Transboundary and Emerging Diseases

Full genome sequence analysis of a wild, non-MLV-related type 2 Hungarian PRRSV variant isolated in Europe

Journal:	Transboundary and Emerging Diseases
Manuscript ID:	Draft
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Balka, Gyula; SZIU FVS, Department of Pathology Balint, Adam; NFCSO VDD, Kiss, Istvan; Ceva-Phylaxia Veterinary Biologicals, Olasz, Ferenc; Institute for Veterinary Medical Research, Banyai, Krisztian; Institute for Veterinary Medical Research, Rusvai, Miklos; SZIU FVS, Department of Pathology, Stadejek, Tomasz; Depertment of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Wang, Xiong; University of Minnesota, Veterinary & Biomedical Sciences Marthaler, Douglas; Veterinary Diagnostic Laboratory, University of Minnesota, Murtaugh, Michael; University of Minnesota, Veterinary & Biomedical Sciences; Zadori, Zoltan; Institute for Veterinary Medical Research,
Subject Area:	Emerging diseases, Veterinary epidemiology, Virus
	·

SCHOLARONE[™] Manuscripts

Transboundary and Emerging Diseases - submitted manuscript

2	1	Full genome sequence analysis of a wild non-MLV-related type 2 Hungarian PRRSV variant
4	2	isolated in Europe
5 6	2	isolated in Europe
7	5	
8 9	4	Gyula Balka [*] , Ferenc Olasz [*] , Adam Balint [*] , Istvan Kiss [*] , Krisztian Banyai [*] , Miklos Rusvai [*] ,
10	5	Tomasz Stadejek ³ , Xiong Wang ⁶ , Douglas Marthaler ⁷ , Michael P. Murtaugh ⁶ , Zoltán Zádori ²
11 12	6	
13	7	¹ Department of Pathology, Faculty of Veterinary Science, Szent István University, István u. 2,
14 15	8	H-1076 Budapest, Hungary
16	9	² Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian
17	10	Academy of Sciences, Hungária krt. 21. H-1143 Budapest, Hungary
19 20	11	³ National Food Chain Safety Office Veterinary Diagnostic Directorate, Tábornok u. 2, H-
21	12	1149 Budapest, Hungary
22 23	13	⁴ Ceva-Phylaxia Veterinary Biologicals Co. Ltd., Szállás u. 5. H-1107 Budapest, Hungary
24 25	14	⁵ Depertment of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine,
26	15	Warsaw University of Life Sciences - SGGW, ul. Nowoursynowska 159c, 02-776 Warsaw,
28	16	Poland
29 30	17	⁶ Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971
31	18	Commonwealth Avenue, St. Paul, MN 55108, USA
32 33	19	⁷ Veterinary Diagnostic Laboratory, University of Minnesota, 1333 Gortner Avenue, St. Paul,
34 35	20	MN 55108, USA
36	21	
37 38	22	Keywords: PRRSV; Type 2; full genome; next generation sequencing; sequence; phylogeny;
39 40	23	swine; Sus scrofa
41	24	
42 43	25	Running title: Full genome analysis of a European, wild Type 2 PRRSV
44 45	26	
46 47	27	Correspondence:
48	28	Gy. Balka. Department of Pathology, Faculty of Veterinary Science, Szent István University,
49 50	29	István u. 2, H-1076 Budapest, Hungary
51 52	30	Tel.: +36 1 4784181
52	31	Fax: +36 1 4784284
54 55	32	E-mail: balka.gyula@aotk.szie.hu
56 57	33	
58	34	
59 60		

35 Abstract

> Porcine reproductive and respiratory syndrome virus (PRRSV) is a widespread pathogen of pigs causing significant economic losses to the swine industry. The expanding diversity of PRRSV strains makes the diagnosis, control and eradication of the disease more and more difficult. In the present study, the authors report the full genome sequencing of a Type 2 PRRSV strain isolated from piglet carcasses in Hungary. Next generation sequencing was used to determine the complete genome sequence of the isolate (PRRSV-2/Hungary/102/2012). Recombination analysis performed with the available full-length genome sequences showed no evidence of such event with other known PRRSV. Unique deletions and an insertion were found in the nsp2 region of PRRSV-2/Hungary/102/2012 when it was compared to the highly virulent VR2332 and JXA-1 prototype strains. A majority of amino acid alterations in GP4 and GP5 of the virus were in the known antigenic regions suggesting an important role for immunological pressure in PRRSV-2/Hungary/102/2012 evolution. Phylogenetic analysis revealed that it belongs to lineage 1 or 2 of Type 2 PRRSV. Considering the lack of related PRRSV in Europe, except for a partial sequence from Slovakia, the ancestor of PRRSV-2/Hungary/102/2012 was most probably transported from North-America. It is the first documented type 2 PRRSV isolated in Europe that is not related to the Ingelvac MLV.

55 Introduction

Porcine reproductive and respiratory syndrome emerged at the same time in Europe (early
1990s, Wenswoort et al., 1991) and North America (late 1980s, Keffaber 1989), and since
then, the virus (porcine reproductive and respiratory syndrome virus, PRRSV) has rapidly
spread throughout the world, and became endemic in almost every major swine producing
country.

PRRSV is a member of the Arteriviridae family within the order Nidovirales (Cavanagh 1997; Faaberg et al., 2011). It has a positive-sense single stranded RNA genome of 15kb in length that encodes 10 open reading frames (Snijder and Meulenberg, 1998; Firth et al. 2011; Johnson et al. 2011). Comparative nucleotide sequence analyses revealed that PRRSV strains can be classified into two distinct genotypes: type 1 (formerly named as European) and type 2 (formerly named as North American). Remarkably, the two genotypes have only 50–60% nucleotide identity (Allende et al. 1999).

A comprehensive phylogenetic study of the North American type 2 PRRSV strains has recently been published that was based on the Bayesian analysis of 8624 ORF5 sequences (Shi et al. 2010b). Based on their results, the authors defined 9 monophyletic lineages within this genotype and established a set of reference sequences representing the principal diversity of type 2 sequences.

Type 2 strains were first introduced to Europe in 1996 by the use of a modified live virus (MLV) vaccine in Denmark (Botner et al, 1997). Soon after its introduction into the population, the MLV strain, a cell culture adapted variant of the type 2 prototype VR2332 strain, spread horizontally and vertically among pigs and herds as well, and showed multiple genetic mutations (Nielsen et al. 2001). The vaccine is currently registered in Germany, Poland, The Netherlands, Belgium, Denmark, Spain and Lithuania, and under special import agreements in Slovakia. According to latest results, confirmed by full genome sequence analyses in Denmark, the vast majority of the type 2 strains found in Europe are genetically related (>95% ORF5 nucleotide identity) to the aforementioned vaccine (Kvisgaard et al., 2013). A more recent study involving numerous type 2 ORF5 sequences from throughout Europe revealed a small group of sequences that are 91–94 % similar to the Ingelvac MLV, and can not unequivocally be attributed to the vaccine (Stadejek et al, 2014). The aim of our study was to characterize a member of the third group of European

type 2 sequences, that are 88% or less similar to the Ingelvac strain on ORF5, confirming the

wild type nature of these strains (Balka et al. 2008). These sequences were first identified in
2005 in multiple sites of a swine breeding company with mild clinical signs of PRRS.

Materials and methods

Origin of the isolate

Lung tissue and lymph node samples were obtained from the carcass of a young growing pig originating from an endemically PRRS positive herd, where our previous investigations verified the presence of type 2 PRRSV (Balka et al., 2008). No signs of an acute outbreak were present. Only mild to moderate respiratory symptoms were observed among the young fatteners. No significant reproductive disorders were reported at the time of sampling.

Cells and viruses

Porcine alveolar macrophages (PAMs) obtained from PRRSV-free piglets were cultured in RPMI-1640 medium supplemented with 10% (v/v) fetal bovine serum, 100 U/ml penicillin, 100 µg/ml streptomycin and 2 mM L-glutamine (Sigma-Aldrich, Saint Louis, MO, USA) at 37°C and 5% CO₂. To culture PRRSV-2/Hungary/102/2012, approximately 0.5 g pieces of lung tissue were taken from dead pigs. The lung and tracheobronchial lymph node samples originating from the endemically infected farm were homogenized with Tissue Lyser (Qiagen, Hilden, Germany) in sterile phosphate-buffered saline (PBS) containing antibiotics and antimycotics, to obtain a 50% w/v suspension. After complete homogenization, the samples were centrifuged at 5000×g for 10 min to remove cellular debris. Cell-free supernatants were frozen at -80°C for RNA isolation. PAMs were inoculated with 100 µl of supernatant and incubated for five days. Besides the periodic examination of the cell cultures for the presence of cytopathic effects, real-time RT-PCR analysis (Balka et al., 2009) was also applied on the supernatants to confirm the growth of the virus. Cell-free supernatants were stored at -80° C for RNA isolation.

- 116 RNA isolation and cDNA synthesis

RNA was isolated with QIAamp Viral RNA Mini Kit (Qiagen, Hilden, Germany) from the
original tissue homogenates and PAM cell culture supernatants. cDNA was generated using
Superscript III First-Strand Synthesis System for RT-PCR (Invitrogen, Carlsbad, CA, USA)
kit and a T₂₀ primer, according to the protocol of the manufacturer.

 122 Overlapping PCR products for next generation sequencing

The genome of PRRSV-2/Hungary/102/2012 was amplified in five overlapping parts, (similarly to Kvisgaard et al., 2013b), using the Phusion II HotStart PCR kit (Thermo Scientific, Waltham, MA, USA), in 25 μ l final volume with 1 μ l of cDNA template, in 1× GC buffer in the presence of 4% DMSO. Amplification was performed using the following gradient PCR program: 98°C 1', 35 × [98°C 20", 54-72°C (gradient ramp: 2°C) 20", 72°C 5'], 72°C 5'. The primer pairs used for the amplification of the different fragments are listed in Table 1. Primers were designed using Primer3Plus (Untergasser et al., 2007). PCR fragments were purified from agarose gel slices by the QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany). For determination of both ends of the genome, the 5' RACE System for Rapid Amplification of cDNA Ends, version 2.0 (Invitrogen, Carlsbad, CA, USA) as well as a forward ORF7 primer (Balka et al., 2008) and the T₂₀ primer were applied.

135 Next generation sequencing (NGS)

An equimolar mixture of the overlapping PRRSV PCR products was used as template for next
generation sequencing. In brief, a DNA library was prepared using the NEBNext® Fast DNA
Fragmentation & Library Prep Set for Ion Torrent (New England Biolabs, Beverly, MA,
USA) with the Ion Torrent Xpress barcode adapters (Life Technologies, Carlsbad, CA, USA)

140 according to the protocol recommended by the manufacturers. The emulsion PCR and

141 subsequent template enrichment were carried out with the Ion OneTouch[™] Template Kit on a

142 OneTouch v1 instrument and an Ion OneTouch[™] ES pipetting robot, respectively.

143 Sequencing was carried out on a 316 chip using the Ion Torrent semiconductor sequencing

144 equipment (Ion Personal Genome Machine® (PGMTM); Life Technologies). Sequences were

145 assembled and aligned with SeqMan Ngen software (Lasergene, Madison, WI, USA).

147 Phylogenetic analysis

PRRSV whole genome sequences in Genbank, including 16 type 1 and 199 type 2 field, vaccine and laboratory strains, were obtained from the continents of Europe, Asia, and North America (n=215, Table 2). PRRSV whole genome alignment was done with the MUltiple Sequence Comparison by Log-Expectation (MUSCLE) algorithm (Edgar, 2004) in Geneious Pro 6.1.7 using default settings. The evolutionary history was inferred using the Maximum Likelihood method based on the Tamura-Nei model (Tamura and Nei, 1993). The tree with the highest log likelihood (-266940) is shown. Initial trees for the heuristic search were obtained by applying the Neighbor-Joining method to a matrix of pairwise distances estimated

Transboundary and Emerging Diseases - submitted manuscript

using the Maximum Composite Likelihood (MCL) approach. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 215 genome sequences. All positions containing gaps and missing data were eliminated. There were a total of 12911 positions in the final dataset. Evolutionary analyses were conducted in MEGA6 (Tamura et al., 2013). Additional type 2 PRRSV ORF5 sequences were added to the database to enlarge total genetic diversity. ORF5 nucleotide sequences were aligned with MUSCLE and phylogeny was determined by maximum likelihood in MEGA as described above. The closest known relatives to PRRSV-2/Hungary/102/2012 were determined by BLAST analysis in Genbank (Altschul et al., 1990). Recombination analysis of the complete genome was performed with Recombination Analysis Tools (RAT) (Etherington et al., 2005) using the 215 Genbank accessions as references. Insertion-deletion analysis was visualized by the alignment of the Hungarian isolate to the type 2 prototype strain VR2332 (acc. number: EF536003) and to the highly pathogenic Chinese strain CHN-JXA1 (acc. number: EF112445). The distribution of N-glycosylation sites was determined using NetNGlyc 1.0 Server web utility (http://www.cbs.dtu.dk/services/NetNGlyc/). The antigenic regions, T and B cell epitopes were determined as described using an amino acid alignment with the reference strains VR2332, Ch-1a (acc. number: AY032626) and NVSL 97-7895 (acc. number: AY545985) (Diaz et al., 2009; de Lima et al., 2006; Mokhtar et al., 2014; Plagemann et al., 2002; Ostrowski et al., 2002; Vashisht et al., 2008; Zhou et al., 2009). Results Tissue homogenate supernatants of pig carcasses originating from an endemically infected herd were used to inoculate PAM cells in order to isolate and amplify the PRRSV strain for further analysis. Virus induced cytopathic effect, i.e. cell lysis was observed from the 2nd day post infection and reached 100% by the 5th day. Marked decrease in the C_t values was observed in the real-time RT-PCR reactions performed on the infected cell culture supernatants, compared to the original tissues confirming the increase in viral RNA copy number. NGS was performed on the equimolar mixture of five overlapping fragments of the entire genome that were amplified by routine RT-PCR applying high fidelity DNA polymerase. After the assembly and alignment of the sequence fragments, the full length

Page 7 of 37

1

2		
3	190	sequence of PRRSV-2/Hungary/102/2012 was found to be 15321 nt in length (GenBank acc.
4 5	191	number: KM514315). The untranslated 5' and 3'ends (UTRs) were 189 nt and 151 nt,
6	192	respectively. The size of the 5'UTR was identical with that of PRRSV DK-2003-2-3
8	193	(Genbank Accession No.: KC862584.1) with 12 nt differences in the sequences. The size of
9 10	194	the 3'end of PRRSV (PRRSV-2/Hungary/102/2012) was identical with that of PRRSV DK-
11	195	2004-1-7-Pl (Genbank Accession No.: KC862578.1) with four nt difference.
12 13	196	The phylogenetic analysis of the whole genome of PRRSV-2/Hungary/102/2012 and
14 15	197	215 other full PRRSV genomes showed that it was a novel type 2 PRRSV isolate that was
16	198	phylogenetically close to the progenitor type 2 PRRSV, and not related to VR2332 or
17 18	199	Ingelvac PRRSV MLV (Figure 1.).
19 20	200	The ORF5 dendrogram (Figure 2a) that included a larger dataset of other ORF5
21	201	sequences showed that PRRSV-2/Hungary/102/2012 was clustered in lineage 2 PRRSV,
22 23	202	which may have originated in Eastern Canada where the earliest isolates were found.
24 25	203	BLAST comparisons of the full genome to Genbank accessions showed that even the
26	204	most similar strain, VR2385 (JX044140), was only 87% identical. Similarly, BLAST analysis
27 28	205	of the ORF5 sequences in Genbank showed that the 11 most similar hits were only 91 to 92%
29 30	206	identical, and almost all of these strains were isolates from the early 2000's. Interestingly, the
31	207	set included a Canadian PRRSV strain IAF 93-2616 (U64932), isolated in 1993, early in the
32 33	208	history of PRRSV. To more stringently delineate the origin of PRRSV-2/Hungary/102/2012,
34 35	209	the nearest BLAST hits were incorporated with lineage 1 and lineage 2 ORF5 sequences and
36	210	re-analyzed. The results, shown in Figure 2b, indicate that PRRSV-2/Hungary/102/2012
37 38	211	clusters near the divergence of lineages 1 and 2. The most similar matches to PRRSV-
39 40	212	2/Hungary/102/2012, at 92% nucleotide identity (solid circles) were present in both lineages.
41	213	To exclude the possibility that PRRSV-2/Hungary/102/2012 was a recombination
42 43	214	product involving unknown parental viruses or European progeny of the type 2 PRRSV
44 45	215	Ingelvac MLV vaccine, a recombination analysis was performed. The RAT analysis showed
46	216	no evidence of recombination anywhere in the genomes of all 216 whole genome sequences
47 48	217	available to us (data not shown).
49 50	218	PRRSV-2/Hungary/102/2012 has deletions of 10 amino acids (VR3223 aa 314-323)
51	219	and 9 amino acids (VR2332 aa 792-800) in the nsp2 that were not present in prototype strain
52 53	220	VR2332 or the prototype high pathogenicity Chinese strain JXA1 (Figure 3). By contrast,
54 55	221	there was a 9 aa insertion in the nsp2 (102HU aa 795-803) that was not present in VR2332 or
56	222	JXA1. These differences were due to in-frame insertions/deletions at the corresponding
57 58 59	223	coding regions of the genomic RNA (Figure 3).

The antigenic regions (ARs) and glycosylation sites within GP2, GP3, GP4 and GP5
proteins of PRRSV-2/Hungary/102/2012 have been analyzed and compared to references
VR2332, Ch-1a and NVSL 97-7895.

 At least four B cell epitopes or ARs have been inferred within GP2 (de Lima et al., 2006; Vanhee et al., 2011). The presence of two antigenic regions (AR₄₁₋₅₅ and AR₁₂₃₋₁₃₅) were confirmed in both type 1 and type 2 PRRSV, while the presence of AR₉₂₋₁₀₃, and the $AR_{206-217}$ were confirmed only in the type 1 prototype strain Lelystad virus (de Lima et al., 2006; Vanhee et al., 2011). However, the two latter regions are conservative between type 1 and type 2 viruses, so it is possible that they are recognized as B cell epitopes in the type 2 PRRSV strains as well. Only one amino acid (aa) substitution was detected in AR₉₂₋₁₀₃ between PRRSV-2/Hungary/102/2012 and the reference strains. No aa substitution was detected in $AR_{123-135}$ and $AR_{206-217}$, and four as substitutions were observed between the less similar NVSL 97-7895 and 102HU in AR₄₁₋₅₅. Two N-glycosylation sites are present in GP2 (Das et al., 2010). The position of these glycosylation sites remained similar in all investigated strains though there are some as changes in the glycosylation recognition sequence of PRRSV-2/Hungary/102/2012 when compared to the reference strains (Figure 4A).

Four experimentally proven antigenic regions were shown within GP3 (de Lima et al., 2006; Zhou et al., 2006, Wang et al., 2014). The AR_{51-105} contains at least five overlapping epitopes (AR₅₁₋₆₅, AR₆₇₋₇₈, AR₇₃₋₈₅, AR₈₁₋₉₅, AR₉₁₋₁₀₅) recognized by B cells. Surprisingly, this region is conservative: only five as differences were detected among the investigated strains and there were only three aa changes between PRRSV-2/Hungary/102/2012 and any of the analyzed strains. $AR_{32,46}$ and $AR_{111-125}$ are completely conserved, with no aa substitutions observed in this region. AR₁₃₇₋₁₅₉, a variable region of GP3, had four aa substitutions in the AR of GP3 of PRRSV-2/Hungary/102/2012. The position of the seven conserved N-glycosylation sites predicted in GP3 is similar to the reference strains (Das et al., 2010) (Figure 4B).

The presence of two T cell epitopes (Díaz et al., 2008) and one B cell epitope (de Lima et al., 2006) were reported within GP4. AR₅₁₋₆₅ is a hypervariable region of GP4; five aa substitutions were detected in that of PRRSV-2/Hungary/102/2012 compared to the GP4 of the reference strains. A putative T cell epitope7-15 (Tce7-15) is recognized by MHCII (described in PRRSV strain L-450) (Díaz et al., 2008). This sequence is very divergent in PRRSV-2/Hungary/102/2012, as it contains three as substitutions in the 9 as epitope. Tce₁₇₀₋₁₇₈, recognized by MHCI (same reference as in previous sentence), has two as substitutions in PRRSV-2/Hungary/102/2012 compared to the other strains. While four N-glycosylation sites

Page 9 of 37

2		
2 3	258	in this protein were recognized in the reference strains (Das et al., 2010), an additional, fifth
4 5	259	N-glycosylation site was observed within AR51-65 in GP4 of PRRSV-2/Hungary/102/2012
6	260	(Figure 4C).
8	261	The presence of at least six B cell epitopes (de Lima et al., 2006; Zhou et al., 2009)
9 10	262	and three T cell epitopes were reported within GP5. Three antigenic regions in the C-terminus
11	263	of GP5 protein are conserved (Zhou et al., 2009). AR ₁₆₆₋₁₈₁ and AR ₁₉₂₋₂₀₀ of PRRSV-
12 13	264	2/Hungary/102/2012 have only one as substitution each and AR ₁₄₉₋₁₅₆ is completely conserved
14 15	265	compared to the reference strains. Two ARs in the N-terminus of the protein are variable.
16	266	Three aa substitutions were observed in AR_{1-15} and five aa substitutions in AR_{27-35} (Thaa et al.,
17 18	267	2013). A B cell epitope (AR ₃₇₋₅₁) of the GP5 is highly conserved (Plagemann et al., 2002;
19 20	268	Ostrowski et al., 2002), only one aa substitution was found between PRRSV-
21	269	2/Hungary/102/2012 and Ch1a. The three T cell epitopes are also highly conserved in GP5.
22 23	270	Tce ₆₀₋₇₄ , which is recognized by MHCII (described in PRRSV strain L-450), and Tce ₁₄₉₋₁₆₃
24 25	271	(described in NADC-9 and NVSL-14) do not contain aa substitutions in PRRSV-
26	272	2/Hungary/102/2012 when compared to the reference strains (Díaz et al., 2008; Vashisht et al.,
28	273	2008; Mokhtar et al., 2014). In Tce ₁₁₅₋₁₂₆ , which is recognized by MHCI (described in
29 30	274	PRRSV strain L-450), one aa substitution was observed among the investigated strains (Díaz
31	275	et al., 2008; Vashisht et al., 2008; Mokhtar et al., 2014). GP5 contains five potential N-
33	276	glycosylation sites in PRRSV-2/Hungary/102/2012. Two sites (N44 and N51) are highly
34 35	277	conserved (Israrul et al., 2006; Meulenberg, 2000) and were found within AR ₃₇₋₅₁ . The other
36 27	278	three glycosylation sites (N30, N34 and N35) were within the heterogeneous AR_{27-35} (Figure
38	279	4D).
39 40	280	
41 42	281	Discussion
43	282	
44 45	283	Type 2 PRRSV strains are predominant in North America and Asia while in Europe fully
46 47	284	sequenced type 2 strains were closely related to Ingelvac PRRS MLV (Kvisgaard et al. 2013a).
48	285	In case of ORF5 sequences of European type 2 strains they were at least 91% identical to the
49 50	286	aforementioned vaccine strain. Our previous results of genetic analysis of a PRRSV Type 2
51 52	287	ORF5 sequence from Hungary and a similar one in Slovakia (one of Hungary's neighboring
53	288	countries) indicated that there are type 2 strains circulating in these countries that are much
54 55	289	more distant to Ingelvac PRRS MLV. In this study we described the genetic, and antigenic
56 57	290	characteristics of the complete genome of the first European, wild, type 2 isolate, which is
58 59 60	291	clearly not related to Ingelvac PRRS MLV. Moreover, the genome of PRRSV-

 2/Hungary/102/2012 was only 87% identical to the most similar genome available in GenBank proving its unique status. Phylogenetic analyses performed with the whole genome of PRRSV-2/Hungary/102/2012 and 215 GenBank full genome accessions, as well as ORF5 sequences from type 2 PRRSV isolates globally, revealed that it is a member of an ancient lineage 1 or lineage 2 cluster whose earliest sequence was reported from Eastern Canada in the early 1990's (Brar et al., 2011; Shi et al., 2010b). Our previous analyses with the use of limited sequences suggested that it might belong to lineage 1 (quite similar to lineage 2) (Stadejek et al., 2014) indicating the importance of using an appropriate, broad-range reference set when genotyping otherwise similar type 2 PRRSV strains. The Eastern Canadian origin of both lineages 1 and 2 and their cross-border transmission primarily to the North Central USA (Shi et al., 2010b, Brar et al., 2011) suggests that our Hungarian strain may have become established in eastern Europe following the introduction of pigs or germplasm harboring a PRRSV from these regions within the past 10 to 15 years. It then evolved independently for an extended period of time to reach its current level of divergence. As no reliable data are available about pig importation to Hungary from that period, it cannot be excluded that a wild-type 2 PRRSV was introduced elsewhere in the region and then transported to Hungary. Jackova et al. (2013) published a partial 432 base ORF5 sequence corresponding to the ectodomain of GP5 of a Slovakian isolate from 2003 (strain 36M, acc. number: KC522648), that is 95% similar at nucleotide and 97% similar at amino acid level. As the strain analyzed in our study was isolated from a farm located close to the Slovakian border, and since no other related strains from independent locations were present in public and private databases, this virus is the most likely recent ancestor giving rise to the family of isolates including PRRSV-2/Hungary/102/2012, HU12 (DQ366650) and HU21 (EF406336). The latter two isolates from 2005 showed only 3% nucleotide and 1% amino acid differences in comparison to PRRSV-2/Hungary/102/2012. This relatively slow rate of evolution in one of the most variable part of the PRRSV genome might suggest that use of a type 1 modified live vaccine used in the herd to control endemic type 1 PRRSV did not provoke a strong selective pressure against the type 2 isolate. Hence, it remained conserved over a period of at least 7 years. Although nsp2 insertions and deletions were present in the genome compared to JAX1 and VR2332, unusual characteristics of pathogenicity or infectivity were not observed under field conditions. However, exact statements on these parameters can only be given after

Page 11 of 37

Transboundary and Emerging Diseases - submission proof

controlled challenge studies. Whether these deletions and the insertion had a negative effect on tissue tropism, growth rate and/or speed of the genetic change of PRRSV-2/Hungary/102/2012 further investigations are needed. Antigenic regions of GP2 are relatively conserved, so it is likely that they are functionally important and PRRSV does not tolerate amino acid changes in these regions. The majority of amino acid changes among the investigated strains are positioned in the Nterminal (GP2₁₋₄₀) and the C-terminal (GP2₂₄₀₋₂₅₆) regions of GP2. The N-terminal region contains a hydrophobic stretch of amino acids $(GP2_{27-40})$ that has the potential to be a conditional membrane binding site and/or part of a signal peptide. Although mutations are common in this region, the physicochemical character of the protein remains well conserved,

conserved physicochemical characters can be observed in the amino-terminal hydrophobic
regions of all GP proteins (GP3₁₋₃₀, GP4₁₋₂₀ and GP5₁₋₃₁) and all of them are signal peptides
(Das et al., 2010; Thaa et al., 2013; Meulenburg, 2000; Kim et al., 2013). The N-glycan
addition at N184 in GP2 is critical for recovery of infectious virus but the lack of glycan in
N178 does not effect virus growth (Das et al., 2010). A mutation was found within the
glycosylation recognition sequence of N184 in PRRSV-2/Hungary/102/2012 compared to the
reference strains but this change most probably does not inhibit glycosylation of the site.

reinforcing the putative functional significance of this site. Similar hypermutability with

Excluding AR₁₃₇₋₁₅₉, the predicted B cell epitopes of GP3 are conserved. The reasons for conservation might be similar to those of GP2. A previous study demonstrated that six sites (Das et al., 2010) of GP3 have glycan moieties from seven potential N-linked glycosylation sites, and N195 is not used for glycosylation. All glycosylation sites are present on GP3 of PRRSV-2/Hungary/102/2012. Mutations are present in two motifs (N29 and N152), but are not likely to affect the glycosylation status.

 AR_{51-65} , a hypervariable region in GP4, is considered as neutralization epitope in type 1 PRRSV Lelystad virus. Previous studies have demonstrated that this epitope is susceptible to monoclonal antibody-induced immunoselection in vitro (Costers et al., 2010), thus explaining the high variability of this antigenic region. The conserved C terminal anchor (GP3₁₈₁₋₁₉₇) of GP3 overlaps with the variable N-terminus of GP4, which serves as a signal peptide and contain a T-cell epitope (Tce7-15). Interestingly, similar overlaps can be observed between the conserved GP2 C-terminal membrane anchor (GP2₂₁₀₋₂₃₂) and the hypervariable N-terminal signal peptide of GP3. This sequence pattern suggests that the amino acids in membrane anchors of GP2 and GP3 have additional sequence specific functions (e.g. protein359 protein interaction) because the anchor function alone does not necessitate sequential360 conservation.

All the four potential glycosylation sites of GP4 of VR2332 were shown to be
glycosylated. GP4 of PRRSV-2/Hungary/102/2012 contains a fifth N-glycosylation site (N57)
in the AR₅₁₋₆₅. It can be speculated that this potential glycosylation site might function as an
anchor point for glycan shielding.

 AR_{1-15} within GP5 is part of signal peptide which is cleaved during peptide processing. AR₂₇₋₃₅ may function as a decoy epitope, which is hypervariable and is not involved in neutralization. However, recently it has experimentally been proved, that this epitope is only present at very low frequencies as a result of an alternative cleavage site of the signal peptide after the aa 26. (Ostrowski et al., 2002; Thaa et al., 2013). A previous study has demonstrated that a positions at 32, 33 and 34 of GP5 are under significant positive selection (Delisle et al., 2012). AR₂₇₋₃₅ contains a functional glycosylation site N34 in NVSL 97-7895, while three potential sites (N30 N34 and N35) can be found in the same region of PRRSV-2/Hungary/102/2012. N30, N34 and N35, together with the highly conserved N44 and N51 compose a very rare combination of N-glycosylation sites on the GP5 of type 2 PRRSVs, less than 1% of the strains contain this pattern (Delisle et al., 2012). The close proximity of N30, N34 and N35 makes it improbable (because of steric inhibition) that all the three sites would be glycosylated together on the same GP5 molecule of PRRSV-2/Hungary/102/2012. On the other hand, considering the positive selection pressure in the region (Delisle et al., 2012), it is also unlikely that the presence of the three glycosylation sites on GP5 would be just a functionless arbitrary event. Most probably these sites are glycosylated in several combinations on different GP5 molecules that compose a set of glycoforms in the PRRSV-2/Hungary/102/2012 envelope similarly as it was shown in the VR2332 virion (Thaa et al., 2013). Alternatively, it cannot be excluded that glycosylation patterns are not under selection, but instead are derivative to changes in ORF5a (Robinson et al., 2013).

As a large majority of the amino acid alterations in GP4 and GP5 of our isolate were found in the previously described antigenic regions, we hypothesize that immunological pressure played an important role in the evolution of the virus. It is possible that an early, fast evolution period might have occurred in the early 2000's when an exponential increase in genetic diversity has been observed among type 2 strains (Shi et al. 2010b). Similar strains were first identified in 2005 by our research team (Balka et al., 2008), and anecdotal information suggested the import of boars from Canada to the herd in previous years. The comparison of these early strains and the recent isolate revealed the slowing down of the

2		
3	393	genetic change as only 1% amino acid change occurred in the ORF5 ectodomain in the 7
4 5	394	years between initial sequencing and the recent viral isolation in 2012. These findings indicate
6 7	395	a biphasic evolution with a fast, early developmental stage, when the virus may have been
8	396	surrounded by other type 2 isolates, and a second slower phase after the virus was introduced
9 10	397	to this region, and was not influenced by immunity against other type 2 strains.
11 12	398	We conclude that PRRSV-2/Hungary/102/2012 is the first type 2 PRRSV isolated in
12	399	Europe that belongs to the lineage 1 or 2, and unlike every other European type 2 strain, it is
14 15	400	proved to be not related to the Ingelvac MLV. Lineages 1 and 2 were exclusively formed by
16	401	North American sequences until now. These data suggest that the strain was imported directly
17 18	402	from North America during the early stages of PRRSV diversification (most likely from
19 20	403	Canada or the North Central USA), and the divergent evolution of the viruses in the two
21	404	continents resulted in marked genetic differences among PRRSV-2/Hungary/102/2012 and
22	405	other type 2 viruses.
24 25	406	
26	407	
27 28	408	Acknowledgements
29 30	409	This paper was supported by the János Bolyai Research Scholarship and the Momentum
31	410	Program of the Hungarian Academy of Sciences of the Hungarian Academy of Sciences and
32 33	411	by the OTKA fund (OTKA K-108607) and funding from the state of Minnesota Rapid
34 35	412	Agricultural Response Fund. Xiong Wang is supported by a MNDrive Global Food Ventures
36	413	Fellowship from the state of Minnesota.
37 38	414	
39 40	415	
41	416	References
42 43	417	
44 45	418	Allende, R., T. L. Lewis, Z. Lu, D. L. Rock, G. F. Kutish, A. Ali, A.R. Doster, and F. A.
46	419	Osorio, 1999: North American and European porcine reproductive and respiratory syndrome
47 48	420	viruses differ in non-structural protein coding regions. J. Gen. Virol., 80, 307-315
49 50	421	
51	422	Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, 1990: Basic local
52 53	423	alignment search tool. J. Mol. Biol., 215, 403-410.
54 55	424	
56 57		
ວ7 58		
59 60		

425	Ansari I. H., B. Kwon, F, A. Osorio, and A. K. Pattnaik, 2006: Influence of N-Linked
426	glycosylation of porcine reproductive and respiratory syndrome virus GP5 on virus
427	infectivity, antigenicity, and ability to induce neutralizing antibodies. J. Virol. 80, 3994-4004.
428	
429	Balka G., A. Hornyák, A. Bálint, I. Kiss, S. Kecskeméti, T. Bakonyi, and M. Rusvai, 2008:
430	Genetic diversity of porcine reproductive and respiratory syndrome virus strains circulating in
431	Hungarian swine herds. Vet. Microbiol., 127, 128-135.
432	
433	Balka G., A, Hornyák, A. Bálint, Z. Benyeda, and M. Rusvai, 2009: Development of a one-
434	step real-time quantitative PCR assay based on primer-probe energy transfer for the detection
435	of porcine reproductive and respiratory syndrome virus. J. Virol. Methods., 158, 41-45.
436	
437	Bøtner A., B. Strandbygaard K. J. Sørensen, P. Have, K. G. Madsen, E. S. Madsen, and S.
438	Alexandersen, 1997: Appearance of acute PRRS-like symptoms in sow herds after
439	vaccination with a modified live PRRS vaccine. Vet. Rec., 141, 497–499.
440	
441	Brar, M. S, M. Shi, S. Carman, L. Ge, M. P. Murtaugh and F. C. Leung, 2011: Porcine
442	reproductive and respiratory syndrome virus in Ontario, Canada 1999-2010: diversity and
443	restriction fragment length polymorphism. J. Gen. Virol. 92, 1391–1397.
444	
445	Cavanagh, D., 1997. Nidovirales: a new order comprising Coronaviridae and Arteriviridae.
446	Arch. Virol., 142, 629–633.
447	
448	Costers S., D. J. Lefebvre, J. van Doorsselaere, M. Vanhee, P. L. Delputte, H. J. Nauwynck,
449	2010: GP4 of porcine reproductive and respiratory syndrome virus contains a neutralizing
450	epitope that is susceptible to immunoselection in vitro. Arch. Virol., 155, 371–378.
451	
452	Das P. B., H. L. Vu, P. X. Dinh, J. L. Cooney, B. Kwon, F. A. Osorio, and A. K. Pattnaik,
453	2010: Glycosylation of minor envelope glycoproteins of porcine reproductive and respiratory
454	syndrome virus in infectious virus recovery, receptor interaction, and immune response.
455	Virology, 410, 385–394.
456	
457	Delisle B., C. A. Gagnon, M-È. Lambert, and S. D'Allaire, 2012: Porcine reproductive and
458	respiratory syndrome virus diversity of Eastern Canada swine herds in a large sequence

2	459	dataset reveals two hypervariable regions under positive selection <i>Infect Genet Evol</i> 12
4	460	1111 1110
5 6	400	1111-1119.
7	401	
8 9	462	Diaz I, J. Pujols, L. Ganges, M. Gimeno, L. Darwich, M. Domingo and E. Mateu, 2009: In
10	463	silico prediction and ex vivo evaluation of potential T-cell epitopes in glycoproteins 4 and 5
11 12	464	and nucleocapsid protein of genotype-I (European) of porcine reproductive and respiratory
13	465	syndrome virus. Virus Res., 118, 98–104.
14 15	466	
16 17	467	Edgar, R. C., 2004: MUSCLE: multiple sequence alignment with high accuracy and high
18	468	throughput. Nucleic Acids Res., 32, 1792–1797.
19 20	469	
21 22	470	Etherington, G. J., J. Dicks, and I. N. Roberts, 2005: Recombination Analysis Tool (RAT): a
23	471	program for the high-throughput detection of recombination. <i>Bioinformatics</i> , 21, 278–281.
24 25	472	
26	473	Faaberg K. S., U. B. Balasuriya, M. A. Brinton, A.E. Gorbalenya, F. C-C. Leung, H.
28	474	Nauwynck, E. J. Snijder, T. Stadejek, H. Yang, and D. Yoo, 2012 : Arteriviridae. In: Virus
29 30	475	Taxonomy, 9 th Report of the International Committee on Taxonomy of Viruses,
31	476	Elsevier/Academic Press, London.
32 33	477	
34 25	478	Firth, A. E., J. C. Zevenhoven-Dobbe, N. M. Wills, Y. Y. Go, U. B. Balasuriya, J. F. Atkins,
36 36	479	E J Sniider and C C Posthuma 2011. Discovery of a small arterivirus gene that overlaps
37 38	480	the GP5 coding sequence and is important for virus production <i>J Gen Virol</i> 92 1097–1106
39	481	the of b county sequence and is important for that production by county 2, 1057 1100.
40 41	187	Jacková A. M. Vlasáková P. Mandalík and S. Vilček 2013. Genetic twing of porcine
42	402	sackova, A., W. Vlasakova, K. Wandenk, and S. Vlicek, 2015. Othere typing of potence
43 44	403	Visel 57, 202, 208
45 46	484	VII0I. 57, 303–308.
47	485	
48 49	486	Johnson, C. R., T. F. Griggs, J. Gnanandarajah, and M. P. Murtaugh, 2011: Novel structural
50	487	protein in porcine reproductive and respiratory syndrome virus encoded by an alternative
51 52	488	ORF5 present in all arteriviruses. J Gen Virol. 92, 1107–1116.
53 54	489	
55	490	Keffaber, K.K. 1989. Reproductive failure of unknown etiology. American Association of
56 57	491	Swine Practitioner Newsletter, 1, 1–9.
58 59 60	492	

2 3	493	Kim D-G., C-S. Song, I-S. Choi, S-Y. Park, J-B. Lee, and S-S. Lee, 2013: The signal
4	494	sequence of type II porcine reproductive and respiratory syndrome virus glycoprotein 3 is
5 6	495	sufficient for endoplasmic reticulum retention. J. Vet. Sci., 14, 307–313.
7 8	496	
9 10	497	Kvisgaard L. K., C. K. Hjulsager, M. S. Brar, F. C. Leung, and L. E. Larsen, 2013a: Genetic
11	498	dissection of complete genomes of Type 2 PRRS viruses isolated in Denmark over a period of
12 13	499	15 years. Vet. Microbiol., 167, 334–344.
14 15	500	
16	501	Kvisgaard L. K., C. K. Hjulsager, U. Fahnøe, S. Ø. Breum, Ait-Ali T, and L. E. Larsen,
17 18	502	2013b: A fast and robust method for full genome sequencing of Porcine Reproductive and
19 20	503	Respiratory Syndrome Virus (PRRSV) Type 1 and Type 2. J. Virol. Methods, 193, 697–705.
21	504	
22	505	Li J., and M. P. Murtaugh, 2012: Dissociation of porcine reproductive and respiratory
24 25	506	syndrome virus neutralization from antibodies specific to major envelope protein surface
26	507	epitopes. Virology, 433, 367–376.
28	508	
29 30	509	de Lima, M., Pattnaik, A. K., Flores, E. F., and F. A. Osorio, 2006: Serologic marker
31	510	candidates identified among B-cell linear epitopes of nsp2 and structural proteins of a North
32 33	511	American strain of porcine reproductive and respiratory syndrome virus, Virology, 353, 410-
34 35	512	421.
36 27	513	
38	514	Meulenberg J. J.M., 2000: PRRSV, the virus. Vet. Res., 31, 11–21.
39 40	515	
41 42	516	Mokhtar H., M. Eck, S. B. Morgan, S. E. Essler, J. P. Frossard, N. Ruggli, and S. P. Graham,
43	517	2014: Proteome-wide screening of the European porcine reproductive and respiratory
44 45	518	syndrome virus reveals a broad range of T cell antigen reactivity. Vaccine S0264-
46 47	519	410X(14)00592-1. doi: 10.1016/j.vaccine.2014.04.054.
48	520	
49 50	521	Nielsen H. S., M. B. Oleksiewicz, R. Forsberg, T. Stadejek, A. Bøtner, and T. Storgaard,
51 52	522	2001: Reversion of a live porcine reproductive and respiratory syndrome virus vaccine
52 53	523	investigated by parallel mutations. J. Gen. Virol., 82, 1263-1272.
54 55	524	
56 57		
58		
59 60		

1		
2 3	525	Ostrowski, M., J. A. Galeota, A. M. Jar, K. B. Platt, F. A. Osorio and O. J. Lopez, 2002:
4 5	526	Identification of neutralizing and nonneutralizing epitopes in the porcine reproductive and
6 7	527	respiratory syndrome virus GP5 ectodomain. J. Virol. 72, 4241-4250.
8	528	
9 10	529	Plagemann, P. G. W., R. R. R. Rowland, and K. S. Faaberg, 2002: The primary neutralization
11 12	530	epitope of porcine respiratory and reproductive syndrome virus strain VR2332 is located in
13	531	the middle of the GP5 ectodomain. Arch. Virol., 147, 2327-2347.
14 15	532	
16 17	533	Robinson, S.R., J.E. Abrahante, C.R. Johnson, and M.P. Murtaugh, 2013: Purifying selection in
18	534	porcine reproductive and respiratory syndrome virus ORF5a protein influences variation in
19 20	535	envelope glycoprotein 5 glycosylation. Infect. Genet. Evol., 20, 362-368.
21 22	536	
23	537	Shi M., T. T. Lam, C. C. Hon, R. K. Hui, K. S. Faaberg, T. Wennblom, M. P. Murtaugh, T.
24 25	538	Stadejek, and F. C. Leung. 2010a: Molecular epidemiology of PRRSV: a phylogenetic
26 27	539	perspective. Virus Res., 154, 7–17.
28	540	
29 30	541	Shi, M., T. T. Lam, C. C. Hon, M. P. Murtaugh, P. R. Davies, R. K. Hui, J. Li, L. T. Wong, C.
31 32	542	W. Yip, J. W. Jiang, and F. C. Leung, 2010b: Phylogeny-based evolutionary, demographical,
33	543	and geographical dissection of North American type 2 porcine reproductive and respiratory
34 35	544	syndrome viruses. J. Virol., 84, 8700–8711.
36 27	545	
38	546	Stadejek T., G. Balka, Á. Bálint, T. Duinhof, and M. P. Murtaugh, 2014: The Origin and
39 40	547	evolution of European PRRSV Type 2 strains. In: Proceedings of the 6 th European
41 42	548	Symposium of Porcine Health Management Sorrento, Italy, 7–9 May 2014. pp. 87.
43	549	
44 45	550	Tamura K., and M. Nei, 1993: Estimation of the number of nucleotide substitutions in the
46	551	control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol., 10, 512-
48	552	526.
49 50	553	
51	554	Tamura K., G. Stecher, D. Peterson, A. Filipski, and Kumar S, 2013: MEGA6: Molecular
52 53	555	Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol., 30, 2725-2729.
54 55	556	
56 57		
57 58		
59 60		

557	Thaa B, B. C. Sinhadri, C. Tielesch, E.Krause, and M. Veit, 2013: Signal peptide cleavage
558	from GP5 of PRRSV: a minor fraction of molecules retains the decoy epitope, a presumed
559	molecular cause for viral persistence. PLoS One 8, e65548.
560	
561	Untergasser A., H. Nijveen, X. Rao, T. Bisseling, R. Geurts, and J. A. Leunissen, 2007:
562	Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res., 35, W71-74.
563	
564	Vanhee, M, W. van Breedam, S. Costers, M. Geldhof, Y. Noppe, and H. Nauwynck, 2011:
565	Characterization of antigenic regions in the porcine reproductive and respiratory syndrome
566	virus by the use of peptide-specific serum antibodies. Vaccine, 29, 4794–4804.
567	
568	Vashisht K., T. L. Goldberg, R. J. Husmann, W. Schnitzlein, and F. A. Zuckermann, 2008:
569	Identification of immunodominant T-cell epitopes present in glycoprotein 5 of the North
570	American genotype of porcine reproductive and respiratory syndrome virus Vaccine, 26,
571	4747–5753.
572	
573	Wang X, R. Dang, W. Liu, Z. Yang, E. Du, and S. Zhang, 2014: Antigenic characteristics of
574	glycosylated protein 3 of highly pathogenic porcine reproductive and respiratory syndrome
575	virus. Virus Res., 189, 24–28.
576	
577	Wensvoort, G., C. Terpstra, J. M. Pol, E. A. ter Laak, M. Bloemraad, E. P. de Kluyver, C.
578	Kragten, L. van Buiten, A. den Besten, F. Wagenaar, J. M. Broekhuysen, P. L. J. M. Moonen,
579	T. Zetstra, E. A. de Boer, H. J. Tibben, M. F. de Jong, P. de Veld, G. J. R. van't Groenland, J.
580	A. van Gennip, M. T. Voets, J. H. M. Verheijden, and J. Braamskamp, 1991: Mystery swine
581	disease in The Netherlands: the isolation of Lelystad virus. Vet. Quart., 13, 121-128.
582	
583	Zhou, Y-J., T-Q. An, Y-X. He, J-X. Liu, H-J. Qiu, Y-F. Wang, and G. Tong, 2006: Antigenic
584	structure analysis of glycosilated protein 3 of porcine reproductive and respiratory syndrome
585	virus. Virus Res., 118, 98–104.
586	
587	Zhou Y-J., H. Yua, Z-J. Tian, J-X. Liu, T-Q. An, JM. Peng, GX. Li, Y-F. Jiang, X-H. Cai,
588	Q. Xue, M. Wang, YF. Wang, GZ. Tong, 2009: Monoclonal antibodies and conserved
589	antigenic epitopes in the C terminus of GP5 protein of the North American type porcine
590	reproductive and respiratory syndrome virus. Vet. Mic., 138, 1–10.

1		
2	592	Figure legends
4 5	593	
6 7	594	Figure 1.
8	595	Molecular phylogenetic analysis of PRRSV whole genomes by maximum likelihood method.
9 10	596	Lineage designations are from Shi et al., 2010b.
11 12	597	
13	598	Figure 2.
14 15	599	Maximum likelihood phylogenetic trees for PRRSV-2/Hungary/102/2012 ORF5 (A.)
16 17	600	designations are from Shi et al., 2010b. (B.) Representative lineage 1 and 2 sequences
18	601	including closest Genbank BLAST hits to PRRSV-2/Hungary/102/2012 (arrow). Closed
19 20	602	circles are all sequences with 92% sequence similarity. Open circle has 91% similarity. MB
21 22	603	CA: Manitoba, Canada; MN, Minnesota; AR, Arkansas; ?, source not provided in Genbank.
23	604	
24 25	605	Figure 3.
26 27	606	Insertion/deletion analysis of PRRSV-2/Hungary/102/2012 by the alignment to the type 2
28	607	prototype strain VR2332 and the Chinese highly pathogenic reference strain JXA-1.
29 30	608	(A) Whole genome sequence schematic with open reading frames (B) Expanded view of the
31 32	609	nsp2 nucleotide sequence region showing insertions and deletions (C) Amino acid sequence
33	610	analysis of nsp2 ORF insertion and deletion pattern.
34 35	611	
36 37	612	Figure 4.
38	613	Alignments and analysis of envelope glycoproteins (GP) 2, 3, 4, and 5 of isolates PRRSV-
39 40	614	2/Hungary/102/2012, VR2332, Ch-1a and NVSL 97-7895. Experimentally confirmed and
41 42	615	identifiable B-cell epitopes are highlighted by grey boxes. Antigenic regions (AR) are
43	616	numbered by position. The overlapping regions of ARs are highlighted by dark grey boxes.
44 45	617	(A.) GP2. Experimentally confirmed glycolysation sites are underlined and set in bold (de
46 47	618	Lima et al., 2006; Vanhee et al., 2011; Das et al., 2010). (B.) GP3. Experimentally confirmed
48	619	glycosylation sites are underlined and set in bold (de Lima et al., 2006; Das et al., 2010; Zhou
49 50	620	et al, 2006; Wang et al., 2014). (C.) GP4. Potential glycosylation sites are underlined and
51 52	621	experimentally confirmed sites are set in bold (de Lima et al., 2006; Das et al., 2010;Diaz et
53	622	al., 2009; Costers et al., 2010). (D.) GP5. Antigenic regions (AR) are numbered by position. T
54 55	623	cell epitopes (Tce) are highlighted by open boxes. Potential glycosylation sites are underlined,
56 57 58	624	the experimentally confirmed ones are set in bold (de Lima et al., 2006; Diaz et al., 2009;

- Vashisht et al., 2008).

- Table 1. Oligonucleotide primers used for RT-PCR amplification of PRRSV-
- 2/Hungary/102/2012.

- Table 2. List of full genome sequences used for the phylogenetic analyses and tree
- reconstruction.

. rt.-Cr amplificati

Molecular phylogenetic analysis of PRRSV whole genomes by maximum likelihood method. Lineage designations are from Shi et al., 2010b. 171x53mm (300 x 300 DPI)

Maximum likelihood phylogenetic trees for PRRSV-2/Hungary/102/2012 ORF5 (A.) designations are from Shi et al., 2010b. 104x254mm (300 x 300 DPI)

Maximum likelihood phylogenetic trees for PRRSV-2/Hungary/102/2012 ORF5 (B.) Representative lineage 1 and 2 sequences including closest Genbank BLAST hits to PRRSV-2/Hungary/102/2012 (arrow). Closed circles are all sequences with 92% sequence similarity. Open circle has 91% similarity. MB CA: Manitoba, Canada; MN, Minnesota; AR, Arkansas; ?, source not provided in Genbank. 164x229mm (150 x 150 DPI)

Transboundary and Emerging Diseases - submitted manuscript

Alignments and analysis of envelope glycoproteins (GP) 2, 3, 4, and 5 of isolates PRRSV-2/Hungary/102/2012, VR2332, Ch-1a and NVSL 97-7895. Experimentally confirmed and identifiable B-cell epitopes are highlighted by grey boxes. Antigenic regions (AR) are numbered by position. The overlapping regions of ARs are highlighted by dark grey boxes. (A.) GP2. Experimentally confirmed glycolysation sites are underlined and set in bold (de Lima et al., 2006; Vanhee et al.,2011; Das et al., 2010). (B.) GP3. Experimentally confirmed glycosylation sites are underlined and set in bold (de Lima et al., 2006; Das et al., 2010; Zhou et al, 2006; Wang et al., 2014). (C.) GP4. Potential glycosylation sites are underlined and experimentally confirmed sites are set in bold (de Lima et al., 2006; Das et al., 2010;Diaz et al., 2009; Costers et al., 2010). (D.) GP5. Antigenic regions (AR) are numbered by position. T cell epitopes (Tce) are highlighted by open boxes. Potential glycosylation sites are underlined, the experimentally confirmed ones are set in bold (de Lima et al., 2009; Plagemann et al., 2002; Ostrowski et al., 2002; Zhou et al., 2009; Mokhtar et al., 2014; Vashisht et al., 2008).

327x216mm (150 x 150 DPI)

PR_USA_1F PR_USA_3358R	Sequence	Position
PR_USA_3358R	ATGACGTATAGGTGTTGGCTCTATG	1-25
	CAAGCTTAGTCGCATCACATGCCTC	3334-3358
PR_USA_3248F	ACTCAGCTCAAGCCATCATCGACTC	3248-3272
PR USA 6709R	CAGAGAACACTCCATCGCCAACAAG	6685-6709
PR_USA_6408F	GTCTGCGCAAGTTCTGATGATCAGG	6408-6432
PR_USA_9230R	ATACAGCACGAGGTCGTCCGAATAG	9206-9230
PR_USA_9018F	GTGACTAAGAGAGGTGGCCTGTCGT	9018-9042
PR_USA_12972R	GGAATCCTAGCTCGTCATGATCGTC	12948-12972
PR_USA_12827F	CTTCGAGCTCACGGTGAATTACACG	12827-12851
Pr15_USA_15397R	GGTTCTCGCCAATTAAATCTCACCC	15373-15397

2				
3	ID	Genebank Accession No.	Strain name	Country
4	PRRSV2/CHN/NI-1106/201	1X880029	NI-1106	CHN
5	PRRSV2/USA/IA142/2004	AY424271	IA142	USA
0 7	PRRSV2/KOR/PL97-1/1997	AY585241	PL97-1	KOR
8	PRRSV2/USA/NVSL97-7985	AF325691	NVSL 97-7985 IA 1-4-2	USA
9	PRRSV2/CHN/DC/2010	IF748718		CHN
10	PRRSV2/CHN/YD/2009	IF748717	YD	CHN
11	PRRSV2/CHN/SD0901	IN256115	SD0901	CHN
12	PRRSV2/CHN/SD-CXA/2009	60359108	SD-CXA/2008	CHN
13	PRRSV2/CHN/CH-1a/1999	AY032626	СН-1а	CHN
14	PRRSV2/CHN/BI-4/2000	AF331831	RI-4	CHN
15	PRRSV2/CHN/Henan-A8/2(KI534543	Henan-A8	CHN
10	PRRSV2/CHN/XIu-1/2012	KE815525	XIu-1	CHN
18	PRRSV2/CHN/H7-31/2012	KC445138	H7-31	CHN
19	PRRSV1/CHN/NVDC-NM1-	1X187609	NVDC-NM1-2011	CHN
20	PRRSV2/CHN/VN-2011/201	1X857698	VN-2011	CHN
21	PRRSV2/CHN/GX1002/201	10955658	GX1002	CHN
22	DBBC//2/CHNI/IXM80/2008	G0/00106	UX1002	CHN
23		100499190		
24			SCWPD00CD	
25			OVVZ	
26		JU200790	CM2	
21		JN002424		
20	PRRSV2/CHIN/SD10/2012	JX08/43/	SU10	CHN
30	PRRSV2/CHIN/QY2010/201	JQ743666		CHN
31	PRRSV2/CHN/NVDC-JS2-20	JQ715698	NVDC-JS2-2011	CHN
32	PRRSV2/CHN/NVDC-GD2-2	JQ/1569/	NVDC-GD2-2011	CHN
33	PRRSV2/CHN/WUH4/2011	JQ326271	WUH4	CHN
34	PRRSV2/USA/VR2332/1995	PRU87392	AICC VR-2332	USA
35	PRRSV1/CHN/NMEU09-1/2	GU047345	NMEU09-1	CHN
36	PRRSV1/CHN/BJEU06-1/20	GU04/344	BJEU06-1	CHN
31 20	PRRSV2/CHN/GDQY/200/	GU454850	GDQY2	CHN
30 30	PRRSV2/CHN/AH0701/200	GU461292	AH0701	CHN
40	PRRSV1/CHN/Amervac	GU067771	Amervac	CHN
41	PRRSV1/NLD/MLV-DV/199	KJ127878	MLV-DV	NLD
42	PRRSV2/DEN/DK-2011-880	KF183947	DK-2011-88005-A8-Pl	DEN
43	PRRSV2/DEN/DK-2010-10-	KF183946	DK-2010-10-13-1	DEN
44	PRRSV2/KOR/CA-2/2013	KF555450	CA-2	KOR
45	PRRSV1/HUN/9625/2012	KJ415276	9625/2012	HUN
46	PRRSV2/CHN/HENAN-HEB	KJ143621	HENAN-HEB	CHN
47	PRRSV1/ESP/Olot-91/1991	KF203132	Olot/91	ESP
48	PRRSV2/DEN/DK-2004-2-1,	KC862585	DK-2004-2-1	DEN
49 50	PRRSV2/DEN/DK-2003-2-3,	KC862584	DK-2003-2-3	DEN
51	PRRSV2/DEN/DK-2010-10-	KC862583	DK-2010-10-4-1	DEN
52	PRRSV2/DEN/DK-2008-10-	KC862582	DK-2008-10-1-3	DEN
53	PRRSV2/DEN/DK-1997-194	KC862576	DK-1997-19407B	DEN
54	PRRSV2/DEN/DK-2012-01-	KC862575	DK-2012-01-11-3	DEN
55	PRRSV1/DEN/DK-2003-7-2,	KC862572	DK-2003-7-2	DEN
56	PRRSV1/DEN/DK-2011-05-2	KC862569	DK-2011-05-23-9	DEN
57	PRRSV1/DEN/DK-2010-10-	KC862568	DK-2010-10-10-3	DEN
58				
59 60				
00				

Transboundary and Emerging Diseases - submitted manuscript

3		KORGARGE
4	PRRSV1/DEN/DK-1992-PRF	KC862566
5	PRRSV2/VNM/SRV07/2007	JX512910
6	PRRSV2/USA/SD95-21/199	KC469618
7	PRRSV2/CHN/BB0907/200	HQ315835
8	PRRSV2/CHN/GD-2011/20:	KC527830
9	PRRSV2/USA/NADC30/200	JN654459
10	PRRSV2/USA/SDSU73	JN654458
11	PRRSV2/CHN/JX	JX317649
12	PRRSV2/CHN/HV	JX317648
14	PRRSV2/USA/A2MC2	JQ087873
15	PRRSV2/CHN/09HUB2/200	JF268683
16	PRRSV2/CHN/09HEN1/200	JF268684
17	PRRSV2/CHN/09DB2/2009	JF268681
18	PRRSV2/CHN/09HEB/2009	JF268679
19	PRRSV2/CHN/09SD/2009	JF268678
20	PRRSV2/CHN/09BJ/2009	JF268676
21	PRRSV2/CHN/09JS/2009	JF268675
22	PRRSV2/CHN/09HUN1/200	JF268673
23	PRRSV2/CHN/09SC/2009	JF268672
24 25	PRRSV2/CHN/SX-1/2009	GQ857656
26	PRRSV2/CHN/SY0909/2009	HQ315837
27	PRRSV2/CHN/NT0801/200	HQ315836
28	PRRSV2/CHN/BJ0706/2007	GQ351601
29	PRRSV1/USA/EuroPRRSV/1	AY366525
30	PRRSV2/CHN/HN-HW/2000	EJ797690
31	PRRSV2/USA/VR2332a	AY150564
32	PRRSV2/CHN/HN1	AY457635
33	PRRSV2/LISA/MLV	ΔΕ159149
34	PRRSV2/CHN/IN1101	KF751238
36	PRRSV2/CHN/BI1102/2011	KF751230
37	DRDSV2/CHN/SH1211/2011	KE678/3/
38		KC402505
39		KC492303
40		KF011905
41	PRKSV2/CHN/HK12/2004	KF287139
42	PRRSV2/CHN/HK4/2003	KF28/134
43	PRRSV1/CHN/G211-G1/20	KF001144
44	PRRSV2/CHN/11GZ-GD/20	JX235370
45	PRRSV2/CHN/10HD-GD/20	JX215553
46	PRRSV2/CHN/JL-0412/2012	JX177644
47	PRRSV2/LAO/10-LW8-1/20	JQ663568
40 /Q	PRRSV2/CHN/10-10GX-5/2	JQ663562
50	PRRSV2/VNM/10-10QN/20	JQ663556
51	PRRSV2/CHN/10-10SD/201	JQ663555
52	PRRSV2/CHN/10-10JL/2010	JQ663554
53	PRRSV2/CHN/10-10HEB-3/	JQ663553
54	PRRSV2/CHN/10-10FUJ-1/2	JQ663546
55	PRRSV2/CHN/10-10BJ-1/20	JQ663541
56	PRRSV2/CHN/10-10JX/201	JQ663540
57	PRRSV2/CHN/09HUB7/200	GU168567
50 50		
00		

DK-1992-PRRS-111 92	DEN
SRV07	VNM
SD95-21	USA
BB0907	CHN
GD-2011	CHN
NADC30	USA
SDSU73	USA
JX	CHN
HV	CHN
A2MC2	USA
09HUB2	CHN
09HEN1	CHN
09DB2	CHN
09HEB	CHN
09SD	CHN
09BJ	CHN
09JS	CHN
09HUN1	CHN
09SC	CHN
SX-1	CHN
SY0909	CHN
NT0801	CHN
BJ0706	CHN
EuroPRRSV	USA
HN-HW	CHN
VR-2332a	USA
HN1	CHN
MLV RespPRRS/Repro	USA
LN1101	CHN
BJ1102	CHN
SH1211	CHN
NVDC-NM3	CHN
HENAN-XINX	CHN
HK12	CHN
HK4	CHN
GZ11-G1	CHN
11GZ-GD	CHN
10HD-GD	CHN
JL-04/12	CHN
10-LW8-1	LAO
10-10GX-5	CHN
10-10QN	VNM
10-10SD	CHN
10-10JL	CHN
10-10HEB-3	CHN
10-10FUJ-1	CHN
10-10BJ-1	CHN
10-10JX	CHN
09HUB7	CHN

2		
3	PRRSV2/CHN/GX10-48/20(10309823	GX10-4
4	PRRSV2/USA/NC16845/20(HO699067	NC168
5	PRRSV2/CHN/DY/2007 IN864948	DY
6	PRRSV2/CHN/HI HI /2009 HM189676	ніні
/ 0	PRRSV2/CHN/GX09-16/200 HM214913	GX09-1
0		
9 10		
10	PRRSV2/CHN/2P-1/2009 HIVI016159	ZP-1
12	PRRSV2/CHN/GDBY1/2008 GQ3/4442	GDBY1
13	PRRSV2/CHN/GDQJ/2007 GQ374441	GDQJ
14	PRRSV2/CHN/GD3/2005 GU269541	GD3
15	PRRSV2/CHN/SD1-100 GQ914997	SD1-10
16	PRRSV2/CHN/KP GU232735	KP
17	PRRSV2/CHN/08SDWF/20CGU168569	08SDW
18	PRRSV1/THA/01CB1/2001 DQ864705	01CB1
19	PRRSV2/KOR/PL97-1-LP1/1AY612613	PL97-1,
20	PRRSV2/CHN/Em2007/200 EU262603	Em200
21	PRRSV2/CHN/GS2004/2004 EU880443	GS2004
22	PRRSV2/CHN/NX06 EU097706	NX06
23	PRRSV2/CHN/BJsy06/2006 EU097707	BJsv06
24 25	PRRSV2/CHN/CC-1 EF153486	CC-1
20	PRRSV2/USA/Prime Pac/19 DO779791	Prime F
20	PRRSV2/USA/MN184B DO176020	MN184
28	PRRSV2/USA/MN184A D0176019	MN18/
29		
30		
31		
32		
33		Ingelva KNU O
34	PRRSV1/KUR/KINU-U//200,FJ349201	
35	PRRSV2/CHN/SY0608/2000 E01440/9	510608
36	PRRSV2/CHN/WUH3/2008 HIVI8536/3	WUH3
3/	PRRSV2/CHN/08HuN/2008 GU169411	08HuN
30	PRRSV2/CHN/HB-1(sh)/20(AY150312	HB-1(sl
39 40	PRRSV2/CHN/CWZ-1-F3/2(FJ889130	CWZ-1-
41	PRRSV2/CHN/PRRSV03 FJ175689	PRRSV
42	PRRSV2/CHN/GD/2007 EU825724	GD
43	PRRSV2/CHN/BJ/2007 EU825723	BJ
44	PRRSV2/CHN/HPBEDV EU236259	HPBED
45	PRRSV2/CHN/Henan-1 EU200962	Henan-
46	PRRSV2/CHN/Jiangxi-3 EU200961	Jiangxi-
47	PRRSV2/USA/MN/MN184CEF488739	MN184
48	PRRSV2/VNM/07QN/2007 FJ394029	07QN
49	PRRSV2/CHN/GD/2006 EU109503	GD
50	PRRSV2/CHN/LN/2006 EU109502	LN
บ 52	PRRSV2/CHN/SHH/2006 EU106888	SHH
52 53	PRRSV2/CHN/HEB1/2006 EF112447	HEB1
54	PRRSV2/CHN/HUN2/2006 EF112446	HUB2
55	PRRSV2/USA/MFF After FF532819	MFF A
56	PRRSV2/USA/Lewis Refore FF532818	lewis
57	PRRSV2/USA/Lewis After FF532817	
58		
59		

60

GX10-48	CHN
NC16845	USA
DY	CHN
HLJHL	CHN
GX09-16	CHN
JN-HS	CHN
ZP-1	CHN
GDBY1	CHN
GDQJ	CHN
GD3	CHN
SD1-100	CHN
KP	CHN
08SDWF	CHN
01CB1	тна
PI 97-1/I P1	KOR
Fm2007	CHN
G\$2004	CHN
NX06	CHN
RISV06	CHN
CC 1	
Prime Pac	
	USA
	KUR
SY0608	CHN
WUH3	CHN
U8HUN	CHN
HB-1(sh)/2002	CHN
CWZ-1-F3	CHN
PRRSV03	CHN
GD	CHN
BJ	CHN
HPBEDV	CHN
Henan-1	CHN
Jiangxi-3	CHN
MN184C	USA
07QN	VNM
GD	CHN
LN	CHN
SHH	CHN
HEB1	CHN
HUB2	CHN
MFF_After	USA
Lewis_Before	USA
Lewis_After	USA

Transboundary and Emerging Diseases - submitted manuscript

3		
4	PRRSV2/USA/ISU-P	EF532816
5	PRRSV2/USA/Hawkeye7_B	EF532815
6	PRRSV2/USA/Hawkeye7_A	EF532814
7	PRRSV2/USA/Hawkeye4_B	EF532813
8	PRRSV2/USA/Hawkeye4_A	EF532812
9	PRRSV2/USA/Hawkeye2_B	EF532811
10	PRRSV2/USA/Hawkeye2 A	EF532810
11	PRRSV2/USA/FF4 After	EF532809
12	PRRSV2/USA/FF3_Before	EF532808
13	PRRSV2/USA/FF2_After	FF532807
14	PRRSV2/USA/FF1_Before	EF532806
15	PRRSV2/USA/Flagshin Bef	EF532805
10	PRRSV2/USA/Flagship_Afte	FF532804
18	PRRSV2/USA/Riss Refore	EF532803
19	PRRSV2/USA/Biss_Derore	EF532802
20		EI 1020212
21	PRRSV2/CHIV/JSyX/2000	E100E330
22	PRRSV2/CHIN/SX2009/2005	FJ895329
23	PRRSV2/CHIN/07BJ/2007	FJ393459
24	PRRSV2/CHN/0/HEBIJ/200	FJ393458
25	PRRSV2/CHN/07HEN/2007	FJ393457
26	PRRSV2/CHN/07NM/2007	FJ393456
27	PRRSV2/CHN/TP/2006	EU864233
28	PRRSV2/CHN/SHB/2005	EU864232
29	PRRSV2/CHN/CG/2007	EU864231
30	PRRSV2/USA/VR2332	EF536003
32	PRRSV2/USA/QUAL2_After	EF536002
33	PRRSV2/USA/QUAL1_Before	EF536001
34	PRRSV2/USA/MN30100	EF536000
35	PRRSV2/USA/MFF_Before	EF535999
36	PRRSV2/CHN/HUN4	EF635006
37	PRRSV2/CHN/JXA1/2006	EF112445
38	PRRSV2/NED/Lelystad virus	M96262
39	PRRSV2/USA/MN9A/2012	
40	PRRSV2/USA/MN9B/2012	
41	PRRSV2/USA/IA12/2012	
42	PRRSV2/USA/MN15/2012	
43	PRRSV2/USA/MN5/2012	
44 15	PRRSV2/USA/MN4/2012	
46	PRRSV2/USA/MN3/2012	
47	PRRSV2/USA/MN1/2012	
48	PRRSV2/USA/WIN1/2012	,
49		-
50		
51	PRRSV2/USA/IVIN14/2012	
52	PRKSV2/USA/IVIN2/2012	
53	PRKSV2/USA/MN11B/2012	
54	PKRSV2/USA/MN7/2012	
55	PRRSV2/USA/IL8/2012	
56	PRRSV2/USA/MN16/2011	
5/ 50	PRRSV2/USA/MN17A/2012	2
50 50		
60		
00		

ISU-P	USA
Hawkeye7 Before	USA
Hawkeve7 After	USA
Hawkeve4 Before	USA
Hawkeye4_After	
Hawkovo2 Poforo	
	USA
Hawkeyez_After	USA
FF4_After	USA
FF3_Before	USA
FF2_After	USA
FF1_Before	USA
Flagship_Before	USA
Flagship_After	USA
Biss_Before	USA
Biss After	USA
JSvx	CHN
SX2009	CHN
0781	СНМ
	CLIN
	CHN
	CHN
SHB	CHN
CG	CHN
VR2332	USA
QUAL2_After	USA
QUAL1_Before	USA
MN30100	USA
MFF_Before	USA
HUN4	CHN
JXA1	CHN
Lelystad virus	NED
MN9A	USA
MN9B	USA
IA12	USA
MN15	USA
MN5	USA
MN4	USA
MN3	
MNJ MNI	
	USA
	USA
IVIN2	USA
MN11B	USA
MN7	USA
IL8	USA
MN16	USA
MN17A	USA

3	PRRSV2/USA/MN17B/2013	MN17B	USA
4	PRRSV2/USA/BI- Sample 1	BI- Sample 1	USA
บ 6	PRRSV2/USA/BI- Sample 2	BI- Sample 2	USA
7	PRRSV2/USA/JZ1	JZ1	USA
8	PRRSV2/USA/JZ4	JZ4	USA
9	PRRSV2/USA/JA1262	JA1262	USA
10	PRRSV2/USA/AL27	AL27	USA
11	PRRSV2/USA/EP37	EP37	USA
12	PRRSV2/USA/1-2-3 Yeske	1-2-3 Yeske	USA
13	PRRSV2/USA/Cleeny West	Cleeny West	USA
14 15	PRRSV2/USA/E32	, E32	USA
10	PRRSV2/USA/JZ2	JZ2	USA
17	PRRSV2/USA/JZ8	JZ8	USA
18	PRRSV2/USA/Mt. Echo	Mt. Echo	USA
19	PRRSV2/USA/K9/2009	K9 (Kingston 2009)	USA
20	PRRSV2/USA/K10/2010	K10 (Kingston 2010)	USA
21	PRRSV2/USA/K11/2011	K11 (Kingston 2011)	USA
22	PRRSV2/USA/K12/2012	K12 (Kingston 2012)	USA
23	PRRSV2/USA/Bon Homme (Spronk)	Bon Homme (Spronk)	USA
24	PRRSV2/USA/1784 (IA)	1784 (IA)	USA
20 26			
20			
28			
29			
30			
31			
32			
33			
34			
35			
37			
38			
39			
40			
41			
42			
43			
44			
45			
46 47			
47 78			
49			
50			

1 2	
3 4 5	Nanjing
6 7 8	lowa
9 10	Guangzh
11 12 13 14 15 16 17 18 19 20 21 22	Henan Xinjiang Hubei Yunnan Guangxi
23 24	Shangai
25	Sichuan
26	Guangdo
27 28	Guangdo
29	Guangdo
30 31	Jiangsu
32 33	Guangdo
34 35 26	Inner Mo
30 37	Guangdo
38	Δnhui
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	Anhui

Region		Year
	2012	
	2004	
	1997	
	1997	
ou	2010	
ou	2009	
	2009	
	1999	
	2000	
	2013	
	2012	
	2012	
	2011	
	2011	
	2010	
	2008	
	2011	
	2009	
ong	2011	
ong	2011	
	2012	
ong	2010	
	2011	
ong	2011	
	2011	
	1995	
ongolia	2009	
0	2006	
ong	2007	
0	2007	
	1999	
	2011	
	2010	
	2013	
	2012	
	2012	
	1991	
	2004	
	2003	
	2010	
	2008	
	1997	
	2012	
	2003	
	2011	
	2010	
	0	

2	
3	
4	
5	
6	
7	
1	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
12	
12	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
50	
54	
55	
56	
57	
58	
59	
60	

Jiangxi Hubei

2009

1

	2007	
South Dakota	1995	
Guangxi	2009	
-	2011	
lowa	2008	
	1996	
	2010	
	2007	
	2010	
Hubei	2009	
Henan	2009	
Dongbei	2009	
Hebei	2009	
Shandong	2009	
Beijing	2009	
Jiangsu	2009	
Hunan	2009	
Sichuan	2009	
Shanxi	2009	
Jiangsu	2009	
Jiangsu	2008	
Beijing	2007	
lowa	1999	
Hunan	2006	
Liaoning	2011	
Beijing	2011	
Shanghai	2012	
	2011	
Henan	2013	
HongKong	2004	
HongKong	2003	
Guangdong	2011	
Guangdong	2011	
Guangdong	2010	
Jilin	2012	
	2010	
Guangxi	2010	
	2010	
Shandong	2010	
Jilin	2010	
Hebei	2010	
Fujian	2010	
Beijing	2010	
Jiangxi	2010	

2	
3	
4	
5	
6	
7	
8	
0	
9 10	
10	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
20	
21	
<u>১</u> ।	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
50	
52	
ບຽ ⊑ ∕	
54	
55	
56	
57	
58	
59	
60	

Guangxi	2006
North Carolina	2006
	2007
Heilongjiang	2009
Guangxi	2009
Shandong	2008
Shandong	2009
Guangdong	2008
Guangdong	2007
Guangdong	2005
Guangdong	
	2008
Chonburi	2001
	1997
	2007
	2007
	2006
Beijing	2006
, 0	
	1996
Guangdong	
0 0	2002
	2007
	2006
	2008
Hunan	2008
Hebei	2001
Chongging	2008
Guangdong	2007
Beijing	2007
, 0	
Henan	
Jiangxi	
MN	
Quang Nam	2007
Guangdong	2006
Liaoning	2006
Shanghai	2006
Hebei	2006
Hubei	2006

1
2
3
4
5
6
7
1
8
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
27
28
20
20
30
31
32
33
34
35
36
37
38
39
40
- -
41
4Z
43
44
45
46
47
48
49
50
51
52
52
00 F 4
54
55
56
57
58
59
60

	2005 2005	
	2006	
Shanxi	2009	
Beijing	2007	
Heibei	2007	
Henan	2007	
Neimeng	2007	
Guangdong	2006	
Guangdong	2005	
Guangdong	2007	
Hunan		
Jiangxi	2006	
Minnesota	2012	
Minnesota	2012	
lowa	2012	
Minnesota	2012	
iviinnesota Minnesota	2012	
Minnesota	2012	
Minnesota	2012	
Minnesota	2012	
Illinois	2012	
Minnesota	2011	
	-	

Minnesota

