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Nanomagnetic hyperthermia (NMH) is intensively studied with the prospect of cancer therapy. A major chal-

lenge is to determine the dissipated power during in vivo conditions and conventional methods are either invasive

or inaccurate. We present a non-calorimetric method which yields the heat absorbed during hyperthermia: it

is based on accurately measuring the quality factor change of a resonant radio frequency circuit which is em-

ployed for the irradiation. The approach provides the absorbed power in real-time, without the need to monitor

the sample temperature as a function of time. As such, it is free from the problems caused by the non-adiabatic

heating conditions of the usual calorimetry. We validate the method by comparing the dissipated power with

a conventional calorimetric measurement. We present the validation for two types of resonators with very dif-

ferent filling factors: a solenoid and a so-called birdcage coil. The latter is a volume coil, which is generally

used in magnetic resonance imaging (MRI) under in vivo condition. The presented method therefore allows to

effectively combine MRI and thermotherapy and is thus readily adaptable to existing imaging hardware.

PACS numbers:

I. INTRODUCTION

Cancer is one of the major death causes worldwide, with

several proven and being developed therapeutic methods1.

One promising cancer therapeutic method is hyperthermia.

It involves raising the temperature of the local environment

of a tumour, which results in an induced cell death2–7 due

to the large susceptibility of tumour cells to temperature as

compared to healthy ones. In addition, local heating may

enhance the efficiency of ionizing radiotherapy i.e. combin-

ing thermotherapy and conventional method is also a promis-

ing prospect. Hyperthermia using single domain magnetic

nanoparticles (MNPs) is intensively studied; MNPs absorb en-

ergy from an external source that is usually an alternating mag-

netic field (AMF).

The central quantity in MNP based hyperthermia is the ab-

sorbed power. It is related to the specific absorption rate, SAR,

or specific loss power, SLP through a normalization with the

MNP mass. SAR determines the efficiency of power absorp-

tion per unit sample mass, whose knowledge is important to

assess the chances of hyperthermia as clearly the uptake of

MNPs is limited in the organism. The classical definition of

SAR is based on calorimetric measurements and it is defined

as:8–10

SAR =
csms

mNP

dT

dt

∣

∣

∣

t=0

, (1)

where cs and ms are the specific heat and the mass of the sam-

ple, respectively, mNP is the mass of the MNPs and T is its

temperature. For in vitro conditions, the measurement of SAR

is crucial for the design of novel materials with a capability for

hyperthermia treatment. For in vivo studies, the most impor-

tant quantity is the temperature of the tissue itself which de-

pends on the absorbed power or the SAR therefore its knowl-

edge is required for designing the thermal dosage.

The conventional methods to determine the absorbed power

in ferrites use either the measurement of magnetization

curves8,9,11–13 or a more direct calorimetric method8–10,14. The

earlier involves an electromagnetic modeling of the irradiation

circuit and also the accurate knowledge of the magnetic prop-

erties of the ferrite material for the given irradiation frequency

and magnitude of magnetic field. In addition, this method re-

quires a highly homogenous AMF in a well defined geometry

that calls for oversized irradiating coils and therefore a low ef-

ficiency of the input power. The calorimetric method requires

to embed a non-metallic thermometer into the ferrite material

itself or in the surrounding tissue. However, it is difficult to

implement either of these methods in in vivo conditions and

the accuracy of the modeling is limited. In addition, the con-

ventional calorimetric method suffers from the so-called non-

adiabatic condition15 as it deduces the dissipated power while

attaining a finite temperature difference between the sample

and its environment. However, heat loss through heat con-

duction, convection, radiative loss, or evaporation15 strongly

limits the accuracy of this method.

Herein, we present a method which circumvents all these

limitations as it allows to determine the power absorbed dur-

ing ferrite based hyperthermia via a non-calorimetric method.

It is based on monitoring of the quality factor, Q of the irra-

diation circuit. We show that a change in Q upon placing a

ferrite sample in the resonator with respect to a suitable refer-

ence provides an accurate means of determining the absorbed

power. In addition, the method works well for small sized irra-

diation coils, i.e. the required input power can be significantly

lower than in conventional studies. We validate the method

by a comparison of the absorbed power with the theoretically

expected values and also by comparing the result on the ab-

sorbed power with the more standard calorimetric approach.

We also studied the method for a birdcage coil. The impor-

tance of this type of resonator is that it allows homogeneous

RF irradiation for animal models and is readily available in

magnetic resonance imaging (MRI) instruments.

http://arxiv.org/abs/1803.09077v2
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II. RESULTS AND DISCUSSION

A. Contactless assessment of dissipated power

The method to directly obtain the absorbed power in a hy-

perthermia relevant ferrite samples is based on measuring the

change in the resonator quality factor (or Q) after the ferrite

sample is introduced with respect to a reference situation. In

our proof of concept approach, we consider a resonator filled

with water as reference, however a more realistic study should

involve an phantom which is filled with an appropriate ar-

tificial tissue emulating (ATE) material16,17. In general, the

resonator Q is the ratio of the energy stored in the resonator

in the form of electromagnetic field and the power dissipated

during a time period of the electromagnetic oscillation. As

such, Q is an accurate measure of the power dissipated due

to the different mechanisms, such as e.g. ohmic losses in the

resonator material, dielectric losses in capacitive elements, ra-

diation from an inductive element, or dissipation in a sample

which is placed inside the resonator. A common method to the

determine the resonator Q is to measure the power reflected

from the resonator as a function of the irradiation frequency,

which typically yields a Lorentzian profile, whose full width

at half maximum gives ∆f and Q = f0/∆f , where f0 is the

resonator frequency18.

This gives:

Q = 2πf0
Energy stored in resonator

Power loss
=

f0
∆f

. (2)

This relation is also valid for a resonator, whose original

Q0, is reduced in the presence of a sample, to Qsample. Con-

servation of energy results in a well-known relation19,20:

Q−1

sample = Q−1

0
+ L, (3)

where L is a dimensionless quantity and is proportional to the

power absorbed in the sample.

This type of measurement inevitably requires the use of an

external circuit (also known as coupling of the resonator to the

environment) whose presence affects the measured Q (Ref.

18). In view of this, the literature distinguishes the quality

factor of an ideal, uncoupled resonator, or Q0 and that of a

coupled (or loaded) resonator, or QL with QL < Q0. A special

case is when the resonator is critically coupled, i.e. it does

not reflect power back to the source when it is irradiated on its

resonance frequency. Critical coupling is the only well defined

situation when Q0 can be measured with precision as for this

case QL = Q0/2. In practice, a reflected power of about 1%

(or in other words -20 dB) or smaller of the incoming power

is usually considered as a critically coupled situation and we

will also employ this threshold herein.

The power dissipated in the ferrite, Pferrite can be obtained

by measuring the quality factor in the presence of the ferrite,

Qferrite, and with the appropriate reference material, Qref. We

emphasize that for both measurements a near critical coupling

is required. We derive in the Supplementary Material that:

Pferrite = Pinput

(

1− Qferrite

Qref

)

, (4)

where Pinput is the power transmitted to the resonator. Eq. (4)

returns Pferrite = Pinput/2 when Qferrite = Qref/2, Pferrite ≈ 0
when Qferrite ≈ Qref, and Pferrite ≈ Pinput when Qferrite ≪ Qref

as expected. In principle, the radiative resonator loss could be

slightly modified upon inserting the sample into the resonator

but we neglect this effect. We validate Eq. (4) further below

by calorimetric measurements.

In the following, we discuss the utility of our method i) to

measure the absorbed power in the presence of ferrite in a sam-

ple and ii) for the measurement of SAR. In the absence of non-

linear absorption effects, the power dissipated in the ferrite is

proportional to the square of the RF magnetic field, which is

proportional to the electromagnetic energy stored in the res-

onator. The latter quantity is proportional to the quality factor.

We thus obtain for the resonator quality factor in the presence

of the ferrite:

1

Qferrite

=
1

Qref

+ k ·Qferrite, (5)

where factor k in Eq. (5) depends on the ferrite volume and

absorption properties, i.e. on the SAR. We note that a com-

mon mistake when calculating resonator Q in the presence of

a lossy sample is to neglect the effect of the sample absorption

itself, thus we often find 1

Qferrite
= 1

Qref
+ k ·Qref, which is only

valid when the sample loss is small.

Fig. 1 shows the curve which is obtained using Eq. (5)

with k = 10−4 and also the absorbed power as a function

of the resonator reference Q. Let σa denote the standard de-

viation of a = Pferrite/Pinput. This quantity solely depends

on the resonator Q values with the ferrite and without, i.e.

a = a(Qref, Qferrite) according to Eq. (4). The error propaga-

tion theory yields:

σ2

a =

∣

∣

∣

∣

∂a

∂Qref

∣

∣

∣

∣

2

σ2 (Qref) +

∣

∣

∣

∣

∂a

∂Qferrite

∣

∣

∣

∣

2

σ2 (Qferrite) , (6)

since the two Q measurements are uncorrelated. Given the

simple form of a = a(Qref, Qferrite), we obtain:

σ2

a

(1− a)2
=

σ2 (Qref)

Q2

ref

+
σ2 (Qferrite)

Q2

ferrite

. (7)

This formula allows for a practical estimate of the absorbed

power error in real life situations if the uncertainty of the Q
measurement is known. It is clear from Eq. (7), that the error

of the absorbed power, σa, is smaller when Pferrite → Pinput (or

a → 1) for a given sample loss. Fig. 1. demonstrates that in

principle this could be achieved with the use of a high Q refer-

ence resonator measurement. In practice, resonator Q values

are limited to a few hundred in the radio-frequency range (1-

100 MHz) due to various effects including electric dissipation

and radiative losses21.

The other area of interest for the proposed method is to de-

termine the SAR for a standard hyperthermia candidate ferrite

solution in laboratory conditions. Fig. 2 shows the variation

of the absorbed power for three various values of the quality

factor of the reference measurement as a function of varying

sample mass (solid lines). The curves show a non-linear vari-

ation of a = Pferrite/Pinput as a function of sample mass, which

is the result of the non-linear Eq. (5). Solving Eq. (5). for the

absorbed power ratio, a, we obtain:
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FIG. 1: Upper panel: The resulting resonator quality factor in the

presence of the ferrite as a function of the reference quality factor,

when calculated improperly (red curve) and self-consistently (black

curve). Lower panel: the absorbed power as a function of the refer-

ence quality factor for a fixed value of k = 10−4.

a = 1− −1 +
√

1 + 4kQ2

ref

2kQ2

ref

. (8)

Remarkably, the curves given by Eq. (8) solely depend on the

product kQ2

ref, i.e. they are universal and fall on one another

for different Qref values and varying sample absorption.

Fig. 2. also shows the absorbed power for a series of com-

mercial Fe3O4 solutions with varying ferrite content (sample

details are explained in the Methods section). The absorbed

power was deduced from measuring the resonator quality fac-

tors for the samples according to Eq. (4). Clearly, the data

follows well the expected non-linear curve, which attests the

validity of the present approach.

In practice, a series of measurements of Qferrite with vary-

ing ferrite mass allows to determine the SAR parameter. The

procedure is to first determine Qref, then measure Pferrite for

different sample masses from Qferrite. This approach yields a

constant SAR when the sample little perturbs the resonator Q
as the curves in Fig. 2. start linearly with the sample mass

since Eq. (8), when expanded around k = 0 yields:

Pferrite = Pinput

[

kQ2

ref +O
(

k2Q4

ref

)]

. (9)

Here, the SAR is identified as: SAR = PinputkQ
2

ref/mNP,

where mNP is in kilogram. It yields SAR in W/kg units. Here
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FIG. 2: The ratio of the power which is absorbed in the ferrite versus

the exciting power as a function of the sample loss factor, k, which is

proportional to the product of the SAR and sample mass for small k

values. Symbols show actual measurements for which the horizontal

axis was scaled to match best the theoretical curve.

we emphasize that our method does not estimate SAR but di-

rectly measures it as: SAR =
Pinput

mNP

(

1− Qferrite

Qref

)

, which con-

tains measured parameters only.

This approach to obtain a truly specific, i.e. a mass inde-

pendent SAR, breaks down when the ferrite sample strongly

affects the resonator Q. Then, one has to take into account the

non-linearity of the absorbed power curves and the obtained

SAR is reduced correspondingly.

We note that the reference measurement (i.e. determination

of Qref) plays a crucial role in order to obtain the extra power

dissipated due the presence of the ferrite material. The best

choice of reference measurement is a sample of the same ma-

terial (preferably with the same heat capacity) except for the

absence of the ferrite material itself.

B. Calorimetric validation of the method

We further validate the present method by a comparison of

the deduced absorbed power with direct calorimetric measure-

ments. In Fig. 3. we show the speed of sample temperature

warming multiplied by unit mass, y = ms
dT
dt

as a function of

the absorbed power, x = Pferrite. The quantity y is obtained

by monitoring the sample temperature whereas the absorbed

power is obtained using Eq. (4). from a measurement of the

resonator quality factors. In principle, the two quantities are

related by:

ms

dT

dt
=

Pferrite

cs

(10)
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FIG. 3: The speed of warming per unit mass as determined from

calorimetry for various sample concentrations as a function of the

absorbed power as obtained from Eq. (4) (100% sample is the most

concentrated as-received solution). The straight line is not a fit to the

data but has a slope of (4.2 J/gK)−1
, i.e. it is a calculation using the

specific heat of water. Note the excellent agreement between the data

points and the calculation.

Fig. 3. shows a solid line: y = x/cs which is a calculated

assuming cs = cwater ≈ 4.2 J
gK

, i.e. that the sample consists of

entirely water. It is worth noting that this approximation works

well as the specific heat of the solution is much higher than

that of the MNPs, which is the case for water. Although this is

clearly an oversimplifying assumption, the experimental data

points fall remarkably on this straight line.

Eq. (10) highlights a major difference between the calori-

metric measurement and the present method: the earlier re-

quires to monitor the time dependence of sample heating and

is therefore prone to non-adiabatic heating conditions, which

are detailed in Ref. 15. Heat transfer effects from the sample

to the environment through heat conduction, convection, or ra-

diative losses greatly limit accuracy of calorimetry. However,

the present method allows to monitor the power dissipated due

to the presence of the ferrite in real-time, i.e. even its variation

with the sample temperature could be obtained.

C. Experimental validation on a birdcage resonator

The so-called birdcage coil is a well-known type of RF res-

onators which are used extensively21–24 in magnetic resonance

imaging. It was first recommended by Hayes et al. for such

purposes in 1985 (Ref. 25). The primary reason for its util-

ity in MRI is that a birdcage coil sustains a homogeneous RF

magnetic field over a relatively large sample volume26. The

field direction is perpendicular to the coil axis when it is driven

with a single RF signal however when driven with a quadra-

ture RF signal, the bridcage coil produces a circularly rotating

magnetic field, in contrast to e.g. a conventional solenoid or a

surface coil, where the magnetic field is linearly polarized27.
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FIG. 4: Resonant modes of the 8-leg birdcage resonator as ob-

tained from reflectometry (the magnitude of the S-parameter, |S11|,
is shown in dB units as a function of frequency). Note that the lowest,

k = 1 mode has the largest homogeneity, it is therefore used in MRI.

A zoom-in is also shown for this mode with and without the sample

(the reflection is shown on a linear scale). The overall schematics of

the low-pass birdcage resonator is also provided.

The clear advantage of this resonator for thermotherapy pur-

poses is that these are readily available as imaging coils and in

fact it could be used for irradiation straight on. To test the

applicability of our method for this type of resonator, we con-

structed a so-called low-pass birdcage resonator with 8 legs,

which is shown in Fig. 4. The low-pass construction means

that each leg is split into two by a capacitor of the same size (1

nF in our case). More details on the birdcage construction is

given in the Supplementary Material. An 8-leg birdcage res-

onator is known to have 4 resonant modes (reflection curve is

shown in Fig. 4.), of which the lowest frequency, k = 1, mode

sustains the most homogeneous RF magnetic field, therefore

it can be used for MRI. The Q factor of this mode is indeed

sensitive for the presence of a ferrite sample as Fig. 4. demon-

strates: the resonance curve is shifted and it is also slightly

broadened.

This type of coil is less sensitive to the same amount of fer-

rite sample than the solenoid due to the lower filling factor, η.

For the presented study, the sample was as small as filling only

2% of the birdcage volume, although the same volume would

fill about 50% of the solenoid volume. Correspondingly, the

sample induced Q factor change is much smaller. However,

the most important property of our method is that it provides

a sample or η independent information on the absolute value

of the absorbed power. This is clearly demonstrated in Fig.
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3.: therein, we compare calorimetric results (or temperature

change) with the absorbed power. The latter is calculated from

the Q factor change, using the method and the formula above.

The result is robust and it shows that the dissipated power can

be very accurately determined for the birdcage configuration

when the filling factor is inevitably small.

D. Limit of detection of the dissipated power

We discussed above, that the statistical error of the dissi-

pated power, σa (where we defined above a = Pferrite/Pinput)

depends on the error of Q measurement. It was shown previ-

ously that the relative error of the Q measurement, σ(Q)/Q,

is independent of the Q value and only depends on the applied

method18. In our case, it is σ(Q)/Q ≈ 10−3. This, combined

with our studies on the birdcage resonator, allows to give the

limit of detection for the dissipated power for the given fer-

rite sample (Fe3O4) for the birdcage resonator. We employed

a ferrite sample of 130 mg that gave a = Pferrite/Pinput =
0.030(1).

According to Eq. (7), we obtain σa = (1− a)×
√
2 · 10−3.

This means that this sample amount gives a dissipated power

which is 15 times larger than its error, i.e. a = 22σa. As a re-

sult, for the present birdcage coil, a sample of about 6mg is the

limit of detection for the absorbed power. This ferrite amount

is enormous even for a practical in vitro study. The amount of

required ferrite could be reduced either with the use of a ferrite

with an SAR larger than that of Fe3O4 or with the refinement

of the sensitivity of the present method. One has to consider

that we employed a commercial Fe3O4 sample and magnetic

nanoparticle materials with improved absorption, and as large

as ∼ 30 times larger SAR28, are available. This could sub-

stantially reduce the limit of absorbed power detection of our

method to sample amounts as low as 0.2 mg. In vivo ther-

motherapy studies in mice employ a typical sample amount

of 0.1-2 mg of magnetic nanoparticles14,29,30. This means that

our method provides a sensitivity of the absorbed power mea-

surement which could be used for in vivo thermotherapy stud-

ies.

Our above estimate of the accuracy of the dissipated power

measurement considers stochastic error sources only, and dis-

regards systematic errors related to e.g. reproducibility when

replacing the samples. However, the present method definitely

overperforms conventional calorimetric studies when small

absorbed power variations are to be monitored in-situ without

replacing the sample. In such cases, calorimetry is known to

have about ±5% error in determining the dissipated power15.

Conclusions

We presented a non-calorimetric method which yields the

absorbed power during nanomagnetic hyperthermia. This

method, when combined with more conventional chemo- or

radiotherapy, has growing significance in battling malignant

tissues. It is based on the accurate measurement of the qual-

ity factor of resonators, that is used to sustain the irradiating

radio frequency magnetic field. It represents an improvement

over existing methods for similar purposes as these are either

invasive or rely on an inaccurate modeling. The method al-

lows to obtain the dissipated power in real-time and is not lim-

ited by the so-called non-adiabatic conditions of conventional

calorimetric methods. We validate our method by comparing

the determined dissipated power, with data obtained with the

more conventional calorimetric approach. The method allows

for an alternative measurement of the specific absorption rate.

We also show that besides conventional solenoids, the method

performs well on birdcage coils; these are volume coils which

sustain a very homogeneous RF field and are important in

magnetic resonance imaging. We envisage that our method

paves the way for the use of existing imaging hardware for RF

based hyperthermia.

Methods

We used a commercial, water-based ferrite solution (Fer-

rotec EMG 705) which contains magnetite, Fe3O4. The pro-

ducer supplied volume fraction is 3.6% and its density is

1.19 g

cm3 . We refer to the as-received most concentrated sam-

ple as 100% sample. We prepared samples with a few different

concentrations by diluting it with de-ionized water with a den-

sity of 1 g

cm3 , the sample properties are provided in Table I.

The samples were placed inside cylindric test-tubes with outer

diameter of 5 mm and height of 30 mm.

FIG. 5: The RF reflectometry setup. The hybrid junction divides the

incoming RF power into 2 equal parts. One half is dissipated on the

50 Ω resistor, the other half enters the resonant circuit. By trimming

the tuning (CT) and matching (CM) capacitors, one can minimize the

reflection for a certain frequency. The reflected power is measured

using a broadband spectrum analyzer.

We studied two kinds of resonant circuits: a conventional

tank circuit31 which consists of a solenoid for the test-tube

studies and a so-called birdcage coil which is employed25 in

magnetic resonance imaging. High power/voltage trimmer ca-

pacitors (Voltronics Corp.) are used to match the circuits to 50

Ohm for efficient power transmission. The birdcage coil also

contains fixed chip capacitors which set its resonant frequency.

Quality factors were determined using RF reflectometry

with a 180 degree hybrid junction (ANZAC HH107) duplexer.

Fig. 5. shows the RF reflection setup and we discuss further

details of the RF reflectometry in the Supplementary Mate-

rial. We match the circuits to minimal reflection using a scalar



6

dilution rate magnetite mass (g) sample mass (g)

1 (original) 0.133 0.701

2 0.067 0.645

4 0.034 0.617

10 0.013 0.600

TABLE I: The weight and dilutions of the investigated samples.

network analyzer (SignalHound, model SA124B for spectrum

analyzer and TG124A tracking generator as source). To deter-

mine the resonator parameters accurately, we employ a swept

signal source (Siglent SDG 1032) combined with a power

detector (HP 8472B), which is connected to an oscilloscope

(Tektronix TBS 1042). Lorentzian curves are fitted to deter-

mine the resonant frequency, f0, and the linewidth, ∆f (which

is the full width at half maximum, FWHM) of the resonance

curve. The quality factor is obtained as Q = f0/∆f . This also

allows to average the reflected signal for a number of measure-

ments, which enables to determine the mean and variation of

the respective parameters.

The literature of resonators distinguishes20 the quality fac-

tor of the ideal, strongly undercoupled (β ≪ 1) resonator, Q0

and that of the coupled (or loaded) resonator, QL. When the

resonator is critically coupled (β = 1), i.e. there is no re-

flection from it (S11 = 0), QL = Q0/2. The losses in the

resonator can be due to dielectric, ohmic, and radiative losses.

The latter two dominates in our case as the capacitors have a

high quality factor (about 1000). The loaded quality factor or

QL is typically between 20-100 for a RF circuit, as in our case.

We use the terminology, Qferrite and Qref, for the loaded

quality factor of the resonator with and without the ferrite sam-

ple, respectively. This means that upon placing the sample un-

der study into the resonator, the matching has to be readjusted

to achieve zero reflection (S11 = 0). The power which is inci-

dent on the resonator, Pinput is divided between the loss in the

resonator and the loss in the sample as, Pferrite, therefore we

obtain for the latter quantity:

Pferrite = Pinput

(

1− Qferrite

Qref

)

. (11)

Eq. (4) returns Pferrite = Pinput/2 when Qferrite = Qref/2,

Pferrite ≈ 0 when Qferrite ≈ Qref, and Pferrite ≈ Pinput when

Qferrite ≪ Qref as expected. In principle, the radiative res-

onator loss could be slightly modified upon inserting the sam-

ple, but we neglect this effect.

The choice of a reference sample is crucial in our case. We

found that the most appropriate reference measurement can be

performed using a sample containing pure water only. The

reason is that water itself can give rise to a slight change in the

resonator properties.

We studied nanoparticle based hyperthermia around the 20-

30 MHz frequency range. Most hyperthermia studies use a

somewhat lower frequency. Our choice was motivated by the

frequency range of MRI (which is usually 30-120 MHz) and

the availability of well developed RF resonator techniques. In

addition, we present a proof of concept i.e. the choice of fre-

quency is somewhat arbitrary. We also note that an ongoing

research focuses on the use of magnetic nanoparticles as an

MRI contrast agent in addition to hyperthermia32,33.

We used a synthesized signal generator (Siglent SDG1025)

followed by a power amplifier (Amplifier Research 306781)

for irradiating the sample. The output power was cali-

brated with a power meter (Mini-Circuits PWR-SEN-6GHS).

Calorimetry was performed using a optical thermometer (Lux-

tron FOT LAB Kit) with an accuracy of 0.01 K and temper-

ature values were read out in every second. This allowed to

determine dT
dt

in the beginning of a heating cycle well before

temperature saturation sets in due to heat conduction toward

the environment. This value is then directly proportional to the

power absorbed in the solution containing the ferrites through:

Pabsorbed = csms
dT
dt

.
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18 Gyüre, B., Márkus, B. G., Bernáth, B., Murányi, F. & Simon, F.

A time domain based method for the accurate measurement of q-

factor and resonance frequency of microwave resonators. Review

of Scientific Instruments 86, 094702 (2015).
19 Poole, C. P. Electron Spin Resonance (John Wiley & Sons, New

York, 1983), 1983 edn.
20 Chen, L., Ong, C., Neo, C., Varadan, V. & Varadan, V. Microwave

Electronics: Measurement and Materials Characterization (Wi-

ley, 2004).
21 Harpen, M. D. Radiative losses of a birdcage resonator. Magnetic

Resonance in Medicine 29, 713–716 (1993).
22 Leifer, M. C. Resonant modes of the birdcage coil. Journal of

Magnetic Resonance 124, 51 – 60 (1997).
23 Giovannetti, G. Birdcage coils: Equivalent capacitance and equiv-

alent inductance. Concepts in Magnetic Resonance Part B: Mag-

netic Resonance Engineering 44, 32–38 (2014).
24 Lucano, E. et al. Assessing the electromagnetic fields gener-

ated by a radiofrequency mri body coil at 64 mhz: Defeaturing

vs. accuracy. IEEE Trans Biomed Eng 63, 1591–1601 (2016).

26685220[pmid].
25 Hayes, C., Edelstein, W., Schenck, J., Mueller, O. & Eash, M. An

efficient, highly homogeneous radiofrequency coil for whole-body

nmr imaging at 1.5 t. J. Magn. Reson 63, 622–628 (1985).
26 Ibrahim, T. S., Lee, R., Baertlein, B. A. & Robitaille, P.-M. L.

B 1 field homogeneity and sar calculations for the birdcage coil.

Physics in Medicine and Biology 46, 609 (2001).
27 Giovannetti, G. et al. A quadrature lowpass birdcage coil for a

vertical low field mri scanner. Concepts in Magnetic Resonance

Part B: Magnetic Resonance Engineering 22B, 1–6 (2004).
28 Bae, K. H. et al. Chitosan oligosaccharide-stabilized ferrimag-

netic iron oxide nanocubes for magnetically modulated cancer hy-

perthermia. ACS Nano 6, 5266–5273 (2012). PMID: 22588093,

https://doi.org/10.1021/nn301046w.
29 Heidari, M. et al. Effect of magnetic fluid hyperthermia on im-

planted melanoma in mouse models. Iran J Med Sci 41, 314–321

(2016).
30 Huang, H. S. & Hainfeld, J. F. Intravenous magnetic nanoparticle

cancer hyperthermia. Int J Nanomedicine 8, 2521–2532 (2013).
31 Fukushima, E. & Roeder, S. Experimental pulse NMR: a nuts and

bolts approach. The Advanced Book Program (Addison-Wesley

Pub. Co., Advanced Book Program, 1981).
32 Estelrich J, B. M., Snchez-Martn MJ. Nanoparticles in magnetic

resonance imaging: from simple to dual contrast agents. Interna-

tional Journal of Nanomedicine 10, 17271741 (2014).
33 Ravichandran, M., Velumani, S. & Ramirez, J. T. Water-

dispersible magnetite nanoparticles as t 2 mr imaging contrast

agent. Biomedical Physics and Engineering Express 3, 015011

(2017).



8

Appendix A: Derivation of the expression for the power

absorbed in the sample

We assume that the resonator which is loaded with the sam-

ple is critically coupled, i.e. maximum 1% of the power can

be reflected back to the source, or S11 is smaller than -20 dB.

This incoming power is thus nearly equal to the driving power

of the source, i.e. Pinput ∼ Psource. In the absence of added fer-

rite, the resonator quality factor is Qref and is filled with water

in our simplified case, or with a phantom filled with an appro-

priate artificial tissue emulating material. In the presence of a

ferrite material, the quality factor is lowered to Qferrite due to

the additional loss. The input power dissipation is divided be-

tween the resonator (this includes all kinds of losses also due

to the solvent in which the ferrite is dissolved) plus the ferrite

sample as:

Pinput = Presonator + Pferrite, (A1)

where Presonator and Pferrite denote the power dissipated in the

resonator and the additional ferrite, respectively. The ratio of

the two terms can be obtained from the respective quality fac-

tors:

Presonator

Pferrite

=
Q−1

ref

Q−1

ferrite −Q−1

ref

. (A2)

Solving these two equations yields:

Pferrite = Pinput

(

1− Qferrite

Qref

)

, (A3)

We also show in the main manuscript that the resonator

quality factor in the presence of the ferrite, Qferrite can be de-

duced as:

1

Qferrite

=
1

Qref

+ k ·Qferrite, (A4)

whose relevant solution is:

Qferrite =
−1 +

√

1 + 4kQ2

ref

2kQref

(A5)

This allows to obtain the absorbed power ratio, a =
Pferrite/Pinput = 1−Qferrite/Qref as

a = 1− −1 +
√

1 + 4kQ2

ref

2kQ2

ref

. (A6)

This function is plotted in the main manuscript. It is clear that

this function only depends on the product kQ2

ref, therefore its

shape is universal for the resonator loss problem.

Appendix B: Details of the quality factor measurement

Fig. 6. shows the results of reflectometry obtained us-

ing a scalar network analyzer and also the same type of data

obtained with a power detector. The earlier allows for a

Frequency (MHz)
24.5 25 25.5 26 26.5 27

R
ef

le
ct

io
n
 (

d
B

)

-50

-40

-30

-20

-10

Frequency (MHz)
24.5 25 25.5 26 26.5 27

R
ef

le
ct

io
n

0

0.2

0.4

0.6

0.8

1

empty

water

10× diluted

4× diluted

2× diluted

undiluted

FIG. 6: The reflection curves for resonators which are empty or filled

with samples. The upper panel shows the S11 reflection parameter

on log scale as obtained with the scalar network analyzer. The lower

panel shows the reflected power shown on a linear scale. Critical

coupling was achieved for all measurements.

more accurate determination of the quality of circuit match-

ing, whereas the latter allows for a better determination of the

resonator parameters, quality factor and resonant frequency.

In the latter measurement, a computer control also allows for

a repeated data acquisition which leads to a good estimate of

the mean and variance of these parameters.

Appendix C: Details of the calorimetric measurements
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FIG. 7: Temperature increase of the sample (solid curve). Green and

red circles indicate the start and the stop time of the RF irradiation.

Fig. 7. shows a typical time dependent heating curve us-

ing the RF irradiation. The apparently linear domain in T (t)
allows to determine the dT

dt
derivative using a linear fit onto

the the steepest part of the curve. It is important to mention

that there is a lag between the onset of temperature rise with

respect to the power turn-on due to the thermal inertia of the

sample. The warm up may also cause thermal circulations10

but this effect is neglected. The RF coil also warms up consid-

erably as we do not employ a cooling. Its effect is, however,

minimized by a good thermal isolation between the sample

and the coil. In practice, an RF coil for hyperthermal treat-

ment is made of copper tube with an appropriate cooling water

flow11. When this effect become significant, it may also lead

to an unwanted resonator detuning.
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Appendix D: Additional information on the birdcage resonator

C
M

FIG. 8: Photograph of the 8-leg low-pass birdcage coil. A trimmer

capacitor acts as circuit matching element.

Fig. 8. shows a photograph of the employed birdcage coil.

Note the low-pass construction of the coil, i.e. that capacitors

are in the middle of the legs. A trimmer capacitor (Voltron-

ics Inc.) is soldered to the coil which serves for the circuit

matching. It is important that the matching trimmer capacitor

is soldered as close as possible to the two electrodes of a ca-

pacitor as otherwise no perfect matching can be achieved. The

birdcage dimensions were designed to allow the irradiation of

a laboratory mouse, it has a diameter of 30 mm and length of

50 mm. The coil body is made of copper stripes with 3 mm

width and 1 mm thickness. The high-Q RF capacitors have

C = 1000 pF (type CORNELL DUBILIER - MC22FA102J-

F-CAP, 100V) with a variation of ±5% of which a few were

selected with ±1% capacitance variation.


