
Draft version February 8, 2018
Typeset using LATEX twocolumn style in AASTeX61

CYBERHUBS: VIRTUAL RESEARCH ENVIRONMENTS FOR ASTRONOMY

Falk Herwig,1, 2, 3 Robert Andrassy,1, 2 Nic Annau,1 Ondrea Clarkson,1, 2, 3 Benoit Côté,4, 1, 2, 3 Aaron D’Sa,5, 2 Sam Jones,6, 2, 3 BelaidMoa,7

Jericho O’Connell,1 David Porter,8 Christian Ritter,1, 2, 3 and PaulWoodward5, 2

1Department of Physics & Astronomy, University of Victoria, Victoria, Canada
2Joint Institute for Nuclear Astrophysics, Center for the Evolution of the Elements, Michigan State University, USA
3NuGrid Collaboration
4Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Budapest, Hungary
5LCSE, University of Minnesota, Minneapolis, USA
6Los Alamos National Laboratory, Los Alamos, New Mexico, USA
7Research Computing Services, University of Victoria, Victoria, Canada
8MSI, University of Minnesota, Minneapolis, USA

(Received December 8, 2017; Revised Feb 1, 2018; Accepted acceptance date; Published published date)

Submitted to ApJS

ABSTRACT

Collaborations in astronomy and astrophysics are faced with numerous cyber infrastructure challenges, such as large data sets,
the need to combine heterogeneous data sets, and the challenge to effectively collaborate on those large, heterogeneous data
sets with significant processing requirements and complex science software tools. The cyberhubs system is an easy-to-deploy
package for small to medium-sized collaborations based on the Jupyter and Docker technology, that allows web-browser enabled,
remote, interactive analytic access to shared data. It offers an initial step to address these challenges. The features and deployment
steps of the system are described, as well as the requirements collection through an account of the different approaches to
data structuring, handling and available analytic tools for the NuGrid and PPMstar collaborations. NuGrid is an international
collaboration that creates stellar evolution and explosion physics and nucleosynthesis simulation data. The PPMstar collaboration
performs large-scale 3D stellar hydrodynamics simulation of interior convection in the late phases of stellar evolution. Examples
of science that is presently performed on cyberhubs, in the areas 3D stellar hydrodynamic simulations, stellar evolution and
nucleosynthesis and Galactic chemical evolution, are presented.

Corresponding author: Falk Herwig
fherwig@uvic.ca

ar
X

iv
:1

80
2.

02
23

3v
1

 [
as

tr
o-

ph
.I

M
]

 6
 F

eb
 2

01
8

mailto: fherwig@uvic.ca

2

1. INTRODUCTION

New astronomical observatories, large surveys, and the lat-
est generation of astrophysics simulation data sets, provide
the opportunity to advance our understanding of the universe
profoundly. However, the sheer size and complexity of the
new data sets dictate rethinking of the current data analytic
practice which can often be a barrier to fully exploiting the
scientific potential of these large data sets. The following
challenges may be identified.

The typical size of data sets in astronomy & astrophysics
continues to grow substantially. To name a few examples,
optical waveband projects such as the Large Synoptic Survey
Telescope (LSST), radio facilities such as the Square Kilo-
meter Array (SKA) pathfinders, as well as large data sets
produced by cosmological or stellar hydrodynamics simula-
tions which will, in combination, produce 10s of petabytes of
scientific data that would not typically be held in one place.
Such data sets can not be downloaded for processing and
analysis. Instead combining remote computer processing ca-
pacity where the data is stored with the appropriate analytic
and data processing software stacks is required. On top of
that efficient remote access with visualization and interac-
tion capabilities are needed to enable a distributed commu-
nity to collectively explore these data sets. Instead of moving
the data to the processing machines, the processing pipelines
need to be moved to where the data resides.

One of the great promises of the age of data science for
astronomy is that the many multi-physics, multi-messenger,
multi-wavelength and multi-epoch constraints that bear on
most problems in astronomy, can in fact be combined suc-
cessfully when complex data interactions and collaborative
cyber-research environments are constructed. This notion of
data fusion between different types of observational data and
simulation data can reach its full potential when different
communities can come together in combining and sharing
data sets, analytical tools and pipelines, and derived re-
sults.

A significant barrier in accomplishing this goal in practice
are authentication and access models. Resources are often
provided by national bodies or consortia with often burden-
some access requirements and limitations. An effective re-
search platform system would accept easily-available social
or otherwise broadly used third-party identities to allow flex-
ible, international, collaborative access. Although single
sign-on technologies are emerging, the scientific community
is still far from adopting them.

Decades worth of investments in legacy software, tools,
and workflows by many research groups may be lost and
never shared with a broader community or applied to new
data sets. The reproducibility of science is suffering when
data processing and analytic workflows can not be shared. A
modern research platform would provide a uniform execu-

tion environment that will liberate legacy software, unlock-
ing its analytic value and that of associated data sets, making
them available to others, and allowing them to reproducibly
interact with analysis procedures and data sets of other re-
searchers.

In this paper we describe cyberhubs, an easily-deployed
service that combines Juypter notebook or Jupyterlab
data and processing in a containerized environment with a
prescribed software application toolbox and data collection.
The system described here is the result of multi-year develop-
ments and evolution, with the goal to address the limitations
and challenges, initially of the international NuGrid collabo-
ration, and then in addition, those of the PPMstar collabora-
tion. Both of these brought somewhat different demands and
requirements, that in combination are likely typical for a very
wide range of use cases in astronomy and astrophysics.

The international Nuclesoynthesis Grid (NuGrid1) collab-
oration has members from ≈ 20 institutions in many coun-
tries (Pignatari & Herwig 2012). Since 2007, NuGrid has
been combining the required expertise from many different
scientists to generate the most comprehensive data sets for
the production of the elements in massive and low-mass stars
to date (Pignatari et al. 2016; Ritter et al. 2017b). Around
2009, when the first data set was created it had a size of
≈ 5 TB, which is relatively small by today’s standards, how-
ever still large enough that it is not easily transferred around
the globe on demand. The collaboration was faced with prob-
lems that are common to any distributed, data-oriented col-
laboration. Problem-specific processing and analytic tools
are developed, but deployment in different places is always
complicated by a diverse set of computing environments.
In the NuGrid collaboration, which brings together differ-
ent communities, all of the three major operating systems
are used. Initially, three copies of the data sets were always
maintained at three institutions in the UK, Switzerland and
Canada through a tedious, time-consuming and error-prone
syncing system. Still, analytic and interactive access for re-
searchers who were not at one of those three institutions was
very limited through VNC sessions or X11 forwarding, and
required account-level access sharing that would be probably
impossible at most institutions today.

As a next step, the collaboration adopted CANFAR’s
VOspace as a shared and mountable storage system. CAN-
FAR is the Canadian Advanced Network for Astronomy
Research2, a consortium between NRC (National Research
Council) Herzberg’s Canadian Astronomy Data Center
(CADC) and Canadian university groups which aims to
jointly address astronomy cyber-infrastructure challenges.

1 http://www.nugridstars.og
2 http://www.canfar.net

http://www.nugridstars.og
http://www.canfar.net

3

VOspace provides shareable user storage with a web inter-
face, and identity and group management system, similar to
commercial cloud storage systems such as Google Drive and
Dropbox. It also has a Python API vos that allows command
line access to VOspace and POSIX mounting to a local lap-
top or workstation. The mounting option, in particular, made
VOspace very promising for the collaboration, as it allows
for the replacement of three distributed storage copies with
just one master copy, which can be mounted from anywhere.
In addition, it includes a smart indexing algorithm which
ensures that only the data needed for an analysis or plot is
transferred. Although this system was a significant improve-
ment, it did not work for remotely executed analysis projects
requiring high data throughput of most of the available data
set, and it did not solve the problem that many in the collab-
oration felt restricted by complications in establishing and
maintaining the NuGrid software stack. This software stack
is not particularly complex, from the viewpoint of a computa-
tionally experienced user, but in order to address the diverse
set of science challenges, the collaboration includes mem-
bers that deploy a diverse set of science methodologies, and
especially entry-level researchers and researchers-in-training
have often found establishing and maintaining the NuGrid
software stack to be a substantial barrier.

We tried to overcome this challenge by using virtual ma-
chines based on Oracle’s VirtualBox technology. We have,
for example, developed VMs for the Nova project3, which
is admittedly now mostly defunct. While in principle VMs
allow one to load a pre-defined software stack into a VM as
well as the VOspace access tools, in practice, this technol-
ogy has not been adopted broadly. The reasons for that were
a combination of rather time-consuming and ridged mainte-
nance requirements and reports of usability issues. In addi-
tion to their heavy weight nature, the VMs also did not prop-
erly address the need for distributed teams to collaborate on
the same project space, because they limit any VM instance
to only one researcher.

From the beginning in 2007, the NuGrid collaboration had
adopted Python as the common analytic language. Around
2012/2013 the ipython notebook technology became increas-
ingly popular in the collaboration. In collaboration with
CANFAR, we developed as one of two applications of the
project Software-as-a-Service for Big Data Analytics funded
by Canarie4 the Web-Exploration for Nugrid Data Interac-
tive (WENDI Jones et al. 2014) service, which had some
of the functionality that is now offered by JupyterHub.
This project was very successful in establishing a proto-
type for web-enabled analytic remote data access with a pre-

3 http://www.nugridstars.org/data-and-software/

virtual-box-releases/copy2_of_readme
4 http://www.canarie.ca

defined, stable analytic software stack and network proxim-
ity to the data for a fast and interactive, remote data explo-
ration experience. For some years NuGrid served graphi-
cal user-interfaces built on ipywidgets of the SYGMA and
OMEGA tools of the NuGrid Python Chemical Evolution En-
vironment (NuPyCEE, Ritter & Côté 2016) as well as the
NuGridSetExplorer which allows GUI access to the Nu-
Grid stellar evolution and yield data sets (Pignatari et al.
2016; Ritter et al. 2017b). The project was to a large extent
focused on improvements to the storage backend, enabling
for example VOspace to work well with indexed hdf5 files,
and thus did not add authentication and access management
to the service. The usage was therefore limited to anonymous
and time-limited access. The service was deployed on virtual
machines of the Compute Canada5 cloud service6.

Another set of requirements for the cyberhubs facility
presented here originates from a stream of efforts in pro-
viding enhanced data access within a collaboration, and ul-
timately to external users, undertaken by the PPMstar col-
laboration (Woodward et al. 2015; Herwig et al. 2014). The
typical size of the aggregate data volume for a single project
involving three-dimensional stellar hydrodynamics simula-
tions is ≈ 200 TB, and the collaboration would at any given
time work simultaneously on two to three projects. The sim-
ulations are performed at super-computing centers, such as
the NSF’s Blue Waters computer at the NCSA in Illinois,
or high-performance computing facilities in Canada, such as
WestGrid’s orcinus cluster at UBC or the cedar cluster at
SFU. Blue Waters has relatively restrictive access require-
ments which make it somewhat burdensome to add interna-
tional collaborators to access the data, especially temporary
access for students. For interactive access or processing ac-
cess by collaboration members who cannot login to Blue Wa-
ters, data has to be moved off the machine, which is not prac-
tical since such external collaboration members do not have
the required storage facilities, and the network bandwidth is
insufficient. In addition, over decades the LCSE has devel-
oped custom and highly optimized software tools to visual-
ize and analyse the algorithmically compressed data outputs
of the PPMstar codes. More recently, new tools have been
developed using Python. The data exploration and analysis
ecosystem of the collaboration is heterogeneous and difficult
to maintain even for core members in view of the constantly
changing computing environments on the big clusters and the
home institutions. The challenge for this collaboration was to
stabilize and ease the use of legacy software, the very large
data volumes and the access and authentication when trying

5 https://www.computecanada.ca
6 https://www.computecanada.ca/research-portal/

national-services/compute-canada-cloud/

http://www.nugridstars.org/data-and-software/virtual-box-releases/copy2_of_readme
http://www.nugridstars.org/data-and-software/virtual-box-releases/copy2_of_readme
http://www.canarie.ca
https://www.computecanada.ca
https://www.computecanada.ca/research-portal/national-services/compute-canada-cloud/
https://www.computecanada.ca/research-portal/national-services/compute-canada-cloud/

4

to broaden the group of users that can have analytic and ex-
ploratory access to these large and valuable data sets.

Based on these requirements, and through experience, we
have combined the latest technologies, including Docker and
Jupyter and designed cyberhubs, a system that allows
easy deployment of a customized virtual research environ-
ment (VRE). It offers flexible user access management, and
provides mechanisms to combine the research area specific
software applications and analytic tools with data and pro-
cessing to serve the needs of a medium-sized collaboration
or user group. At a larger scale, an architecture similar to
cyberhubs has been deployed, for example, by the NOAO
in their NOAO data lab, and has been selected for the LSST
Science Platform7. JupyterHub-based systems are also used
in teaching large data science classes, such as the UC Berke-
ley Foundations of Data Science course8. At the University
of Victoria a precursor of the architecture described here has
been used in both graduate and undergraduate classes for the
past three years. Another broad installation of this type is
the Syzygy project9 that allows institutional single-sign-on
to Jupyter Notebook servers across many Canadian universi-
ties to access Compute Canada resources.
cyberhubs, although scaleable in the future, is at this

point addressing the needs of medium-sized collaborations
which require an easy to setup and maintain shared research
environment. The cyberhubs software stack is available
on GitHub10 and the docker images are available on Docker
Hub11. In §2 we describe the system architecture and imple-
mentation, in §3 we briefly sketch the typical steps involved
in deploying cyberhubs, and in §4 we present the two main
deployed applications and how to add new applications. We
close the paper with some discussion of limitations and fu-
ture developments in §5.

2. SYSTEM ARCHITECTURE AND
IMPLEMENTATION

In this section we describe the architecture and design fea-
tures as well as the implementation of cyberhubs. Here, a
cyberhub administrator configures and deploys the service,
while a cyberhub user is simply someone who connects to
the deployed service, and is not burdened with the details de-
scribed here.

7 https://docushare.lsst.org/docushare/dsweb/Get/LSE-319
8 https://data.berkeley.edu/education/foundations, http:

//data8.org
9 https://syzygy.ca
10 The multiuser and corehub single user is in https://github.

com/cyberlaboratories/cyberhubs, the application hubs that are
built on top of corehub is in the repository https://github.com/
cyberlaboratories/astrohubs

11 https://hub.docker.com/u/cyberhubs

2.1. General design features

To satisfy the requirements of the cyberhubs system, we
combine the following components:

1. A thin user interface component allows the users to
easily interact with their virtual research environment
(VRE).

2. The authentication component ensures the right re-
searchers are accessing the proper data, processing and
software analytic tools in their VRE.

3. The docker spawner component that allows the users
to spawn their selected choice of application containers
and allows selection of Jupyter environment (notebook
or lab).

4. The image repository offers prebuilt container images
for all components and can be expanded to host new
VREs for other applications.

5. The notebook templates and interactive environments
help the users to get started in their VREs and prepar-
ing their own analytic workflow.

6. A deployment component enables administrators, such
as the data infrastructure experts in a collaboration, to
deploy all of the above components with minimal ef-
fort and customization.

The first three components are offered by JupyterHub,
with some modifications we made to the second one to al-
low dynamic white and black listing for user management.
The fourth is partially enabled by the Cyberhubs Docker Hub
repository12. The fifth and sixth components, and the cus-
tomization images are offered by cyberhubs.
cyberhubs provides a complete, packaged system that can

easily be installed and customized and allows the cyberhubs
administrator to quickly deploy VREs. There is no reason
why a particular cyberhubs instance could not be near-
permanent, with little in maintenance needed because the
system is based on docker images. However, the cyberhubs
system is designed for easy deployment with all essential
configuration options, like attaching local or remote storage
volumes, provided through external configuration files that
then will be absorbed by the pre-built docker images.

As opposed to other packaging solutions that rely on tools
such as ansible, puppet and others, cyberhubs requires
only setting a minimal number of environment variables to
deploy any of the pre-built application hubs which could pos-
sibly enable many astronomy use cases. Extending an appli-
cation hub, or building a new one on top of corehub (part

12 https://hub.docker.com/u/cyberhubs

https://docushare.lsst.org/docushare/dsweb/Get/LSE-319
https://data.berkeley.edu/education/foundations
http://data8.org
http://data8.org
https://syzygy.ca
https://github.com/cyberlaboratories/cyberhubs
https://github.com/cyberlaboratories/cyberhubs
https://github.com/cyberlaboratories/astrohubs
https://github.com/cyberlaboratories/astrohubs
https://hub.docker.com/u/cyberhubs
https://hub.docker.com/u/cyberhubs

5

White and black list

Hub

SQlite Database

Image

Registry

Image Selector

Thin client

Data

Repository

Astrohub Dashboard

Configurable HTTP Proxy

Authenticator

Spawner

NoteBook

Repository

NoteBook

Repository

NoteBook

Repository
Single Server

Authenticator

Selector Github

Container Monitor

Data

Selector
Administrators

Notebook

Type selector

Figure 1. cyberhubs general system architecture.

of cyberhubs repository) is straight forward and well doc-
umented. An example if the application SuperAstroHub
(available in the Cyberhubs Docker repository) available on
the WENDI server (see §4.1.1) that combines all of our
presently available cyberhub applications.

The general system architecture for the cyberhubs is
shown in Fig. 1. JupyterHub is a multi-user environment
that allows the users to authenticate and launch their own
notebook and terminal server, while sharing access to cer-
tain storage areas. By doing so, the same collaboration in-
frastructure can be used by multiple users and therefore pro-
vide a platform for sharing resources, analytic tools, as well
as research content and outcomes. The main components of
JupyterHub are:

• A configurable HTTP proxy that allows the users to
interact with the system and directs their requests to
the appropriate service.

• A hub that handles users and their notebooks. In more
detail, the hub offers the following services:

– An authentication service that supports many au-
thentication backends (including PAM, LDAP,
OAuth, etc.). Currently, cyberhubs uses an

extended Github authenticator that allows users
with GitHub account to log into cyberhubs.

– A spawner service that allows the user to select
the singleuser application hub and the interface
type.

– An SQLite database which keeps track of the
users and the state of the hub.

2.2. Spawner and authentication extensions

Our extended spawner is integrated in the JupyterHub
configuration file. It provides at this point two selection op-
tions. First the user selects between the default Jupyter Note-
book option and the experimental option JupyterLab. Both
JupyterLab and Notebooks offer Python, bash and other lan-
guage notebook options as well as terminal access to the sin-
gleuser hub container. JupyterLab is a significantly enhanced
Jupyter interface that overcomes the restrictions imposed by
single linear notebooks or terminals, and allows one to com-
bine multiple sessions in parallel in one web browser win-
dow. For the second option, the user can select the applica-
tion hub image if multiple options are configured to be of-
fered by the cyberhubs administrator. In the future a simple
extension could allow one to choose between a variety of data
access options in this spawner menu.

A major challenge in a shared environment is access and
authentication administration. For most collaborations, na-
tional or institutional authentication models are not practi-
cal. We have adopted the third-party OAuth authentication
method available for JupyterHub and allow authentication
of users with their GitHub accounts. Other third-party OAuth
applications, such as Google, could be used as well.

To dynamically control the GitHub users who can access
the system, our authentication extension provides a simple
whitelist and blacklist mechanism that can be updated in the
running, fully deployed cyberhubswithout service interrup-
tion. The authenticator relies on a whitelist and/or black-
list file to dynamically grant or deny access to GitHub users.
When a whitelist is supplied, only the users in that list are al-
lowed to login. When the blacklist is present, the users in the
blacklist are blocked from accessing the system and will get
a 403: forbidden page even if they are in the whitelist.

This is a rather simple yet powerful access model that al-
lows, in combination with the easy configuration of the stor-
age additions to the cyberhubs, a flexible access control to
data and processing that can serve in a flexible way the access
and sharing requirements of medium-sized collaborations. It
can be easily combined with temporary unrestricted access
to any user.

Unlike some JupyterHub installations that propagate the
host system identity to the hub user, or systems that create in-
side the singleuser application container an identity accord-
ing to the login identity, we are adopting a simpler approach

6

with the goal of enabling the most transparent and seamless
sharing and collaboration. In cyberhubs all users have in
their own application hub container the identity user. Typ-
ically, a read-write data volume of considerable size is at-
tached, and all users appear as users on that read-write vol-
ume with the same identity.

Another major component in a shared environment is re-
source allocation. By resources we are referring to cpu,
memory, swap space and disk storage. Currently, we are
not enforcing any resource limits and we are not offering any
scheduling capabilities. We are considering to add the abil-
ities to specify resource limits for every container launched
and to alert users if no more resources are available. Since
these abilities do not ensure a scalable system, our roadmap
includes a plan to use Docker Swarm and/or Kubernetes for
scaling the resources and scheduling the containers.

2.3. Features and capabilties

Both Jupyter Notebook and Jupyterlab offer web-based
notebook user interfaces for more than 50 programming lan-
guages, and we included by default python 2 and 3 and bash.
But other popular languages, such as R or Fortran are eas-
ily added. Both bash notebooks as well as terminals pro-
vide shell access to the singleuser application docker con-
tainer (that we call here hub). Any simulation or processing
software that can be executed on the Linux command line,
such as the MESA stellar evolution code (Paxton et al. 2010,
2013, 2015) or the NuGrid simulations codes (Pignatari et al.
2016), can be run by each user in their identical instance on
the full hardware available on the host. Other examples in-
clude legacy analysis and processing tools that require a spe-
cial software stack. If such software is once expressed in
the singleuser application hub docker image it can be easily
shared with anyone accessing the cyberhubs.
cyberhubs are typically configured with an openly

shared, trusted user space that is equally available to all
users that have access to a particular cyberhub. This user
space is mounted on a separate, persistent volume. A trusted
collaboration, would establish some common sense rules on
how to access this shared space, in which all participants
have seamless access to any project or individual directories.
We have found that this arrangement allows for very effective
cooperation between team members with very different skill
sets, including students.

A typically small amount of private non-persistent storage
is available inside the user’s singleuser hub instance, which
will disappear when the user container is restarted. In order
to create some level of persistence beyond the shared user
space, users of cyberhubs rely heavily on external, remote
repositories, such as git repositories, for storing and sharing
non-data resources, such as software, tools, workflows, doc-
umentation, and paper writing manuscripts.

In addition to analytic access to data the cyberhubs pro-
vide documentation and report writing through inline Mark-
down cells, a latex typesetting environment where pdf files
are seamlessly viewed in the browser for paper manuscript
writing and editing, as well as slide presentation exten-
sions to Jupyter which allow one to create presentations
with live plots and animations. In addition, graphical user-
interface applications can be built, and examples are provided
in wendihub (§4.1.1).

In terms of the maintenance of the multiuser environment,
where many containers are running, the cyberhubs admin-
istrator should monitor the state of the cyberhub, including
the available resources. Astray and blacklisted user contain-
ers should be removed.

A typical cyberhub includes a repository of examples and
template notebooks to help users getting started in exploring
the data resource. These notebooks can be copied into the
image or provided via mounted volumes. Each cyberhub
in our cyberhubs family has strict version-specific require-
ments files for python and Linux packages, that ensure that
the same versions of each component of the entire software
stack are always used, until an update is made. In that case,
past docker image versions will be still available as tagged
images on the docker hub repository. Each user has there-
fore a completely controlled and reproducible environment.
It is then straight-forward to create a stable, shareable and re-
producible science workflow. Simulation software and anal-
ysis packages are shared via repository platforms such as
GitHub, GitLab or BitBucket, and include information on
exactly which cyberhub including the version, it is to be
deployed.

At the core of the cyberhubs13 design is the multiuser
image and a basic corehub singleuser application. The lat-
ter is a skeleton and has no application software installed.
The main elements of these core elements of cyberhubs are
shown in Fig. 2. They are:

1. multiuser image: It is composed of our customized
JupyterHub image, available via dockerhub repos-
itory, or via build package that includes Dockerfile
and all other necessary scripts and docker-related files
to customize, compose and then launch the multiuser
JupyterHub service.

2. singleuser corehub image: The most basic, bare sin-
gleuser docker image, also available via dockerhub
repository or build package.

corehub is the starting point on top of which all of the other
application hubs are built (§3), as shown in Fig. 3. Obvi-

13 These are available in the GitHub repository https://github.com/
cyberlaboratories/cyberhubs.

https://github.com/cyberlaboratories/cyberhubs
https://github.com/cyberlaboratories/cyberhubs

7

Jupyter

Python

Ubuntu

Jupyterhub

Python

Ubuntu

Cyberhub
singleuser application hub multiuser

SSL Keys

Authentication
Environment
Variables

Data Storage
Environment
Variables

Required
Inputs

Multiuser
Docker

Singleuser
Docker

Skeleton
Dockerfile

Figure 2. Main elements of the core cyberhubs system. The multiuser takes care of receiving the initial service request from a user,
handles user authentication and and data storage attachment. It launches a singleuser application hub from the appropriate image or reconnects
a returning user to that user’s existing application container. The singleuser component contains the application-specific analytic software and
is the processing home for the user. Each user has a separate container instance of the application image.

ously, not only astronomy cyberhubs can be built on top
of corehub, but applications from other disciplines or use
case are possible. The astronomy application hubs are the
astrohubs14.

2.4. Storage staging

Docker containers typically do not have much storage, and
a few options of storage staging are typically deployed:

• Read-only data volume: Most cyberhubs are about
providing access to a particular data universe. This is
immutable data that is staged on read-only data vol-
umes. It is mounted on the singleuser container to al-
low the users to read the data in their notebooks and
processing as needed.

• Persistent data volume: This volume is also mounted
and all users have the ability to write to and read from
it. The volume lives on the host or externally attached
storage, and is protected against singleuser container
shutdowns.

• Local ephemeral storage: This is the local storage allo-
cated to each container when created. It is available to
the users only when the container is running and gets
purged once the container is removed. This holds a
copy of example notebooks added to the image to be
available to all users. This it the home directory of

14 They are available from the GitHub repository https://github.
com/cyberlaboratories/astrohubs. As explained in the documen-
tation provided with these repositories the docker images are staged at
https://hub.docker.com/u/cyberhubs.

each user. Since this area is inaccessible to other users
of the cyberhub it is the right place to store, for ex-
ample, a .gitconfig file or other configuration files
as well as a .ssh directory.

• Individual remote data storage: Users can use sshfs,
mountvos, google-drive-ocamlfuse, and other fuse
tools to mount their remote data storage. This, how-
ever, requires elevated privileges for the containers and
is not yet supported.

Currently, read-only and persistent data volumes are spec-
ified via environment variables, and we do not support in-
dividual remote data storage yet. However, the cyberhubs
administrator can now configure both read-only and persis-
tent data volumes as remote data volumes, an option that al-
ready would serve the needs of many collaborations. We are
considering to add a data selector that allows users to select
volumes to mount that they have privilege for.

3. SYSTEM DEPLOYMENTS

The goal of cyberhubs is to make deployment as
easy as possible, and there are two deployment options.
cyberhubs is based on dockers whose images are cre-
ated and stored in a repository either locally, or on the
Docker Hub repository. A Docker container is an in-
stance of a Docker image. A cyberhub deployment always
consists of two Docker containers (Fig. 2). One is an in-
stance of the cyberhubs/multiuser image, the other is
one container per user of one application hub image, such
as cyberhubs/corehub. A particular configuration may
choose to offer users more than one application image in the

https://github.com/cyberlaboratories/astrohubs
https://github.com/cyberlaboratories/astrohubs
https://hub.docker.com/u/cyberhubs

8

spawner menu dialogue after login, such as those offered in
the cyberhubs family.

For ease of use, the first deployment option is recom-
mended. It involves launching containers as instances from
the images available in the cyberhubs organization at
https://hub.docker.com/u/cyberhubs which allows
deployment of a cyberhub without building any docker im-
ages. The only requirement is one must prepare the host
machine and the cyberhub configuration file and launch.

The second option is for the administrator to build one or
several of the required Docker images using the Dockerfile
and configuration files provided. This involves building the
singleuser application hub on top of one of the provided
application hub images. This option allows the administra-
tor to add features and software otherwise not available by
default, and to provide specialized configurations.

For specializations that require fundamentally different
data access or different user authentication models, it may be
necessary to rebuild the multiuser image. In any case the

Corehub

Machine Learning
Hub

Wendihub

PPMstarhub

Customhub1Customhub2

Figure 3. cyberhubs administrators can build application im-
ages by chaining existing application images and adding customiza-
tion through dockerfile-based builds. By starting from the pre-built
PPMstarhub that is itself based on Codehub one can build in se-
quential steps Wendihub and Machine Learning Hub each on top
of the previous. At this point the capabilities and analytic tools of
three application hubs are combined, and can be the bases for an-
other addition of tools and data stores to create Customhub2. Sim-
ilarly, for example, Customhub1 can be built as a combination of
Corehub, Wendihub and PPMstarhub.

administrator follows the step-by-step documentation in the
cyberhubs repository15 on GitHub. A deployment would
involve the following steps:

• Preparing the host machine:

15 https://github.com/cyberlaboratories/cyberhubs

– Select a host machine, such as a Linux worksta-
tion. In our case cyberhubs are deployed in a
cloud environment, such as the Compute Canada
Cloud, and require launching a suitable virtual
machine, attaching external storage volumes, and
assigning IPs. We use a CentOS7 image, but
other Linux variants should work as well.

– The host machine only needs a few addi-
tional packages, most important of which is
the docker-ce package. A small amount of
docker configuration is followed by launching
the docker service on the host machine.

– Any external data volumes to be made available
need to be mounted. sshfs mounted volumes
work well.

• Configuring the cyberhubs. This invariably starts
with pulling the cyberhubs Github repo16. The main
steps that always must be done are:

– Register an OAuth authentication application
with a GitHub account and enter the callback ad-
dress, authentication ID and secret into the single
configuration file jupyter-config-script.sh.

– Specify the admin user IDs as well as white-listed
users. If white-listed users are specified, either in
the configuration file (static white listing) or in
the access/wlist file (dynamic white listing),
then only white listed users are allowed. Other-
wise everybody with a github account can have
access. Dynamic black listing is also possible
once the service runs.

– Specify or modify data storage mapping from the
host to the cyberhub as the user sees it, for both
read-write and read-only storage.

– Specify the application hub name. Either a single
application hub is offered or the spawner menu
can offer a number of different application hubs.

– Finally, create SSL key/certificates as described
in multiuser/SSL/README. While a commer-
cial certificate can certainly be used, our default
installation includes letsencrypt which pro-
vides free three-month certificates. Such cer-
tificates can be created and updated using the
docker blacklabelops/letsencrypt. How-
ever, the present instructions recommend the use
of certbot-auto17 which works well for our
reference host system CentOS.

16 https://github.com/cyberlaboratories/cyberhubs
17 https://dl.eff.org/certbot-auto

https://hub.docker.com/u/cyberhubs
https://github.com/cyberlaboratories/cyberhubs
https://github.com/cyberlaboratories/cyberhubs
https://dl.eff.org/certbot-auto

9

– Source the config file and launch the cyberhub
according to the instructions in multiuser/README.

• The above assumes a deployment from the pre-built
docker images. This is the recommended mode. By
default, the multiuser image will be automatically
pulled from the repository during the execution of the
docker-compose up command. However, the sin-
gleuser application hub will have to be pulled manually
using the docker pull command. In addition to the
basic corehub application there are several pre-built
applications available in the docker hub repository18,
such as WENDI for NuGrid data analysis, mesahub
for MESA stellar evolution, for machine learning hub
mlhub to be used, for example, by StarNet (Fabbro
et al. 2017), PPMstarhub for PPMstar stellar hydro
data analysis.

• To add more application functionality, packages, tools,
etc. it is necessary to rebuild the singleuser application
hub. The Docker and configuration files of all of the
existing application hubs available on Docker Hub are
in the astrohubs GitHub repository19. All of these
application hubs start with the cyberhubs/corehub
image, as indicated in the first line of the Dockerfile:
FROM cyberhubs/corehub. Building or extending
an application hub could start from one of the exist-
ing hubs, or from corehub. Within the cyberhubs
family, all application hubs can be combined with all
others. This is shown schematically in Fig. 3. In prin-
ciple a super-application hub can be built by daisy-
chaining all other application hubs together, collect-
ing and adding in the process the capabilities from
each participating application hub. If the commu-
nity builds application hubs that are consistent with
the cyberhubs model, they could be added to the
cyberhubs docker hub repository.

• The multiuser image and all application hub images
can also be built from scratch using the dockerfiles
and configuration files provided in the GitHub repos-
itories, starting with Ubuntu images. This allows full
customization of all components, or improvements of
the cyberhubs facility. The complete rebuild of the
docker images would also be required when an update
of the software stack is needed.

4. APPLICATIONS

In this section we describe the application hubs we have
built and deployed. Due to our research areas, these en-

18 https://hub.docker.com/u/cyberhubs
19 https://github.com/cyberlaboratories/astrohubs

able simulation-based data exploration. Applications for
observationally-oriented data exploration and processing
tasks are equally possible and supported.

4.1. NuGrid

As described in §1, the challenges of the NuGrid collabora-
tion have contributed a significant portion to the requirements
of cyberhubs. NuGrid develops and maintains a number
of simulation codes (NuPPN) and utilities that allow users to
perform nucleosynthesis production simulations and nuclear
physics sensitivity studies. These codes, the MESA code (Pax-
ton et al. 2010, 2013, 2015) and the GENEC stellar evolu-
tion code (Eggenberger et al. 2008) have been used to cre-
ate the NuGrid data sets (Pignatari et al. 2016; Ritter et al.
2017b). The NuGrid data consists of stellar evolution tracks
for twelve initial masses and five metallicities. Each track
is made up of between 30,000 and 100,000 time steps. For
each time step profile information including at least density,
temperature, radius, mass coordinate, mixing coefficient, and
a small number of isotope abundances is saved. Each profile
has between 1,000 and 5,000 radial zones, and for all pro-
files all zones are written out. The data set also contains post-
processed data which reports profiles for about 1000 isotopes
every 20 time steps.

The time-dependent nature of stellar evolution simulation
output suggests for this data a particular structure. For each
saved time step, or cycle, a number of scalar quantities have
to be saved, as well as a number of profile vectors. A num-
ber of such cycles are combined into one data file, or packet.
The scalar quantities are the cycle attributes, the profile vec-
tors are the data columns, and each packet has a number of
header attributes which are repeated in each file and pro-
vide global information for the run, such as initial conditions,
code version used, units of quantities in the data columns or
cycle attributes, etc. This is the SE (Stellar evolution) data
format, shown schematically in Fig. 4 and, within NuGrid, is
currently implemented using the hdf5 data format.
SE output from MESA is written with NuGrid’s mesa h5

and then used for the post-processing simulations using Nu-
Grid’s NuPPN codes, which in turn write output again in the
SE format. Libraries and modules to write SE from Fortran,
C or Python are available20. SE data output can be explored
via data access, standard plots, visualisations, and standard
analysis procedures, using the NuGridPy21 Python package.

We want to accommodate three types of user:

• Internal users, including for example students, who are
less experienced in the analysis of the NuGrid simula-
tion data.

20 https://github.com/NuGrid/NuSE
21 https://nugrid.github.io/NuGridPy

https://hub.docker.com/u/cyberhubs
https://github.com/cyberlaboratories/astrohubs
https://github.com/NuGrid/NuSE
https://nugrid.github.io/NuGridPy

10

HEADER ATTRIBUTES
(attributes of the file; these are global properties of the model

and are fixed for all files in that model, e.g. the model name)

cycle0000020
(group)

CYCLE ATTRIBUTES
(group attributes; properties of the model at that cycle, e.g. age)

SE_DATASET
(dataset; typically between 5 and 10 columns
and the number of rows is a group attribute)

Lagrangian
coordinate of

the zone

Eulerian
coordinate

of zone
zone density zone

temperature

zone
diffusion

coefficient

array
containing
about 1000

isotopic
abundances

isomeric stateA Z
(datasets; one-column tables containing information about the contents of the

iso_massf columns in the SE_DATASET contained in each cycle group)

M25.0Z2.0e-02.0000001.out.h5
(HDF5 file; initial mass 25 M_sun, initial metallicity Z = 0.02)

cycle0000040
(group)

⋮

dataset

file

group

attributes

⋮
cycle0001000

(group)

Wednesday, 25 June 14

Figure 4. Schematic of SE data format for one-dimensional time-
dependent stellar evolution and explosion data.

• Users external to the collaboration to whom we would
like to provide the option to explore the NuGrid data
set to find answers to their specific research questions.

• Expert users who want to carry out NuGrid and/or
MESA simulations and analyse the simulation output
conveniently in the same location, and possibly share
run directories and workflows. These users can share a
common development platform that is exactly identical
to each participant who remotely accesses the platform
and all of its content.

The first two types of users are served by WENDI, while the
third requires additional compilers and libraries which are
delivered in mesahub.

4.1.1. WENDI

Web-Exploration for NuGrid Data Interactive WENDI pro-
vides

• python and bash notebooks, terminal and text editor;

• example notebooks; and

• self-guided graphical user interface (GUI) notebooks
(widgetized notebooks).

The WENDI widget notebook NuGridStarExplorer pro-
vides GUI access to plotting and exploring the NuGrid data
sets, specifically the library of stellar evolution and detailed
nucleosynthesis simulations. As an example, the evolution
of a low-metallicity, intermediate mass star is shown dur-
ing the Asymptotic Giant Branch evolution. The Kippen-
hahn diagram shows the Lagrangian coordinates of recur-
ring He-shell flashes, each of which drives a pulse-driven
convective zone. In the pulse-driven convective zone the
22Ne(α, n)16O reaction creates neutrons with neutron den-
sities reaching Nn ≈ 1012cm−3. At these neutron densities
s-process branchings, such as at 95Zr, are activated and the
neutron-heavy 96Zr is produced. Fig. 6 shows the isotopic
abundance distribution of s-process elements. Note, how the
mass fraction of 96Zr exceeds that of 94Zr in the shown model
at the end of the pulse-driven convective zone. In the 13C
pocket where the bulk of the s-process exposure takes place
94Zr/96Zr ≈ 600 because the neutron denisty is low and the
branching is closed. In the solar system 94Zr/96Zr = 6.2.
This demonstrates the different neutron density regimes of
the s process. Although this example is for low metal con-
tent, conditions at solar-like Z are similar. The solar system
abundance distribution originates from a mix of low- and in-
termediate mass stars, involving both the 13C and the 22Ne
neutron source, which each produce isotopic ratios in differ-
ent proportions (Gallino et al. 1998; Herwig 2005, 2013).

While the widget notebooks provide easy and powerful ac-
cess to the data, customized analysis may require the added
control of programming access to the platform. In order to
make it easy for users to get started analyzing the NuGrid
data we keep adding to a collection22 of short example anal-
ysis tasks, such as abundance profiles at collapse, or C13-
pocket analysis. All data and software dependencies of these
examples are satisfied on wendihub. Although users can
easily clone their own copy of any external repository, the
wendi-examples are preloaded in WENDI, and are a con-
venient starting point for further analysis. Users who create
an interesting new example are encouraged to fork the exam-
ple repository on the terminal command line, add their new
example and make a pull request to the original repository.
Although executing notebooks is just a matter of clicking the
play button, any further interaction for this type of notebook-
based analysis requires basic knowledge in Python.

Two additional widget notebooks23 are presently available
in WENDI. The OMEGA self-guided interface provides exam-
ple applications of the NuGrid Python Chemical Evolution
Environment (NuPyCEE, Ritter & Côté 2016) code One-
zone Model for the Evolution of Galaxies (OMEGA), such

22 https://github.com/NuGrid/wendi-examples
23 https://github.com/NuGrid/WENDI

https://github.com/NuGrid/wendi-examples
https://github.com/NuGrid/WENDI

11

Figure 5. Self-guided exploration of the NuGrid stellar evolution
and yield data base via the graphical user interface NuGridStarEx-
plorer in WENDI. Kippenhahn diagram of a MZAMS = 3M� stellar
model with Z = 0.001, zoomed in around the core-envelope inter-
face where the He- (dashed, orange line) and H-burning (solid, blue
line) shells are located. Grey and blue areas mark convectively un-
stable regions and regions of energy generation. The isotopic abun-
dance distribution in the thermal pulse ending around model 16880
is shown in Fig. 6.

Figure 6. Mass-averaged isotopic abundance distribution of the
pulse-driven convective zone for model 16880 of the MZAMS = 3M�

stellar model with Z = 0.001 shown in Fig. 5. The abundance dis-
tribution shows the stable isotopes for the first- and second-peak
s-process elements (see text for more details).

as models for dwarf galaxies Fornax, Carina and Sculptor.
For OMEGA WENDI allows arbitrary, complex program-
ming of analysis through ipython notebooks as well. For ex-
ample, the top panel of Fig. 7 shows that NuGrid massive star
yields overproduce some iron-peak elements like Cr and Ni,

12

but produce a consistent amount of other elements like Ti, V,
Cu, and Ga. Further analysis of the yield source as shown
in the IMF-weighted yields (bottom panel) reveals that the
overestimation of Cr in the galaxy evolution models origi-
nates from the 20M� model at Z = 0.01. This analysis tool
allows to identify sources of discrepancies between numeri-
cal predictions and observations. In this case, further anal-
ysis of the underlying stellar evolution model using similar
approaches as those demonstrated below for intermediate-
mass stars, that will be presented elsewhere in more detail,
connects this overproduction of some iron-group elements to
the convective merger of an O-Si shell in the stellar evolu-
tion model that may not be realistic. This analysis can be
performed by anyone on WENDI, and is available there in a
notebook as part of the pre-loaded WENDI examples24.

Another widgetized notebook provides an interface for
Stellar Yields for Galactic Modelling Applications (SYGMA,
Ritter et al. 2017a), which allows to generate simple stel-
lar population models and retrieve chemical yields among
other properties in table formats that can be used as build-
ing blocks for GCE models or hydrodynamic simulations of
galaxy evolution. The SYGMA section of WENDI also con-
tains a folder with notebooks25 that run the SYGMA code
and generate all plots shown in the SYGMA code paper Rit-
ter et al. (2017a). This serves as an example how cyberhubs
can be a tool in support of the goal of reproducible science,
by providing not only access to data and code, but also to the
capability to execute the analysis on the data in a controlled
and specified environment.

A technical detail concerns how the widget notebooks are
launched. The cyberhubs configuration allows automatic
self-start up that hides Python code cells, creating a rela-
tively polished final experience. For this to work, the wid-
get notebooks have to be designated as trusted. Jupyter ref-
erences a database in a notebook signatures database file
which contains instances of the notebooks that are config-
ured to be trusted. In order for a notebook to be trusted, the
raw .ipynb notebook file must exactly match the file used to
sign said notebook in the database. This system implemented
by JupyterHub is rather sensitive to minute changes in the
notebook, and does not easily incorporate notebook updates
and preserve the trusted state of the previously signed note-
book. In order to ensure flexibility of the application hubs
with trusted notebooks in their respective singleuser images,
even after a notebook has been updated, a bash script is used
to trust the notebooks in the state that they exist when staged.

24 https://github.com/NuGrid/wendi-examples/blob/master/

Stellar\evolution\and\nucleosynthesis\data/Examples/

Solar_abundance_distribution.ipynb
25 https://github.com/NuGrid/NuPyCEE/tree/master/DOC/

Papers/SYGMA_paper

20 22 24 26 28 30 32 34
Z (charge number)

10 10

10 8

10 6

10 4

10 2

X
(m

as
s f

ra
ct

io
n)

Ti

V

Cr

Mn

Fe

Co

Ni

Cu

Zn

Ga

Solar
All sources
Massive
SNe Ia
AGB

5 10 15 20 25
Stellar initial mass [M]

10 3

10 2

10 1

Cr
 IM

F-
we

ig
ht

ed
 y

ie
ld

s [
M

] Z=0.02
Z=0.01
Z=0.06

Figure 7. Top: Elemental abundance distribution of the Galactic
gas, when the Sun formed, predicted by the chemical evolution code
OMEGA using NuGrid yields for low-mass and massive stars and
Thielemann et al. (1986) yields for Type-Ia supernovae (SNe Ia).
The solar distribution is taken from Lodders et al. (2009). The blue
(dashed with triangles), red (dashed with squares), and green (solid
with crosses) lines represent the individual contribution of massive
stars (winds and core-collapse supernovae), SNe Ia, and low-mass
stars, respectively. The orange solid line shows the combined con-
tribution of all sources. Bottom: Cr yields weighted by the initial
mass function as a function of stellar mass for different metallici-
ties (different colors) in a 10000M� simple stellar population, using
NuGrid yields and the SYGMA code. The contribution of SNe Ia is
not shown in this panel.

This ensures that even if a notebook has changed remotely
prior to building a singleuser application hub with a refer-
ence to an outdated signatures database, the database will be
updated automatically. This script contains a series of paths
to the notebooks in the singleuser environment that the user
requires to be trusted. When its run, it signs the notebook
signatures database file in the singleuser notebook directory.

https://github.com/NuGrid/wendi-examples/blob/master/Stellar\ evolution\ and\ nucleosynthesis\ data/Examples/Solar_abundance_distribution.ipynb
https://github.com/NuGrid/wendi-examples/blob/master/Stellar\ evolution\ and\ nucleosynthesis\ data/Examples/Solar_abundance_distribution.ipynb
https://github.com/NuGrid/wendi-examples/blob/master/Stellar\ evolution\ and\ nucleosynthesis\ data/Examples/Solar_abundance_distribution.ipynb
https://github.com/NuGrid/NuPyCEE/tree/master/DOC/Papers/SYGMA_paper
https://github.com/NuGrid/NuPyCEE/tree/master/DOC/Papers/SYGMA_paper

13

WENDI is provided by the wendihub docker image that
can be found on docker hub (cyberhubs/wendihub) as well
as in the astrohubs GitHub repository26.

4.1.2. NuGrid / MESA experts

The third of the above cases adds the requirement to in-
stall and run multi-core, parallel simulations. The NuGrid
collaboration uses the MESA code that uses OpenMP to pro-
vide shared memory parallelism scaling to up to ≈ 10 cores.
Like many sophisticated simulation codes MESA relies on a
significant number of dependencies. The installation pro-
cesses has been significantly eased with the MESA-SDK. Still,
installation can be a challenge, especially for inexperienced
users. The NuGrid code NuPPN for single-, multi-zone and
tracer particle processing adopts MPI parallelism and exhibits
good strong scaling to ≈ 50 cores for typical 1D multi-
zone problems. Both applications are compiled with the
gfortran compiler, and require hdf and se libraries, as well
as numerical libraries, such as SuperLU and OpenBLAS. The
singleuser application mesahub combines the compilers, li-
braries and environment variable settings needed to install
and run MESA and NuGrid simulation codes, and proba-
bly several other codes with the same requirements. The
presently latest mesahub docker image (version 0.9.5) runs
the NuGrid codes NuPPN/mppnp for parallel multi-zone sim-
ulations, and NuPPN/ppn for single-zone simulations, and
has been tested for MESA versions 8118, 8845, and 9331.
It should be straight-forward to update this application to ac-
commodate newer as well as older MESA versions. The re-
sources of the entire host machine can be accessed by each
user through their application docker container. We are cur-
rently running cyberhubs on several servers, including one
instance on a virtual workstation with 16 cores and 120GB
memory which allows several concurrent MESA runs as well
as using all 16 cores for NuPPN multi-zone simulations.

In addition, this application includes a wide range of
Python packages for data analysis, including NuGrid’s
NuGridPy tool box. The application also includes com-
mon command-line editors and a complete LATEX installation
that allows manuscript generation, complemented with the
browser’s pdf viewer. Jupyter extensions that allow easy
generation of interactive slide shows from notebooks for pre-
sentations are included. It is therefore possible to perform all
steps needed for a research project just inside the mesahub
application.

4.2. PPMstar

Another application that we want to highlight is the
PPMstarhub which provides analytic access to stellar hy-
drodynamics simulations (Herwig et al. 2014; Woodward

26 https://github.com/cyberlaboratories/astrohubs

et al. 2015; Jones et al. 2017). The challenges in this case are
a combination of very large data sizes and the benefits from
using legacy software in a shared environment. This section
starts with a historical perspective that provides context for
the current development described in this paper.

4.2.1. Data representation strategies for 3D hydrodynamics
simulations with PPMstar

Over many years, the team at the University of Min-
nesota’s Laboratory for Computational Science & Engineer-
ing (LCSE) has developed a series of tools to deal with the
voluminous data that is generated by collections of large 3-D
fluid dynamics simulations. The LCSE was formed in 1995,
but the activity began in 1985 as a result of the University of
Minnesota’s purchase that year of the largest and most pow-
erful supercomputer then available, the Cray-2. Only 3 of
these machines existed in the world at that time. This pur-
chase, coupled with the rarity at the time of academic re-
searchers with simulation codes capable of exploiting this
machine, produced an unprecedented opportunity. The uni-
versity had purchased the machine, but not a data storage sys-
tem. An early way around that problem for our research team
was to take advantage of a holiday sale of disk drives by Con-
trol Data, and later the purchase of a tape drive and a small
computer to drive it. With this experience, a long tradition of
ever greater data compression and development of data anal-
ysis and visualization tools began. At the time, there were no
data file format standards, nor were there tools, aside from
programs one could write oneself, to read such files. The
result of this combination of circumstances was that, in the
LCSE, we developed our own very powerful tools and tech-
niques to analyze and visualize 3-D simulation data. As the
field has grown, other groups have taken it upon themselves
to produce, enhance, and maintain such tools for community
use, which is a full-time activity that we chose not to engage
in. The infrastructure described in this article has provided a
framework in which we can embed our LCSE tools, giving
them an interface that can be quickly understood and utilized
by others through a Web browser. Python is the glue that con-
nects our utilities to the framework and to external users. All
this can now make our simulation data available to a commu-
nity of interested parties around the globe.

Simulations in three dimensions pose special challenges to
the understanding of the computational results. LCSE did not
embark on 3-D simulation until we heard from a Pixar rep-
resentative in the mid 1980’s about the invention of volume
rendering. Once we saw on a workstation screen the rotat-
ing image of the volume rendered water rat that constituted
the first demo of the technique, it was obvious to us that this
was the solution to the data exploration problem for our fluid
dynamics domain. Soon thereafter, we had our first volume
rendering program, written by David Porter, running on the
Cray-2. This new visualization technique (Porter & Wood-

https://github.com/cyberlaboratories/astrohubs

14

ward 1989; Ofelt et al. 1989) prompted the conversion of our
2-D hydrodynamics code to do 3-D simulations. Initially,
we tried to save as much of our simulation data as we pos-
sibly could, because 3-D fluid dynamics simulation was so
new that we thought that we could not possibly predict what
representations of the data we might later wish to make. We
quickly discovered that we could compress saved data down
from 64 to 16 bits per number, saving a factor of 4 in data
volume. Even so, the data volume was enormous. Decades
of experience with visualizing and analyzing 3-D simulation
data (Woodward 1992a,b, 1993; Tucker & Woodward 1993)
have led us to the approach described below that is connected
to the Python-based cyberhubs framework described in this
article.

Our simulations fall into fairly simple categories, such as
homogeneous turbulence, stellar convection in slab or spheri-
cal geometry, or detailed studies of multifluid interface insta-
bility growth in slab or spherical geometry. In each category,
we do many simulations that all have common features. This
has meant that after the first few simulations are completed,
we have a very clear idea of what data we want to preserve
and what visualizations we want to make of the flows in any
new category. We have also developed highly robust nonlin-
ear maps from the real line, or the positive real line, to the
interval from 0 to 255. Each such map is determined by an
initial functional transformation, such as a logarithm, for ex-
ample, followed by the standard nonlinear map given by the
values of just 2 constant parameters. Such mappings of sim-
ulation data to the 256 color levels used in volume rendering
can work over all the runs in a single category of simulations
without any modification. This is not only tremendously con-
venient, but it also allows direct and meaningful visual com-
parisons of data from different runs. It turns out that certain
color and opacity maps can work well for a particular sim-
ulation variable, such as vorticity magnitude, over an entire
category of runs without any modification. These to some
degree unexpected findings have profound consequences for
data compression.

The robustness of nonlinear mappings from the real line
to color levels allows us to have our codes dump out only a
single byte per grid cell per variable field. This is an enor-
mous savings in data volume. It can only be helpful if one
can know before doing the simulation which variables are
useful for visual exploration of the simulation results. One
can save even more data volume if one knows which views
of such variables one wants to preserve. Such images can
then be compressed further by standard image file formats.
Making this data compression also requires that one know
the color and opacity mapping one wishes to use. After a run
is completed, these images can now be animated using stan-
dard movie making software, such as mencoder, that have
replaced our own movie animation software. However, to

save only images and not the much more voluminous raw
voxel data, one must build the volume renderer into the sim-
ulation code. We have done this using the srend software
package (Wetherbee et al. 2015). In this way rendering with
srend happens right in the code rather than as a separate
activity as part of a complex workflow, which has many ben-
efits. The full-resolution voxel data need never be written
to disk at all, although, for now, we still write this out just
in case. This new capability replaces the previous workflow
involving the LCSE HVR volume renderer that required slow
and difficult data format conversion, GPUs, and special soft-
ware libraries to run. srend is written in Fortran, is compiled
along with the simulation code, and it has no dependencies
upon software libraries. Using either the new srend capa-
bility or the previous HVR volume renderer, our strategy is to
create default image views of a pre-defined set of variables
for all dumps. These image libraries are available through
the cyberhub.

Even if we were to continue to save full-resolution voxel
data, these data sets are very clumsy to work with due to
their sheer size of 45GB per dump depending on how many
variables are saved. At the same time, a flexible capabil-
ity to make any visualization of any variable after the sim-
ulation is highly desirable. We accomplish this by perform-
ing an additional data compression. This final data compres-
sion has evolved from our use of simulation data to validate
and develop statistical models of turbulence (Woodward et al.
2006).

Turbulence closure models deal in averages. They tend
to be based on comparisons of averages of products and the
products of the corresponding averages. To work with such
models in the early 2000s, we used averages of our simula-
tion data taken over cubes 32 cells on a side. Our filter rep-
resented the behavior of a quantity inside the filter cube by a
quadratic form determined by the 10 lowest order moments
of the quantity. This filtering technique was derived from
our work with the PPB advection scheme (Woodward 1986;
Woodward et al. 2015), which also works with the 10 lowest
moments. To be able to construct such filtered representa-
tions using a moving filter volume, from our simulations we
saved averages of many different variables taken over cubes
4 grid cells on a side. We saved these with 16-bit precision,
after first passing them through our robust nonlinear maps.

Our present simulation codes all now work with fundamen-
tal data structures consisting of briquettes of 4 grid cells on a
side. The problem domain is subdivided into regions, which
are rectangular solids, and the regions are subdivided into
grid bricks, which are smaller rectangular solids. Each grid
brick is a brick of briquettes, augmented all around by a sin-
gle layer of ghost briquettes from the 26 neighbor bricks.

For the storage required to save just one byte of data from
each grid cell in our simulation at any dump time level, we

15

8 7 6 5 4 3 2 1 0

log10 FV

0.00 0.01 0.02 0.03 0.04 0.05

| × u | / s 1

5
0

 0
0

0
 k

m

Figure 8. Volume renderings of the volume mixing fraction (left) of hydrogen-rich material pulled into the pulse-driven convective zone in a
2M�, low metallicity star and of the magnitude of vorticity (right) in this star. In the left column the back hemisphere of the star’s central region
is shown, while the vorticity images on the right render a thin slice through the 3D 4π simulation domain. The volume renderings at the top are
made using the full-resolution simulation data, while those at the bottom use the briquette-averaged data (see text for details).

can instead save, with 16-bit precision, 32 variable aver-
ages for each grid briquette of 64 cells. 32 variables is so
many that we can save several other quantities which require
differentiating the simulation data and are useful for model
building, in addition to storing variables that we nearly al-
ways look at. We include, for example, the magnitude of the
vorticity, the divergence of the velocity, and both volume-
weighted and mass-weighted averages of the velocity compo-

nents. The idea is that from the 32 quantities one could derive
almost anything one may need when analyzing the data.

Data cubes with the 32 variables representing each of the
216 or 512 regions of a large simulation are saved directly by
the code as it runs in separate disk files. In this way the ana-
lytic tools have immediate and targeted access to any desired
region. In practice, it has been somewhat a surprise how use-
ful the briquette-averaged data actually is. While a fine grid

16

is needed in order to advance the solution in time with high
accuracy, this same fine grid is not needed to represent the so-
lution. Volume-rendering from full-resolution images of the
mixing fraction and the vorticity are compared with render-
ings based on the briquette-averaged lower-resolution data
sets in Fig. 8. The full-resolution data consists of a single-
byte voxel value at each cell of the uniform Cartesian grid to
represent each variable we wish to volume render. For the
mixing fraction full-resolution means double resolution, i.e.
in this case 30723 voxels, due to the sub-grid resolving power
of the higher-order PPB advection scheme (see appendix of
Woodward et al. 2015). The high-resolution rendering of the
vorticity and other quantities is based on the grid-resolution
data. The lower-resolution renderings of both mixing frac-
tion and vorticity are based on data cubes with four times
fewer grid points along each axis. The 3843 data cubes con-
tain averages of 4×4×4-cell briquettes, which for the mixing
fraction represent 8 × 8 × 8 significant data values. The im-
ages shown on the top row of Fig. 8 use the full-resolution
data, and of course give the best representation. The most
important role of renderings and 3D visualisations is to al-
low a qualitative assessment of the flow, that will ultimately
guide quantitative model building. Even renderings based on
the 64-times less voluminous briquette-averaged data shown
on the bottom row still expose most of the key features of the
flow.

Fig. 8 shows the far hemisphere of the He-shell flash con-
vection or pulse-driven convective zone (similar to those
shown in Fig. 5 and Fig. 6, see §4.1) in a low-metallicity AGB
star. The inner core, including the He shell and a stable layer
above that contains H-rich, unprocessed envelope material,
is included in the simulation volume. The gas is confined by
gravity and also by a reflecting boundary sphere at a radius
of 33.5 Mm. The star is shown in the midst of a global os-
cillation of shell hydrogen ingestion (GOSH, Herwig et al.
2014). H-rich gas is entrained into the pulse-driven convec-
tive zone from just above the top of the convection zone, at
a radius of about 28 Mm. Waves of combustion involving
this mixed-in H and the 12C are propagating around the outer
portion of the pulse-driven convective zone. The convection
zone has been formed by the helium shell flash, with helium
burning located at the bottom of the convection zone, around
a radius of 13 Mm. The combustion of entrained gas at radii
around 17 Mm drives strong local updrafts, which greatly en-
hance convective boundary mixing as the combustion waves
propagate. This is of course best seen in a movie animation.

In Fig. 8, two counter-propagating wave fronts have re-
cently collided in the region of the lower-left, and a clearly
visible puff of entrained gas has been forced downward there,
helping to form what will soon become a shell of H-enriched
gas floating near the top of the convection zone. In the
images at the left the gas of the star’s carbon-oxygen core

as well as the helium-and-carbon mixture of the convec-
tion zone are rendered as transparent. The color map rep-
resents only the H-rich gas component, that initially is con-
fined to the stable layers above the convective boundary. At
the point of the simulation shown, some amount of the H-
rich fluid has been entrained into the pulse-driven convective
zone. From the assumed viewing perspective one sees the
lowest H-concentrations first. Where these, rendered dark
blue, are sufficiently low, one sees through them into the
more highly enriched gas. At this stage, the lower surface
of the newly formed shell of H-enriched gas is fairly easily
deformed as rising plumes of hotter, more buoyant gas tend
to force it aside as they decelerate and ultimately reverse their
upward flow. Ridges of dark blue in these images show the
lanes that separate neighboring upwellings. These ridges of
H-enriched gas are descending, pulling the gas from above
the convection zone deeper into the hot region below, where
the hydrogen will burn and drive new waves of combustion.
All of these key features are clearly discernible in the low-
resolution renderings shown in the bottom row of Fig. 8.

Volume renderings of the vorticity magnitude (right col-
umn, Fig. 8) reveal a thin, highly turbulent region at the front
of the descending puff of entrained gas at the lower left. A
typical, unstable shear layer induced by boundary-layer sep-
aration (Woodward et al. 2015) can be seen in the upper right
quadrant. These features have been identified as an important
component of the 3D entrainment mechanism at boundaries
that are Kelvin-Helmholtz stable according to the 1D radial
stratification. The images based on the briquette-averaged
data gives a fuzzy, slightly out-of-focus impression. But they
still clearly reveal these key features of the flow, and, when
such images are animated, their dynamics.

Another more quantitative example of how the briquette-
averaged data can be used is shown in Fig. 9. Even at a
moderately-sized grid of 7683 the down-sampled data pro-
vides a good initial impression of the overall structure of
the flow at a computational- and data-related cost that can
be easily accommodated in the analysis scenario of the
PPMstarhub. For the overall speed profile the low- and
high-resolution data representations can hardly be discerned.
Even when zooming in to the upper convective boundary the
low resolution data provides meaningful exploratory infor-
mation.

4.2.2. The PPMstar application hub

We have used the cyberhubs technology to build the
PPMstarhub application which is addressing several issues.
The PPMstar simulations of stellar convection are performed
on the Blue Waters computing system at the NCSA center on
as many as 400,000 cores. The resulting data sets are in their
own way unique, similar to astronomical surveys. Although
our team is exploiting them for their primary scientific pur-

17

10
20
30
40
50
60
70
80

|u
| /

 km
 s

1

4 5 6 7 8 9
r / Mm

0

10

20

30

40

50

|u
| /

 km
 s

1

full-resolution
briquette-averaged

7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4
r / Mm

0

10

20

30

40

50

|u
| /

 km
 s

1

full-resolution
briquette-averaged

Figure 9. A center-plane slice showing the convective speed from
the 7683-grid O-shell convection simulation D1 presented by Jones
et al. (2017), based on briquette-averaged 3D data (top panel), as
well as spherically averaged profiles based on full-resolution data
and on briquette-averaged data.

pose, there are potentially a number of additional questions
that these data sets could answer. Sharing the raw data by
just making it available for download is impractical due to
the size of the data, as well as the specialized analytic tools
that are needed to access and explore the data. cyberhubs
allows us to expose to interested users these simulation data
sets together with our specialized software stack for analysis.

Over the years, a full range of tools have been developed
at the LCSE that exploit the briquette data sets, both for vi-
sualization as well as for further analysis that would be in-
volved, for example, in model building. As mentioned above,
such models could be turbulence models, or mixing mod-
els, to ultimately be deployed in 1D stellar evolution models.
These tools are now available along with access to several
of our published data sets to interested users through PPM-
starHub27.

In addition, we have developed additional new Python-
based analytic tools that work with the briquette data as well
as with single and multiple radial profile data. These, along
with collections of example notebooks are available on the
PPMstar GitHub repository28. Specifically, the examples in-
clude notebooks that contain the analysis of all plots shown
in our recent study on stellar hydrodynamics of O-shell con-
vection in massive stars (Jones et al. 2017), as well as the
notebooks of our project of simulations of low-Z AGB H-
ingestion into a thermal-pulse He-shell flash (Woodward et
al., in prep). All of these example notebooks are staged on
our PPMstarHub server where the necessary data sets are
staged as well, so that interested users can follow our data
analysis. This is an example of how cyberhubs can play an
essential role in making scientific analysis of raw simulation
or observational data more transparent and accessible, and
the process of data analysis reproducible.

4.3. How to add new applications

The previous sections have described two use cases that
have guided the requirements for cyberhubs. Adopting
cyberhubs for a different application would start either with
the corehub application, or with one of the already existing
applications. One would modify the requirements files that
specify the Python and Linux software stack, and, following
the examples provided, add any custom software and tools
required. For example, we have built a basic cyberhubs ap-
plication image for machine learning (mlhub) and intend to
evolve this into a StarNet application for users and develop-
ers. StarNet is an application of deep neural networks for
the analysis of stellar spectra and especially abundance de-
termination (Fabbro et al. 2017). If one builds a StarNet hub
on top of WENDI hub users could perform combined anal-

27 https://hickory.lcse.umn.edu
28 https://github.com/PPMstar

https://hickory.lcse.umn.edu
https://github.com/PPMstar

18

ysis of stellar abundance determination and interpretation of
these abundances using, for example, the NuPyCEE tools.

We have also created targeted application for teaching spe-
cific courses, such as the second-year computational physics
and math course29 at the University of Victoria, that we are
currently teaching with 90 students on the mp248 application
that can be optionally launched on the server that also offers
the WENDI application.

5. CONCLUSIONS

Leveraging dockers, jupyterhub, jupyterlab and jupyter
notebook, we designed, implemented and deployed the
cyberhubs system. It provides collaborations and research
groups with a common collaboration platform in which data,
analytic tools, processing capacity as well as different levels
of user interactions (Python or bash notebooks, terminals,
GUI/widget notebooks). cyberhubs adopts a simple, flexi-
ble and effective access and authorization model.

The system is easy to deploy, to customize, and is already
in production. By pulling a docker image, cloning a GitHub
repository and specifying a few environment variables, ad-
ministrators can launch VREs for their users. Existing core
or more advanced application hub images can be customized
to suit specialized needs. In addition to the basic corehub,
our specialized hubs are in production and used for collabo-
rations such as NuGrid and PPMstar, as well as in the class
room teaching classes with dozens of students.

5.1. Limitations and future development

As with any multiuser platform, the cyberhubs require
designated personnel to administrate and maintain, though
the deployment of our hubs is straight-forward. The fact that
we are dealing with leading edge technologies makes the
system susceptible to major changes at any time. We have
protected cyberhubs to some degree by enforcing version-
locking of each included Python and Linux software pack-
age. Although we have frozen the pip and apt requirements
by specifying for each component the version to be used at
build time to avoid package incompatibility issues, security
updates of any package may require the users to update the
system. Another limitation of the system is that it does not
scale with the number of users, and does not offer resource
allocation or scheduling capabilities. As the number of users
increases, a cyberhub may run out of resources and larger
servers may become necessary. Therefore, we are explor-
ing Docker Swarm and Kubernetes to scale the resources and
schedule containers into distributed resources. Volume selec-
tion is also an important feature that we plan to add. Depend-
ing on the credentials of a user, we are interested in ensuring

29 https://github.com/cyberlaboratories/teachinghubs,
https://hub.docker.com/r/cyberhubs/mp248

that the user has access to special/private volumes. We also
plan to add letsencrypt capability to our hubs so that ad-
ministrators are freed from dealing with SSLs directly.

We invite those who are creating new application hub im-
ages to share these through adding the build files to the
astrohhubs GitHub repository and to submit such images
to be pushed to the cyberhubs Docker Hub organisation
cyberhubs.

The cyberhubs project is building on a previous Canarie
funded CANFAR project Software-as-a-service for Big Data
Analytics in which the first version of WENDI was built
with pre-JupyterHub tools. Further funding was provided
by NSERC USRA, NSERC Discovery, EcoCanada and the
National Science Foundation (NSF) under Grant No. PHY-
1430152 (JINA Center for the Evolution of the Elements).
Previous undergraduate students in the Coop program of
the Department of Physics and Astronmy at the University
of Victoria who have directly or indirectly contributed are
William Hillary and Daniel Monti, who developed the initial
versions of the NuGridPy software. Luke Siemens has made
significant contributions to an initial version of the new, and
more general version of WENDI based on JupyterHub. The
data sets and software tools in NuGrid’s WENDI cyberhub
were developed by members of the NuGrid collaboration
(http://www.nugridstars.org). The motivation for this pa-
per described in the introduction was previously expressed,
in part, in CANFAR’s CFI proposal ”Astronomy Cyber-
laboratories Platform”, PI Falk Herwig, submitted in Octo-
ber 2017. We also acknowledge support for our large simu-
lations on the Blue Waters machine at NCSA with PPMstar
from NSF PRAC awards 1515792 and 1713200, and support
for work at Minnesota on these simulations and construction
of means to serve and share the data from NSF CDS&E grant
1413548.

Software: Juypter notebook http://jupyter.

org, Jupyterlab https://github.com/jupyterlab,
VOspace http://www.canfar.net/en/docs/storage,
vos https://pypi.python.org/pypi/vos, VirtualBox
https://www.virtualbox.org, JupyterHub https://
jupyterhub.readthedocs.io/en/latest/, ipywidgets
https://ipywidgets.readthedocs.io, NuPyCEE http:
//nugrid.github.io/NuPyCEE, NuGridSetExplorer

https://github.com/NuGrid/WENDI, hdf5 https:

//www.hdfgroup.org, Cyberlaboratories cyberhubs
https://github.com/cyberlaboratories/cyberhubs,
Cyberlaboratories astrohubs https://github.com/
cyberlaboratories/astrohubs, Cyberhubs Docker

repository https://hub.docker.com/u/cyberhubs,
Docker https://www.docker.com, NOAO data lab

http://datalab.noao.edu, ansible https://www.
ansible.com, puppet https://puppet.com, mesa h5

https://github.com/cyberlaboratories/teachinghubs
https://hub.docker.com/r/cyberhubs/mp248
http://jupyter.org
http://jupyter.org
https://github.com/jupyterlab
http://www.canfar.net/en/docs/storage
https://pypi.python.org/pypi/vos
https://www.virtualbox.org
https://jupyterhub.readthedocs.io/en/latest/
https://jupyterhub.readthedocs.io/en/latest/
https://ipywidgets.readthedocs.io
http://nugrid.github.io/NuPyCEE
http://nugrid.github.io/NuPyCEE
https://github.com/NuGrid/WENDI
https://www.hdfgroup.org
https://www.hdfgroup.org
https://github.com/cyberlaboratories/cyberhubs
https://github.com/cyberlaboratories/astrohubs
https://github.com/cyberlaboratories/astrohubs
https://hub.docker.com/u/cyberhubs
https://www.docker.com
http://datalab.noao.edu
https://www.ansible.com
https://www.ansible.com
https://puppet.com

19

https://github.com/NuGrid/mesa_h5, Python https:
//www.python.org, MESA http://mesa.sourceforge.
net, WENDI http://wendi.nugridstars.org, OpenMP
http://www.openmp.org, MESA-SDK http://www.astro.

wisc.edu/˜townsend/static.php?ref=mesasdk, MPI
https://www.open-mpi.org, gfortran https://gcc.
gnu.org/fortran, SuperLU http://crd-legacy.lbl.
gov/˜xiaoye/SuperLU, OpenBLAS http://www.openblas.
net, mencoder http://www.mplayerhq.hu

REFERENCES

Eggenberger, P., Meynet, G., Maeder, A., et al. 2008, Ap&SS, 316,
43

Fabbro, S., Venn, K., O’Briain, T., et al. 2017, eprint
arXiv:1709.09182, 1709.09182

Gallino, R., Arlandini, C., Busso, M., et al. 1998, ApJ, 497, 388
Herwig, F. 2005, ARAA, 43, 435
—. 2013, in link.springer.com (Dordrecht: Springer Netherlands),

397–445
Herwig, F., Woodward, P. R., Lin, P.-H., Knox, M., & Fryer, C.

2014, ApJL, 792, L3
Jones, S., Andrássy, R., Sandalski, S., et al. 2017, MNRAS, 465,

2991
Jones, S., Herwig, F., Siemens, L., et al. 2014, poster contribution

at Nuclei in the Cosmos NIC XIII conference, available at
http://www.nugridstars.org/publications/

conference-contributions/

nuclei-in-the-cosmos-xiii/NIC_CADC_poster_best.

pdf

Lodders, K., Palme, H., & Gail, H. P. 2009, in Solar System
(Berlin, Heidelberg: Springer Berlin Heidelberg), 712–770

Ofelt, D., Porter, D., Varghese, T., et al. 1989, PPM Graphics
Tools, Tech. rep., Minnesota Supercomputer Institute

Paxton, B., Bildsten, L., Dotter, A., et al. 2010, ApJS, 192, 3
Paxton, B., Cantiello, M., Arras, P., et al. 2013, ASTROPHYS J

SUPPL S, 208, 4
Paxton, B., Marchant, P., Schwab, J., et al. 2015, ASTROPHYS J

SUPPL S, 220, 15
Pignatari, M., & Herwig, F. 2012, Nuclear Physics News, 22, 18
Pignatari, M., Herwig, F., Hirschi, R., et al. 2016, ASTROPHYS J

SUPPL S, 225, 24
Porter, D. H., & Woodward, P. R. 1989, in ACM SIGGRAPH

Video Review, Vol. 44, Volume Visualization State of the Art,
ed. L. Herr, 10-minute video segment: Simulations of
Compressible Convection with PPM

Ritter, C., & Côté, B. 2016, NuPyCEE: NuGrid Python Chemical

Evolution Environment, Astrophysics Source Code Library,

ascl:1610.015

Ritter, C., Côté, B., Herwig, F., Navarro, J. F., & Fryer, C. 2017a,

ApJS submitted, 1711.09172v1

Ritter, C., Herwig, F., Jones, S., et al. 2017b, MNRAS, submitted,

arxiv:1709.08677

Thielemann, F.-K., Nomoto, K., & Yokoi, K. 1986, A&A, 158, 17

Tucker, L., & Woodward, P. R. 1993, System Software and Tools

for High Performance Computing Environments (SIAM),

109–113, Paul Messina and Thomas Sterling, eds.

Wetherbee, T., Jones, E., Knox, M., Sandalski, S., & Woodward, P.

2015, in Proceedings of the 2015 XSEDE Conference: Scientific

Advancements Enabled by Enhanced Cyberinfrastructure

(ACM), Article No. 35. https:

//dl.acm.org/citation.cfm?doid=2792745.2792780

Woodward, P. R. 1986, in Astrophysical Radiation

Hydrodynamics, ed. K.-H. Winkler & M. L. Norman, Reidel,

245–326, online at http://www.lcse.umn.edu/PPMlogo

Woodward, P. R. 1992a, Segment of Art of Science program

broadcast nationally, PBS, Scientific American Frontiers,

produced at Showcase 92 exhibit at SIGGRAPH

Woodward, P. R. 1992b, in Proc. Supercomputing Japan, scientific

Visualization of Complex Fluid Flow, also available as

Minnesota Supercomputer Institute Research Report UMSI

92/233

Woodward, P. R. 1993, in IEEE Computer, Vol. 26

Woodward, P. R., Herwig, F., & Lin, P.-H. 2015, ApJ, 798, 49

Woodward, P. R., Porter, D. H., Anderson, S., Fuchs, T., & Herwig,

F. 2006, Journal of Physics Conference Series, 46, 370

https://github.com/NuGrid/mesa_h5
https://www.python.org
https://www.python.org
http://mesa.sourceforge.net
http://mesa.sourceforge.net
http://wendi.nugridstars.org
http://www.openmp.org
http://www.astro.wisc.edu/~townsend/static.php?ref=mesasdk
http://www.astro.wisc.edu/~townsend/static.php?ref=mesasdk
https://www.open-mpi.org
https://gcc.gnu.org/fortran
https://gcc.gnu.org/fortran
http://crd-legacy.lbl.gov/~xiaoye/SuperLU
http://crd-legacy.lbl.gov/~xiaoye/SuperLU
http://www.openblas.net
http://www.openblas.net
http://www.mplayerhq.hu
http://www.nugridstars.org/publications/conference-contributions/nuclei-in-the-cosmos-xiii/NIC_CADC_poster_best.pdf
http://www.nugridstars.org/publications/conference-contributions/nuclei-in-the-cosmos-xiii/NIC_CADC_poster_best.pdf
http://www.nugridstars.org/publications/conference-contributions/nuclei-in-the-cosmos-xiii/NIC_CADC_poster_best.pdf
http://www.nugridstars.org/publications/conference-contributions/nuclei-in-the-cosmos-xiii/NIC_CADC_poster_best.pdf
https://dl.acm.org/citation.cfm?doid=2792745.2792780
https://dl.acm.org/citation.cfm?doid=2792745.2792780

