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Abstract
A graph is 1-planar if it can be drawn in the plane such that

each edge is crossed at most once. A graph, together with a

1-planar drawing is called 1-plane. A graph is maximal 1-

planar (1-plane), if we cannot add any missing edge so that

the resulting graph is still 1-planar (1-plane). Brandenburg

et al. showed that there are maximal 1-planar graphs

with only 45
17𝑛 + 𝑂(1) ≈ 2.647𝑛 edges and maximal 1-

plane graphs with only 7
3𝑛 + 𝑂(1) ≈ 2.33𝑛 edges. On

the other hand, they showed that a maximal 1-planar

graph has at least 28
13𝑛 − 𝑂(1) ≈ 2.15𝑛 − 𝑂(1) edges, and

a maximal 1-plane graph has at least 2.1𝑛 − 𝑂(1) edges.

We improve both lower bounds to 20𝑛
9 ≈ 2.22𝑛.

K E Y W O R D S
1-planar, edge density

1 INTRODUCTION

In a drawing of a simple undirected graph 𝐺, vertices are represented by distinct points in the plane and
edges are represented by simple continuous curves connecting the corresponding points. For simplicity,
the points and curves are also called vertices and edges, and if it does not lead to confusion, we denote
them the same way as the original vertices and edges of 𝐺, respectively. We assume that edges do not
contain vertices in their interior and that edges with a common endpoint do not cross. In particular, an
edge cannot cross itself. It follows from Euler's formula that a planar graph of 𝑛 vertices has at most
3𝑛 − 6 edges. Also if a planar graph 𝐺 has fewer edges, then we can add edges to it so that the resulting
graph has exactly 3𝑛 − 6 edges and it is still planar. This holds even if we start with a fixed planar
drawing of 𝐺.

A drawing of a graph is 1-planar if each edge is crossed at most once. A graph is 1-planar if it has
a 1-planar drawing. It is maximal 1-planar, if we cannot add any edge to it so that the resulting graph
is still 1-planar. A graph together with a 1-planar drawing is a 1-plane graph. It is maximal 1-plane,
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102 BARÁT AND TÓTH

if we cannot add any edge to it so that the resulting drawing is still 1-plane. The maximum number of
edges of a 1-planar or 1-plane graph is 4𝑛 − 8 [4]. Recently, Brandenburg et al. [1,2] observed a very
interesting phenomenon: there are maximal 1-planar and 1-plane graphs with much fewer edges.

Theorem 1 (Brandenburg et al. [2]).

(i) Let 𝑒(𝑛) be the minimum number of edges of a maximal 1-planar graph with 𝑛 vertices. The fol-
lowing holds

28
13

𝑛 − 𝑂(1) ≈ 2.15𝑛 − 𝑂(1) ≤ 𝑒(𝑛) ≤ 45
17

𝑛 + 𝑂(1) ≈ 2.647𝑛,

(ii) Let 𝑒′(𝑛) be the minimum number of edges of a maximal 1-plane graph with 𝑛 vertices. The fol-
lowing holds

2.1𝑛 − 𝑂(1) ≤ 𝑒(𝑛) ≤ 7
3
𝑛 + 𝑂(1) ≈ 2.33𝑛.

The upper bound in part (ii) has been proved independently by Eades et al. [3]. In this note, we
improve both lower bounds.

Theorem 2. A maximal 1-planar or 1-plane graph has at least 20
9 𝑛 − 𝑂(1) ≈ 2.22𝑛 edges.

That is, 𝑒(𝑛), 𝑒′(𝑛) ≥ 20
9 𝑛 − 𝑂(1).

2 PRELIMINARIES

Our method is based on the ideas of Brandenburg et al. [2]. We also point out an error in [2], but with
our approach their proof goes through as well. The following observations are essentially from their
article. We include the proofs for completeness. Throughout this section, 𝐺 is a maximal 1-plane graph
of at least four vertices. The edges of 𝐺 divide the plane into faces. A face is bounded by edges and
edge segments. These edges and edge segments end in vertices or crossings.

Lemma 1.

(i) There are at least two vertices on the boundary of each face.
(ii) If 𝑢 and 𝑣 are two vertices on the boundary of a face, then they are adjacent.

Proof.

(i) Each face is bounded by at least three edges or edge segments, and has at least three vertices or
crossings on its boundary. Since there is at most one crossing on each edge, each edge segment
contains a vertex as an endpoint. Therefore, there must be at least two vertices on the boundary of
the face.

(ii) Suppose that there are two vertices, 𝑢 and 𝑣 on the boundary of a face. Now 𝑢 and 𝑣 could be
connected by a curve in the face without creating any crossing. Therefore, by the maximality of
𝐺, 𝑢 and 𝑣 are already connected. ■

Lemma 2. There are neither isolated vertices nor vertices of degree 1 in 𝐺.

Proof. Suppose that 𝑣 is an isolated vertex or a vertex of degree 1 in face 𝐹 of 𝐺. Now 𝐺 ⧵ {𝑣}
is also maximal 1-plane, since if we can add an edge to 𝐺 ⧵ {𝑣}, then we could have added it to 𝐺.
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F I G U R E 1 Hermit ℎ, surrounded by two pairs of crossing edges

Therefore, by Lemma 1, 𝐹 has at least two vertices on its boundary, different from 𝑣, and 𝑣 is adjacent
to both of them, a contradiction. ■

Lemma 3. If ab and cd are crossing edges in 𝐺, then 𝑎, 𝑏, 𝑐, 𝑑 span a 𝐾4 in 𝐺.

Proof. Let 𝑥 be the crossing of 𝑎𝑏 and 𝑐𝑑. Since there are no other crossings on 𝑎𝑏 and 𝑐𝑑, there is a
face bounded by 𝑎𝑥 and 𝑥𝑐. Now 𝑎 and 𝑐 are adjacent by Lemma 1. Similarly 𝑎 and 𝑑, 𝑏 and 𝑐, 𝑏 and
𝑑 are also adjacent. ■

The smallest degree in 𝐺 is at least two by Lemma 2. Following [2], we call vertices of degree two
hermits.

Lemma 4. If a vertex ℎ has only two neighbors in 𝐺, say 𝑢 and 𝑣, then

(i) ℎ𝑢 and ℎ𝑣 are not crossed by any edge,
(ii) 𝑢 and 𝑣 are adjacent in 𝐺.

Proof.

(i) Suppose to the contrary that ℎ𝑢 is crossed by an edge. By Lemma 3, vertex ℎ has degree at least
three, a contradiction.

(ii) Since the only neighbors of ℎ are 𝑢 and 𝑣, and edges ℎ𝑢 and ℎ𝑣 are not crossed, there is a face that
has 𝑢, ℎ, and 𝑣 on its boundary. Therefore, 𝑢 and 𝑣 are adjacent by Lemma 1. ■

Lemma 5. Suppose that ℎ is a hermit, and its neighbors are 𝑢 and 𝑣. Delete ℎ, hu, hv, uv from 𝐺, and
let 𝐺′ be the resulting graph with the original embedding. Let 𝐹 be the face of 𝐺′ that contains the
point corresponding to vertex ℎ. Then 𝐹 has only two vertices on its boundary, 𝑢 and 𝑣.

Proof. If there was another vertex on the boundary of 𝐹 , then we could connect it to ℎ: either without
any crossing or with exactly one crossing with edge 𝑢𝑣 contradicting the maximality of 𝐺. ■

Since 𝐹 has only two vertices on its boundary, 𝑢 and 𝑣, the boundary of 𝐹 consists of two pairs of
crossing edge segments. The point corresponding to hermit ℎ is in 𝐹 . We refer to this as hermit ℎ is
surrounded by two pairs of crossing edges. See Figure 1. It follows from Lemma 5 that each hermit is
surrounded by two pairs of crossing edges.

Remove all hermits from 𝐺. The resulting graph 𝐺̂ with the inherited drawing is the skeleton of 𝐺.
Notice that 𝐺̂ is also maximal 1-plane and each vertex of 𝐺̂ has degree at least three.

2.1 A correction
In [2] the lower bound proofs rely on the following statement:

Claim 1. [2] Every edge of 𝐺̂ is covered by a 𝐾4 in 𝐺̂.

 10970118, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.22187 by B

udapest U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [08/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



104 BARÁT AND TÓTH

However, this claim does not hold! See Figure 3 for a counterexample. Call an edge of 𝐺̂ exceptional
if it is not part of a 𝐾4 in 𝐺̂. We have to deal with exceptional edges as well.

Lemma 6. Suppose that edge ab of 𝐺̂ is exceptional. That is, ab is not part of a 𝐾4 in 𝐺̂. Let 𝐹1 and
𝐹2 be the faces bounded by ab. Then

(i) 𝐹1 ≠ 𝐹2,
(ii) for 𝑖 = 1, 2, 𝐹𝑖 has exactly three vertices on its boundary, 𝑎, 𝑏 and let 𝑓𝑖 denote the third one.

Moreover, 𝑓1 = 𝑓2.
(iii) both af𝑖 and 𝑏𝑓𝑖 are nonexceptional edges of 𝐺̂.

Proof.

(i) Suppose that 𝑎𝑏 is an exceptional edge of 𝐺̂. If edge 𝑎𝑏 is crossed by another edge, then it is part
of a 𝐾4 by Lemma 3. Therefore, 𝑎𝑏 does not participate in a crossing. Let 𝐹1 and 𝐹2 be the faces
bounded by 𝑎𝑏. If 𝐹1 = 𝐹2, then 𝑎𝑏 is a cut edge. In this case, by Lemma 1, both components have
at least one other vertex on the boundary of 𝐹1 = 𝐹2, and they can be connected. This contradicts
the maximality of 𝐺̂. Consequently, 𝐹1 ≠ 𝐹2.

(ii) If there is an edge from 𝑎 and an edge from 𝑏 which cross, then 𝑎𝑏 is part of a 𝐾4 by Lemma 3. If
there are at least four different vertices on the boundary of 𝐹𝑖, say, 𝑎, 𝑏, 𝑥, and 𝑦, then they form
a 𝐾4 by Lemma 1. We conclude that if 𝑎𝑏 is exceptional, then 𝐹𝑖 has exactly three vertices on
its boundary, 𝑎, 𝑏 and, say, 𝑓𝑖. If 𝑓1 ≠ 𝑓2 and they are not connected, then we can connect them
through 𝐹1 and 𝐹2. So by the maximality of 𝐺̂, 𝑓1, and 𝑓2 are connected. By Lemma 1, (𝑎, 𝑏, 𝑓1)
and (𝑎, 𝑏, 𝑓2) are all adjacent, and together with edge 𝑓1𝑓2, these four vertices form a 𝐾4 covering
𝑎𝑏, a contradiction. Therefore, 𝑓1 = 𝑓2 and we denote it by 𝑓 for the rest of the proof.

(iii) Vertices 𝑎, 𝑏, and 𝑓 divide the boundary of 𝐹1 into three parts. Between 𝑎 and 𝑏, we have edge 𝑎𝑏
by assumption. Between 𝑎 and 𝑓 , we either have edge 𝑎𝑓 , or two segments of edges. In the latter
case, 𝑎𝑓 is an edge of 𝐺̂ and part of a 𝐾4 by Lemma 3. We can argue similarly for face 𝐹2. We
conclude that 𝑎𝑓 is an edge of 𝐺̂ and part of a 𝐾4, unless 𝑎𝑓 is on the boundary of both 𝐹1 and
𝐹2. In that case, the degree of 𝑎 would be 2 in 𝐺̂, which is impossible. We can argue the same
way for edge 𝑏𝑓 . ■

Remark. Each of the drawings on Figure 2 can be extended to a maximal 1-plane graph so that ab is
not part of a 𝐾4. See Figure 3 for an example.

3 IMPROVEMENT OF THE LOWER BOUNDS – PROOF
OF THEOREM 2

Let 𝐺̂ be the skeleton of a maximal 1-plane graph. Recall that the skeleton 𝐺̂ arises by remov-
ing each hermit from 𝐺 together with its two incident edges. The skeleton inherits its drawing
from 𝐺, it is maximal 1-plane and each vertex has degree at least three. We distinguish three types
of edges in 𝐺̂: crossing, plain, and exceptional. Edges that participate in a crossing are crossing
edges. A crossing-free edge that is part of a 𝐾4, is a plain edge. Any other edge is exceptional.
Those edges are crossing-free and do not belong to a 𝐾4. Let 𝑛(𝐻), 𝑐(𝐻), 𝑝(𝐻), 𝑒(𝐻) denote the
number of vertices, crossing edges, plain edges, and exceptional edges of a graph 𝐻 . In particu-
lar, let 𝑛 = 𝑛(𝐺̂), 𝑐 = 𝑐(𝐺̂), 𝑝 = 𝑝(𝐺̂), 𝑒 = 𝑒(𝐺̂). We prove the following crucial inequality involving
these quantities.
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F I G U R E 2 The four possible types of exceptional edges 𝑎𝑏

b

a

F I G U R E 3 A maximal 1-plane graph. Edge 𝑎𝑏 is not part of a 𝐾4

Lemma 7. If 𝐺̂ is the skeleton of any drawing of a maximal 1-planar graph 𝐺 and 𝑛(𝐺̂) ≥ 4, then

9𝑝(𝐺̂) + 10𝑒(𝐺̂) + 7𝑐(𝐺̂) ≥ 20𝑛(𝐺̂) − 30. (1)

Proof. First we use induction on 𝑒. If there is an exceptional edge in 𝐺̂, then we use the induction
hypothesis for graphs with smaller 𝑒. If 𝑒(𝐺̂) = 0, then we prove the statement directly.

Suppose that there is an exceptional edge 𝑎𝑏 in 𝐺̂. Let 𝐹1 and 𝐹2 be the two faces bounded by 𝑎𝑏.
By Lemma 6, 𝐹1 ≠ 𝐹2, and both 𝐹1 and 𝐹2 have exactly three vertices on their boundaries, 𝑎, 𝑏, and 𝑓 ,
see Figure 2. The closure of 𝐹1 ∪ 𝐹2 divides the plane into two parts, say 𝑆1, 𝑆2. Now 𝑆𝑖, the closure
of 𝑆𝑖, intersects 𝐺̂ in 𝐺𝑖 for 𝑖 = 1, 2. Remove the edge 𝑎𝑏 and the interior of 𝐹1, 𝐹2 from 𝐺̂. Now two
almost disjoint subgraphs 𝐺1 and 𝐺2 arise such that they have exactly one vertex 𝑓 in common, 𝑎 ∈ 𝐺1
and 𝑏 ∈ 𝐺2. Both 𝐺1 and 𝐺2 are maximal 1-plane and both have at least four vertices. Therefore, we
can use the induction hypothesis on 𝐺1 and 𝐺2. For 𝑖 = 1, 2, let 𝑛𝑖, 𝑐𝑖, 𝑝𝑖, 𝑒𝑖 denote the number of
vertices, crossing edges, plain edges, and exceptional edges of 𝐺𝑖. Now 9𝑝1 + 10𝑒1 + 7𝑐1 ≥ 20𝑛1 − 30
and 9𝑝2 + 10𝑒2 + 7𝑐2 ≥ 20𝑛2 − 30, where 𝑒1 + 𝑒2 + 1 = 𝑒, 𝑛1 + 𝑛2 − 1 = 𝑛 and 𝑝1 + 𝑝2 = 𝑝, 𝑐1 + 𝑐2 =
𝑐. Therefore, 9𝑝 + 10𝑒 − 10 + 7𝑐 ≥ 20𝑛 + 20 − 60, and the statement follows.
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106 BARÁT AND TÓTH
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F I G U R E 4 Operation 2

We may now assume that 𝑒(𝐺̂) = 0, and we should prove that 9𝑝(𝐺̂) + 7𝑐(𝐺̂) ≥ 20𝑛 − 30, where
𝑛 ≥ 4. In what follows, we define an increasing sequence of subgraphs 𝐺0 ⊂ 𝐺1 ⊂ ⋯ ⊂ 𝐺̂ recursively
and keep track of the number of vertices and edges of 𝐺𝑖. In every step, we maintain the inequality
9𝑝 + 9𝑒 + 7𝑐 ≥ 20𝑛 − 30. Note that it is stronger than our target inequality 9𝑝 + 10𝑒 + 7𝑐 ≥ 20𝑛 − 30.

We can use the idea of Brandenburg et al. [2]. They defined the 𝐾4-network of 𝐺, which is an
auxiliary graph . Its vertex set corresponds to the 𝐾4 subgraphs of 𝐺̂. Two vertices in  are adjacent
if the corresponding subgraphs in 𝐺̂ share a vertex. Since 𝐺̂ is connected and every edge is contained
in a 𝐾4, the graph  is connected. Brandenburg et al. proved a lower bound on the number of edges of
𝐺̂ by building a certain spanning tree of  by an algorithm and investigating the number of edges of
𝐺̂ involved in each step of the algorithm.

We go in their footsteps, but take a closer look. We use a slightly more complex algorithm that
sweeps through 𝐺̂ rather than .

Let 𝐺0 be a 𝐾4 subgraph of 𝐺̂. Suppose that we have already defined 𝐺𝑖−1, a connected subgraph
of 𝐺̂, and now we construct 𝐺𝑖. Therefore, the vertices, edges, subgraphs of 𝐺𝑖−1 are old and the ones
of 𝐺𝑖 are new. To construct 𝐺𝑖 from 𝐺𝑖−1, we use one of the following operations in this order of
preference.

1. Adding an edge between two old vertices.

2. Adding a new vertex 𝑥 and all 𝐾4's spanned by 𝑥 and three old vertices.

3. Adding two new vertices, 𝑥 and 𝑦 and all 𝐾4's spanned by 𝑥, 𝑦 and two old vertices.

4. Adding two new 𝐾4's such that they share a new vertex and each of them has a vertex in common
with the old subgraph.

If none of these operations can be executed, then let 𝐺final = 𝐺𝑖−1 and the algorithm terminates.
Since the 𝐾4-network  of 𝐺̂ is connected, 𝐺final = 𝐺̂.

Although 𝐺̂ does not have exceptional edges, for some 𝑖, 𝐺𝑖 might have one (or more). However,
we could create an exceptional edge only with operation 1. Observe that 𝐾4 has two different 1-planar
drawings. Either all edges are crossing-free, or there is exactly one crossing.

We show by induction, that

9𝑝(𝐺𝑖) + 9𝑒(𝐺𝑖) + 7𝑐(𝐺𝑖) ≥ 20𝑛(𝐺𝑖) − 30 (2)

for every 𝑖. This is certainly true for 𝑖 = 0. Suppose 9𝑝(𝐺𝑖−1) + 9𝑒(𝐺𝑖) + 7𝑐(𝐺𝑖−1) ≥ 20𝑛(𝐺𝑖−1) − 30
for some 𝑖, and now we construct𝐺𝑖. If we apply operation 1, then the left side of inequality (2) increases
by at least five (it is the case when we add an edge that crosses a previously plain or exceptional edge),
while the right side does not change, so (2) holds for 𝐺𝑖 as well.

Suppose that we executed the second operation and we added exactly one 𝐾4 with new vertex 𝑥 and
old vertices 𝑎, 𝑏, 𝑐, see Figure 4. Now either 𝑥𝑎, 𝑥𝑏, and 𝑥𝑐 are all plain edges in 𝐺𝑖, or one of them,
say 𝑥𝑐, crosses 𝑎𝑏. The other two edges, 𝑥𝑎 and 𝑥𝑏 do not cross an old edge since in this case there
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would be more 𝐾4's involving 𝑥. The left side of inequality (2) increased by 27 or 23 while the right
side increased by 20. If we added more than one 𝐾4, then we had to add at least four edges adjacent to
𝑥. The addition of an edge increases the left side of the inequality by at least five, so it increased by at
least 20.

Suppose that we executed the third operation, see Figure 5. Let 𝑥 and 𝑦 be the new vertices, 𝑎 and
𝑏 the old vertices of a new 𝐾4. Edges 𝑥𝑎, 𝑥𝑏, 𝑦𝑎, 𝑦𝑏 cannot cross an old edge, since in that case we
find a 𝐾4 with exactly three old vertices contradicting the preference order of the operations. If 𝑥𝑦 is
not crossed by an old edge, then the left side of inequality (2) increases by 41 or 45, while the right
side increases by 40. Suppose that the edge 𝑥𝑦 crosses an old edge 𝑐𝑑. Now 𝑥, 𝑦, 𝑐, 𝑑 form another 𝐾4,
and again none of the other new edges crosses an old edge. We added at least eight new edges, so the
left-hand side increased by at least 40 again.

Suppose now that we arrive to a stage, where we cannot use any of the first three operations. There-
fore, there is no 𝐾4 in 𝐺̂ that has exactly two or three old vertices. Let 𝑢 be an old vertex that has
at least one neighbor not in 𝐺𝑖−1. Since 𝐺̂ is connected, there is such a vertex. The graph 𝐺𝑖−1 is
also connected, so 𝑢 has a neighbor in 𝐺𝑖−1 as well. Order all neighbors of 𝑢 in the circular order the
corresponding edges emanate from 𝑢.

Recall that edges with a common endpoint do not cross. Let 𝑣 and 𝑤 be consecutive neighbors of 𝑢
such that 𝑣 ∈ 𝐺𝑖−1 and 𝑤 ∉ 𝐺𝑖−1. We distinguish four cases.

Case 1: Both 𝑢𝑣 and 𝑢𝑤 are plain edges in 𝐺̂. We consider a 𝐾4 that contains the edge 𝑢𝑤. By the
assumptions, this 𝐾4 has exactly one vertex (𝑢) in 𝐺𝑖−1 and three vertices, say 𝑤, 𝑥1, and 𝑥2
not in 𝐺𝑖−1. The vertices 𝑣 and 𝑤 can be connected along 𝑢𝑣 and 𝑢𝑤, so by the maximality of
𝐺̂, they are adjacent in 𝐺̂. We consider a 𝐾4 that contains the edge 𝑣𝑤. By the assumptions,
this 𝐾4 has exactly one vertex (𝑣) in 𝐺𝑖−1 and three vertices not in 𝐺𝑖−1: 𝑤, 𝑦1, and 𝑦2. By the
assumptions, none of the new edges crosses an old edge. Add these two 𝐾4's to 𝐺𝑖−1 and let
𝐺𝑖 be the resulting graph. If 𝑥1, 𝑥2, 𝑦1, 𝑦2 are all different, then we added five new vertices
so the right-hand side of (1) increased by 100, see Figure 6. The left-hand side increased
by at least 100 since adding two crossing 𝐾4's means 4 crossing and eight plain edges and
4 ⋅ 7 + 8 ⋅ 9 = 100. If 𝑥𝑖 = 𝑦𝑗 for some 𝑖, 𝑗, then the situation is even better, the calculation is
very similar.
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108 BARÁT AND TÓTH

Case 2: The edge 𝑢𝑣 is plain in 𝐺̂ and 𝑢𝑤 is crossing. In this case, 𝑢𝑤 is crossed by an edge 𝑎𝑏 of 𝐺̂.
Now 𝑎, 𝑏, 𝑢, 𝑤 form a 𝐾4, so 𝑎 and 𝑏 are not in 𝐺𝑖−1. Vertex 𝑣 can be connected to 𝑎 or 𝑏 along
𝑢𝑣, 𝑢𝑤, and 𝑎𝑏. Suppose that it is 𝑎, so by the maximality of 𝐺̂, 𝑣 and 𝑎 are adjacent. Consider
a 𝐾4 that contains edge 𝑣𝑎 and the one with vertices 𝑎, 𝑏, 𝑢, 𝑤. Add these two 𝐾4's to 𝐺𝑖−1
and let 𝐺𝑖 be the resulting graph. The calculation is very similar to the previous case.

Case 3: The edge 𝑢𝑤 is plain in 𝐺̂ and 𝑢𝑣 is crossing. Let 𝑎𝑏 be the edge that crosses 𝑢𝑣. Now 𝑎, 𝑏, 𝑢, 𝑣

form a 𝐾4, and 𝑢, 𝑣 are old vertices, so 𝑎 and 𝑏 are also old vertices. Vertex 𝑤 can be connected
to 𝑎 or 𝑏, say, 𝑎, along 𝑢𝑤, 𝑢𝑣, and 𝑎𝑏. So again by the maximality of 𝐺̂, 𝑤 and 𝑎 are adjacent.
Consider a 𝐾4 that contains 𝑤𝑎 and a 𝐾4 that contains 𝑢𝑤. Again, add these two 𝐾4's to 𝐺𝑖−1
and let 𝐺𝑖 be the resulting graph. The calculation is similar to the previous cases.

Case 4: Both 𝑢𝑣 and 𝑢𝑤 are crossing edges in 𝐺̂. This case is the combination of the previous two
cases. Edge 𝑢𝑤 is crossed by 𝑎𝑏, 𝑢𝑣 is crossed by 𝑐𝑑. Now one of 𝑎 and 𝑏, say, 𝑎, and
one of 𝑐 and 𝑑, say, 𝑐, can be connected along 𝑎𝑏, 𝑢𝑣, 𝑢𝑤, 𝑐𝑑, so they are connected.
Take the 𝐾4 formed by 𝑢,𝑤, 𝑐, 𝑑, and a 𝐾4 the contains 𝑎𝑐. Just like in the previous cases,
add these two 𝐾4's to 𝐺𝑖−1 and let 𝐺𝑖 be the resulting graph. The calculation is the same
again.

In summary, we proved that we can always apply one of the four operations in our algorithm, so
the algorithm terminates when we obtain 𝐺̂. On the other hand, we also proved that 9𝑝(𝐺𝑖) + 9𝑒(𝐺𝑖) +
7𝑐(𝐺𝑖) ≥ 20𝑛(𝐺𝑖) − 30 for every 𝑖. Therefore, 9𝑝(𝐺̂) + 9𝑒(𝐺̂) + 7𝑐(𝐺̂) = 9𝑝(𝐺̂) + 7𝑐(𝐺̂) ≥ 20𝑛(𝐺̂) −
30. This concludes the proof of Lemma 7. ■

3.1 Proof of theorem 2
Recall that 𝑒(𝑛) (𝑒′(𝑛)) is the minimum number of edges of a maximal 1-planar (1-plane) graph with 𝑛

vertices. Since every maximal 1-planar graph with any 1- planar drawing is a maximal 1-plane graph,
𝑒(𝑛) ≥ 𝑒′(𝑛). Therefore, Theorem 2 follows immediately from the next result.

Theorem 3. Every maximal 𝑁-vertex 1-plane graph has at least 20
9 𝑁 − 10

3 edges, where 𝑁 ≥ 4.

Proof. Let 𝐺 be a maximal 1-plane graph, 𝑁 and 𝐸 denote the number of vertices and edges, and
ℎ denotes the number of hermits. Let 𝐺̂ be the skeleton of 𝐺 and let 𝑛 = 𝑛(𝐺̂), 𝑐 = 𝑐(𝐺̂), 𝑝 = 𝑝(𝐺̂),
𝑒 = 𝑒(𝐺̂) denote the number of vertices, crossing edges, plain edges, and exceptional edges of 𝐺̂.

Every hermit is surrounded by two pairs of crossing edges. A crossing pair of edges can participate
in four such surroundings, on the four sides of the crossing. This gives us 𝑐 ≥ ℎ.

More precisely, define a bipartite graph 𝐻 with vertex classes 𝐴 and 𝐵. Vertices in 𝐴 correspond
to the crossings (or equivalently, crossing pairs of edges) in 𝐺, vertices in 𝐵 correspond to hermits.
An edge in 𝐻 means that the corresponding crossing surrounds the corresponding hermit. Since every
hermit is surrounded by two pairs of crossing edges, each vertex in 𝐵 has degree 2. On the other hand,
a crossing pair can surround at most four hermits, so each vertex in 𝐴 has degree at most 4. Therefore,
4|𝐴| ≥ 2|𝐵|. But |𝐴| = 𝑐∕2 and |𝐵| = ℎ, so 𝑐 ≥ ℎ.

By Lemma 6, for each exceptional edge, each of the two neighboring cells has a pair of crossing
edges on its boundary. These two crossings cannot participate in a surrounding of a hermit in that
direction. This shows 𝑐 ≥ 𝑒 and 𝑐 − 𝑒 ≥ ℎ. Now 𝑁 = 𝑛 + ℎ, 𝐸 = 𝑝 + 𝑒 + 𝑐 + 2ℎ.

Let us minimize

𝐹 (𝑝, 𝑒, 𝑐, ℎ, 𝑛) = 𝐸 − 20
9
𝑁
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under the conditions

𝑐 − 𝑒 ≥ ℎ, (3)

9𝑝 + 10𝑒 + 7𝑐 ≥ 20𝑛 − 30, (4)

and

𝑝, 𝑒, 𝑐, ℎ, 𝑛 ≥ 0 (5)

𝐹 (𝑝, 𝑒, 𝑐, ℎ, 𝑛) = 𝐸 − 20
9 𝑁 = 𝑝 + 𝑒 + 𝑐 + 2ℎ − 20

9 𝑛 −
20
9 ℎ = 𝑝 + 𝑒 + 𝑐 − 20

9 𝑛 −
2
9ℎ.

First we apply the following transformation: 𝑒′ = 𝑒 − 9
10𝜀, 𝑝′ = 𝑝 + 𝜀, ℎ′ = ℎ + 9

10𝜀, 𝑐′ = 𝑐, 𝑛′ = 𝑛.
Notice that if conditions (3), (4), and (5) hold for (𝑝, 𝑒, 𝑐, ℎ, 𝑛), then they also hold for

(𝑝′, 𝑒′, 𝑐′, ℎ′, 𝑛′). On the other hand, 𝐹 (𝑝′, 𝑒′, 𝑐′, ℎ′, 𝑛′) = 𝐹 (𝑝, 𝑒, 𝑐, ℎ, 𝑛) − 1
10𝜀. Therefore, the five-

tuple (𝑝, 𝑒, 𝑐, ℎ, 𝑛) that minimizes 𝐹 (𝑝, 𝑒, 𝑐, ℎ, 𝑛) under conditions (3), (4), and (5) has 𝑒 = 0.
For parameter ℎ, the only condition is that 𝑐 ≥ ℎ. If 𝑐 > ℎ and we increase ℎ, then 𝐹 (𝑝, 0, 𝑐, ℎ, 𝑛)

decreases, and the conditions still hold. Therefore, we may assume 𝑐 = ℎ. Now we have to minimize
𝐹 (𝑝, 0, 𝑐, 𝑐, 𝑛) = 𝑝 + 7

9𝑐 −
20
9 𝑛 under the condition 9𝑝 + 7𝑐 ≥ 20𝑛 − 30. We get immediately that the

minimum of 𝐹 (𝑝, 0, 𝑐, 𝑐, 𝑛) under the conditions is −10
3 . Consequently 𝐸 − 20

9 𝑁 ≥ −10
3 .

Therefore, 𝐸 ≥
20
9 𝑁 − 10

3 for any maximal 1-planar drawing with 𝑁 ≥ 4 vertices and 𝐸 edges. ■

Remark. We believe that our bound is far from optimal. If our bound was close to optimal, then for
some maximal 1-plane graph we would have to use operation 4 in almost every step of the algorithm
described in the proof of Lemma 7. However, this seems impossible.
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