = k, i = 1 and m+k = n.
- If $q^i + q^{j+1} + q^{m+k-n} = q^k + q + 1 + (q^n 1) = q^n + q^k + q$, then j + 1 = n, i = k and m + k = n + 1.

This concludes the proof.

3.1 Linear sets defined by the trace function

We show that there exist at least one simple \mathbb{F}_q -linear set in $\operatorname{PG}(1, q^n)$ for each q and n. Let $V = \{(x, \operatorname{Tr}_{q^n/q}(x)) \colon x \in \mathbb{F}_{q^n}\}$. We show that $L_U = L_V$ occurs for an \mathbb{F}_q -subspace U of W if and only if $V = \lambda U$ for some $\lambda \in \mathbb{F}_{q^n}^*$, i.e. L_V is of $\mathcal{Z}(\Gamma L)$ -class one. For the special case when L_U has a point of weight n-1 see also [7, Theorem 2.3].

Theorem 3.7. The \mathbb{F}_q -subspace $U_f = \{(x, f(x)) : x \in \mathbb{F}_{q^n}\}$ defines the same linear set of $\mathrm{PG}(1, q^n)$ as the \mathbb{F}_q -subspace $V = \{(x, \mathrm{Tr}_{q^n/q}(x)) : x \in \mathbb{F}_{q^n}\}$ if and only if $\lambda U_f = V$ for some $\lambda \in \mathbb{F}_{q^n}^*$, i.e. L_V is simple.

Proof. Let $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$. We are going to use Lemma 3.6 with $g(x) = \operatorname{Tr}_{q^n/q}(x)$. The coefficients $b_0, b_1, \ldots, b_{n-1}$ of g(x) are 1, hence $a_0 = 1$, and for $k = 1, 2, \ldots, n-1$

$$a_k a_{n-k}^{q^k} = 1, (9)$$

for k = 2, 3, ..., n - 1

$$a_1 a_{k-1}^q a_{n-k}^{q^k} + a_k a_{n-1}^q a_{n-k+1}^{q^k} = 2. (10)$$

Note that (9) implies $a_i \neq 0$ for i = 1, 2, ..., n - 1. First we prove

$$a_i = a_1^{1+q+\dots+q^{i-1}} \tag{11}$$

by induction on i for each 0 < i < n. The assertion holds for i = 1. Suppose that it holds for some integer i - 1 with 1 < i < n. We prove that it also holds for i. Then (10) with k = i gives

$$a_1 a_{i-1}^q a_{n-i}^{q^i} + a_i a_{n-1}^q a_{n-i+1}^{q^i} = 2. (12)$$

Also, (9) with k = i, k = i - 1 and k = 1, respectively, gives

$$a_{n-i}^{q^i} = 1/a_i,$$

 $a_{n-i+1}^{q^i} = 1/a_{i-1}^q,$
 $a_{n-1}^q = 1/a_1.$

Then (12) gives

$$a_1 a_{i-1}^q / a_i + a_i / \left(a_1 a_{i-1}^q \right) = 2.$$
 (13)

It follows that $a_1 a_{i-1}^q / a_i = 1$ and hence the induction hypothesis on a_{i-1} yields $a_i = a_1^{1+q+\ldots+q^{i-1}}$.

Finally we show $N(a_1) = 1$. First consider n even. Then (9) with k = n/2 gives $a_{n/2}^{q^{n/2}+1} = 1$. Applying (11) yields $N(a_1) = 1$. If n is odd, then (9) with k = (n-1)/2 gives $a_{(n-1)/2}a_{(n+1)/2}^{q^{(n-1)/2}} = 1$. Applying (11) yields $N(a_1) = 1$. It follows that $a_1 = \lambda^{q-1}$ for some $\lambda \in \mathbb{F}_{q^n}^*$ and hence $f(x) = \sum_{i=0}^{n-1} \lambda^{q^i-1} x^{q^i}$. Then $\lambda U_f = \{(x, \operatorname{Tr}_{q^n/q}(x)) : x \in \mathbb{F}_{q^n}^*\}$.

3.2 Non-simple linear sets

So far, the only known non-simple linear sets of $PG(1, q^n)$ are those of pseudoregulus type when n = 5, or n > 6, see Remark 5.6. Now we want to show that \mathbb{F}_q -linear sets L_f of $PG(1, q^n)$ introduced by Lunardon and Polverino, which are not of pseudoregulus type ([21, Theorems 2 and 3], are non-simple as well. Let start by proving the following preliminary result.

Proposition 3.8. Let $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$. There is an \mathbb{F}_{q^n} -semilinear map between U_f and $U_{\hat{f}}$ if and only if the following system of n equations has a solution $A, B, C, D \in \mathbb{F}_{q^n}$, $AD - BC \neq 0$, $\sigma = p^k$:

$$C + Da_0^{\sigma} - a_0 A = \sum_{i=0}^{n-1} (Ba_i a_i^{\sigma})^{q^{n-i}},$$

$$\cdots$$

$$Da_m^{\sigma} - (a_{n-m} A)^{q^m} = \sum_{i=0}^{n-1} (Ba_i a_{i+m}^{\sigma})^{q^{n-i}},$$

$$\cdots$$

$$Da_{n-1}^{\sigma} - (a_1 A)^{q^{n-1}} = \sum_{i=0}^{n-1} (Ba_i a_{i+n-1}^{\sigma})^{q^{n-i}},$$

where the indices are taken modulo n.

Proof. Because of cardinality reasons the condition $AD-BC\neq 0$ is necessary. Then

$$\{(x,\hat{f}(x))\colon x\in\mathbb{F}_{q^n}\} = \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} x^{\sigma} \\ f(x)^{\sigma} \end{pmatrix} \colon x\in\mathbb{F}_{q^n} \right\}$$

holds if and only if

$$Cx^{\sigma} + D\sum_{j=0}^{n-1} a_j^{\sigma} x^{\sigma q^j} = \sum_{i=0}^{n-1} a_{n-i}^{q^i} \left(Ax^{\sigma} + B\sum_{j=0}^{n-1} a_j^{\sigma} x^{\sigma q^j} \right)^{q^i}$$

for each $x \in \mathbb{F}_{q^n}$. After reducing modulo $x^{q^n} - x$, this is a polynomial equation of degree q^{n-1} in the variable x^{σ} . It follows that it holds for each $x \in \mathbb{F}_{q^n}$ if and only if it is the zero polynomial. Comparing coefficients on both sides yields the assertion.

We are able to prove the following.

Proposition 3.9. Consider a polynomial of the form $f(x) = \delta x^q + x^{q^{n-1}}$, where q > 4 is a power of the prime p. If n > 4, then for each generator δ of the multiplicative group of \mathbb{F}_{q^n} the linear set L_f is not simple.

Proof. Lemma 3.1 yields $L_f = L_{\hat{f}}$ thus it is enough to show the existence of δ such that there is no \mathbb{F}_{q^n} -semilinear map between U_f and $U_{\hat{f}}$. In the equations of Proposition 3.8 we have $a_1 = \delta$, $a_{n-1} = 1$ and $a_0 = a_2 = \ldots = a_{n-2} = 0$, thus

$$C = (B\delta^{\sigma+1})^{q^{n-1}} + B^{q},$$

$$D\delta^{\sigma} - A^{q} = 0,$$

$$0 = (B\delta)^{q^{n-1}},$$

$$D - (\delta A)^{q^{n-1}} = 0,$$

where $\sigma = p^k$ for some integer k. If there is a solution, then B = C = 0 and $(\delta A)^{q^{n-1}} \delta^{\sigma} = A^q$. Taking q-th powers on both sides yield

$$\delta^{\sigma q+1} = A^{q^2-1} \tag{14}$$

and hence

$$\delta^{\frac{(\sigma q+1)(q^n-1)}{q-1}} = 1. \tag{15}$$

For each σ let G_{σ} be the set of elements δ of \mathbb{F}_{q^n} satisfying (15). For each σ , G_{σ} is a subgroup of the multiplicative group M of \mathbb{F}_{q^n} . We show that these are proper subgroups of M. We have $G_{p^k}=M$ if and only if q^n-1 divides $\frac{(p^kq+1)(q^n-1)}{q-1}$, i.e. when q-1 divides p^kq+1 . Since $\gcd(p^w+1,p^v-1)$ is always 1,2, or $p^{\gcd(w,v)}+1$, it follows that for q>4 we cannot have q-1 as a divisor of p^kq+1 .

It follows that for any generator δ of M we have $\delta \notin \bigcup_j G_{p^j}$ and hence $\delta^{\sigma q+1} \neq A^{q^2-1}$ for each σ and for each A.

Remark 3.10. If q=4, then (14) with k=2(n-1)+1 asks for the solution of $\delta^3=A^{15}$. When 5 does not divide 4^n-1 , then $\{x^3: x\in \mathbb{F}_{4^n}\}=\{x^{15}: x\in \mathbb{F}_{4^n}\}$ and hence for each δ there exists A such that $\delta^3=A^{15}$.

If q=3, then (14) with k=n-1 asks for the solution of $\delta^2=A^8$. When 4 does not divide 3^n-1 , then $\{x^2\colon x\in\mathbb{F}_{3^n}\}=\{x^8\colon x\in\mathbb{F}_{3^n}\}$ and hence for each δ there exists A such that $\delta^2=A^8$.

If q = 2, then (14) with k = 0 asks for the solution of $\delta^3 = A^3$. This equation always has a solution.

4 Linear sets of rank 4 of $PG(1, q^4)$

 \mathbb{F}_q -linear sets of rank two of $\operatorname{PG}(1,q^2)$ are the Baer sublines, which are equivalent. As we have mentioned in the introduction, subgeometries are simple linear sets, in fact they have $\mathcal{Z}(\Gamma L)$ -class one (cf. [17, Theorem 2.6] and [13, Section 25.5]). There are two non-equivalent \mathbb{F}_q -linear sets of rank 3 of $\operatorname{PG}(1,q^3)$, the linear sets of size q^2+q+1 and those of size q^2+1 . Linear sets in both families are equivalent, since the stabilizer of a q-order subgeometry Σ of $\Sigma^* = \operatorname{PG}(2,q^3)$ is transitive on the set of those points of $\Sigma^* \setminus \Sigma$ which are incident with a line of Σ and on the set of points of Σ^* not incident with any line of Σ (cf. Section 5.2 and [16]). In the first case we have the linear sets of pseudoregulus type with Γ L-class 1 and $\mathcal{Z}(\Gamma L)$ -class 2 (cf. Remark 5.6 and Example 5.1). In the second case we have the linear sets defined by $\operatorname{Tr}_{q^3/q}$ with Γ L-class and $\mathcal{Z}(\Gamma L)$ -class 1 (cf. Theorem 3.7, see also [11, Corollary 6]).

The main result of this section is that each \mathbb{F}_q -linear set of rank 4 of $PG(1, q^4)$, with maximum field of linearity \mathbb{F}_q , is simple (cf. Theorem 4.5).

4.1 Subspaces defining the same linear set

Lemma 4.1. Let $f(x) = \sum_{i=0}^{3} a_i x^{q^i}$ and $g(x) = \sum_{i=0}^{3} b_i x^{q^i}$ be two q-polynomials over \mathbb{F}_{q^4} , such that $L_f = L_g$. Then

$$N(a_1) + N(a_2) + N(a_3) + a_1^{1+q^2} a_3^{q+q^3} + a_1^{q+q^3} a_3^{1+q^2} + Tr q^4/q \left(a_1 a_2^{q+q^2} a_3^{q^3}\right) =$$

$$N(b_1) + N(b_2) + N(b_3) + b_1^{1+q^2} b_3^{q+q^3} + b_1^{q+q^3} b_3^{1+q^2} + \operatorname{Tr} q^4 / q \left(b_1 b_2^{q+q^2} b_3^{q^3} \right).$$

Proof. We are going to follow the proof of Lemma 3.6. As in that proof, we may assume $a_0 = b_0 = 0$. In Lemma 3.4 take $d = 1 + q + q^2 + q^3$. We obtain

$$\sum_{1 \leq i,j,k,m \leq 3} a_i a_j^q a_k^{q^2} a_m^{q^3} \sum_{x \in \mathbb{F}_{q^4}^*} x^{q^i - 1 + q^{j+1} - q + q^{k+2} - q^2 + q^{m+3} - q^3} =$$

$$\sum_{1 \le i,j,k,m \le 3} b_i b_j^q b_k^{q^2} b_m^{q^3} \sum_{x \in \mathbb{F}_{q^4}^*} x^{q^i - 1 + q^{j+1} - q + q^{k+2} - q^2 + q^{m+3} - q^3}.$$

$$\sum_{x \in \mathbb{F}_{q^4}^*} x^{q^i - 1 + q^{j+1} - q + q^{k+2} - q^2 + q^{m+3} - q^3} = -1 \text{ if and only if}$$

$$q^{i}+q^{j+1}+q^{k+2}+q^{m+3} \equiv q^{i}+q^{j+1}+q^{k+2}+q^{m-1} \equiv 1+q+q^{2}+q^{3} \pmod{q^{4}-1},$$

and zero otherwise. Suppose that the former case holds.

First consider k = 1. Then $q^i + q^{j+1} + q^{k+2} + q^{m-1} \le q^3 + q^4 + q^3 + q^2 < 1 + q + q^2 + q^3 + 2(q^4 - 1)$ hence one of the following holds.

- If $q^i + q^{j+1} + q^{k+2} + q^{m-1} = 1 + q + q^2 + q^3$, then m = i = j = k = 1.
- If $q^i+q^{j+1}+q^{k+2}+q^{m-1}=1+q+q^2+q^3+q^4-1=q+q^2+q^3+q^4$, then $\{i,j+1,k+2,m-1\}=\{1,2,3,4\}$, hence one of the following holds

$$i = 1, j = 3, k = 1, m = 3,$$

$$i = 2, j = 3, k = 1, m = 2.$$

Now consider the case $k \geq 2$. Then $q^i + q^{j+1} + q^{k+2} + q^{m-1} \equiv q^i + q^{j+1} + q^{k-2} + q^{m-1} \leq q^3 + q^4 + q + q^2 < 1 + q + q^2 + q^3 + 2(q^4 - 1)$ hence one of the following holds.

• If $q^i+q^{j+1}+q^{k-2}+q^{m-1}=1+q+q^2+q^3$, then $\{i,j+1,k-2,m-1\}=\{0,1,2,3\}$, hence one of the following holds

$$i=1,\,j=2,\,k=2,\,m=3,$$

$$i=2,\,j=2,\,k=2,\,m=2,$$

$$i=2,\,j=2,\,k=3,\,m=1,$$

$$i = 3, j = 1, k = 2, m = 2,$$

$$i=3,\,j=1,\,k=3,\,m=1.$$

• If $q^i + q^{j+1} + q^{k-2} + q^{m-1} = 1 + q + q^2 + q^3 + q^4 - 1 = q + q^2 + q^3 + q^4$, then i = j = k = m = 3.

Proposition 4.2. Let f(x) and g(x) be two q-polynomials over \mathbb{F}_{q^4} such that $L_f = L_g$. If the maximum field of linearity of f is \mathbb{F}_q , then

$$g(x) = f(\lambda x)/\lambda,$$

or

$$g(x) = \hat{f}(\lambda x)/\lambda.$$

Proof. By Proposition 2.2, the maximum field of linearity of g is also \mathbb{F}_q . First note that $L_g = L_f$ when g is as in the assertion (cf. Lemmas 3.1 and 3.2). Let $f(x) = \sum_{i=0}^{3} a_i x^{q^i}$ and $g(x) = \sum_{i=0}^{3} b_i x^{q^i}$. First we are going to use Lemma 3.6. From (6) we have $a_0 = b_0$. From (7)

First we are going to use Lemma 3.6. From (6) we have $a_0 = b_0$. From (7) with n = 4 and k = 1, 2 we have $a_1 a_3^q = b_1 b_3^q$ and $a_2^{1+q^2} = b_2^{1+q^2}$, respectively. From (8) with n = 4 and k = 2 we obtain

$$a_1^{q+1}a_2^{q^2} + a_2a_3^{q+q^2} = b_1^{q+1}b_2^{q^2} + b_2b_3^{q+q^2}. (16)$$

Note that $a_1 a_3^q = b_1 b_3^q$ implies

$$N(b_1) N(b_3) = N(a_1) N(a_3).$$
 (17)

Multiplying (16) by b_2 and applying $a_2^{1+q^2} = b_2^{1+q^2}$ yields:

$$b_2^2 b_3^{q^2+q} - b_2 (a_1^{q+1} a_2^{q^2} + a_2 a_3^{q^2+q}) + b_1^{q+1} a_2^{q^2+1} = 0.$$
 (18)

First suppose $b_1b_2b_3 \neq 0$. Then (18) is a second degree polynomial in b_2 . Applying $a_1a_3^q = b_1b_3^q$ it is easy to see that the roots of (18) are

$$b_{2,1} = \frac{a_1^{q+1} a_2^{q^2}}{b_3^{q^2+q}},$$

$$b_{2,2} = \frac{a_2 a_3^{q^2 + q}}{b_3^{q^2 + q}}.$$

First we consider $b_2 = b_{2,1}$. Then $a_2^{1+q^2} = b_2^{1+q^2}$ yields $N(a_1) = N(b_3)$ and hence $N(b_1) = N(a_3)$. In particular, $N(b_1/a_3^q) = 1$ and hence $b_1 = a_3^q \lambda^{q-1}$ for some $\lambda \in \mathbb{F}_{q^4}^*$. From $a_1 a_3^q = b_1 b_3^q$ we obtain $b_3 = a_1^{q^3} a_3/b_1^{q^3} = a_1^{q^3} \lambda^{q^3-1}$. Applying this we get $b_2 = a_1^{q+1} a_2^{q^2}/b_3^{q^2+q} = a_2^{q^2} \lambda^{q^2-1}$ and hence

$$g(x) = a_0 x + a_3^q \lambda^{q-1} x^q + a_2^{q^2} \lambda^{q^2-1} x^{q^2} + a_1^{q^3} \lambda^{q^3-1} x^{q^3}.$$

as we claimed.

Now consider $b_2 = b_{2,2}$. Then $a_2^{1+q^2} = b_2^{1+q^2}$ yields $N(a_3) = N(b_3)$ and hence $N(a_1) = N(b_1)$. Hence $b_1 = a_1 \lambda^{q-1}$ for some $\lambda \in \mathbb{F}_{q^4}^*$. From $a_1 a_3^q = b_1 b_3^q$ we obtain $b_3 = a_1^{q^3} a_3 / b_1^{q^3} = a_3 \lambda^{q^3-1}$. Applying this we obtain $b_2 = a_2 a_3^{q^2+q} / b_3^{q^2+q} = a_2 \lambda^{q^2-1}$ and hence

$$g(x) = a_0 x + a_1 \lambda^{q-1} x^q + a_2^{q^2} \lambda^{q^2-1} x^{q^2} + a_3^{q^3} \lambda^{q^3-1} x^{q^3}.$$

If $b_1 = b_3 = 0$, then either $b_2 = 0$ and the maximum field of linearity of g(x) is \mathbb{F}_{q^4} , or $b_2 \neq 0$ and the maximum field of linearity of g(x) is \mathbb{F}_{q^2} . Thus we may assume $b_1 \neq 0$ or $b_3 \neq 0$.

First assume $b_2 \neq 0$ and $b_1 = 0$. Then $b_3 \neq 0$ and (18) gives

$$b_2b_3^{q^2+q} = a_1^{q+1}a_2^{q^2} + a_2a_3^{q^2+q}.$$

Then $a_1a_3^q = b_1b_3^q$ yields either $a_1 = 0$ and $b_2b_3^{q^2+q} = a_2a_3^{q^2+q}$, or $a_3 = 0$ and $b_2b_3^{q^2+q} = a_1^{q+1}a_2^{q^2}$. Taking (q^2+1) -powers on both sides gives $b_2^{q^2+1} \, \mathcal{N}(b_3) = a_2^{q^2+1} \, \mathcal{N}(a_3)$, or $b_2^{q^2+1} \, \mathcal{N}(b_3) = \mathcal{N}(a_1)a_2^{q^2+1}$, respectively. Applying $b_2^{q^2+1} = a_2^{q^2+1}$ we get $\mathcal{N}(b_3) = \mathcal{N}(a_3)$, or $\mathcal{N}(b_3) = \mathcal{N}(a_1)$, respectively. Note that the set of elements with norm 1 in \mathbb{F}_{q^4} is $\{x^{q^3-1} : x \in \mathbb{F}_{q^4}^*\}$, thus in the first case there exists $\lambda \in \mathbb{F}_{q^4}^*$ such that $b_3 = a_3\lambda^{q^3-1}$. Then $b_2b_3^{q^2+q} = a_2a_3^{q^2+q}$ yields $b_2 = a_2\lambda^{q^2-1}$ and hence $g(x) = a_0x + a_2\lambda^{q^2-1}x^{q^2} + a_3\lambda^{q^3-1}x^{q^3}$. In the second case the same reasoning yields $g(x) = a_0x + a_2^{q^2}\lambda^{q^2-1}x^{q^2} + a_3^{q^3-1}x^{q^3}$.

If $b_2 \neq 0$ and $b_3 = 0$, then the coefficient of x^q in $\hat{g}(x)$ is zero and the assertion follows from the above arguments applied to \hat{g} instead of g.

Now assume $b_2=0$ and $b_1b_3=0$. Then $L_g=L_f$ is a linear set of pseudoregulus type and hence the assertion also follows from [15]. For the sake of completeness we present a proof also in this case. Equation $b_2^{q^2+1}=a_2^{q^2+1}$ yields $a_2=0$ and equation $a_1a_3^q=b_1b_3^q$ yields $a_1a_3=0$. Then from Lemma 4.1 we have

$$N(a_1) + N(a_3) = N(b_1) + N(b_3).$$
(19)

If $b_1 = 0$, then $b_3 \neq 0$ and either $a_1 = 0$ and $N(a_3) = N(b_3)$, or $a_3 = 0$ and $N(a_1) = N(b_3)$. In the first case $g(x) = a_0x + a_3\lambda^{q^3-1}x^{q^3}$, in the second case $g(x) = a_0x + a_1^q\lambda^{q^3-1}x^{q^3}$. If $b_3 = 0$, then $b_1 \neq 0$ and either $a_1 = 0$ and $N(a_3) = N(b_1)$, or $a_3 = 0$ and $N(a_1) = N(b_1)$. In the first case $g(x) = a_0x + a_3^q\lambda^{q-1}x^q$, in the second case $g(x) = a_0x + a_1\lambda^{q-1}x^q$.

There is only one case left, when $b_2 = 0$ and $b_1b_3 \neq 0$. Then from Lemma 4.1 and from $a_1a_3^q = b_1b_3^q$ it follows that

$$N(a_1) + N(a_3) = N(b_1) + N(b_3).$$
 (20)

Together with (17) it follows that either $N(a_1) = N(b_1)$ and $N(a_3) = N(b_3)$, or $N(a_1) = N(b_3)$ and $N(a_3) = N(b_1)$. In the first case $g(x) = a_0x + a_1\lambda^{q-1}x^q + a_3\lambda^{q^3-1}x^{q^3}$, in the second case $g(x) = a_0x + a_3^q\lambda^{q-1}x^q + a_1^{q^3}\lambda^{q^3-1}x^{q^3}$ for some $\lambda \in \mathbb{F}_{q^4}^*$.

Now we are able to prove the following.

Theorem 4.3. Let L_U be an \mathbb{F}_q -linear set of a line $PG(W, \mathbb{F}_{q^4})$ of rank 4, with maximum field of linearity \mathbb{F}_q , and let β be a non-degenerate alternating form of W. If V is an \mathbb{F}_q -vector subspace of W such that $L_U = L_V$, then either

$$V = \mu U$$
,

or

$$V = \mu U^{\perp'_{\beta}},$$

for some $\mu \in \mathbb{F}_{q^4}^*$, where \perp'_{β} is the orthogonal complement map induced by $\operatorname{Tr}_{q^4/q} \circ \beta$ on the lattice of the \mathbb{F}_q -subspaces of W.

Proof. First of all, observe that if β_1 is another non-degenerate alternating form of W and \bot'_{β_1} is the corresponding orthogonal complement map induced on the lattice the \mathbb{F}_q -subspaces of W, direct computations show that there exists $a \in \mathbb{F}_{q^n}^*$ such that $\beta_1 = a\beta$ and for each \mathbb{F}_q -vector subspace S of W we get $S^{\bot'_{\beta}} = aS^{\bot'_{\beta_1}}$.

Let ϕ be the collineation of $\operatorname{PG}(W,\mathbb{F}_{q^4})$ such that L_U^{ϕ} does not contain the point $\langle (0,1) \rangle_{\mathbb{F}_{q^4}}$. Then $L_{U^{\varphi}} = L_{V^{\varphi}}$, where φ is the invertible \mathbb{F}_{q^4} -semilinear map of W inducing ϕ , and σ is the associated field automorphism. Also, $U^{\varphi} = U_f$ and $V^{\varphi} = V_g$ for two q-polynomials f and g over \mathbb{F}_{q^4} . Since $L_f = L_g$, by Proposition 4.2 and by Lemma 3.2, taking also (5) into account, it follows that there exists $\lambda \in \mathbb{F}_{q^4}^*$ such that either $\lambda V_g = U_f$ or $\lambda V_g = U_{\hat{f}} = U_f^{\perp'}$, where \perp' is the orthogonal complement map induced by the non-degenerate alternating form defined in (4). In the first case we have that $V = \mu U$, where $\mu = \frac{1}{\lambda^{\sigma-1}}$. In the second case we have $V = \frac{1}{\lambda^{\sigma-1}}U^{\varphi^{\perp'}\varphi^{-1}}$. The map $\varphi \perp' \varphi^{-1}$ defines the orthogonal complement map on the lattice the \mathbb{F}_q -subspaces of W induced by another non-degenerate alternating form of W. As observed above, there exists $a \in \mathbb{F}_{q^4}^*$ such that $U^{\varphi \perp' \varphi^{-1}} = aU^{\perp' \beta}$. The assertion follows with $\mu = \frac{a}{\lambda^{\sigma-1}}$.

4.2 Semilinear maps between U_f and $U_{\hat{f}}$

The next result is just Proposition 3.8 with n = 4.

Corollary 4.4. Let $f(x) = a_0x + a_1x^q + a_2x^{q^2} + a_3x^{q^3}$. There is an \mathbb{F}_{q^4} semilinear map between U_f and $U_{\hat{f}}$ if and only if the following system of
four equations has a solution $A, B, C, D \in \mathbb{F}_{q^4}$, $AD - BC \neq 0$, $\sigma = p^k$.

$$C + Da_0^{\sigma} - a_0 A = Ba_0 a_0^{\sigma} + (Ba_1 a_1^{\sigma})^{q^3} + (Ba_2 a_2^{\sigma})^{q^2} + (Ba_3 a_3^{\sigma})^q,$$

$$Da_1^{\sigma} - (a_3 A)^q = Ba_0 a_1^{\sigma} + (Ba_1 a_2^{\sigma})^{q^3} + (Ba_2 a_3^{\sigma})^{q^2} + (Ba_3 a_0^{\sigma})^q,$$

$$Da_2^{\sigma} - (a_2 A)^{q^2} = Ba_0 a_2^{\sigma} + (Ba_1 a_3^{\sigma})^{q^3} + (Ba_2 a_0^{\sigma})^{q^2} + (Ba_3 a_1^{\sigma})^q,$$

$$Da_3^{\sigma} - (a_1 A)^{q^3} = Ba_0 a_3^{\sigma} + (Ba_1 a_0^{\sigma})^{q^3} + (Ba_2 a_1^{\sigma})^{q^2} + (Ba_3 a_2^{\sigma})^q.$$

Theorem 4.5. Linear sets of rank 4 of $PG(1, q^4)$, with maximum field of linearity \mathbb{F}_q , are simple.

Proof. Let $f = \sum_{i=0}^{3} a_i x^{q^i}$. After a suitable projectivity we may assume $a_0 = 0$. We will use Corollary 4.4 with $\sigma \in \{1, q^2\}$. We may assume that $a_1 = 0$ and $a_3 = 0$ do not hold at the same time since otherwise f is \mathbb{F}_{q^2} -linear.

First consider the case when $N(a_1) = N(a_3)$. Let B = C = 0, $D = A^{q^2}$ and take A such that $A^{q-1} = a_3/a_1^q$. This can be done since $N(a_3/a_1^q) = 1$. Then Corollary 4.4 with $\sigma = q^2$ provides the existence of an \mathbb{F}_{q^4} -semilinear map between U_f and $U_{\hat{f}}$.

From now on we assume $N(a_1) \neq N(a_3)$.

If $a_2 = a_1 = 0$, then let $\sigma = 1$, A = D = 0, B = 1 and $C = a_3^{2q}$. If $a_2 = a_3 = 0$, then let $\sigma = 1$, A = D = 0, B = 1 and $C = a_1^{2q^3}$.

Now consider the case $a_2 = 0$ and $a_1 a_3 \neq 0$. Let A = D = 0. Then the equations of Corollary 4.4 with $\sigma = 1$ yield

$$C = B^{q^3} a_1^{2q^3} + B^q a_3^{2q}, (21)$$

$$0 = B^q a_1^q a_3^q + B^{q^3} a_1^{q^3} a_3^{q^3}. (22)$$

(22) is equivalent to $0 = (Ba_1a_3)^{q^2} + Ba_1a_3$. Since $X^{q^2} + X = 0$ has q^2 solutions in \mathbb{F}_{q^4} , for any a_1 and a_3 we can find $B \in \mathbb{F}_{q^4}^*$ such that (22) is satisfied. If $B^{q^3}a_1^{2q^3} + B^qa_3^{2q} \neq 0$, then let C be this field element. We show that this is always the case. Suppose, contrary to our claim, that $B^{q^3-q} = -a_3^{2q}/a_1^{2q^3}$. Because of the choice of B (22) yields $B^{q^3-q} = -a_1^{q-q^3}a_3^{q-q^3}$. Since $B \neq 0$ this implies

$$-a_3^{2q}/a_1^{2q^3} = -a_1^{q-q^3}a_3^{q-q^3},$$

and hence $a_1^{q^2+1}=a_3^{q^2+1}$. A contradiction since $N(a_1)\neq N(a_3)$. From now on we assume $a_2\neq 0$, we may also assume $a_2=1$ after a suitable projectivity.

Corollary 4.4 with $\sigma = 1$ yields

$$C = (Ba_1^2)^{q^3} + B^{q^2} + (Ba_3^2)^q, (23)$$

$$Da_1 - (a_3 A)^q = (Ba_1)^{q^3} + (Ba_3)^{q^2}, (24)$$

$$D - A^{q^2} = (Ba_1a_3)^{q^3} + (Ba_3a_1)^q, (25)$$

$$Da_3 - (a_1 A)^{q^3} = (Ba_1)^{q^2} + (Ba_3)^q.$$
 (26)

The right hand side of (24) is the q-th power of the right hand side of (26) and hence $D^q a_3^q - a_1 A = Da_1 - a_3^q A^q$, i.e.

$$a_3^q (D+A)^q = a_1 (D+A).$$

Since a_1 or a_3 is non-zero, we have either D = -A, or $(D + A)^{q-1} = a_1/a_3^q$. The latter case can be excluded since in that case $N(a_1) = N(a_3)$. Let D = -A. Then the left hand side of (24) is $w(A) := -Aa_1 - a_3^q A^q$. The kernel of w is trivial and hence B uniquely determines A. The inverse of w is

$$w^{-1}(x) = \frac{-xa_1^{q+q^2+q^3} + x^q a_1^{q^2+q^3} a_3^q - x^{q^2} a_1^{q^3} a_3^{q+q^2} + x^{q^3} a_3^{q+q^2+q^3}}{N(a_1) - N(a_3)}.$$

Denote the right hand side of (24) by r(B), the right hand side of (25) by t(B). Then B has to be in the kernel of

$$K(x) := w^{-1}(r(x)) + (w^{-1}(r(x)))^{q^2} + t(x).$$

If B=0, then A=B=D=0 and hence this is not a suitable solution. It is easy to see that $Im\ t\subseteq \mathbb{F}_{q^2}$ and hence also $Im\ K\subseteq \mathbb{F}_{q^2}$, so the kernel of K has at least dimension 2.

Let $B \in \ker K$, $B \neq 0$, $A := w^{-1}(r(B))$ and $C := (Ba_1^2)^{q^3} + B^{q^2} + (Ba_3^2)^q$ (we recall D = -A). This gives a solution. We have to check that B can be chosen such that $AD - BC \neq 0$, i.e.

$$Q(B) := (w^{-1}(r(B)))^2 + B((Ba_1^2)^{q^3} + B^{q^2} + (Ba_3^2)^q),$$

is non-zero. We have $w^{-1}(r(x))(\mathrm{N}(a_1)-\mathrm{N}(a_3))=\sum_{i=0}^3 c_i x^{q^i}$, where

$$c_0 = a_1^{1+q^2+q^3} a_3^q - a_1^{q^3} a_3^{1+q+q^2},$$

$$c_1 = a_3^{2q+q^2+q^3} - a_1^{q+q^3} a_3^{q+q^2},$$

$$c_2 = a_3^{q+q^2+q^3} a_1^{q^2} - a_1^{q+q^2+q^3} a_3^{q^2},$$

$$c_3 = a_1^{q^2+q^3} a_3^{q+q^3} - a_1^{q+q^2+2q^3}.$$

If X_0, X_1, X_2, X_3 denote the coordinate functions in $PG(3, q^4)$ and Q(B) = 0 for some $B \in \mathbb{F}_{q^4}$, then the point $\langle (B, B^q, B^{q^2}, B^{q^3}) \rangle_{q^4}$ is contained in the the quadric Q of $PG(3, q^4)$ defined by the equation

$$\left(\sum_{i=0}^{3} c_i X_i\right)^2 + X_0 \left(X_1 a_3^{2q} + X_2 + X_3 a_1^{2q^3}\right) (N(a_1) - N(a_3))^2 = 0.$$

We can see that the equation of \mathcal{Q} is the linear combination of the equations of two degenerate quadrics, a quadric of rank 1 and a quadric of rank 2. It follows that \mathcal{Q} is always singular and it has rank 2 or 3. In particular, the rank of \mathcal{Q} is 2 when the intersection of the planes $\mathcal{A}: X_0 = 0$ and $\mathcal{B}: X_1 a_3^{2q} + X_2 + X_3 a_1^{2q^3} = 0$ is contained in the plane $\mathcal{C}: \sum_{i=0}^3 c_i X_0 = 0$. Straightforward calculations show that under our hypothesis $(a_1 \neq 0 \text{ or } a_3 \neq 0, N(a_1) \neq N(a_3))$ this happens if only if $1 = a_1^q a_3$.

We recall that the kernel of K has dimension at least two. Let

$$H = \{ \langle (x, x^q, x^{q^2}, x^{q^3}) \rangle_{q^4} \colon K(x) = 0 \}.$$

Our aim is to prove that H has points not belonging to the quadric \mathcal{Q} , i.e. $H \nsubseteq \mathcal{Q}$.

Note that $x \in \mathbb{F}_{q^4} \mapsto (x, x^q, x^{q^2}, x^{q^3}) \in \mathbb{F}_{q^4}^4$ is a vector-space isomorphism between \mathbb{F}_{q^4} and the 4-dimensional \mathbb{F}_q -space $\{(x, x^q, x^{q^2}, x^{q^3}) \colon x \in \mathbb{F}_{q^4}\} \subset \mathbb{F}_{q^4}^4$. Denote by \bar{H} the \mathbb{F}_{q^4} -extension of H, i.e. the projective subspace of $\mathrm{PG}(3, q^4)$ generated by the points of H. Then the projective dimension of \bar{H} is dim ker K-1. Let σ denotes the collineation $(X_0, X_1, X_2, X_3) \mapsto (X_3^q, X_0^q, X_1^q, X_2^q)$ of $\mathrm{PG}(3, q^4)$. Then the points of H are fixed points of H and hence H is disjoint from H since it is contained in H, while H is disjoint from it.

First of all note that if dim ker K=4, i.e. K is the zero polynomial, then H is a subgeometry of $\operatorname{PG}(3,q^4)$ isomorphic to $\operatorname{PG}(3,q)$, which clearly cannot be contained in $\mathcal Q$. It follows that dim ker K is either 3 or 2, i.e. H is either a q-order subplane or a q-order subline.

First assume $1 \neq a_1^q a_3$, i.e. the case when \mathcal{Q} has rank 3. If H is a q-order subplane, then H cannot be contained in \mathcal{Q} . To see this, suppose the contrary and take three non-concurrent q-order sublines of H. The \mathbb{F}_{q^4} -extensions of these sublines are also contained in \mathcal{Q} , but there is at least one of them which does not pass through the singular point of \mathcal{Q} , a contradiction. Now assume that H is a q-order subline. The singular point of \mathcal{Q} is the intersection of the planes \mathcal{A}, \mathcal{B} and \mathcal{C} . Straightforward calculations

show that this point is $V = \langle (v_0, v_1, v_2, v_3) \rangle_{q^4}$, where

$$v_0 = 0,$$

$$v_1 = a_1^{q^2 + q^3} (a_1^{q^3} a_3^{q^2} - 1),$$

$$v_2 = a_1^{q^3} a_3^q (a_1^{q^2} a_3^q - a_1^{q^3} a_3^{q^2}),$$

$$v_3 = a_3^{q+q^2} (1 - a_1^{q^2} a_3^q).$$

Suppose, contrary to our claim, that H is contained in \mathcal{Q} . Then \overline{H} passes through the singular point V of \mathcal{Q} . Since \overline{H} is fixed by σ , it follows that the points $V, V^{\sigma}, V^{\sigma^2}, V^{\sigma^3}$ have to be collinear ($v_0 = 0$ yields that these four points cannot coincide). Let M denote the 4×4 matrix, whose i-th row consists of the coordinates of $V^{\sigma^{i-1}}$ for i = 1, 2, 3, 4. The rank of M is two, thus each of its minors of order three is zero. Let $M_{i,j}$ denote the submatrix of M obtained by deleting the i-th row and j-th column of M. Then

$$\det M_{1,2} = a_1^{q+1} (a_1^q a_3 - 1)^{q^3 + 1} \alpha,$$

$$\det M_{1,4} = a_3^{q^3 + 1} (a_1^q a_3 - 1)^{q^3 + 1} \beta,$$

where

$$\alpha = N(a_1)(a_1^{q^2}a_3^q - 1) + N(a_3)(1 - a_1^q a_3 - a_1^{q^3}a_3^{q^2} + a_1 a_3^{q^3}),$$

$$\beta = N(a_1)(a_1 a_3^{q^3} + a_1^{q^2}a_3^q - a_1^q a_3 - 1) + N(a_3)(1 - a_1^{q^3}a_3^{q^2}).$$

Since a_1 and a_3 cannot be both zeros and $a_1^q a_3 - 1 \neq 0$, we have $\alpha = \beta = 0$. But $\alpha - \beta = (N(a_1) - N(a_3))(a_1^q a_3 - a_1 a_3^{q^3})$. It follows that $a_1^q a_3 \in \mathbb{F}_q$ and hence α can be written as $(N(a_1) - N(a_3))(a_1^q a_3 - 1)$, which is non-zero. This contradiction shows that V cannot be contained in a line fixed by σ and hence \bar{H} cannot pass through V. It follows that $H \nsubseteq \mathcal{Q}$ and hence we can choose B such that $AD - BC \neq 0$.

Now consider the case $1=a_1^qa_3$. Then $\mathcal Q$ is the union of two planes meeting each other in $\ell:=\mathcal A\cap\mathcal B$. It is easy to see that $R:=\langle (0,1,-a_3^{2q},0)\rangle_{q^4}$ and R^σ are two distinct points of ℓ . Since $\mathrm N(a_1)\neq\mathrm N(a_3)$ and $\mathrm N(a_1)\,\mathrm N(a_3)=1$, $\det\{R,R^\sigma,R^{\sigma^2},R^{\sigma^3}\}=\mathrm N(a_3)^2-1$ cannot be zero and hence $R\notin H$, otherwise $\dim\langle R,R^\sigma,R^{\sigma^2},R^{\sigma^3}\rangle\leq\dim\bar H\leq 2$. Suppose, contrary to our claim, that H is contained in one of the two planes of $\mathcal Q$. Since $R\notin H$, such a plane can be written as $\langle H,R\rangle$ and since H is fixed by σ and $\ell\subseteq\langle H,R\rangle$, we have $\langle H,R\rangle^\sigma=\langle H,R^\sigma\rangle=\langle H,R\rangle$. Thus $R,R^\sigma,R^{\sigma^2},R^{\sigma^3}$ are coplanar, a contradiction.

5 Different aspects of the classes of a linear set

5.1 Class of a linear set and the associated variety

Let L_U be an \mathbb{F}_q -linear set of rank k of $\operatorname{PG}(W, \mathbb{F}_{q^n}) = \operatorname{PG}(r-1, q^n)$. Consider the projective space $\Omega = \operatorname{PG}(W, \mathbb{F}_q) = \operatorname{PG}(rn-1, q)$. For each point $P = \langle \mathbf{u} \rangle_{\mathbb{F}_{q^n}}$ of $\operatorname{PG}(W, \mathbb{F}_{q^n})$ there corresponds a projective (n-1)-subspace $X_P := \operatorname{PG}(\langle \mathbf{u} \rangle_{q^n}, \mathbb{F}_q)$ of Ω . The variety of Ω associated to L_U is

$$\mathcal{V}_{r,n,k}(L_U) = \bigcup_{P \in L_U} X_P. \tag{27}$$

A (k-1)-space $\mathcal{H} = \mathrm{PG}(V, \mathbb{F}_q)$ of Ω is said to be a transversal space of $\mathcal{V}(L_U)$ if $\mathcal{H} \cap X_P \neq \emptyset$ for each point $P \in L_U$, i.e. $L_U = L_V$.

The $\mathcal{Z}(\Gamma L)$ -class of an \mathbb{F}_q -linear set L_U of rank n of $\operatorname{PG}(W, \mathbb{F}_{q^n}) = \operatorname{PG}(1, q^n)$, with maximum field of linearity \mathbb{F}_q , is the number of transversal spaces of $\mathcal{V}_{2,n,n}(L_U)$ up to the action of the subgroup G of $\operatorname{PGL}(2n-1,q)$ induced by the maps $\mathbf{x} \in W \mapsto \lambda \mathbf{x} \in W$, with $\lambda \in \mathbb{F}_{q^n}^*$. Note that G fixes X_P for each point $P \in \operatorname{PG}(1,q^n)$ and hence fixes the variety.

The maximum size of an \mathbb{F}_q -linear set L_U of rank n of $\operatorname{PG}(1,q^n)$ is $(q^n-1)/(q-1)$. If this bound is attained (hence each point of L_U has weight one), then L_U is a maximum scattered linear set of $\operatorname{PG}(1,q^n)$. For maximum scattered linear sets, the number of transversal spaces through $Q \in \mathcal{V}(L_U)$ does not depend on the choice of Q and this number is the $\mathcal{Z}(\Gamma L)$ -class of L_U .

Example 5.1. Let $U = \{(x, x^q) : x \in \mathbb{F}_{q^n}\}$ and consider the linear set L_U . In [15] the variety $\mathcal{V}_{2,n,n}(L_U)$ was studied, and the transversal spaces were determined. It follows that the $\mathcal{Z}(\Gamma L)$ -class of L_U is $\varphi(n)$, where φ is the Euler's phi function.

5.2 Classes of linear sets as projections of subgeometries

Let $\Sigma = \operatorname{PG}(k-1,q)$ be a canonical subgeometry of $\Sigma^* = \operatorname{PG}(k-1,q^n)$. Let $\Gamma \subset \Sigma^* \setminus \Sigma$ be a (k-r-1)-space and let $\Lambda \subset \Sigma^* \setminus \Gamma$ be an (r-1)-space of Σ^* . The projection of Σ from *center* Γ to *axis* Λ is the point set

$$L = p_{\Gamma, \Lambda}(\Sigma) := \{ \langle \Gamma, P \rangle \cap \Lambda \colon P \in \Sigma \}. \tag{28}$$

In [22] Lunardon and Polverino characterized linear sets as projections of canonical subgeometries. They proved the following.

Theorem 5.2 ([22, Theorems 1 and 2]). Let Σ^* , Σ , Λ , Γ and $L = p_{\Gamma,\Lambda}(\Sigma)$ be defined as above. Then L is an \mathbb{F}_q -linear set of rank k and $\langle L \rangle = \Lambda$. Conversely, if L is an \mathbb{F}_q -linear set of rank k of $\Lambda = \operatorname{PG}(r-1,q^n) \subset \Sigma^*$ and $\langle L \rangle = \Lambda$, then there is a (k-r-1)-space Γ disjoint from Λ and a canonical subgeometry $\Sigma = \operatorname{PG}(r-1,q)$ disjoint from Γ such that $L = p_{\Gamma,\Lambda}(\Sigma)$.

Let L_U be an \mathbb{F}_q -linear set of rank k of $\mathbb{P} = \operatorname{PG}(W, \mathbb{F}_{q^n}) = \operatorname{PG}(r-1, q^n)$ such that for each k-dimensional \mathbb{F}_q -subspace V of W if $\operatorname{PG}(V, \mathbb{F}_q)$ is a transversal space of $\mathcal{V}_{r,n,k}(L_U)$, then there exists $\gamma \in \operatorname{P}\Gamma L(W, \mathbb{F}_q)$, such that γ fixes the Desarguesian spread $\{X_P \colon P \in \mathbb{P}\}$ and $\operatorname{PG}(U, \mathbb{F}_q)^{\gamma} = \operatorname{PG}(V, \mathbb{F}_q)$. This is condition (A) from [6], and it is equivalent to say that L_U is a simple linear set. Then the main results of [6] can be formalized as follows.

Theorem 5.3 ([6]). Let $L_1 = p_{\Gamma_1, \Lambda_1}(\Sigma_1)$ and $L_2 = p_{\Gamma_2, \Lambda_2}(\Sigma_2)$ be two linear sets of rank k. If L_1 and L_2 are equivalent and one of them is simple, then there is a collineation mapping Γ_1 to Γ_2 and Γ_2 to Γ_2 .

Theorem 5.4 ([6]). If L is a non-simple linear set of rank k in $\Lambda = \langle L \rangle$, then there are a subspace $\Gamma = \Gamma_1 = \Gamma_2$ disjoint from Λ , and two q-order canonical subgeometries Σ_1, Σ_2 such that $L = p_{\Gamma,\Lambda}(\Sigma_1) = p_{\Gamma,\Lambda}(\Sigma_2)$, and there is no collineation fixing Γ and mapping Σ_1 to Σ_2 .

Now we interpret the classes of linear sets, hence we are going to consider \mathbb{F}_q -linear sets of rank n of $\Lambda = \mathrm{PG}(1,q^n) = \mathrm{PG}(W,\mathbb{F}_{q^n})$, with maximum field of linearity \mathbb{F}_q . Arguing as in the proof of [6, Theorem 7], if L_U is non-simple, then for any pair U, V of n-dimensional \mathbb{F}_q -subspaces of W with $L_U = L_V$ such that $U^f \neq V$ for each $f \in \Gamma L(2,q^n)$ we can find a q-order subgeometry Σ of $\Sigma^* = \mathrm{PG}(n-1,q^n)$ and two (n-3)-spaces Γ_1 and Γ_2 of Σ^* , disjoint from Σ and from Λ , lying on different orbits of $Stab(\Sigma)$. On the other hand, arguing as in [6, Theorem 6], if there exist two (n-3)-subspaces Γ_1 and Γ_2 of Σ^* , disjoint from Σ and from Λ , belonging to different orbits of $Stab(\Sigma)$ and such that $L = p_{\Lambda,\Gamma_1}(\Sigma) = p_{\Lambda,\Gamma_2}(\Sigma)$, then it is possible to construct two n-dimensional \mathbb{F}_q -subspaces U and V of W with $L_U = L_V$ such that $U^f \neq V$ for each $f \in \Gamma L(2,q^n)$. Hence we can state the following.

The Γ L-class of L_U is the number of orbits of $Stab(\Sigma)$ on (n-3)-spaces of Σ^* containing a Γ disjoint from Σ and from Λ such that $p_{\Lambda,\Gamma}(\Sigma)$ is equivalent to L_U .

5.3 Class of linear sets and linear blocking sets of Rédei type

A blocking set \mathcal{B} of $PG(V, \mathbb{F}_{q^n}) = PG(2, q^n)$ is a point set meeting every line of the plane. Blocking sets of size $q^n + N \leq 2q^n$ with an N-secant are called

blocking sets of $R\acute{e}dei\ type$, the N-secants of the blocking set are called $R\acute{e}dei\ lines$. Let L_U be an \mathbb{F}_q -linear set of rank n of a line $\ell = \mathrm{PG}(W, \mathbb{F}_{q^n})$, $W \leq V$, and let $\mathbf{w} \in V \setminus W$. Then $\langle U, \mathbf{w} \rangle_{\mathbb{F}_q}$ defines an \mathbb{F}_q -linear blocking set of $\mathrm{PG}(2,q^n)$ with Rédei line ℓ . The following theorem tells us the number of inequivalent blocking sets obtained in this way.

Theorem 5.5. The Γ L-class of an \mathbb{F}_q -linear set L_U of rank n of $\operatorname{PG}(W, \mathbb{F}_{q^n}) = \operatorname{PG}(1, q^n)$, with maximum field of linearity \mathbb{F}_q , is the number of inequivalent \mathbb{F}_q -linear blocking sets of Rédei type of $\operatorname{PG}(V, \mathbb{F}_{q^n}) = \operatorname{PG}(2, q^n)$ containing L_U .

Proof. \mathbb{F}_q -linear blocking sets of $\operatorname{PG}(2,q^n)$ with more than one Rédei line are equivalent to those defined by $\operatorname{Tr}_{q^n/q^m}(x)$ for some divisor m of n, see [20, Theorem 5]. Suppose first that L_U is equivalent to L_T , where $T = \{(x,\operatorname{Tr}_{q^n/q}(x))\colon x\in\mathbb{F}_{q^n}\}$. According to Theorem 3.7 L_T , and hence also L_U , have $\mathcal{Z}(\Gamma L)$ -class and ΓL -class one. Proposition 2.5 yields the existence of a unique point $P \in L_U$ such that $w_{L_U}(P) = n - 1$. Then for each $\mathbf{v} \in V \setminus W$ the \mathbb{F}_q -linear blocking set defined by $\langle U, \mathbf{v} \rangle_{\mathbb{F}_q}$ has more than one Rédei line, each of them incident with P, and hence it is equivalent to the Rédei type blocking set obtained from $\operatorname{Tr}_{q^n/q}(x)$.

Now let $\mathcal{B}_1 = L_{V_1}$ and $\mathcal{B}_2 = L_{V_2}$ be two \mathbb{F}_q -linear blocking sets of Rédei type with $\mathrm{PG}(W, \mathbb{F}_{q^n})$ the unique Rédei line. Denote by U_1 and U_2 the \mathbb{F}_q -subspaces $W \cap V_1$ and $W \cap V_2$, respectively, and suppose $L_{U_1} = L_{U_2}$ with \mathbb{F}_q the maximum field of linearity. Then \mathcal{B}_1 and \mathcal{B}_2 have (q+1)-secants and we have $V_1 = U_1 \oplus \langle \mathbf{u}_1 \rangle_{\mathbb{F}_q}$ and $V_2 = U_2 \oplus \langle \mathbf{u}_2 \rangle_{\mathbb{F}_q}$ for some $\mathbf{u}_1, \mathbf{u}_2 \in V \setminus W$.

If $\mathcal{B}_1^{\varphi_f} = \mathcal{B}_2$, then [5, Proposition 2.3] implies $V_1^f = \lambda V_2$ for some $\lambda \in \mathbb{F}_{q^n}^*$. Such $f \in \Gamma L(3, q^n)$ has to fix W and it is easy to see that $U_1^f = \lambda U_2$, i.e. U_1 and U_2 are $\Gamma L(2, q^n)$ -equivalent.

Conversely, if there exists $f \in \Gamma L(W, \mathbb{F}_{q^n})$ such that $U_1^f = U_2$, then $\mathcal{B}_1^{\varphi_g} = \mathcal{B}_2$, where $g \in \Gamma L(V, \mathbb{F}_{q^n})$ is the extension of f mapping $\mathbf{u_1}$ to $\mathbf{u_2}$. \square

5.4 Class of linear sets and MRD-codes

In [25, Section 4] Sheekey showed that maximum scattered linear sets of $PG(1,q^n)$ correspond to \mathbb{F}_q -linear maximum rank distance codes (MRD-codes) of dimension 2n and minimum distance n-1, that is, a set \mathcal{M} of q^{2n} $n \times n$ matrices over \mathbb{F}_q forming an \mathbb{F}_q -subspace of $\mathbb{F}_q^{n \times n}$ of dimension 2n such that the non-zero matrices of \mathcal{M} have rank at least n-1. For definitions and properties on MRD-codes we refer the reader to [9] by Delsarte and [12] by Gabidulin. For $n \times n$ matrices there are two different definitions of

equivalence for MRD-codes in the literature. The arguments of [25, Section 4] yield the following interpretation of the Γ L-class:

- \mathcal{M} and \mathcal{M}' are equivalent if there are invertible matrices $A, B \in \mathbb{F}_q^{n \times n}$ and a field automorphism σ of \mathbb{F}_q such that $A\mathcal{M}^{\sigma}B = \mathcal{M}'$, see [25]. In this case the Γ L-class of L_U is the number of inequivalent MRD-codes obtained from the linear set L_U .
- \mathcal{M} and \mathcal{M}' are equivalent if there are invertible matrices $A, B \in \mathbb{F}_q^{n \times n}$ and a field automorphism σ of \mathbb{F}_q such that $A\mathcal{M}^{\sigma}B = \mathcal{M}'$, or $A\mathcal{M}^{T\sigma}B = \mathcal{M}'$, see [8]. In this case the number of inequivalent MRD-codes obtained from the linear set L_U is between $\lceil s/2 \rceil$ and s, where s is the Γ L-class of L_U .

We summarize here the known non-equivalent families of MRD-codes arising from maximum scattered linear sets.

- 1. $L_{U_1} := \{ \langle (x, x^q) \rangle_{\mathbb{F}_{q^n}} : x \in \mathbb{F}_{q^n}^* \}$ (found by Blokhuis and Lavrauw [4]) gives Gabidulin codes,
- 2. $L_{U_2} := \{\langle (x, x^{q^s}) \rangle_{\mathbb{F}_{q^n}} : x \in \mathbb{F}_{q^n}^* \}, \gcd(s, n) = 1 ([4])$ gives generalized Gabidulin codes,
- 3. $L_{U_3} := \{ \langle (x, \delta x^q + x^{q^{n-1}}) \rangle_{\mathbb{F}_{q^n}} \colon x \in \mathbb{F}_{q^n}^* \}$ (found by Lunardon and Polverino [21]) gives MRD-codes found by Sheekey,
- 4. $L_{U_4} := \{ \langle (x, \delta x^{q^s} + x^{q^{n-s}}) \rangle_{\mathbb{F}_{q^n}} : x \in \mathbb{F}_{q^n}^* \}, N(\delta) \neq 1, \gcd(s, n) = 1 \text{ gives }$ MRD-codes found by Lunardon, Trombetti and Zhou in [23].

Remark 5.6. The linear sets L_{U_1} and L_{U_2} coincide, but when $s \notin \{1, n-1\}$, then there is no $f \in \Gamma L(2, q^n)$ such that $U_1^f = U_2$. These linear sets are of pseudoregulus type, [19] (see also Example 5.1), and in [6] it was proved that the ΓL -class of these linear sets is $\varphi(n)/2$, hence they are examples of non-simple linear sets for n = 5 and n > 6.

It can be proved that the family L_{U_4} contains linear sets non-equivalent to those from the other families. We will report on this elsewhere.

References

[1] S. Ball: The number of directions determined by a function over a finite field, J. Combin. Theory Ser. A **104** (2003), 341–350.

- [2] S. Ball, A. Blokhuis, A.E. Brouwer, L. Storme and T. Szőnyi: On the number of slopes of the graph of a function definied over a finite field, J. Combin. Theory Ser. A 86 (1999), 187–196.
- [3] D. Bartoli, M. Giulietti, G. Marino and O. Polverino: Maximum scattered linear sets and complete caps in Galois spaces, http://arxiv.org/abs/1512.07467.
- [4] A. BLOKHUIS AND M. LAVRAUW: Scattered spaces with respect to a spread in PG(n,q), Geom. Dedicata 81 (2000), 231–243.
- [5] G. BONOLI AND O. POLVERINO: \mathbb{F}_q -linear blocking sets in PG(2, q^4), Innov. Incidence Geom. 2 (2005), 35–56.
- [6] B. CSAJBÓK AND C. ZANELLA: On the equivalence of linear sets, Des. Codes Cryptogr. DOI 10.1007/s10623-015-0141-z
- [7] M. DE BOECK AND G. VAN DE VOORDE: A linear set view on KM-arcs, J. Algebr. Comb. (2016) DOI 10.1007/s10801-015-0661-7
- [8] J. DE LA CRUZ, M. KIERMAIER, A. WASSERMAN AND W. WILLIEMS: Algebraic structures of MRD Codes, http://arxiv.org/abs/1502.02711, Jan 2015.
- [9] P. Delsarte: Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A **25** (1978), 226–241.
- [10] G. DONATI AND N. DURANTE: Scattered linear sets generated by collineations between pencils of lines, J. Algebr. Comb. 40, n. 4 (2014), 1121–1131.
- [11] Sz. Fancsali and P. Sziklai: Description of the clubs, Annales Univ. Sci. Sect. Mat. **51** (2008), 141–146.
- [12] E. Gabidulin: Theory of codes with maximum rank distance, Problems of information transmission, **21**(3) (1985), 3–16.
- [13] J.W.P. HIRSCHFELD AND J.A. THAS: General Galois Geometries. Ofxord University Press, 1991.
- [14] M. LAVRAUW: Scattered spaces in Galois Geometry, http://arxiv.org/pdf/1512.05251.

- [15] M. LAVRAUW, J. SHEEKEY AND C. ZANELLA: On embeddings of minimum dimension of $PG(n,q) \times PG(n,q)$, Des. Codes Cryptogr. 74. n.2 (2015), 427–440.
- [16] M. LAVRAUW AND G. VAN DE VOORDE: On linear sets on a projective line, Des. Codes Cryptogr. **56** (2010), 89–104.
- [17] M. LAVRAUW AND G. VAN DE VOORDE: Field reduction and linear sets in finite geometry, in: Gohar Kyureghyan, Gary L. Mullen, Alexander Pott (Eds.), Topics in Finite Fields, Contemp. Math. AMS (2015).
- [18] G. LUNARDON: Normal spreads, Geom. Dedicata **75** (1999), 245–261.
- [19] G. Lunardon, G. Marino, O. Polverino and R. Trombetti: Maximum scattered linear sets of pseudoregulus type and the Segre Variety $S_{n,n}$, J. Algebr. Comb. **39** (2014), 807–831.
- [20] G. LUNARDON AND O. POLVERINO: Blocking Sets of Size $q^t + q^{t-1} + 1$, J. Combin. Theory Ser. A **90** (2000), 148–158.
- [21] G. LUNARDON AND O. POLVERINO: Blocking Sets and Derivable Partial Spreads, J. Algebraic Combin. 14 (2001), 49–56.
- [22] G. Lunardon and O. Polverino: Translation ovoids of orthogonal polar spaces, Forum Math. 16 (2004), 663–669.
- [23] G. LUNARDON, R. TROMBETTI AND Y. ZHOU: Generalized Twisted Gabidulin Codes, http://arxiv.org/abs/1507.07855.
- [24] O. Polverino: Linear sets in finite projective spaces, Discrete Math. **310** (2010), 3096–3107.
- [25] J. Sheekey: A new family of linear maximum rank distance codes, http://arxiv.org/abs/1504.01581.

Bence Csajbók, Giuseppe Marino and Olga Polverino Dipartimento di Matematica e Fisica, Seconda Università degli Studi di Napoli, I-81100 Caserta, Italy csajbok.bence@gmail.com, qiuseppe.marino@unina2.it, olga.polverino@unina2.it