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Abstract

We prove the rather counterintuitive result that there exist finite transitive graphs H and

integers k such that the Free Uniform Spanning Forest in the direct product of the k-regular

tree and H has infinitely many trees almost surely.

This shows that the number of trees in the FUSF is not a quasi-isometry invariant. Moreover,

we give two different Cayley graphs of the same virtually free group such that the FUSF has

infinitely many trees in one, but is connected in the other, answering a question of Lyons and

Peres [LP16] in the negative.

A version of our argument gives an example of a non-unimodular transitive graph where

WUSF 6= FUSF, but some of the FUSF trees are light with respect to Haar measure. This

disproves a conjecture of Tang [Tan19].

1 Intro

The Free Uniform Spanning Forest FUSF is one of the most standard random spanning forests

of infinite graphs, obtained as the weak limit of the uniform random spanning trees UST in any

exhaustion of the infinite graph by finite subgraphs. In any transitive graph, its law is invariant

under the automorphisms of the graph. It may be regarded as the Free FK(p, q) random cluster

model with q = 0 at its critical point p = 0, it is a determinantal process, and is especially

interesting due to its connections to measurable group theory: in any Cayley graph of a group Γ,

its expected degree is 2 + 2β
(2)
1 (Γ), where β

(2)
1 (Γ) is the first `2-Betti number of the group, the von

Neumann dimension of the space of harmonic functions of finite Dirichlet energy. In particular,

we have the equality FUSF = WUSF with the Wired Uniform Spanning Forest iff β
(2)
1 (Γ) = 0. See

[BLPS01] and [LP16, Chapter 10] for thorough studies of the FUSF; some more recent papers are

[HN17, Tim18, AHNR18, HN19].

We will mostly work in the direct product graph Tk×H, where Tk is the k-regular infinite tree

with k ≥ 3, while H is a finite vertex-transitive graph. Typical examples are the product Cayley

graphs of the virtually free groups Fr × Γ, where Fr is a free group on r ≥ 2 generators and Γ is

a finite group. The FUSF on some tree-like graphs was recently studied, among other topics, in

[Tan19]. In particular, Tang proved that, for any k, the FUSF in Tk ×Z2 (where Z2 is the path on

2 vertices, i.e., a single edge) is connected almost surely; this was later generalized in [ABIT20+]

for an arbitrary fixed weight on the H-edges. Tang made the innocent-looking conjecture that the

connectedness holds more generally, for the direct product Tk ×H with any k ≥ 3 and any finite

transitive graph H (no edge weights). See Remark 5.9 in that paper. Here we are disproving this

conjecture.
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Theorem 1.1 (Disconnected FUSF). For every d there is kd such that if Tk is the k-regular infinite

tree with k ≥ kd, and H is a connected finite d-regular transitive graph on more than k5/2 vertices,

then the FUSF of Tk×H is disconnected almost surely. In fact, it has infinitely many components.

One striking corollary of our result is that the number of trees in the FUSF of Cayley graphs is

not a quasi-isometry invariant, as opposed to several similar properties: the number of trees in the

WUSF [LP16, Corollary 10.25], the property WUSF 6= FUSF [Soa93, BLPS01], or equivalently, the

infinite-endedness of all the FUSF trees (the equivalence follows from [Mor03] and [HN17, Tim18]).

(Note, nevertheless, that without transitivity of the graph the number of components is not a

quasi-isometry invariant even when WUSF = FUSF, as the example in [Ben91] shows.) With some

extra work, we prove here that the number of trees is not even the same for different Cayley graphs

of a fixed group (even though the expected degree of the FUSF depends only on the group, because

of the connection to β
(2)
1 (Γ)). This answers a question of Lyons and Peres [LP16, Question 10.50]

in the negative:

Theorem 1.2 (Dependence on the generating set). For k large enough, the group Fk × Zk9 (the

direct product of a free group and a cyclic group) has a Cayley graph (the direct product of the tree

T2k and the cycle Ck9) in which the FUSF has infinitely many components, and another Cayley graph

(the direct product of the tree T2k and the complete graph Kk9) in which the FUSF is connected.

To our knowledge, this is the first instance of a standard statistical physics model that shows

such non-universal critical behavior.

Another corollary of Theorem 1.1 is that although the FUSF might be connected in every

quasi-transitive (or more generally, unimodular random) planar graph (see [AHNR18] for a large

subclass), this for sure cannot be extended from planar graphs to an arbitrary minor-closed family.

This also means that a positive answer to [Tim19+, Question 8], extending treeability and soficity of

unimodular random graphs from the planar case to graphs with arbitrary excluded minors, cannot

be done via the strategy of [AHNR18], using the FUSF.

It should be mentioned that [LP16, Question 11.37] asks whether the Free Minimal Spanning

Forest FMSF is connected in any graph that is roughly isometric to a tree. A key difference from

our situation is that [LPS06, Theorem 1.3] says that the union of FMSF with an independent

Bernoulli(ε) bond percolation is always connected, for any ε > 0. This is something that we do not

know for the FUSF in our graphs, which also brings us to our next remark.

A well-known question of Damien Gaboriau [Gab02] is whether the so-called measurable cost

of any group Γ is equal to 1 + β
(2)
1 (Γ). He pointed out (see [LP16, Question 10.12]) that a positive

answer would follow if, in every Cayley graph and any ε > 0 there was a connected invariant

bond percolation ω that contains FUSF, but ω \ FUSF has density at most ε. Interesting examples

are the infinite Kazhdan groups: here β
(2)
1 (Γ) = 0, hence WUSF = FUSF, by [BV97]; thus non-

amenability together with [BLPS01, Theorem 13.7] imply that adding an independent Bernoulli(ε)

bond percolation does not work; on the other hand, adding some much trickier invariant percolation

does work [HP20, Remark 2.2]. In the examples of our Theorem 1.1, we have WUSF 6= FUSF

(because transitive graphs with infinitely many ends have harmonic functions with finite Dirichlet

energy), so it is tempting to speculate that they could provide a negative answer to Gaboriau’s

question. However, we have been unable to prove anything in this direction. In particular, it

remains open if any two trees in our FUSF touch each other at finitely many places, similarly to

Bernoulli percolation [Tim06] or WUSF clusters in Zd with d ≥ 9 [BKPS04].

Let us note that for any infinite transitive graph H, it has been known for long [BLPS01] that

the FUSF of Tk ×H has infinitely many components. More generally, in the direct product of any
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non-amenable transitive graph with any infinite transitive graph, there is no invariant probability

measure on the set of subtrees [PP00] (even without the requirement of being spanning trees).

However, for any finite transitive graph H, a uniform random translate of Tk gives an invariant

random subtree, hence a general non-treeability argument could not imply our Theorem 1.1. In

fact, all disconnectedness results on the FUSF that we know of have been obtained so far either by

proving that WUSF = FUSF and knowing that the WUSF trees are small (e.g., recurrent, hence one

or two-ended [Mor03]); or by noticing that even when WUSF 6= FUSF, the FUSF may be similar

to the WUSF, as in the free product Z5 ∗ Z2; or by a general non-treeability result, which applies

not only to the FUSF but to any invariant spanning forest. In contrast, our proof is in a treeable

group, specific to the FUSF, in a situation where WUSF 6= FUSF. The reason for having no earlier

FUSF-specific results is that this is quite a mysterious object: while the WUSF can be generated

in infinite graphs directly by Wilson’s algorithm rooted at infinity, using loop-erased random walks

[Wil96], or by the Interlacement Aldous-Broder algorithm [Hut18], no such method is known for

the FUSF. Indeed, we will use Wilson’s algorithm in finite balls of the graph, then take the limit.

As a follow-up to the present paper, the preprint [ABIT20+] studies the FUSF on direct products

Tk ×H with edge weights c ∈ (0,∞) for the edges of H. It is proved there that for any Tk ×H, if

c is large enough, then the FUSF is connected. This would immediately imply the connectedness

direction of our Theorem 1.2 if we allowed for weighted generating sets. However, getting a standard

unweighted generating set has some value: e.g., for Bernoulli percolation on nonamenable groups,

it was proved by [PSN00] that some weighted generating set has pc < pu, and it took fifteen years

to achieve the same result without weights [Tho15].

A version of our construction gives a counterexample to Conjecture 1.2 of [Tan19], in a strong

way. A transitive graph G, with full automorphism group Γ, is called unimodular if, for every pair

of neighbors x, y, we have |Γxy| = |Γyx|, where Γx = {γ ∈ Γ : γ(x) = x} is the stabilizer subgroup,

and Γxy = {γ(y) : γ ∈ Γx} is the orbit of y. For instance, every Cayley graph is unimodular. See

[LP16, Chapter 8] on background on unimodularity and its connections to invariant percolations.

For non-unimodular transitive graphs, it is worth looking at an invariant Haar-measure µ on the

locally compact Γ, which gives finite but non-equal weights to the stabilizers:

µ(Γx)

µ(Γy)
=
|Γxy|
|Γyx|

,

for any x, y ∈ V (G). A subset C ⊂ V (G) is called light if
∑

x∈C µ(Γx) <∞. It was proved in [Tan19,

Theorem 1.1] that the trees of WUSF in any non-unimodular transitive graph (and more generally,

whenever there is a closed non-unimodular subgroup of automorphisms that acts transitively on

G) are light. His Conjecture 1.2 stated that the opposite holds for FUSF, when WUSF 6= FUSF.

Since our examples in Theorem 1.1 do have transitive closed non-unimodular subgroups (the au-

tomorphisms fixing an end of the tree), they already give counterexamples to the more general

conjecture. Nevertheless, with a bit of more work, we can also give counterexamples where the

full automorphism group is non-unimodular. Note here that there is a usual way of producing a

non-unimodular transitive graph from a graph with a non-unimodular transitive subgroup of auto-

morphisms by adding some edges in a transitive way, as in the grandmother graph; however, since

we have already seen that the number of FUSF components is not a quasi-isometry invariant, it is

unclear what the effect of such a “small” change would be.

Theorem 1.3 (Non-unimodular lightness). There exists a non-unimodular transitive graph G in

which WUSF 6= FUSF, but FUSF has some light clusters.
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The second part of [Tan19, Conjecture 1.2] was that, for nonunimodular transitive graphs,

WUSF 6= FUSF implies that all the trees of FUSF have branching number larger than 1. (True

in the unimodular case, because the average degree being strictly larger than 2 implies invariant

non-amenability [AL07, Section 8].) Our construction is not a counterexample to this conjecture.

The dis/connectedness results discussed above give rise to a nontrivial graph parameter: for

any finite graph H we let

disco(H) := min
{
k : FUSF(Tk ×H) is disconnected

}
∈ {3, 4, . . . ,∞}.

The earlier results on the connectedness of FUSF in Tk × P2 say that disco(P2) = ∞. Our Theo-

rem 1.1 implies that if ` is large enough, then the cycle C` of length ` has disco(C`) <∞. Several

specific open questions on this graph parameter are discussed in Section 6.

To conclude this introduction, let us say a few words about our proof strategies and the orga-

nization of the paper.

The ball of radius n around a fixed root o ∈ Tk will be denoted by Tn, while the sphere of radius

n will be denoted by Sn. We will generate the UST in Tn×H by Wilson’s algorithm [Wil96, LP16],

first taking the loop-erased random walk LERW from a = (o, ha) to b = (o, hb), where ha 6= hb ∈ H
are arbitrary. See Section 3 for the definitions. In the setting of Theorem 1.1, we will prove that the

LERW from a to b, with a positive probability that does not depend on the radius n, will contain

some close-to-the-boundary vertex (z̃, hz̃) ∈ Sn−7×H. This will easily imply the theorem. Finding

such a (z̃, hz̃) will go as follows.

We will find that the simple random walk trajectory from a to b with uniformly positive proba-

bility hits a “bag” {z}×H with z ∈ Sn in such a way that the part of the trajectory before hitting

{z} ×H, denoted by πthere, and the second part πback after leaving {z} ×H intersect each other

only outside Tn−8 ×H. Then z̃ will be the ancestor of z in Sn−7. To find such a z, we will have

to make sure that there are no intersections in either of the following ways: (1) outside the ray of

bags between {o} ×H and {z̃} ×H; (2) in some bag of this ray.

To guarantee (1), and also to help with (2), we will ensure that neither πthere nor πback makes

any backtracking on the ray of bags from o to z, and furthermore, the bags that πthere enters outside

this ray are different from the bags that πback enters. See Figure 1.1. These requirements concern

only the tree-coordinate of the random walk, and it is indeed possible to find z such that they (and

hence (1)) are satisfied, as we will prove in Proposition 2.1.

It remains to rule out intersections as in (2). Here the H-coordinates will play the main role.

The intuition is that the visits in a typical bag {v}×H are not too long (since k is large compared

to d), and the places where the walker enters {v} × H from the outside are likely to be far from

each other, because these entrances tend to be separated by long time intervals (until the walk

on the tree returns) and because H is large. To elaborate this argument will require some work,

presented in Section 3.

For Theorem 1.2, the idea is to start with a small degree d but large H compared to k, so

that Theorem 1.1 applies, then change the generating set so that we get the complete graph on H.

This makes the random walk that generates the LERW spend a lot of time in each bag {v} × H
before moving in the tree-coordinate, making it very likely that the loop-erasure erases every long

excursion away from the root bag {o} ×H. The details are worked out in Section 4.

In Section 5, we prove Theorem 1.3 on lightness in the non-unimodular setting. Here the task

is to modify the tree-proof to a well-chosen non-unimodular transitive graph, then argue that there

are infinitely many components in the FUSF, which makes at least some of them light.
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a b {o} ×H

{z̃} ×H

{z} ×H

πthere πback

Figure 1.1: Strategy of proof in Tn×H. In this picture, πthere and πback do not intersect each other

inside Tn−2, hence we obtain z̃ ∈ Sn−1 such that the LERW path from a to b intersects {z̃} ×H.

We conclude the paper with several open problems in Section 6, including the ones on Gaboriau’s

question and on our new graph parameter disco(H) for finite graphs H.

2 Born to be alive

A key observation about the tree-coordinate of the random walk will be the following proposition,

somewhat interesting in its own right. Consider simple random walk (Yt)t≥0 on Tn, started at the

root o, until the first return time τ+
o := min{t > 0 : Yt = o}.

Proposition 2.1 (Viable rays). For any k large enough, with a positive probability that may

depend only on k, there is a z ∈ Sn in Tk such that, denoting the ray from o to z in Tn by

γ = (o = γ0, γ1, . . . , γn = z), we have:

• all the edges on the ray γ are crossed exactly twice until τ+
o (once on the way from o to z,

once on the way back);

• on the way from o to z, for every i = 1, . . . , n − 1, the number of excursions away from γi
before taking the edge (γi, γi+1) is at most k/2;

• denoting by Ei and Fi the set of edges incident to a vertex γi but not on γ that are crossed

on the way to z, and on the way back from z to o, respectively, we have that Ei ∩ Fi = ∅ for

all i = 1, . . . , n− 1.

Such a ray typically has the property that all its vertices have positive but small local times (of

order k) until τ+
0 . It is possible that, using the Dynkin isomorphism theorem [Dyn84], such a result

could be proved via the Gaussian Free Field on Tk; see [DLP12, Lup16, Zha18] for such arguments.

However, since we also need the more refined statement on the edges incident to the ray, we have

not tried to make this connection precise. Let us emphasize that a typical ray to Sn, or the first

ray along which we reach Sn, do not satisfy the proposition; we have to work to find such rays.
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Proof of Proposition 2.1. Pick a leaf z ∈ Sn, denote the ray from o to z by γ = γ(z), the

stopping times τz := min{t : Yt = z} and τ+
o as before, and define the events

Az :=
{

the edge (γi−1, γi) is crossed exactly twice by (Yt)
τ+o
t=0, for all i = 1, 2, . . . , n

}
,

Lz :=
{∣∣{t ∈ {1, . . . , τz} : Yt = γi

}∣∣ ≤ k/2 + 1, for all i = 1, 2, . . . , n
}
.

(2.1)

Furthermore, let Ei and Fi be the set of edges as defined in Proposition 2.1, and define the event

Bz := Az ∩ Lz ∩
{
Ei ∩ Fi = ∅ for all i = 1, 2, . . . , n− 1

}
. (2.2)

Let us calculate P(Bz). The first step has to be P(Y1 = γ1) = 1/k, and then, for each γi,

i = 1, . . . , n− 1, the walk (Yt) may take excursions away from γi, but it has to choose γi+1 before

γi−1, and the number of excursions has to be at most k/2. The probability of this event Therei,

with the extra condition that there are precisely j ≥ 0 excursions, is

P
(
Therei, with j excursions

)
=

(
1− 2

k

)j 2

k

1

2
, (2.3)

independently of what happens at other γi’s. When we arrive at Yτz = z, we have already sampled

the edge sets Ei, i = 1, . . . , n − 1. Then, at each γi, for i = n − 1, n − 2, . . . , 1, we have to

choose γi−1 before γi+1, an event we will denote by Backi; furthermore, the excursions away from

γi have to produce an edge set Fi that is disjoint from Ei. The probability of everything together,

independently of i, is

pk := P
(
Therei, Backi, and Ei ∩ Fi = ∅

)
≥
bk/2c∑
j=0

(
1− 2

k

)j 1

k

1

j + 2
� log k

k
, (2.4)

because if we have j ≤ k/2 excursions in (2.3), then |Ei| ≤ j, thus the walk on the way back has to

avoid at most j + 1 neighbors before choosing γi−1 (the edges of Ei plus the edge to γi+1), which

has success probability 1 in at most j+ 2 . The asymptotic formula at the end simply follows from

the exponential factor being between 1 and 1/e for all 0 ≤ j ≤ k/2; the symbol � means “up to

positive universal constant factors”, independently of k or n.

The events of (2.4) for different i’s are independent from each other, hence we have

P(Bz) =
1

k
pn−1
k . (2.5)

Let Zn be the set of leafs z ∈ Sn that satisfy the event Bz. Then we have the first moment

E|Zn| = k(k − 1)n−1 1

k
pn−1
k , (2.6)

which goes to infinity as n→∞ if k is large enough, by (2.4).

To estimate the second moment E|Zn|2, let z, v ∈ Sn be leafs such that their last common

ancestor is w ∈ Sm, with m ≥ 1. We claim that

P
(
Bz ∩ Bv

)
�k p2n−m

k , (2.7)

where pk is defined in (2.4), and �k means “up to constant factors that may depend on k, but not

on n or m”.
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Indeed, the first step in (Yt) has to be towards w; then we have to reach w without ever stepping

backwards along the ray from o to w; then we have to step towards z or v before stepping backwards

towards o; then we have to reach the chosen leaf without backward moves; then we have to go back

to w without backward moves, and with the Fi sets avoiding the Ei’s; at w, we have to step towards

the other leaf before stepping towards o; if we define F ′m to be the set of edges emanating from w

that are crossed after reaching w after the first leaf, but before the step towards the second leaf, we

must have Em ∩ F ′m = ∅; from w we have to reach the other leaf without ever stepping backwards;

then we have to go back to w, without backward moves, and with the Fi sets avoiding the Ei’s also

along this branch; at w, we have to move towards o before moving towards z or v again, and the

edge set F ′′m produced by the excursions before that has to be disjoint both from Em and F ′m; then

we have to reach o without ever stepping backwards, again with the Fi sets avoiding the Ei’s. We

have m − 1 + 2(n − 1 −m) = 2n −m − 3 of these conditions at vertices other than w, each with

success probability pk, independently from each other. At w, the conditions are obviously possible

to satisfy if k ≥ 3 (at the first visit go straight towards z, at the second visit go straight towards w,

at the third visit go straight towards o), happening with probability at least 1/k3 and at most 1.

So, the probability altogether is between p2n−m−3
k /k3 and p2n−m−3

k , which can be written as (2.7).

By going through all possible last common ancestors w, from (2.7) we get

E|Zn|2 =
∑

z,v∈Sn

P
(
Bz ∩ Bv

)
�k

n∑
m=1

k(k − 1)m−1 (k − 1)2(n−m) p2n−m
k �k

(
(k − 1)pk

)2n
, (2.8)

if k is large enough, since (k − 1)pk →∞ holds by (2.4), hence the m = 1 term will dominate.

Comparing (2.6) and (2.8), the Cauchy-Schwarz second moment method gives us

P(|Zn| > 0) ≥ (E|Zn|)2

E(|Zn|2)
�k 1,

finishing the proof of Proposition 2.1.

3 Stayin’ alive

In this section, we will first recall how to generate the FUSF via an exhaustion by finite graphs and

the loop-erased random walk LERW inside each finite graph. Then we will consider the random

walk in Tk ×H, together with its projection to Tk, and show that some of the viable rays found in

Section 2 correspond to trajectories in the product graph that survive the loop-erasure, provided

that H is large enough (compared to k). This way, we get distinct paths in the FUSF from two

neighboring vertices to infinity.

As we briefly explained in the Introduction, the FUSF of an infinite graph G is defined as the

weak limit of the sequence UST(Gn), where (Gn)n≥1 is any increasing sequence of connected finite

subgraphs of G such that
⋃
n≥1Gn = G, and UST is the uniform measure on all spanning trees

of the finite graph. The limit exists and is independent of the sequence (Gn) by some electric

network monotonicity arguments [LP16, Chapter 10]. On a connected finite graph G, we can use

the loop-erased random walk LERW to construct UST(G) with Wilson’s algorithm [Wil96]. Choose

two vertices x0, x1 of G, and produce a simple path from x1 to x0 by running a random walk from

x1 until hitting x0, and erasing all cycles created by the trajectory, in the order of creation. Then

pick some x2, start a walk from x2 until we hit the path between x0 and x1, take the loop-erasure

of it, and so on, always walking from xi until we hit the already existing tree, repeating until all

the vertices become part of the tree.
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Our infinite graph will be a direct productG = Tk×H, often denoted by Tk�H, where the vertex

set is just the set of pairs, and the neighbors of (t, h) are the vertices (t′, h) with {t, t′} ∈ E(Tk)
and the vertices (t, h′) with {h, h′} ∈ E(H).

Proof of Theorem 1.1. We take the exhaustion Gn = Tn × H of G = Tk × H. Our first

step in Wilson’s algorithm is to take the loop-erased random walk LERW from a = (o, ha) to

b = (o, hb), where ha 6= hb ∈ H are arbitrary. We will prove that the LERW from a to b, with a

probability greater than a positive number p that does not depend on n, will contain some close-

to-the-boundary vertex (z̃, hz̃) ∈ Sn−7 × H. Then, for any fixed finite subgraph U of G, if n is

large enough so that Gn contains U , but Sn−7×H is already disjoint from U , and the above event

for the UST(Gn)-path between a and b occurs, then the intersection of this UST(Gn)-path with U

will not connect a and b. Hence, in the weak limit as n → ∞, the FUSF-component of a will be

different from the component of b with probability at least p.

One way to complete the proof from here is that the number of trees in the FUSF in any

unimodular transitive graph was shown in [Tim18] and [HN17] to be either one a.s., or infinite

a.s., hence we have to be now in the second case. We will also give a direct proof for our very

special product graph, immediately extendable to the non-unimodular graph of Section 5, via

Wilson’s algorithm, at the end of this section. And, we will give yet another proof, using the

Mass Transport Principle, which again works both for unimodular and non-unimodular transitive

graphs that are tree-like in some sense, and in a larger generality than the FUSF, in Proposition 5.3.

Some readers might prefer the more specific Wilson’s algorithm proof, some readers might prefer

the more general MTP proof, but in any case, not relying on unimodularity will be important for

Theorem 1.3.

We now turn to the study of the LERW from a to b. The random walk on Gn from a to b

for which we apply the loop-erasure will be denoted by (Xt)t≥0. The first coordinate of (Xt)t≥0

is a lazy random walk on Tn, denoted by (Yt)t≥0. As before, we fix z ∈ Sn, and let τz and τ+
o

denote the hitting times for the projection (Yt). Condition on the event Bz of (2.2), but with the

local times at γi in the definition of Lz being understood as the number of “essentially different

visits”, i.e., with the lazy steps removed from (Yt). The last time before τz that (Xt) is in γi ×H
is denoted by αi, and the first time after τz that (Xt) is in γi ×H is denoted by βi. (For i = n, we

mean αn = βn = τz.) Furthermore, the number of actual (non-lazy) steps until αi in the Tk and

H coordinates will be denoted by αT
i , αHi , respectively, and similarly for βi. The first ingredient

in our proof will be that, with a uniformly positive probability, quite a long time passes between

entering consecutive bags of γ ×H during πback.

Lemma 3.1. Let F(βi) be the sigma-algebra generated by (Xt)
βi
t=0. Then, for any 1 ≤ i ≤ n− 7,

P
(
βHi−1 − βHi > k5

∣∣ Bz,F(βi)
)
> b

for any large enough k, with a constant b > 0 that does not depend on i, n, or k.

Proof. Since we are conditioning on an event concerning the entire random walk trajectory, Bz,
we have to be careful what the exact effect of this is. Namely, for any such event B, the original

random walk transition probabilities get reweighted by a Bayesian factor:

P
(
Xt+1

∣∣∣ (Xs)1≤s≤t,B
)

= P
(
Xt+1

∣∣ (Xs)1≤s≤t
)P(B ∣∣ (Xs)1≤s≤t+1

)
P
(
B
∣∣ (Xs)1≤s≤t

) . (3.1)

Now, for the lemma, it is enough to prove that

P
(
βTi−1 − βTi > 2k6

∣∣ Bz,F(βi)
)
> b′, (3.2)
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with some constant b′ > 0, by the following reasoning. Whenever Xt ∈ γi×H at some time t ≥ βi,
the conditioning on Bz forbids the Tk-steps through (γi, γi+1) and Ei, while the other Tk-steps and

all the H-steps are available. In other words, the Bayesian factor from (3.1), with B = Bz and also

conditioned on F(βi), is zero for Xt+1 ∈ γi+1 ×H and for (Xt, Xt+1) ∈ Ei ×H, while positive for

other possible Xt+1’s. Namely, for the H-steps (i.e., for Xt+1 ∈ γi ×H), the Bayesian factors are

all 1, since Bz depends only on the Tk-coordinate, so its probability is the same starting from any

vertex of γi ×H. For those Tk-steps that are away from γ and not excluded by Ei, the Bayesian

factors are again 1, because we will return to γi×H before making a step to γi±1×H. Finally, for

the Tk-step to γi−1 the Bayesian factor is at most k, by rearranging

P
(
Bz
∣∣ X0, . . . , Xt = (γi, h)

)
≥ 1

d+ k
P
(
Bz
∣∣ X0, . . . , Xt = (γi, h), Xt+1 = (γi−1, h)

)
+

d

d+ k
P
(
Bz
∣∣ X0, . . . , Xt = (γi, h), Xt+1 ∈ γi ×H)

)
,

which holds for any t and any h ∈ H. Thus, the total weight of H-steps is d, while the total weight

of Tk-steps is at most 2k − 1, hence, before each Tk-step, the number of H-steps stochastically

dominates a Geom
(
(2k−1)/(2k−1+d)

)
−1 variable. The stopping times αi and βi are measurable

with respect to the Tk-coordinate of (Xt), hence conditioned on all the events of (3.2), i.e., on

βTi−1−βTi > 2k6 and Bz and on F(βi), the variable βHi−1−βHi stochastically dominates a sum of 2k6

iid variables with mean d/(2k−1) and variance d(2k−1+d)/(2k−1)2. Since d ≥ 2, the expectation

of the sum is larger than 2k5, and if k is large enough, then the variance of the sum is less than

k6, hence the sum itself is larger than k5 with a uniformly positive probability by Chebyshev’s

inequality.

For a proof of (3.2), first notice that, given Bz and F(βi), the Bayesian factors calculated in

the previous paragraph show that with a uniformly positive probability the step (Xβi , Xβi+1) is

in the Tk-coordinate, away from o, into a branch different from γ and Ei. (We are conditioning

on the event Lz of (2.1) exactly in order for this uniformity to hold: the total Bayesian weight of

these steps is at least k/2 − 1, while the total weight of all other steps is at most k + d.) From

here, the distance of (Yt) from γi is a biased random walk: whenever it changes (the step is in the

Tk-coordinate), it decreases with probability 1/k and increases otherwise. So, it will reach level

Sn with a uniformly positive probability. After this, whenever the walk is at Sn−1, it reaches level

Si before Sn only with probability � (k − 1)i−n+1, by the usual exponential martingale argument

[Dur10, Theorem 5.7.7]. For i ≤ n− 7, this is at most O(k−6). That is, the number of steps in the

Tk-coordinate until returning to Si from Sn−1 stochastically dominates a geometric random variable

with success probability � k−6, and this is at least 2k6 with a uniformly positive probability. This

gives (3.2).

The second ingredient will be that, both in πthere and πback, the amount of time spent in each

bag γi ×H is probably not very large. Namely, let Ai be the set of times until time αi when Xt

is in γi × H, and let Bi be the analogous set of times from time βi until τ+
o . We let H(Ai) and

H(Bi) be the set of vertices in γi ×H visited at these times. Conditioned on Bz, the time spent

in γi × H, for 1 ≤ i ≤ n − 1, is stochastically dominated by a Geom
(
1/(k + d − 1)

)
variable on

the way to z and by an independent copy on the way back to o, since the forward move along

γ is always available, the backward move is never, and the forward move always has the largest

Bayesian factor from (3.1). The time spent in γn×H is Geom
(
1/(d+ 1)

)
. So, letting Gi denote the

sigma-algebra generated by all the trajectory pieces outside the subgraph Gi spanned by γi × H
and the subgraphs of G \ (γ ×H) hanging from there, up to time-translations for each piece (so,

without the information how many steps within Gi are taken), we have that, for any small δ > 0,

9



if D is a large enough absolute constant, then, for i = 1, . . . , n,

P
(
|Ai|, |Bi| < Dk

∣∣∣ Bz,Gi) ≥ P
(
Geom

(
1/(k + d− 1)

)
< Dk

)2

=

(
1−

(
1− 1

k + d− 1

)Dk)2

> 1− δ .

(3.3)

Now, if we have |Ai−1|, |Bi−1| < Dk and also the event {βHi−1 − βHi > k5} of Lemma 3.1, then

t−s > k5 for all s ∈ Ai−1 and t ∈ Bi−1, and hence the following lemma will be relevant to achieving

H(Ai−1) ∩H(Bi−1) = ∅.

Lemma 3.2. In any d-regular finite graph H on more than k5/2 vertices, if t > k5, and x, y ∈ V (H)

are arbitrary, then the simple random walk heat kernel satisfies P(Xt = y | X0 = x) < Cdk
−5/2, with

a constant Cd <∞ that depends only on d.

Proof. This is basically a special case of [Lyo05, Lemma 3.6 in the arXiv version] or [MP05], with

a few minor additional remarks.

In both references, the Markov chain is supposed to have a uniform laziness. So, we apply these

results to the chain given by two consecutive steps on H. Since H is d-regular, the probability of

staying put in this chain is 1/d. The stationary distribution is uniform. So, the references imply the

on-diagonal bound P(X2t = x | X0 = x) < Cdk
−5/2 for all even times 2t > k5/2. We then get the

same off-diagonal bound P(X2t = y | X0 = x) < Cdk
−5/2 by a standard Cauchy-Schwarz argument

and the uniformity of the stationary distribution. Finally, to get the same bound for X2t+1 being

at y, average the bound over the neighbors of y at time 2t, before making the last step.

We also remark that to apply [MP05] one has to take ε = k−5/2|H| there, which is not small

(as suggested by the notation ε), but that is actually not a requirement in that paper.

If the trajectory (Xt)
τ+o
t=0 satisfies Bz and the intersection

⋂n−7
i=2

{
H(Ai−1)∩H(Bi−1) = ∅

}
, then

its loop-erasure will intersect γn−7 ×H, implying the event that we are interested in. We will give

an exponentially small lower bound on the probability of this event, with a base that does not

depend on k.

First of all, let Goodn−7 :=
⋂n−8
i=1

{
|Ai| < Dk

}
∈ F(αn−8), and then iteratively, for i ≤ n− 7,

Prepi−1 := Goodi ∩
{
βHi−1 − βHi > k5

}
∈ F(βi−1) ,

Goodi−1 := Prepi−1 ∩
{
H(Ai−1) ∩H(Bi−1) = ∅

}
∈ F(βi−2) .

By (3.3), we have

P
(
Goodn−7

∣∣ Bz) > (1− δ)n−8. (3.4)

We will now give a lower bound on P
(
Goodi−1

∣∣ Bz, Goodi), for each 2 ≤ i ≤ n− 7.

First, consider i = n− 7. By Lemma 3.1, we have P
(
Prepn−8

∣∣ Bz, F(βn−7)
)
> b. Conditioned

on Bz and F(βn−8) ∩ Prepn−8, the bound (3.3) gives that |Bn−8| < Dk also holds with probability

at least 1 − δ. Finally, since the actual H-steps taken in the walk (Xt)t≥0 are independent of the

Tk-steps and of the number of H-steps, Lemma 3.2 gives

P
(
H(An−8) ∩H(Bn−8) 6= ∅

∣∣∣ Bz, F(βn−8), Prepn−8,
{
|Bn−1| < Dk

})
< (Dk)2Cdk

−5/2 < δ,

10



for our earlier small δ > 0, provided that k is large enough. Altogether, we have

P
(
Goodn−8

∣∣∣ Bz, F(βn−8), Goodn−7

)
> (1− δ)2b, (3.5)

finishing the first step of the induction. Also, note for future reference that we have proved, for

every i ≤ n− 8, that

P
(
Goodi

∣∣∣ Bz, F(βi), Prepi

)
> (1− δ)2 > 1− 2δ. (3.6)

The complication for the general i ≤ n − 8 step to get from Goodi to Goodi−1 will be that

the event
{
H(Ai−1) ∩H(Bi−1) = ∅

}
⊃ Goodi−1 concerns the trajectory from βi−1 till βi−2, hence

interferes with the “future” event
{
βHi−2 − βHi−1 > k5

}
⊃ Prepi−2.

Now fix any i ≤ n− 8. We use Lemma 3.1 to get

P
(
Prepi−1

∣∣ Bz, F(βi), Goodi
)
> P

(
Prepi−1

∣∣ Bz, F(βi), Prepi
)
−P

(
Goodci

∣∣ Bz, F(βi), Prepi
)

> b− 2δ, (3.7)

where the upper bound 2δ is from (3.6). If we set δ := b/4 ≤ 1/4, then this lower bound becomes

b/2 > 0, and it makes sense to continue as follows:

P
(
Goodi−1

∣∣ Bz, F(βi), Goodi, Prepi−1

)
> P

(
Goodi−1

∣∣ Bz, F(βi), Prepi−1

)
−P

(
Goodci

∣∣ Bz, F(βi), Prepi−1

)
> (1− δ)2 −

P
(
Goodci

∣∣ Bz, F(βi), Prepi
)

P
(
Prepi−1

∣∣ Bz, F(βi), Prepi
)

≥ (1− δ)2 − 2δ

b
≥ 9

16
− 1

2
=

1

16
. (3.8)

The estimates (3.7) and (3.8) together give

P
(
Goodi−1

∣∣ Bz, F(βi), Goodi
)
>

b

32
, (3.9)

for 2 ≤ i ≤ n− 8. Telescoping this with (3.4) and (3.5), we get

P
(n−7⋂
i=2

{
H(Ai−1) ∩H(Bi−1) = ∅

} ∣∣∣ Bz) ≥ P
(n−7⋂
i=1

Goodi

∣∣∣ Bz) ≥ (3

4

)n−8 9b

16

(
b

32

)n−9

. (3.10)

From this exponentially small lower bound, to find a good z ∈ Sn and hence a good z̃ ∈ Sn−7

with a uniformly positive probability, we will again use the second moment method, for which we

need a little bit of preparation. Define the events

Cz := Bz ∩
{
H(Ai) ∩H(Bi) = ∅ for all i = 1, . . . , n− 8

}
,

Cz(h) := Cz ∩ {Xτ+o
= (o, h)}, h ∈ H.

Then, as (3.10) says,

P
(
Cz
∣∣ Bz) > 9

16

(
3b

128

)n−8

. (3.11)

Furthermore, we claim that

max
h∈H

P
(
Cz(h)

∣∣ Bz) ≤ C min
h∈H

P
(
Cz(h)

∣∣ Bz), (3.12)

with a constant C <∞ that may depend on H and k, but not on n.

In the proof of this claim, we will use a small technical lemma:

11



Lemma 3.3. Every finite transitive graph H is 2-vertex-connected: for any vertex g ∈ V (H), the

graph we get from H by deleting g is still connected.

Proof. Assume that there is a cut-vertex g, whose removal cuts H into at least two components;

denote the largest of these by Hg (or one of the largest ones in case of a draw). Take some vertex

h not in {g} ∪ Hg. By transitivity, h is also a cut-vertex, whose removal results in at least two

components, one containing both g and Hg. But this component will have a size strictly larger

than |Hg|, contradicting transitivity.

To prove (3.12), first observe that, if we condition the random walk trajectory (Xt) to satisfy

Cz, and let Xα3 = (γ3, hout) be the last vertex in γ3 × H on the trajectory before τz, and let

Xβ3 = (γ3, hin) be the first one after τz, then, conditionally on hout and hin, the part of the

trajectory between hout and hin is independent of the rest. Therefore, if we prove that there exists

some p > 0, depending only on H and k, but not on n, such that, for any two vertices hout 6= hin,

and any h ∈ H, the probability that (Xt)
α3
t=0 and (Xt)

τ+o
t=β3

satisfy the conditions of Cz(h) relating

to γi ×H for i = 0, 1, 2, 3 is at least p, then C = 1/p will clearly work in (3.12). For the argument

that follows, see Figure 3.1.

o = γ0

γ1

γ2

γ3

ha
h

h′

h′

hin

hout

πin

πout

πh

Figure 3.1: Producing a good random walk trajectory in Tk ×H.

Pick any vertex h′ ∈ H \ {hout, ha}. By the 2-connectedness of H, we can pick a path πin in

γ3×H between (γ3, hin) and (γ3, h
′) that avoids (γ3, hout), a path πout in γ2×H between (γ2, hout)

and (γ2, ha) that avoids (γ2, h
′), and a path πh in γ1 ×H between (γ1, h) and (γ1, h

′) that avoids

(γ1, ha). Then (Xt)
α3
t=0 can go from (γ0, ha) straight to (γ2, ha), then to (γ2, hout) via πout, then

straight to (γ3, hout), and (Xt)
τ+o
t=β3

can go from (γ3, hin) via πin and πh to (γ0, h). All of this

happens with probability at least (d + k)−3|H|−6, which proves (3.12). (Note that we needed the

extra vertex h′ and the four layers γ0, . . . , γ3 for this construction because it might happen that

h = hout; otherwise, taking h′ := h and removing the γ1 layer could have worked.)

We are now ready for the second moment method. Let Wn be the set of leaves z ∈ Sn that

satisfy Cz(hb), with the desired endpoint b = (o, hb). We will run a second moment argument, as

in Section 2, to show that Wn is non-empty with a positive probability, uniformly in n.
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First note that (3.11) and (3.12) imply

q(n) := P
(
Cz(hb)

∣∣ Bz) > c

(
3b

128

)n
, (3.13)

where c depends on H and k, but not on n. Together with (2.5), we have

E|Wn| �k,H (k − 1)n pnk q(n). (3.14)

Using (2.4) and (3.13), this tends to infinity as n→∞ for k large enough.

To estimate the second moment E
(
|Wn|2

)
, let z, v ∈ Sn be leafs such that their last common

ancestor is w ∈ Sm, with m ≥ 1. We claim that

P
(
Cz(hb) ∩ Cv(hb)

∣∣ Bz ∩ Bv) ≤ Qq(n) q(n−m), (3.15)

with some Q <∞ that depends only on H and k, but not on n.

First note that we may assume that m ≤ n − 10, since otherwise the factor q(n −m) on the

right hand side of (3.15) is obviously at least a positive constant that does not depend on n, hence

a suitable Q does exist.

By symmetry, we may assume τz < τv. We first show that

P
(
Cz(hb)

∣∣ Bz ∩ Bv ∩ {τz < τv}
)
≤ Ck,H P

(
Cz(hb)

∣∣ Bz). (3.16)

We do this by coupling (with a uniformly positive probability) the trajectory (Xt) conditioned on

Bz to be identical to the trajectory conditioned on Bz ∩ Bv ∩ {τz < τv}, denoted by (X̃t), within

the ray γ × H (which leads from o to z), except for a bounded neighborhood of w = γm. Given

Bz, we know from (3.9) that H(Am) ∩ H(Bm) = ∅ occurs with a uniformly positive probability,

say c1 > 0. Conditioning on Bz ∩ {H(Am) ∩H(Bm) = ∅} gives a certain distribution to the pairs

of vertices
(
Xαm−1 , Xβm−1

)
and

(
Xαm , Xβm

)
, which are basically the places where the trajectory

leaves w×H. On the other hand, conditioning on Bz ∩Bv ∩{τz < τv}, we get some distribution on

(X̃t)
αm+3

t=αm−4
and (X̃t)

βm−4

t=βm+3
. Whenever these pieces of (X̃t)-trajectories satisfy H(Ai)∩H(Bi) = ∅

for i = m − 3, . . . ,m + 3 (so that (X̃t) still has a chance to satisfy Cz(hb)), the argument of

Figure 3.1 gives that, conditioned on these trajectory pieces, with a probability at least c2 > 0

that depends only on k and H, we have that (Xt)
αm+3

t=αm−4
and (Xt)

βm−4

t=βm+3
satisfy

(
Xαm+3 , Xβm+3

)
=(

X̃αm+3 , X̃βm+3

)
and

(
Xαm−4 , Xβm−4

)
=
(
X̃αm−4 , X̃βm−4

)
. Conditioned on these equalities, we can

couple the trajectories (Xt)
αm−4

t=0 , (Xt)
βm+3

t=αm+3
, and (Xt)

τ+o
t=βm−4

to be equal to the tilde versions,

hence if (X̃t) satisfies Cz(hb), so does (Xt). Altogether, (3.16) follows with Ck,H = 1/(c1c2).

Now let H(Am), H(B′m), H(B′′m) be the set of vertices in w×H visited before τz, between τz and

τv, and after τv, respectively; thus H(B′m)∪H(B′′m) = H(Bm). Notice that Cz(hb)∩ Cv(hb) implies

that H(Am), H(B′m), H(B′′m) are mutually disjoint, an event we will denote by Mw. Condition

now, beyond Bz ∩ Bv ∩ {τz < τv}, also on the event Cz(hb) ∩Mw. Let h′ be the vertex in H(B′m)

last visited before τv, and let h′′ be the first vertex in H(B′′m) after τv. Since H is transitive, there

is an automorphism taking h′ to ha, and h′′ to some h∗. Now, the events along the ray from w to v

that are needed for Cv(hb) are just the events for some length n−m ray, with the extra condition

that the first step from (w, ha) and the last step to (w, h∗) are both in the Tk-coordinate. Thus,

using (3.12), we have

P
(
Cv(hb)

∣∣∣ Cz(hb) ∩Mw ∩ Bz ∩ Bv ∩ {τz < τv}
)
< C ′k,H q(n−m). (3.17)
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Since Mw ⊃ Cz(hb) ∩ Cv(hb), we can combine this with

P
(
Cz(hb) ∩Mw

∣∣ Bz ∩ Bv ∩ {τz < τv}
)
≤ Ck,H q(n),

which we get from (3.16), and we arrive at (3.15).

From (3.15) and (2.7), similarly to (2.8), we have

E|Wn|2 ≤ Q′
n∑

m=1

k(k − 1)m−1 (k − 1)2(n−m) p2n−m
k q(n) q(n−m). (3.18)

For the Cauchy-Schwarz second moment method, we want that E|Wn|2 < Q′′(E|Wn|)2, for some

Q′′ < ∞ that does not depend on n. Substituting (3.14) and (3.18) into this inequality, then

rearranging, we arrive at the following inequality to prove:

n∑
m=1

(
(k − 1)pk

)−m
q(n−m)

?
< Q′′′ q(n). (3.19)

The final ingredient is that, writing y for vertex γm on the ray from o to z, again only for m ≤ n−10,

and writing Byz and Cyz for the analogs of the events Bz = Boz and Cz = Coz when the root is y instead

of o,

q(n)

q(n−m)
=

P(Coz (hb) | Boz)
P(Cyz (hb) | Byz )

�k,H
P
(
H(Ai) ∩H(Bi) = ∅ for i = 1, 2, . . . , n− 8

∣∣ Boz)
P
(
H(Ai) ∩H(Bi) = ∅ for i = m+ 1,m+ 2, . . . , n− 8

∣∣ Byz)
�k,H

P
(
H(Ai) ∩H(Bi) = ∅ for i = 1, 2, . . . , n− 8

∣∣ Boz)
P
(
H(Ai) ∩H(Bi) = ∅ for i = m+ 1,m+ 2, . . . , n− 8

∣∣ Boz)
= P

(
Coz
∣∣ Boz , H(Ai) ∩H(Bi) = ∅ for i = m+ 1,m+ 2, . . . , n− 8

)
> (3b/128)m,

where the first � is by (3.12); the second � is by a coupling argument similar to the one that

gave (3.16), now doing the coupling in {γm, . . . , γm+3} × H; and the inequality in the last line

follows from (3.4) and (3.9), just like in (3.10). Plugging this into (3.19), we arrive at

n∑
m=1

(
(k − 1)pk

)−m
(2/bg)m

?
< Q′′′′,

which is true if k is large enough, since (2.4) tells us that (k − 1)pk →∞ as k →∞. This finishes

the proof of the disconnectedness Theorem 1.1.

For the first direct proof of having infinitely many trees almost surely, pick an infinite ray

o1, o2, . . . in Tk, pick any h ∈ H, and let ai := (oi, h). Our exhaustion Gn = Tn × H contains

a1, . . . , an. Perform Wilson’s algorithm in Gn as follows.

First run a LERW from a2 to a1, denoted by `1. By a small modification of our previous proof,

with a positive probability that depends only on H and k, this `1 will first enter the subtree (times

H) that starts at o2 and does not contain o1 or o3, then will hit the boundary Sn ×H, then hits

o2×H at a vertex b2 = (o2, h2) different from a2, then goes straight to (o1, h2), then hits a1 = (o1, h)

without leaving o1 × H. Without conditioning on this good event, denoted by G1 hereafter, the

Tk-coordinate of the random walk that gives `1, viewed only at the times when it moves on the ray

o1, . . . , on, performs a simple random walk on this segment until τ+
o . The maximum j for which

oj is touched by the projection is stochastically dominated by the maximum of a one-dimensional
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random walk excursion, which is almost surely finite, since the walk is recurrent. The maximum

j for which oj ×H is touched by `1, denoted by j2, is even smaller. Let b2 = (oj2 , h2) be the last

vertex in j2 ×H touched by `1. Note that this definition of b2 extends our previous one that we

made under G1.

Next, run a LERW from aj2+1 to b2, denoted by `2, which, with a positive probability that

depends only on H and k, will enter the subtree (times H) that starts at oj2+1 and does not contain

oj2 or oj2+2, then will hit the boundary of Tn ×H, then hits oj2+1 ×H at a vertex b3 = (oj2+1, h3)

different from aj2+1, then goes straight to (oj2 , h3), then hits b2 without leaving oj2 ×H. Without

conditioning on this good event, denoted by G2, the maximum j for which oj × H is touched by

`2, denoted by j3, has the property that j3 − j2 is stochastically dominated by the maximum of

a one-dimensional simple random walk excursion. Let b3 = (oj3 , h3) be the last vertex in j3 ×H
touched by `2, extending the definition that we made under G2.

Iterate this procedure until we have reached on×H, producing the LERW paths `1, . . . , `In . Since

the distribution of ji+1−ji is always stochastically dominated by the maximum of a one-dimensional

simple random walk excursion, the variable In tends to infinity in probability, as n → ∞. Each

`i, independently of the previous ones, satisfies Gi with a positive probability that depends only on

H and k. Thus, the number of events Gi satisfied also tends to infinity in probability. This shows

that the number of trees in the weak limit is almost surely infinite.

4 You can’t hide from yourself

Proof of Theorem 1.2. The natural free generating set in each coordinate of the product,

together with their inverses, gives a tree T2k in the Fk coordinate and a cycle in the H = Zk9
coordinate (every edge that appears does so in both orientations, so, as usual, we consider them

to be unoriented single edges). If k is large enough, then Theorem 1.1 tells us that the FUSF has

infinitely many trees almost surely.

The second Cayley graph will also be a direct product graph: we again take free generators for

Fk with their inverses, while all the elements in H = Zk9 , except for the identity. This gives the

Cayley graph T2k × Kk9 , where Kn is the complete graph on n vertices with a single unoriented

edge between any pair of vertices.

We will show that, for the LERW from a = (o, ha) to b = (o, hb), with ha 6= hb ∈ H, the

probability that the LERW is not contained in Tr × H is exponentially small in r, if k is large

enough. (As before, Tr is the ball of radius r in T2k.) This of course implies the theorem.

Fix any ray o = γ0, γ1, . . . , γr in Tr, and let βr be the last time that the simple random walk

(Xt)
τb
t=0 from a to b enters the bag {γr} × H (i.e., the last β such that Xβ ∈ {γr} × H but

Xβ−1 6∈ {γr} × H). If the walk never enters {γr} × H, we set βr = ∞. If βr < ∞, then we also

let βi, for i = 0, 1, . . . , r − 1, be the last time before βr that (Xt)t≥0 enters the bag {γi} ×H, and

let κi be the first time after βi that (Xt)t≥0 is not in {γi} × H (in fact, because of βr < ∞, we

have Xκi ∈ {γi+1} × H). Furthermore, we let LERWt denote the loop-erasure of (Xs)
t
s=0, and,

still assuming βr < ∞, we let αi be the first time α with the property that Xα ∈ {γi} × H and

LERWα∩{Xs}βis=α = {Xα}. In other words, Xαi is the first vertex along LERWβi that is in {γi}×H.

See Figure 4.1.

We will show that, with very high probability conditionally on βr <∞, for most i = 0, 1, . . . , r

the intersection LERWκi ∩ ({γi} ×H) is quite large. This will imply, introducing the notation ϕi
for the first time when the simple random walk from βr to τb enters {γi}×H again, and ψi for the
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{γi} ×H

{γr} ×H

Xαi

Xβi

Xκi

Xβr

Figure 4.1: The cyan-colored path is LERWβi . Its darker cyan parts are LERWβi ∩ ({γi} × H).

The solid red path is (Xt)
κi
t=βi

, the dashed red path is (Xt)t≥κi and the thick dark red pieces form

LERWκi ∩ ({γi} ×H).

first time after ϕi when the simple random walk is in {γi±1} ×H, that the event

Avoidi := {βr <∞} ∩
{
LERWκi ∩ (Xt)

ψi
t=ϕi

= ∅
}

(4.1)

is very unlikely to happen; in fact, we will show that

P
(r−1⋂
i=1

Avoidi
)
≤
(

1

2k

)r−1

. (4.2)

This is relevant because any Avoidci implies that the LERW from a to b does not intersect {γr}×H.

Thus, in order for the LERW from a to b not to be contained in Tr × H, there must exist a ray

γ0, γ1, . . . , γr so that the event of (4.2) occurs. Since the number of possible such rays is (2k)(2k−
1)r−1, a union bound using (4.2) gives an exponentially small upper bound 2k

(
1 − 1/(2k)

)r−1
, as

desired.

In the proof of (4.2), we will be conditioning on βr < ∞ from now on (which only raises the

probability). As hinted above, the key statement will be that LERWκi ∩ ({γi} ×H) is large with

high probability, independently of other bags. More precisely, denoting by Fi the sigma-algebra

generated by (Xt)
κi
t=0 (including the value of κi), we will prove that

P
(∣∣LERWκi ∩ ({γi} ×H)

∣∣ < k3
∣∣∣ Fi−1, βr <∞

)
< O(k−3), (4.3)

for any i ∈ {0, 1, . . . , r − 1}. For this, we will need a small Markov chain mixing time lemma that

controls the size of the LERW in a complete graph. For basic definitions, such as the total variation

distance dTV, see [LPW17].

Lemma 4.1. Let (Xt)t≥0 be simple random walk on the complete graph K◦n with loops; that is, each

step of the walk is just a new independent vertex distributed as Unif{1, . . . , n}. Now let (Lt)t≥0 be
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the Markov chain on {1, . . . , n} where Lt is the size of the loop-erased version of the path (Xs)
t
s≥0.

Then the following are true.

(1) The transition probabilities for (Lt)t≥0 are p(i, j) = 1/n for all j ∈ {1, . . . , i}, and p(i, i+1) =

(n− i)/n. The unique stationary distribution of the chain satisfies π(i) ≤ i/n.

(2) The total variation mixing time of the chain is O(
√
n); in fact, dTV(µt, π) < exp

(
− t2

2n

)
for

every t, where µt is the distribution of Lt started from any given state.

(3) If (Xt)t≥0 is simple random walk on the complete graph Kn without loops, then the stationary

distribution for the loop-erased version Lt is the same as before, the mixing time is still O(
√
n),

and hence dTV(µt, π) < exp
(
−c t√

n

)
for some c > 0, for every t and every starting state.

Proof. (1) At time t, if the next step Xt+1 is to the jth vertex on the current loop-erased path,

then Lt+1 = j; if Xt+1 is to a vertex not currently on the path, then Lt+1 = Lt + 1. The transition

probabilities follow. This chain is clearly irreducible and aperiodic, hence it has a unique stationary

distribution π, which satisfies the equation

π(i+ 1) =
n− i
n

π(i) +
1

n

n∑
k=i+1

π(k) ≤ π(i) +
1

n
.

The inequality π(i) ≤ i/n follows by induction on i.

(2) We will bound the mixing time by a standard coupling argument: if (Lt, L̃t)t≥0 is any

coupling of two copies of the Markov chain, one with L0 = i, the other with L̃0 = j, and τcoupling

is the first time when Lt = L̃t, then [LPW17, Corollary 5.5] says that

dTV(µt, π) ≤ max
i,j∈K◦n

P
(
τcoupling > t

)
. (4.4)

Our coupling will be a monotone one: we assume i < j, then will maintain Lt ≤ L̃t for all

t ≥ 0. Take i.i.d. random variables Ut ∼ Unif{1, . . . , n} for t > 0. Given already (Ls, L̃s)
t
s=0,

we generate (Lt+1, L̃t+1) as follows. If Ut+1 ≤ Lt, then let Lt+1 := Ut+1; if Ut+1 > Lt, then let

Lt+1 := Lt + 1. We make exactly the same definitions for L̃t+1, using the same variable Ut+1 as for

Lt+1. This is clearly a monotone coupling of two copies of the chain, and it has the property that

τcoupling = inf{t+ 1 : Ut+1 ≤ Lt + 1}. (If Ut+1 ≤ Lt < L̃t, then both chains are in the first case of

the definition; if Lt + 1 = Ut+1 ≤ L̃t, then Lt+1 is in the second case, L̃t+1 is in the first case, but

nevertheless they have become equal.) Therefore,

P
(
τcoupling > t

)
=

t∏
s=1

(
1− i+ s

n

)
<

t∏
s=1

(
1− s

n

)
< exp

(
−

t∑
s=1

s

n

)
< exp

(
− t

2

2n

)
.

This is true for any pair of starting states 1 ≤ i < j ≤ n, hence the result follows by (4.4).

(3) The non-laziness of the random walk (Xt) causes only that the chain (Lt) can never stay

put; the new transition probabilities are the same as if we condition the old chain to actually move.

Thus the stationary distribution remains the same.

For the mixing time, first note that the TV-distance between (Lt+1 | Lt = i) in the new chain

and (Lold
t+1 | Lold

t = i) in the old chain is 1/n for any i, hence we can couple the new chains (Lt) and

(L̃t) to the old chains (Lold
t ) and (L̃old

t ) such that

P
(
Lt+1 6= Lold

t+1

∣∣ Lt = Lold
t

)
≤ 1

n
,
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and similarly for the tilde versions. We now start the old and new chains at the same places

L0 = Lold
0 = i and L̃0 = L̃old

0 = j. Applying our previous coupling between (Lold
t ) and (L̃old

t ) and

the bound from part (2), we get that, for t0 := d2
√
ne,

P
(
Lt0 6= L̃t0

)
≤ P

(
Lold
t0 6= L̃old

t0

)
+ P

(
Li 6= Lold

i or L̃i 6= L̃old
i for some i = 1, . . . , t0

)
≤ exp(−2) +

2t0
n
.

This is smaller than 1/4 if n is large enough, hence the mixing time is at most t0, and the exponential

decay of the TV-distance follows from a standard argument [LPW17, Section 4.5].

To prove (4.3, we do not only condition on Fi−1 and βr < ∞, but also on (Xt)
βi
t=0, including

the value of βi. Under these conditionings, (Xt)
κi
t=βi

is just simple random walk conditioned to exit

{γi} ×H towards {γi+1} ×H. The effect of this conditioning can be understood via the Bayesian

factors of (3.1): from any vertex of {γi} ×H, there is one edge towards the bag {γi+1} ×H, there

are 2k− 1 edges towards other bags (all are forbidden by the conditioning), and k9− 1 edges inside

{γi}×H, hence the Bayesian factor of the edge towards {γi+1}×H is 2k times the Bayesian factor

of each edge inside {γi}×H. That is, (Xt)
κi
t=βi

is just a simple random walk in the complete graph

{γi} × H, exiting after κi − βi
d
= Geom

(
2k

k9−1+2k

)
steps, independently of the actual steps taken

inside {γi} ×H.

Now note that the process Lt :=
∣∣LERWt ∩ ({γi} ×H)

∣∣ for t = βi, βi + 1, . . . , κi − 1 is equal in

distribution to the process of part (3) of Lemma 4.1, started from the value at t = βi that is given

by the conditioning. No matter what this starting value is, if κi− βi ≥ k5, then the distribution of

Lκi is very close to the stationary distribution π:

P
(
Lκi < k3

∣∣ Fi−1, βr <∞
)
< P

(
κi − βi < k5

)
+ π({1, . . . , k3}) + dTV(µk5 , π)

< P
(
Geom

( 2k

k9 − 1 + 2k

)
< k5

)
+

k6

2k9
+ exp(−ck5/k4.5)

< O(k−3),

where the second term was bounded using Part (1) of Lemma 4.1. Thus, we have proved (4.3).

Now, conditionally on βr < ∞, checking the bags {γi} ×H one-by-one for i = 0, 1, . . . , r − 1,

whether they satisfy
∣∣LERWκi ∩ ({γi}×H)

∣∣ ≥ k3, the bound (4.3) tells us that the number of bags

that do not satisfy this is stochastically dominated by a Binom
(
r,Ak−3)

)
variable, for some A <∞.

Now, a standard exponential Markov inequality tells us that

P
(
Binom

(
r,Ak−3

)
≥ r/2

)
< C exp

(
−r 1

2
log k3

)
= Ck−

3
2
r,

and therefore, if we call a bag good if
∣∣LERWκi ∩ ({γi} ×H)

∣∣ ≥ k3, then

P
(

there are more than r/2 good bags {γi} ×H
)
> 1− Ck−

3
2
r. (4.5)

An important point here is that the “bad event” has probability much less than k−r.

The second part of the proof of (4.2) is to study what happens from βr until τb.

Observe that, for any i = 1, . . . , r−1, independently of all other bags, the set (Xt)
ψi
t=ϕi
∩({γi}×H)

stochastically dominates the set of vertices visited by a simple random walk on the complete graph

{γi} ×H, run for Geom
(

2
k9+1

)
steps. This is by comparing our set with the vertices visited by a

random walk on a truncated graph, where the edges from {γi}×H towards “side-bags”, bags other
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than {γi±1}×H, are simply deleted. The comparison is simply by noting that every time we leave

towards a side-bag, we also have to come back to {γi} × H, possibly to the same vertex where

we left, or to a uniformly random different vertex. And the distribution of steps on the truncated

graph can be computed easily from the Bayesian factors (3.1): the conditioning that we have to

reach {γ0} ×H before {γr} ×H makes the weight of the step towards {γi−1} ×H larger than the

weight of the step towards {γi+1} ×H, but the sum of the two weights is still twice the weight of

any of the steps within {γi}×H, hence we will leave the bag {γi}×H on the truncated graph after

Geom
(

2
k9+1

)
steps.

So, every time the walk from βr until τb enters a good bag, the probability of LERWκi ∩
(Xt)

ψi
t=ϕi

= ∅ is bounded above (independently of what happened before) by the probability that

Geom
(

2
k9+1

)
independent steps avoid the at least k3 vertices of LERWκi∩({γi}×H). This probability

is at most O(k−3). Therefore, if we denote the event of (4.5) by Many, then

P
(r−1⋂
i=1

Avoidi
)
≤ P

(
Manyc

)
+ P

(r−1⋂
i=1

Avoidi

∣∣∣ Many
)

≤ Ck−
3
2
r +O(k−3)r/2 = O(k−

3
2
r).

For k large enough, this proves (4.2), and we are done.

5 Disco lights

In place of Tk, we will consider a transitive non-unimodular graph which we call the k-ary pyramid

graph Pyk. One pyramid is just a cycle C4 with an extra vertex, the apex, connected to every

vertex of this cycle. Now we take the tree T4k+1, and orient all of its edges towards a fixed end of

the tree. For each vertex, divide the 4k incoming edges into 4-tuples, and connect the tails of the

edges with a C4. The resulting graph is Pyk, which can also be considered as glued together from

pyramids. See Figure 5.1. Then our example will be G = Pyk×H for a large enough finite transitive

graph H. This is obviously a transitive non-unimodular graph: if Γ is the full automorphism group

of G, and (x, y) is an edge of Pyk where x is the apex of a pyramid and y is in the base, then

|Γ(x,h)(y, h)| = 4k, while |Γ(y,h)(x, h)| = 1, for any h ∈ H.

Proposition 5.1 (Disconnected nonunimodular FUSF). For any d ≥ 2, if k is large enough, and

H is a connected finite d-regular transitive graph on at least k5/2 vertices, then FUSF on Pyk ×H
a.s. has infinitely many components.

Proof. Fix a geodesic ray γ = γ(z) = {o = γ0, γ1, . . . , γn = z} from o to z ∈ Sn as before, let ∆i,0

be the pyramid containing both γi and γi+1, and let ∆i,j , j = 1, . . . , k − 1, be the other pyramids

with their apices at γi. Letting (Yt)t≥0 be simple random walk on Pyk, started at o, the version of

the event Bz from (2.2) will be as follows.

Az :=
{

the edge (γi−1, γi) is crossed exactly twice by (Yt)
τ+o
t=0,

and no other edge of ∆i−1,0 is crossed, for all i = 1, 2, . . . , n
}
,

Lz :=
{∣∣{t ∈ {1, . . . , τz} : Yt = γi

}∣∣ ≤ k/2 + 1, for all i = 1, 2, . . . , n
}
.

(5.1)

Furthermore, let Ei and Fi be the set of pyramid bases ∆i,j \ {γi} visited by (Yt)
τz
t=0 and by (Yt)

τ+o
τz ,

respectively, among j = 1, . . . , k − 1, and define the event

Bz := Az ∩ Lz ∩
{
Ei ∩ Fi = ∅ for all i = 1, 2, . . . , n

}
. (5.2)
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o = γ0

γ1

γ2

z = γ3

∆0,0 ∆0,1

∆0,2

Figure 5.1: A random walk excursion in the pyramid graph Py3 that satisfies the good event Bz.
The red solid parts are on the way to z, the blue dashed ones are on the way back.

With these definitions, the proofs of Sections 2, 3 go through almost verbatim, with three minor

differences. The first one is that all the edges of the pyramids ∆i,0 except for (γi, γi+1) are forbidden

for the random walk, which changes some probabilities by a uniform constant factor, on each level

i. The second difference is that the graph of pyramids has now the tree structure (and thus, e.g.,

the self-avoidance condition Ei ∩ Fi = ∅ is defined via pyramids), but the walk still chooses edges,

not pyramids. Again, this can change probabilities only by uniform constant factors. For instance,

in place of (2.3) and (2.4), we have

P
(
Therei, after j excursions

)
=

(
1− 5

k

)j 1

4k + 1
(5.3)

and

pk := P
(
Therei, Backi, and Ei ∩ Fi = ∅

)
≥
bk/2c∑
j=0

(
1− 5

k

)j 1

4k + 1

1

4j + 2
� log k

k
, (5.4)

and everything works just as before.

The last minor difference is in the direct proof of having infinitely many trees almost surely,

at the end of Section 3. In the non-unimodular Pyk, not all rays o1, o2, . . . are the same; pick one

tending to the distinguished end. Then, it is not obvious that the Pyk-coordinate of the simple

random walk, viewed only at the times when it moves on this ray, is a one-dimensional symmetric

walk. But it is, since the effective conductance between the cutpoints oi and oi+1 is obviously equal

to the effective conductance between oi and oi−1, and hence, by a standard correspondence between

hitting probabilities and electric networks [LP16, Chapter 2], we have Poi(τoi−1 < τoi+1) = 1/2.

Before proving Theorem 1.3, we give our second proof of having infinitely many trees in the

FUSF in the context of tree-like graphs that may also be nonunimodular. The next claim does not

include any randomness, and for unimodular transitive graphs it is a tautology.
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Proposition 5.2 (Infinite weight sums). Let G be a transitive graph, x ∈ V (G) fixed, and S a

finite set of vertices such that every component of G \S is infinite. Denote by Γ the automorphism

group of G, and by Γy the stabilizer of a vertex y. Then
∑

y∈C
|Γyx|
|Γxy| is infinite for every component

C of G \ S.

Proof. Let M > 1 be the maximum of |Γxy|
|Γyx| attained over neighbors y of x. For a vertex v, let

N1(v) be the set of all neighbors y of v with |Γvy|
|Γyv| = M . Note that if y ∈ N1(v) then γ(y) ∈ N1(γ(v))

for every γ ∈ Γ. Define recursively Ni(x) =
⋃
y∈Ni−1(x)N1(y) as i = 2, 3, . . .. We have |N1(x)| ≥M ,

because Γxy ⊂ N1(x) and |Γyx| ≥ 1. We will see next |Ni(x)| ≥M i.

Choose an arbitrary y ∈ Ni(x). Pick an arbitrary γ ∈ Γx, and fix a sequence xj ∈ N1(xj−1) for

j = 1, . . . , i with xi = y and x0 := x. We will prove by induction that γ(xj) ∈ Nj(x). For j = 1

we have seen this. Then, xj ∈ N1(xj−1) implies γ(xj) ∈ N1(γ(xj−1)), and we know N1(γ(xj−1)) ⊂
N1(Nj−1(x)) = Nj(x) from the induction hypothesis. This completes the proof of Γxy ⊂ Ni(x).

Apply the cocycle identity |Γuv|
|Γvu|

|Γvw|
|Γwv| = |Γuw|

|Γwu| to obtain |Ni(x)| ≥ |Γxy| = |Γyx|
|Γx0x1|
|Γx1x0|

· · · |Γxi−1xi|
|Γxixi−1| ≥

M i, as claimed.

For v ∈ V (G), let N∞(v) :=
⋃∞
i=1Ni(v), and let m := min

{
|Γsx|
|Γxs| : s ∈ S

}
. If there exists

a v ∈ C such that |Γvx|
|Γxv| < m, then N∞(v) ∩ S = ∅ (using the simple observation that

|Γv′x|
|Γxv′| =

|Γv′v|
|Γvv′|

|Γvx|
|Γxv| = M−i |Γvx|

|Γxv| < m for every v′ ∈ N∞(v), with some i ≥ 0), and hence N∞(v) ⊂ C. Then

∑
y∈C

|Γyx|
|Γxy|

≥
∑

y∈N∞(v)

|Γyx|
|Γxy|

=
|Γvx|
|Γxv|

∑
y∈N∞(v)

|Γyv|
|Γvy|

=
|Γvx|
|Γxv|

∞∑
i=1

∑
y∈Ni(v)

M−i =
|Γvx|
|Γxv|

∞∑
i=1

|Ni(v)|M−i

≥ |Γvx|
|Γxv|

∞∑
i=1

1.

If there were no such v, then one would have an infinite sum of numbers at least m in
∑

y∈C
|Γxy|
|Γyx| ,

leading again to the conclusion that the sum is infinite.

Say that T is a tree-like decomposition of a graph G if T is a random partition of V (G) into

finite connected sets, called bags, together with a tree on the bags such that any edge of G goes

between points of adjacent bags or within the same bag. We call a tree-like decomposition invariant

if its distribution is preserved by the automorphisms of G.

A random spanning forest F of a graph G was defined to be weak insertion tolerant in [Tim18]

if it satisfies the following property. Fix r > 0 and vertices x and y of G connected by an edge

e. Let D be the event that x and y are in different components of F . Then one can map every

configuration ω ∈ D to a new configuration ω ∪ {e} \ {f}, where f is either the empty set or it is

an edge of F at distance at least r from x, and it is determined by ω in a measurable way. The

mapping just defined is measurable, and it takes events of positive probability (contained in D) to

events of positive probability (contained in Dc). See [Tim18] for a more thorough definition and

the proof that the FUSF and the FMSF are weak insertion tolerant.

Proposition 5.3 (1 or∞ law). Let G be an infinite transitive graph that has an invariant random

tree-like decomposition. Let F be an invariant random forest of G with only infinite components,

and suppose that it is weak insertion tolerant. Then F has either 1 or infinitely many components

almost surely.
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Proof. Proving by contradiction, suppose that F has m clusters with 1 < m < ∞. Let T be an

invariant random tree-like decomposition of G. We claim that with positive probability there exists

a bag B and a cluster C of F such that B ∩C = ∅. To see this, pick a finite B0 ⊂ G such that B0 is

a bag in T with positive probability. Condition on this event, and on that some fixed and adjacent

x and y in B0 are in different F-clusters. (We may assume that B0 was chosen so that this event

has positive probability.) Let r > 0 be such that with probability at least 1/2 any two points of B0

that are in the same F-cluster have distance less than r in F . Applying weak insertion tolerance,

insert the edge {x, y} with the possible removal of an edge at distance at least r from x. Repeating

this as many times as necessary (at most |B0| − 1 many times) for some other adjacent pairs in

B0, we arrive at an event of positive probability where all vertices of B0 are in the same F-cluster.

But then every other F-cluster has to be fully contained in one of the components of G \ B0, and

hence it cannot intersect the bags in the other components. Thus we have found some B and C as

claimed.

For any v ∈ V (G), if the bag Bv of v does not intersect some F-cluster C, then removing from

T all the bags that intersect C, we get some components, exactly one of which contains Bv. There

is a unique T -edge from a unique bag B∗v,C of this component, to a bag that intersects C. (Possibly

B∗v,C = Bv.) Now, define the following mass transport: for v, w ∈ G,

f(v, w,F) :=
∑
C
fC(v, w,F , T ), fC(v, w,F , T ) :=

{
1/|B∗v,C | if w ∈ B∗v,C for cluster C of F ,
0 otherwise.

We will use the Tilted Mass Transport Principle for invariant percolations on not necessarily uni-

modular transitive graphs [LP16, Corollary 8.8]: if Γ is the automorphism group of G, then∑
z∈V (G)

Ef(v, z,F , T ) =
∑

y∈V (G)

Ef(y, w,F , T )
|Γyw|
|Γwy|

. (5.5)

The left hand side, which is the expected mass sent out, is clearly at most m.

To estimate the right hand side, condition on the event A that a fixed set B is a bag of T and

it does not intersect some C but is adjacent to a bag that intersects C. By the first paragraph in

the proof, this has a positive probability. Fix a vertex x in B. Vertices y in all but one component

of T \ B have the property that B∗y,C = B, hence they all send mass 1/|B| to x. Furthermore,

every infinite component of T \ B contains an infinite component of G \ B, hence the right hand

side of (5.5) can be bounded from below by P(A)
|B| E

∑
y
|Γyx|
|Γxy| , where y is running over the vertices

in some infinite component of G \ B. (Which infinite component, that may depend on T .) By

Proposition 5.2, this sum is always infinite, leading to a contradiction to (5.5).

Once that the FUSF in Pyk ×H is disconnected with positive probability, Proposition 5.3 gives

that it has infinitely many components a.s. by the ergodicity of the FUSF [LP16, Section 10.4].

Proof of Theorem 1.3. We already know that there are infinitely many trees in the FUSF,

and want to show that some of them are light. The fixed end of Pyk yields a natural projection

π : Pyk × H −� Z, where all the preimages x ∈ π−1(m) for a fixed m ∈ Z have the same Haar

weight µ(Γx) = (4k)−m.

If all the infinitely many clusters Ci in the FUSF were reaching infinitely high up in Figure 5.1,

i.e., if inf π(Ci) = −∞, then, for any two Ci, Cj there would exist some γm(i,j) ∈ π−1(m(i, j)) such

that the infinite geodesic ray γm(i,j), γm(i,j)−1, . . . in Pyk, converging to the fixed end at −∞, has

the property that both clusters intersect each γm(i,j)−t ×H, for t = 0, 1, . . . . However, if we take

enough clusters {Ci}i∈I such that
(|I|

2

)
> |H|, and let m := min{m(i, j) : i, j ∈ I}, then γm is

22



already defined for each pair, and it is actually the same vertex of Pyk, so we would need to have(|I|
2

)
disjoint clusters intersecting γm ×H, a contradiction.

Thus, all but finitely many clusters Ci of FUSF have a smallest label minπ(Ci) > −∞. Let

M(Ci) ⊂ G be the set of vertices achieving this minimal label; we set M(Ci) = ∅ if inf π(Ci) = −∞.

Note that |M(Ci)| ≤ H almost surely. Now, define the following mass transport: for x, y ∈ G,

f(x, y,FUSF) :=

{
1 if x, y are in the same component Ci of FUSF, and y ∈M(Ci),
0 otherwise.

We again use the Tilted Mass Transport Principle from [LP16, Corollary 8.8]:∑
y∈V (G)

Ef(x, y,FUSF) =
∑

y∈V (G)

Ef(y, x,FUSF)
µ(Γy)

µ(Γx)
. (5.6)

The left hand side is at most |H|. The right hand side, if x ∈M(Ci) for some cluster Ci, is

(4k)minπ(Ci)
∑
y∈Ci

µ(Γy).

By (5.6), this is finite, hence, whenever minπ(Ci) > −∞, the cluster Ci is light.

6 Tell me why

The first natural question is how general the phenomena of Theorems 1.1 and 1.2 really are:

Problem 6.1. If Γ is a finitely generated treeable group with WUSF 6= FUSF, does it always have

two generating sets such that the FUSF is disconnected in the first Cayley graph, while it is connected

in the second?

Tom Hutchcroft has suggested that Z5 ∗ Z5 might be a counterexample, where the disconnect-

edness of the FUSF cannot be destroyed. However, a proof does not seem to be a trivial matter to

us.

An affirmative answer for the connected case would of course imply β
(2)
1 (Γ) = cost(Γ) − 1 for

treeable groups, which is actually known to hold by Gaboriau’s results [Gab02, Corollaries 3.23

and 3.16].

For our specific Cayley graphs of Theorem 1.1, the following two problems remain open. Of

course, a negative answer to Problem 6.2 would be pointing towards a positive answer to Prob-

lem 6.3.

Problem 6.2. Is it true that if the FUSF in some Tk×H is disconnected, then any two components

touch each other only at finitely many places? Are there at least special choices for k and H for

which this happens?

Problem 6.3. For the FUSF in any Tk × H, is the union of the FUSF with an independent

Bernoulli(ε) bond percolation connected, for any ε > 0? If not, is there any invariant way to

make the FUSF connected by adding an arbitrarily small density edge percolation?

As we already defined in the introduction, for any finite graph H we let

disco(H) := min
{
k : FUSF(Tk ×H) is disconnected

}
∈ {3, 4, . . . ,∞}.

We know that disco(P2) = ∞ from [Tan19], while Theorem 1.1 implies that if ` is large enough,

then the cycle C` of length ` has disco(C`) <∞.
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Problem 6.4. What is the smallest ` for which disco(C`) <∞? In particular, what is disco(C3)?

Problem 6.5. Are there infinitely many finite graphs H with disco(H) =∞?

The two choices for H in Theorem 1.2 inspire the following question:

Problem 6.6. If H and H ′ are two finite connected graphs on the same vertex set and E(H) ⊂
E(H ′), do we always have disco(H) ≤ disco(H ′)?

Far from this monotonicity, but a similar type of result was shown in [ABIT20+]: for any

Tk ×H, if we increase the weights on the edges of H enough, then the FUSF becomes connected.

Regarding the generality of Lemma 4.1, we have not found the following question addressed in

the literature. One piece of motivation is [PR04].

Problem 6.7. Is it true on any connected transitive graph on n vertices that the typical size of the

stationary loop-erased version of a simple random walk trajectory is Ω(
√
n)?

Now, given how the proof of Theorem 1.1 used Lemma 3.2, and how the proof of Theorem 1.2

used Lemma 4.1, one may guess that if H has better mixing properties, then disconnection becomes

easier:

Problem 6.8. If H and H ′ are two connected transitive d-regular finite graphs on the same vertex

set, with H ′ having a spectral gap larger than H, does it follow that disco(H) ≥ disco(H ′)?

The next natural player appearing on the floor is disco∗, a parameter that is dual, in some sense,

to disco. Let us fix a natural sequence of finite graphs H = (Hn)n≥1; as the simplest case, think of

the cycles Hn = Cn. Then let

disco∗H(k) := min
{
n : FUSF(Tk ×Hn) is disconnected

}
.

Problem 6.9. Consider the sequence of cycles C = (Cn)n≥1. Is it the case that disco∗C(3) <∞?

Problem 6.10. How about monotonicity in k? That is, if FUSF(Tk ×H) is disconnected, then is

FUSF(Tk+1 ×H) also disconnected?

One can also define a continuous version of the graph parameter disco. Recall from [AL07] or

[Pet20, Chapter 14] what unimodular random rooted graphs are.

d̃isco(H) := inf
{
κ : FUSF(T ×H) is disconnected with positive probability,

(T , o) is an infinite unimodular random rooted tree with EdegT (o) = κ
}
∈ [2,∞].

Problem 6.11. Find d̃isco(C`).

Problem 6.12. Is there any finite graph H with d̃isco(H) <∞ = disco(H)?

Problem 6.13. Is there any finite graph H with d̃isco(H) = 2? (Note that if EdegT (o) = 2, then

T has at most two ends, hence T × H is recurrent, hence the FUSF is connected almost surely.

However, this does not exclude the possibility of the infimum being 2.) Or perhaps d̃isco(H) < ∞
implies d̃isco(H) = 2?

24



Tributes

We are indebted to Russ Lyons and Pengfei Tang for comments and corrections on the manuscript.
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[Tim19+] Á. Timár. Unimodular random planar graphs are sofic. arXiv:1910.01307 [math.PR]

[Zha18] A. Zhai. Exponential concentration of cover times. Electron. J. Probab. 23 (2018),

no. 32, 1–22. arXiv:1407.7617 [math.PR]

[Wil96] D. B. Wilson. Generating random spanning trees more quickly than the cover time.

Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Comput-

ing, pp. 296–303., New York, 1996. https://dl.acm.org/doi/pdf/10.1145/237814.

237880
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