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ESZTER FEHÉR, TIMOTHY J. HEALEY AND ANDRÁS ÁRPÁD SIPOS

Abstract. Recent work demonstrates that finite-deformation nonlinear elas-

ticity is essential in the accurate modeling of wrinkling in highly stretched thin
films. Geometrically exact models predict an isola-center bifurcation, indicat-

ing that for a bounded interval of aspect ratios only, stable wrinkles appear and

then disappear as the macroscopic strain is increased. This phenomenon has
been verified in experiments. In addition, recent experiments revealed the fol-

lowing striking phenomenon: For certain aspect ratios for which no wrinkling

occurred upon the first loading, wrinkles appeared during the first unloading
and again during all subsequent cyclic loading. Our goal here is to present a

simple pseudo-elastic model, capturing the stress softening and residual strain

observed in the experiments, that accurately predicts wrinkling behavior on
the first loading that differs from that under subsequent cyclic loading. In

particular for specific aspect ratios, the model correctly predicts the scenario

of no wrinkling during first loading with wrinkling occurring during unloading
and for all subsequent cyclic loading.

1. Introduction

The need for finite-deformation nonlinear elasticity in the accurate modeling of
wrinkling phenomena in highly axially stretched thin elastomer sheets was recently
demonstrated, cf. [6, 10, 14]. The 2D membrane model is that of geometrically
exact nonlinear elasticity, while the fine thickness of such sheets manifests itself
in an extremely small bending stiffness. This is in contrast to the well-known
Flöppl-von Kármán (FvK) model [17], employing linear infinitesimal elasticity in
the membrane part that also incorporates a nonlinear term in the gradient of the
out-of-plane displacement. The FvK model has a long and successful track record
in the prediction of buckling and initial post-buckling behavior of classical plates
and shells.

Of course the wrinkling of a flat sheet is also a buckling phenomenon. Nonethe-
less, as shown in [6, 10], the FvK model leads to qualitative errors in the prediction
of wrinkles for that particular class of problems. A bifurcation analysis in the
macroscopic (applied) strain indicates that, for an apparently semi-bounded in-
terval of aspect-ratio values, the FvK theory predicts a super-critical pitch-fork
bifurcation indicating the initiation of wrinkles. In particular, it fails to predict the
disappearance of wrinkles as the macroscopic strain is increased beyond initiation.
In contrast, the geometrically exact models of [6, 10] predict an isola-center bifur-
cation, indicating that for a bounded interval of aspect ratios only, stable wrinkles
appear and then disappear as the macroscopic strain is increased. To summarize,
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Figure 1. Inelastic behavior of stretched, thin films: a film re-
mains flat during the first loading (left panel) but wrinkles keep
appearing and disappearing during the cyclic loading afterwards
(right panel). The residual strain is about ε = 0.08, observe, that
the sheet is still wrinkled at the residual strain (top right figure).

the FvK model not only predicts the wrong phenomena (wrinkles do not disap-
pear), but it also predicts the initiation of wrinkles for a vast range of aspect ratios
not exhibiting wrinkling.

Figure 2. Stability boundary for a purely elastic sheet.

In recent experimental work [5, 14], the appearance and subsequent disappear-
ance of wrinkles for a bounded range of aspect ratios was unambiguously verified
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for the problem addressed in [6, 10]. This underscores the importance of a geo-
metrically exact mathematical model. However, the experiments reported in [14]
reveal inelastic behavior corresponding to a permanent change in length and shape
of sheets upon first loading with little change upon subsequent loadings. We also
point out that the recent work [18] also calls for an understanding of the role of
inelasticity in wrinkling behavior.

Here we report on further experimental results for this problem, carried out
on finely thin, rectangular elastomer (polyurethane) sheets. The specimens were
subjected to cyclical hard loading and unloading. To fix terminology, the first
macroscopic stretch of the virgin sheet is called the first loading. The first unload-
ing and all subsequent loadings and unloadings are referred to collectively as cyclic
loading. Among other observations, our work here is motivated by the following
striking experimental observation: For certain aspect ratios for which no wrinkling
occurred upon the first loading, wrinkles then appeared during unloading and again
during all subsequent cyclic loading. (See Figure 1.) Moreover, residual strain and
significant stress softening was observed after the first unloading, while all subse-
quent load cycles exhibited elastic behavior, as pointed out earlier in [14]. Wrinkling
aside, the latter is consistent with the so-called Mullins effect in elastomers, e.g.
[3, 13].

We can give a heuristic explanation of the observed phenomenon, based upon
our earlier results for purely elastic models. A typical stability boundary of the
type obtained in [10] is a simple closed curve in the plane of aspect ratio, denoted
µ = L/2W , vs. macroscopic strain, denoted ε = ∆L/L. Here L and W are the
length and width, respectively, of the rectangular sheet, while ∆L is the change
in length under externally imposed, longitudinal stretching. In Figure 2 we depict
such a computed curve for the specimens studied in this work, employing a finite-
elasticity model from [10]. The intersection of a vertical line, corresponding to a
fixed aspect ratio, with the closed curve gives the locations where stable wrinkles
first emerge and then disappear as ε is steadily increased. In particular, no wrinkling
occurs for aspect ratios below or above the closed curve. With that in mind, suppose
that a given sheet has aspect ratio µ1 that is just below but sufficiently close to
the stability boundary. Now assume that the first loading produces a permanent
change of length such that the aspect ratio now increases to µ2 as shown in Figure
2. Then wrinkling occurs upon unloading.

Of course, the qualitative explanation above is a gross oversimplification. The
purely elastic model neither captures the developed orthotropy observed in [14],
nor does it account for the change in the stability boundary due to damage. In
particular, the entire specimen goes slack at a small positive value of the macro-
scopic strain upon unloading, corresponding to the residual strain in the specimen.
Moreover, it was observed that the unloaded specimens were wrinkled at the resid-
ual strain level. This is illustrated in the top right panel of Figure 1; the residual
strain is about ε = 0.08. Our goal here is to present a simple pseudo-elastic model,
accounting for the longitudinal stress softening and residual strain observed in the
experiments, that accurately captures the correct wrinkling behavior just described.
In particular for specific aspect ratios, the model correctly predicts the scenario of
no wrinkling during first loading with wrinkles developing upon unloading and dur-
ing all subsequent cyclic loading.
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The outline of the paper is as follows. In Section 2 we present our model incor-
porating a single state variable to capture the Mullins effect as in [3] for the 2D
Mooney-Rivlin elasticity model with small bending employed in [10]. The domi-
nantly uni-axial Mullins effect is accounted for solely in the membrane part of the
model, while in the presence of small elastic bending. In Section 3 we present the
pertinent experimental data, some of which are used to first tune the mathematical
model in Section 4. We then compare the experimental results for the appearance
and disappearance of wrinkles for a large set of aspect ratios with our numerical
predictions, demonstrating the accuracy of the mathematical model. We present
some concluding remarks in Section 5.

2. Model development

We let Ω ⊂ R2 denote a rectangular domain of length of L and width of W , which
we choose as a stress-free reference configuration (Figure 3.). The displacement field
u : Ω→ R3 is denoted by

(1) u :=

u(x, y)
v(x, y)
w(x, y)

 ,

Figure 3. A stretched, rectangular sheet clamped along its op-
posite edges

and for convenience, the in-plane displacement field is denoted by û : Ω→ R2×{0},
i.e. û := [u(x, y), v(x, y), 0]T . We henceforth employ the notation R̃2 := R2 ×
{0} ⊂ R3. The sheet is subjected to hard-loading: Displacements are prescribed
on opposite ends via u(±L/2, y) = [±εL/2, 0, 0]T for −W/2 ≤ y ≤ W/2, while the
top and bottom at y = ±W/2, respectively, are unconstrained. We call ε > 0 the
macroscopic strain.
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The stored energy of the thin hyperelastic sheet is taken as the sum of membrane
and bending energies expressed as functionals of the displacement field u [9]:

(2) I(u) =

∫
Ω

ΨdΩ =

∫
Ω

ΨmdΩ +

∫
Ω

ΨbdΩ,

where the stored energy densities of Ψm and Ψb denote the constitutive laws for
the membrane and the bending behavior, respectively. Following [10], we propose
an objective stored-energy density, Ψm that depends on the right Cauchy-Green
strain C = FTF, where the deformation gradient F is given by

(3) F = I +∇û + e3 ⊗∇w.

Here all gradients are taken with respect to the reference domain Ω ⊂ R2, I ∈
L(R2, R̃2) is isomorphic to the identity on R2, ∇û(x, y) ∈ L(R2, R̃2), e3 = [0, 0, 1]T ,
and “⊗” denotes the tensor product. Hence, F ∈ L(R2,R3) and C ∈ L(R2).

Our goal is to introduce a pseudo-elastic model that accounts for the stress-
softening / residual strain and especially the wrinkling behavior observed in the
experiments. In spite of the dominantly uniaxial nature of the experiment, it has
been observed that the effective modulus of elasticity drops significantly in both
the longitudinal and lateral directions after loading, cf. [14]. Of course that drop
is larger in the highly stretched direction. Accordingly, we propose a model incor-
porating a single state variable acting anisotropically in the e1 and e2 directions.
In particular, the damage or state variable acts with a larger magnitude in the
highly stretched direction. Correctly tuned, this approach is sufficient to exhibit
the observed residual strain and wrinkling behavior. Following the lead of [3, 13],
our targeted model has the form:

(4) Ψ = Ψm(C, η) + Φ(η) + Ψb.

where η is a state variable with η ≤ 1 and Φ is the so-called dissipation func-
tion. Here η = 1 is associated with undamaged material. Predictions based on
the hyperelastic models from [10] were compared to the experimental data on the
first loading. For Ψm(C, η) we choose the incompressible Mooney-Rivlin model
employed in [10], which provides acceptable agreement with our experimental data.
Accordingly we propose the following form for the membrane energy density:

Ψm(C, η) :=hα

[
((1 + d)η − d) (C11 − 1) + η(C22 − 1) +

1

detC
− 1

]
+

hβη

[
trC

detC
+ detC− 3

]
,(5)

where α and β are material constants and d > 0 is a fixed scalar parameter used
to tune the anisotropic damage ratio. (Observe from (5) that d = 0 corresponds to
isotropic damage.) A completely damaged model corresponds to η = d/(1 + d). Of
course in (5) we are associating the components C11 and C22 with the two principal
directions – a good approximation given the dominantly uniaxial nature of our
problem. As such, we show in the appendix that our model is a special case of the
general class of models presented in [3].

When η ≡ 1 observe that (5) reduces to the thin-membrane approximation of a
Mooney-Rivlin elastic solid. Starting from a thin 3D layer, local incompressibility
implies that the through-thickness stretch is the reciprocal of the product of the
other two stretches, which are assumed to be functions of x and y only. The
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pressure is subsequently eliminated via stress-free conditions on the two lateral
surfaces. This particular model was confirmed by Treolar in bi-axial experiments
on thin sheets [16]. We also refer to [12] for the details and a discussion about
the experimental results of Treolar. Its also worth noting that (5) possesses the
correct behavior that Ψm ↗∞ as detC↘ 0, and as a purely 2D model in R2, it is
polyconvex for η = 1 and α > 3β/4, i.e., it is a proper, physically reasonable model
for 2D nonlinear elasticity.

As for the bending energy, we make the following simple choice:

(6) Ψb(K) =
Eh3

24(1− ν2)

[
ν(trK)2 + (1− ν)K ·K

]
,

where K := −∇2w with ∇2(.) := ∇ ◦ ∇(.) denoting the second gradient and
K ·K = trK2. In (6) E is the modulus of elasticity and ν is Poisson’s ratio; to
keep consistency with the incompressible membrane model, we take E = 6(α + β)
and ν = 0.5. Our justification for (6) is the same as that given in [10]: Taking the
gradient of (3), we arrive at the 3rd-order tensor-valued field

(7) G := ∇F = ∇2û + e3 ⊗∇2w,

where ∇2w(x, y) ∈ S2×2 (symmetric 2 × 2 matrices), ∇2û(x, y) ∈ R̃2 ⊗ S2×2, and
hence G ∈ R3 ⊗ S2×2. Letting n(x, y) denote a unit normal field on the deformed
surface f(Ω), its not hard to show that the relative curvature tensor (pull-back of the
2nd fundamental form) is given by −n·G, the product of which is defined as follows:

For any G ∈ R3⊗S2×2, we have
∑3
i=1Giαβei =

∑3
i=1Giβαei, α, β = 1, 2. Then for

any a ∈ R3,a ·G ∈ S2×2 has components
∑3
i=1 aiGiαβ =

∑3
i=1 aiGiβα, α, β = 1, 2.

As pointed out in [10], the wavelength of a typical wrinkle in this setting is two
orders of magnitude greater than the maximum wrinkling amplitude, and the latter
is of the same order of magnitude as the fine thickness of the sheet. Hence, a valid
approximation is n ∼= e3 in which case −n ·G ∼= −e3 ·G = −∇2w. Of course the
energy density (6) is the usual bending energy for a linear isotropic thin plate a
consistent quadratic approximation for a more general density depending on the
relative curvature. Asymptotic versions of the latter have been derived, e.g., in
[8, 7]. But perhaps a more accurate model here would account for the Mullins
effect in bending, say, by incorporating the state variable into the bending energy.
Another possibility would be to use (6) on the virgin loading, and then incorporate
(fixed) elastic orthotropy for all subsequent cyclic loadings. However, given that
(6) is O(h3) in contrast to the O(h) dependence of (5), none of these refinements
are important here in this setting; h =32 µm and L = 50mm in our experiments.
In fact the membrane energy (5) is the crucial part of our model.

Finally, we need to define the last term in equation (4). Following [3], the so-
called dissipation function Φ(η) is defined implicitly via

(8)
∂Ψ

∂η
=
∂Ψm(C, η)

∂η
+

dΦ(η)

dη
= 0,

and we require η = 1 at the point where the first unloading is initiated. In addition,
we need to satisfy Φ(1) = 0 along the primary loading path and Φ′′(η) < 0 to any
admissible value of η [3]. Let c1 > 0 and c2 > 0 be (fixed) material parameters.
The state variable field

(9) η := 1− c1 tanh (c2(Wmax −Wi)) ,
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corresponds to a Φ(η) function, that fulfills all the requirements above. Here, based
on equation (8) we have

Wi := −dΦ(η)

dη
=
∂Ψm(C, η)

∂η
,(10)

Wmax := − dΦ(η)

dη

∣∣∣∣
ε=εmax

=
∂Ψm(C, η)

∂η

∣∣∣∣
ε=εmax

.(11)

Here εmax stands for the maximum applied strain for the loading history. Note
that this formalism renders η ≡ 1 along the primary loading path, as required,
since Wi = Wmax along the primary loading path.

In the absence of external loading, based on equations (5)-(8), the potential
energy of the system is summarized as

(12) I(u, η) =

∫
Ω

Ψ(C,K, η)dΩ =

∫
Ω

Ψm(C, η)dΩ +

∫
Ω

Ψb(K)dΩ +

∫
Ω

Φ(η)dΩ.

Denoting the (second Piola-Kirchhoff) in-plane stress via

(13) N := 2
∂Ψm

∂C
(C),

the first variation of the stored energy respect to the u displacement field delivers
the weak form of the Euler-Lagrange (equilibrium) equations∫

Ω

(I +∇û)N(C) · ∇ξdΩ = 0,(14) ∫
Ω

{
(α+ β)h3(∆w∆ζ +∇2w · ∇2ζ) + 3 (N∇w) · ∇ζ

}
dΩ = 0,(15)

for all admissible variations (ξ, ζ) of u = (û, w), where ∆(.) denotes the Laplacian
on R2. Observe that eq. (8) renders the variation of the energy respect to the η
field identically zero, while the evolution of the η field is defined via eqs. (9)-(11).

3. Experimental results

Based upon elastic model predictions predictions, we expect either two critical
values of the macroscopic strain, at which wrinkles appear and disappear, or no
critical values – depending upon aspect ratio [10]. In the first case, the critical
values are denoted by 0 < ε1 < ε2, respectively. Two series of experiments were
carried out on 32 µm thick polyurethane sheets:

(1) Traditional displacement controlled pull-tests to obtain a stress-strain dia-
gram for the material.

(2) A series of cyclic loading of the specimen with different aspect ratios, where
ε2 was observed visually.

The maximum applied macroscopic strain applied to all specimens was εmax = 0.66
throughout both test series.

3.1. Force-displacement measurements. Force-displacement measurements were
carried out using a Zwick Z150 electromechanical tensile and compression testing
machine. The clamped end of the sheet was moved under displacement control at a
constant strain rate and the stress-strain diagram was produced. We found no sig-
nificant dependence of the measured constitutive law on speed or aspect ratio. This
observation strongly supports our choice for a pseudoelastic model. The measure-
ments were carried out on L = 50 mm-long sheets at a speed of v = 120mm/min.
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Figure 4. Applied strain (ε) vs. engineering stress (T ). Red de-
notes the trend of average stress during the first loading. Blue and
green depict the measured averages during cyclic loading in a such
way that blue corresponds to loading and green unloading. Data
sets measured on sheets with W ∈ {18, 20, 25, 30, 35, 38, 40}mm are
superimposed.

Altogether 28 series of cyclic measurements were performed with 5 loading cycles
on each specimen. The results of the first loading and the first cycle are depicted
in Figure 4. The observed stress-softening was significant, and about 8% residual
strain was observed. Due to the simplicity of our model, these measurements are
sufficient to fit all of the material parameters except the anisotropic constant d, cf.
(5).

3.2. Critical stretch measurements. In these series of measurements we deter-
mined ε2, the point of wrinkle disappearance under increased loading. Here the
aspect ratio is defined as

(16) µ :=
L

2W
.

Note that L denotes the length of the virgin sheet. Hence µ refers to the initial
aspect ratio regardless of the modification of the stress-free length. Rectangular
sheets with different widths and a fixed length of L = 50mm were attached to an
auxiliary device that enabled repeated pull tests in the horizontal position. Ten
to twenty specimens for each width were measured. The collected data, including
the standard deviations of the measured values of ε2, are given in Table 1. Figure
5 depicts the measured values of ε2 for the first loading (part a) and the cyclic
loading (part b), respectively, i.e., ε2 vs. µ with error bars. As discussed in the
Introduction, the value of ε1 is only relevant on the first loading; these values could
not be measured accurately via visual observation, cf. item 2 before Section 3.1.
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W µ first loading cyclic loading
mm ε2 std ε2 std
10 2.50 0.00 0.00 n.a. n.a.
15 1.67 0.00 0.05 n.a. n.a.
18 1.39 n.a. n.a. 0.00 0.00
20 1.25 0.00 0.11 0.02 0.03
21 1.19 n.a. n.a. 0.05 0.07
23 1.09 0.16 0.16 0.15 0.18
25 1.00 0.27 0.13 0.27 0.12
28 0.91 0.30 0.13 0.28 0.12
30 0.83 0.24 0.15 0.27 0.06
33 0.76 0.00 0.16 0.22 0.04
35 0.71 0.00 0.07 0.18 0.06
37 0.68 n.a. n.a. 0.11 0.10
40 0.63 0.00 0.00 0.00 0.00

Table 1. Measured values of ε2 with standard deviations for the
first and cyclic loading measured for L = 50mm rectangular spec-
imen. See Figure 5.

(a) first loading
(b) unloading and consecutive loading cy-
cles

Figure 5. Measured values of disappearance (on unloading) ε2

vs. µ with error bars.

4. Model vs. experiments

As mentioned earlier, our problem is essentially uniaxial, and values of the mate-
rial parameters α, β, c1 and c2 can be inferred from our uniaxial-test data. In light
of incompressibility, this is facilitated by first introducing λ := 1 + ε, where λ = λ1

is the principal stretch assumed to be aligned with the x1 axis, and then setting

(17) C :∼=
[
λ2

1 0
0 λ2

2

]
∼=
[
λ2 0
0 λ−1

]
.
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With these simplifications, the engineering stress (force per unit reference area) in
the x direction, denoted by T0 is found from (5) to be

T0(λ) =
2α(d+ η − dη)λ4η − α(1 + η)λ+ 2βλ3η − 2βη

λ3
.(18)

Because η ≡ 1 along the first loading, c1 and c2 are inactive. Hence, α and β
are fitted for the stress-strain curve for the primary loading. The constants c1
and c2 are determined based on the cyclic loading. The best match (with minimal
least-squares error between measured and computed data) was achieved at α =
2.00, β = 0.45, c1 = 0.12, c2 = 0.80 (Figure 6). The obtained values for α and β are
in good agreement with earlier results on polyurethane sheets [15, 2]. Observe that
the model recovers the measured 8% residual strain, and the state variable field
drops to approximately η = 0.88 over the most of the sheet as the stress is released
upon unloading. The anisotropic ratio of damage was obtained by computing the
bifurcation points ε2 for different aspect ratios: The best match was achieved at
d = 1.25.

Figure 6. Applied strain (ε) vs. engineering stress (T ). Dashed
lines and error bars correspond to the measured data; solid lines
depict model prediction at α = 2.00, β = 0.45, c1 = 0.12, c2 = 0.80
and d = 1.25.

With the parameter values for the constitutive law in hand, we carried out nu-
merical computations in the finite-element-based solver FEniCS 1.6.0 [11]. Recall,
that ξ and ζ denote the admissible variations of û and w, respectively. Let (.)∆

refer to finite dimensional approximation of a field. The weak form of the governing
equations now reads
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(a) first loading
(b) unloading and consecutive loading cy-
cles

Figure 7. Comparison of experimental and numerical results:
points of disappearance of wrinkles on unloading, ε vs. µ with
error bars.

F (û∆, w∆) =

∫
Ω

[(I +∇û∆)N∆ · ∇ξ∆] dΩ+∫
Ω

[
(α+ β)(∆w∆∆ζ∆ +∇2w∆ · ∇2ζ∆) + 3N∆∇w∆ · ∇ζ∆

]
dΩ = 0.(19)

We employ first-order and second-order polynomial approximation for û∆, ξ̂∆
and w∆, ζ∆, respectively. The domain Ω is discretized with a uniform, triangular
mesh consisting approximately 10000 finite elements with 30000 DOF. Since eq.
(19) depends on the second derivatives of w and ζ, the interior penalty method
is applied along the element boundaries [1, 4]. We used parameter continuation
in ε for domains with different W values. We call the planar configuration of the
sheet, i.e. w ≡ 0, the trivial solution. During continuation the smallest eigenvalue
of the numerically computed Jacobian of F (û∆, w∆) is monitored. A positive-
definite Jacobian indicates stable configuration. Hence, the point of disappearance
of wrinkles was determined by seeking numerically the value ε = ε2 at which the
trivial solution regains stability (i.e. the smallest eigenvalue becomes positive) upon
loading or loses stability upon unloading.

Numerical results for the critical stretch values ε2 are plotted against experi-
mental data in Figure 7 for both the first and cyclic loading, respectively. Note
that at µ ∼= 0.70 (W = 35mm), our model predicts no wrinkles during the first
loading while wrinkles appear upon unloading. This is further illustrated in Figure
8, where the mean of the measured values of ε2 for the first and cyclic loading are
plotted against the predictions of the new model.

As an illustration of our numerical results, we provide two global bifurcation
diagrams in Figure 9 for W = 25mm (µ = 1.00) and W = 35mm (µ = 0.70) along
with accompanying wrinkled configurations. In particular, we note that our model
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Figure 8. Both in experiments and numerical computations
around µ ∼= 0.7 wrinkling appears only during cyclic loading.

(a) µ = 1.00 (b) µ = 0.70

Figure 9. Maximum wrinkling amplitude vs. macroscopic strain,
|wmax| vs. ε, for sheets with µ = 1.0 and µ = 0.70. For µ = 0.70
there is no wrinkling during the first loading.

correctly recovers the observed phenomenon of Figure 1: In both cases the sheet
is still wrinkled at the residual-strain value, below which our model is no longer
valid the sheet becomes slack. We also note that for µ = 0.70 there is no wrinkling
during the first loading, while wrinkles emerge upon unloading.
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Finally, we demonstrate that material orthotropy emerges in our model. Follow-
ing the notation of [14], let r denote the degree of orthotropy, defined by

(20) r :=
E90

E0
,

where E0 and E90 denote the tangential moduli of elasticity in directions x and y,
respectively. In the experiments we found that after unloading from εmax = 0.66,
the degree of orthotropy reached r ∼= 1.80 [14]. Note that r was measured after
cyclic loading of the specimen; it was completely unloaded and a pull test was
carried out either in direction x or y. The degree of orthotropy r was computed
from the tangential moduli of elasticity measured at the initiation of loading. (Some
specimens were tested in the 45◦ direction to obtain the shear modulus, cf. [14].)

The pull test in the y direction in our model can be associated with C11 = λ−1
2

and C22 = λ2
2, where λ2 denotes the stretch applied in the x direction (on the

formally stretched specimen in the x direction). The engineering stress T90 in the
y direction can be expressed as

(21) T90(λ2) = 2
αλ2

4 + βηλ3
2 − αλ2 − βη
λ3

2

.

From (18) and (21) the moduli of elasticity are found to be

E0(λ1) =
∂T0(λ1)

∂λ1
=

2α(d+ η − dη)λ4
1 + 2α(1 + η)λ1 + 6βη

λ4
1

,(22)

E90(λ2) =
∂T90(λ2)

∂λ2
=

2αλ4
2η + 4αλ2 + 6βη

λ4
2

.(23)

Substituting our model parameters at η = 1 yields r = 1 (regardless of the values
of λ1 and λ2), i.e., the model exhibits isotropy on the unloaded specimen during
the first loading, as expected. To predict the degree of orthotropy after the cyclic
loading one needs to compensate the residual strain. We used λ1 = 1.08 and
λ2 = 1.08−1/2 in our calculations. Recall that unloading after the loading cycles
results in η = 0.88. With these in hand, our model predicts r = 1.40 for the degree
of orthotropy, which fairly agrees with the measurements, as expected.

5. Conclusion

A finite-deformation pseudo-elastic model accounting for the Mullins effect is
introduced to qualitatively and quantitatively explain experimental data measured
on highly stretched, thin elastomer sheets. Recognizing the anisotropic nature of
damage, a simple model, characterized by a single state variable, is tuned to capture
the measured residual strain and stress softening behavior, as well as the measured
re-emergent wrinkling behavior observed upon unloading. Our motivating experi-
mental observation, namely, that the first appearance of wrinkles for certain aspect
ratios occurs during the first unloading of the specimen, is then accurately predicted
by the new pseudo-elastic model. By considering the dominance of the stress in the
main stretch direction, the classical pseudo-elastic model with two dissipation fields
can be significantly simplified such that the model accurately predicts the residual
strain/stress softening and wrinkling behavior recorded in the measurements.
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Acknowledgments

The work of A.A.S was supported by the János Bolyai Research Scholarship of
the Hungarian Academy of Sciences. The work of T.J.H. was supported in part by
the National Science Foundation through grant DMS-1613753. We thank Károly
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Appendix A. Connection with the general model of (Dorfmann and
Ogden, 2004)

A pseudoelastic model of an incompressible medium exhibiting stress-softening
and residual strain is presented in [3]. Equation (41) there reads

(24) W (λ1, λ2, η1, η2) = η1W0(λ1, λ2) + (1− η2)N(λ1, λ2) + Φ̂(η1, η2),

where W0(λ1, λ2) is the energy density function of a 2D incompressible hyperelastic
material, λ1, λ2 are the proncipal stretches, the function N is introduced in order
to exhibit residual strain and Φ̂(η1, η2) is the dissipation function. It is postulated,
that the state variables η1 and η2 are unity as long as unloading has not been started
and in that case the model recovers elasticity as W (λ1, λ2, 1, 1) = W0(λ1, λ2) with

Φ̂(1, 1) = 0. Increasing damage is associated with decrease of the dissipation fields
η1 and η2. Our model in equation (5) belongs to this model family. To see this,
first let us reduce the number of dissipation fields via

(25) η2 := (1 + q)η1 − q,

where q is some fixed parameter. Obviously η1 = 1⇔ η2 = 1 holds. Now Φ̂(η1, η2)
is simplified to Φ(η1). Let W0 stand for an isotropic, incompressible Mooney-Rivlin
material with material parameters α and β. Finally, let N be an incompressible,
modified Mooney-Rivlin material with material parameters α, β, v1, v2, v3, viz.,

W0 := α

[
trC +

1

detC
− 3

]
+ β

[
trC

detC
+ detC− 3

]
,(26)

N := α

[
v1(C11 − 1) + v2(C22 − 1) + v3

(
1

detC
− 1

)]
+ βv2

[
trC

detC
+ detC− 3

]
.(27)

Let v1 = 1, v2 6= 1, and v3 = (1 + q)−1 and then set

q :=
1 + d− v2 − dv2

v2 + dv2 − 1
,(28)

η1 := η − dv2(1− η)

v2 − 1
,(29)

where d and η are the parameter and the state variable, respectively, appearing in
(5). Now equation (25) can be written as:

(30) η2 := 1− d 1− η
v2 − 1

.
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Note that η = 1 ⇔ η1 = 1 and η = 1 ⇔ η2 = 1 hold. Substituting the formulas
for η1, η2, W0 and N into (24) yields the membrane energy (5) plus the dissipation
term Φ(η) as in (4).
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[17] von Kármán, T., 1910. Encyklopadie der Mathematischen Wissenschaften.

[18] Zhu, J., Zhang, X., Wierzbicki, T., 2018. Stretch-induced wrinkling of highly orthotropic thin
films. Int. J. Solids & Struct. 139-140, 238–249.

Eszter Fehér, MTA-BME Morphodynamics Research Group and Dept. of Mechanics,
Materials and Structures, Budapest University of Technology, Műegyetem rakpart
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