Covering 2-colored complete digraphs by monochromatic d-dominating digraphs

Louis DeBiasio^{*}, András Gyárfás[†]

February 26, 2021

Abstract

A digraph is *d*-dominating if every set of at most *d* vertices has a common outneighbor. For all integers $d \ge 2$, let f(d) be the smallest integer such that the vertices of every 2-edge-colored (finite or infinite) complete digraph (including loops) can be covered by the vertices of at most f(d) monochromatic *d*-dominating subgraphs. Note that the existence of f(d) is not obvious – indeed, the question which motivated this paper was simply to determine whether f(d) is bounded, even for d = 2. We answer this question affirmatively for all $d \ge 2$, proving $4 \le f(2) \le 8$ and $2d \le f(d) \le$ $2d\left(\frac{d^d-1}{d-1}\right)$ for all $d \ge 3$. We also give an example to show that there is no analogous bound for more than two colors.

Our result provides a positive answer to a question regarding an infinite analogue of the Burr-Erdős conjecture on the Ramsey numbers of *d*-degenerate graphs. Moreover, a special case of our result is related to properties of *d*-paradoxical tournaments.

1 Introduction

Throughout this note a directed graph (or digraph for short) is a pair (V, E) where V can be finite or infinite and $E \subseteq V \times V$ (so in particular, loops are allowed). A digraph is complete if $E = V \times V$. For $v \in V$, we write $N^+(v) = \{u : (v, u) \in E\}$ and $N^-(v) = \{u : (u, v) \in E\}$. For a positive integer k, we define $[k] := \{1, \ldots, k\}$. Note that regardless of whether G = (V, E) is a graph or a digraph, if H = (V', E') and $V' \subseteq V$ and $E' \subseteq E$, we will write $H \subseteq G$ and we will always refer to H as a subgraph of G rather than making a distinction between "subgraph" and "subdigraph."

Let G = (V, E) be a digraph. For $X, Y \subseteq V$ we say that X dominates Y if $(x, y) \in E$ for all $x \in X, y \in Y$. We say that G is d-dominating if for all $S \subseteq V$ with $1 \leq |S| \leq d$, S dominates some $w \in V$. Note that it is possible for $w \in S$, in which case we must have $(w, w) \in E$. Reversing all edges of a d-dominating digraph gives a d-dominated digraph. These notions are well studied for tournaments (see Section 3).

A cover of a digraph G = (V, E) is a set of subgraphs $\{H_1, \ldots, H_t\}$ such that $V(G) = \bigcup_{i \in [t]} V(H_i)$. By a 2-coloring of G = (V, E), we will always mean a 2-coloring of the edges of G; i.e. a function $c : E \to [2]$. Given a 2-coloring of G, we let E_i be the set of edges receiving color i (i.e. $E_i = c^{-1}(\{i\})$) and $G_i = (V, E_i)$ for $i \in [2]$. A cover of G by monochromatic subgraphs is a cover $\{H_1, \ldots, H_t\}$ of G such that for all $i \in [t]$ there exists $j \in [2]$ such that $H_i \subseteq G_j$.

^{*}Department of Mathematics, Miami University, debiasld@miamioh.edu. Research supported in part by NSF grant DMS-1954170.

[†]Alfréd Rényi Institute of Mathematics, Budapest, P.O. Box 127, Budapest, Hungary, H-1364. gyarfas.andras@renyi.hu. Research supported in part by NKFIH Grant No. K132696.

The following problem was raised in [4, Problem 6.6].

Problem 1.1. Given a 2-colored complete digraph K, is it possible to cover K with at most four monochromatic 2-dominating subgraphs? (If not four, some other fixed number?)

Our main result is a positive answer for the qualitative part of Problem 1.1 in a more general form.

Theorem 1.2. Let d be an integer with $d \ge 2$. In every 2-colored complete digraph K, there exists a cover of K with at most $2 \times \sum_{i=1}^{d} d^i = 2d\left(\frac{d^d-1}{d-1}\right)$ monochromatic d-dominating subgraphs. In case of d = 2 there exists a cover of K with at most eight monochromatic 2-dominating subgraphs.

For all integers $d \ge 1$, let f(d) be the minimum number of monochromatic *d*-dominating subgraphs needed to cover an arbitrarily 2-colored complete digraph. Note that obviously f(1) = 2 since the two sets of monochromatic loops provide an optimal cover. For $d \ge 2$, Theorem 1.2 shows that f(d) is well-defined. Example 1.3 below (adapted from [4, Proposition 6.3]) combined with Theorem 1.2 gives

$$4 \le f(2) \le 8$$
 and $2d \le f(d) \le 2d\left(\frac{d^d - 1}{d - 1}\right)$ for all integers $d \ge 3$. (1)

Example 1.3. Let K be a complete digraph on at least 2d vertices and partition V(K) into non-empty sets R_1, \ldots, R_d and B_1, \ldots, B_d , color all edges inside R_i red, all edges inside B_i blue, all edges from R_i to B_j red, all edges from B_i to R_j blue, all edges between R_i and R_j with $i \neq j$ blue, and all edges between B_i and B_j with $i \neq j$ red. One can check that every monochromatic d-dominating subgraph of K is entirely contained inside one of the sets $R_1, \ldots, R_d, B_1, \ldots, B_d$.

Finally, the following example shows that for $d \ge 2$ there is no analogue of Theorem 1.2 for more than two colors (c.f. [4, Example 2.3]).

Example 1.4. Let V be a totally ordered set and let K be the complete digraph on V where for all $i \in V$, (i, i) is green and for all $i, j \in V$ with i < j, (i, j) is red and (j, i) is blue. Note that for $d \ge 2$ the only monochromatic d-dominating subgraphs are the green loops and thus no bound can be put on the number of monochromatic d-dominating subgraphs needed to cover V.

1.1 Motivation

A graph G is d-degenerate if there is an ordering of the vertices v_1, v_2, \ldots such that for all $i \ge 1$, $|N(v_i) \cap \{v_1, \ldots, v_{i-1}\}| \le d$ (equivalently, every subgraph has a vertex of degree at most d). Burr and Erdős conjectured [3] that for all positive integers d, there exists $c_d > 0$ such that every 2-coloring of K_n contains a monochromatic copy of every d-degenerate graph on at most $c_d n$ vertices. This conjecture was recently confirmed by Lee [8].

The motivation for Problem 1.1 relates to the following conjecture also raised in [4, Problem 1.5, Conjecture 10.2] which can be thought of as an infinite analogue of the Burr-Erdős conjecture.

Conjecture 1.5. For all positive integers d, there exists a real number $c_d > 0$ such that if G is a countably infinite d-degenerate graph with no finite dominating set, then in every 2-coloring of the edges of $K_{\mathbb{N}}$, there exists a monochromatic copy of G with vertex set $V \subseteq \mathbb{N}$ such that the upper density of V is at least c_d .

The case d = 1 was solved completely in [4] (regardless of whether G has a finite dominating set or not). For certain 2-colorings of $K_{\mathbb{N}}$, described below, Theorem 1.2 implies a positive solution to Conjecture 1.5 for $d \geq 2$.

Suppose that for some finite subset $F \subseteq \mathbb{N}$, we have a partition of $\mathbb{N} \setminus F$ into (finitely or infinitely many) infinite sets $\mathcal{X} = \{X_1, \ldots, X_n, \ldots\}$. Also suppose that we have ultrafilters $\mathscr{U}_1, \mathscr{U}_2, \ldots, \mathscr{U}_n, \ldots$ on \mathbb{N} such that for all $i \geq 1, X_i \in \mathscr{U}_i$. Finally, suppose that for all $i, j \geq 1$ there exists $c_{i,j} \in [2]$ such that for all $v \in X_i, \{u : \{u, v\} \text{ has color } c_{i,j}\} \cap X_j \in \mathscr{U}_j$. This last condition ensures that if there exists X_{i_1}, \ldots, X_{i_n} and X_j such that $c_{i_1,j} = \cdots = c_{i_n,j} =: c$, then every finite collection of vertices in $X_{i_1} \cup \cdots \cup X_{i_n}$ has infinitely many common neighbors of color c in X_j . Note that such a scenario can be realized as follows: For all i, j, let $c_{i,j} \in [2]$ and color the edges from X_i to X_j so that every vertex in X_i is incident with cofinitely many edges of color $c_{i,j}$ (by using the half graph coloring¹ when $c_{i,j} \neq c_{j,i}$ for instance).

The above coloring of $K_{\mathbb{N}}$ naturally corresponds to a 2-colored complete digraph in the following way: Let K be a 2-colored complete digraph on \mathcal{X} where we color (X_i, X_j) with color c if for all $v \in X_i$, $\{u : \{u, v\}$ has color $c\} \cap X_j \in \mathscr{U}_j$. Now by Theorem 1.2, K can be covered by $t \leq f(d+1)$ monochromatic (d+1)-dominating subgraphs G_1, \ldots, G_t . Since $\mathbb{N} \setminus F = \bigcup_{i \in [t]} \left(\bigcup_{X \in V(G_i)} X \right)$, there exists $i \in [t]$ such that $V_i := \bigcup_{X \in V(G_i)} X$ has upper density at least 1/f(d+1). Without loss of generality, suppose the edges of G_i are red. By the construction, V_i has the property that for all $S \subseteq V_i$ with $1 \leq |S| \leq d+1$, there is an infinite subset $W \subseteq V_i$ such that every edge in E(S, W) is red. As shown in [4, Proposition 6.1], if G is a graph satisfying the hypotheses of Conjecture 1.5, then there exists a red copy of G which spans V_i and thus has upper density at least 1/f(d+1).

2 Covering digraphs, proof of Theorem 1.2

For a graph G, we denote the order of a largest clique (pairwise adjacent vertices) in G by $\omega(G)$. Given a 2-colored complete digraph K and a set $U \subseteq V(K)$, define $G[U]_{\text{blue}}$ to be the graph on U where $\{u, v\} \in G[U]_{\text{blue}}$ if and only if (u, v) and (v, u) are blue in K; define $G[U]_{\text{red}}$ analogously.

Given positive integers ω and d, let $f(\omega, d)$ be the smallest positive integer D such that if K is a 2-colored complete digraph on vertex set V where every loop has the same color, say red, and $\omega(G[V]_{\text{blue}}) = \omega$, then V can be covered by at most D monochromatic d-dominating subgraphs. Also define f(0, d) = 0.

Lemma 2.1.

- (1) f(1,2) = 1
- (2) $f(\omega, d) \leq d(f(\omega 1, d) + 1)$ for all $1 \leq \omega \leq d$ (in particular, $f(1, d) \leq d$). In fact, all *d*-dominating subgraphs in the covering have the same color as the loops.

Note that the upper bound $\omega \leq d$ is not strictly necessary, but we include it here for clarity since in the next lemma, we will prove a stronger result when $\omega \geq d+1$.

Proof. Let K be a 2-colored complete digraph on vertex set V where all loops have the same color, say red.

(1) is trivial since for all distinct $u, v \in V$ both (u, u) and (v, v) are red and $\omega(G[V]_{\text{blue}}) = 1$ implies that either (u, v) or (v, u) is red.

To see (2), note first that we may assume that K itself is not spanned by a red ddominating subgraph, otherwise we are done. This is witnessed by a set $U = \{u_1, \ldots, u_d\} \subseteq V$, such that there is no $w \in V$ with (u_i, w) red for all $i \in [d]$.

¹Given a totally ordered set Z and disjoint $X, Y \subseteq Z$ the half graph coloring of the complete bipartite graph $K_{X,Y}$ is a 2-coloring of the edges of $K_{X,Y}$ where for all $i \in X, j \in Y$, $\{i, j\}$ is red if and only if $i \leq j$.

For all $i \in [d]$ we define

$$W_i = \{ v \in V : (v, u_i) \text{ is red} \}.$$

Note that $u_i \in W_i$ and $K[W_i]$ is spanned by a red *d*-dominating subgraph for all $i \in [d]$. Set $V' = V \setminus (\bigcup_{i \in [d]} W_i)$ and define

$$T_i = \{ v \in V' : (u_i, v) \text{ is blue} \}.$$

Note, that by the definition of V', (v, u_i) is also blue for all $v \in T_i$ and $i \in [d]$. Moreover, from the selection of U, every vertex in V' receives a blue edge from some vertex in U and therefore $V' = \bigcup_{i=1}^{d} T_i$.

Note that if $\omega = 1$, then $T_i = \emptyset$ for all $i \in [d]$ and thus $\bigcup_{i \in [d]} W_i$ is a cover of K with d red d-dominating subgraphs; i.e. $f(1,d) \leq d = d(f(0,d) + 1)$.

Otherwise, we have that $\omega(K[T_i]_{\text{blue}}) \leq \omega - 1$ and thus K is covered by at most

$$d + d \cdot f(\omega - 1, d) = d(f(\omega - 1, d) + 1)$$

red *d*-dominating subgraphs.

Lemma 2.2. Let K be a 2-colored complete digraph K where R is the set of red loops and B is the set of blue loops. If $\omega(G[R]_{blue}) \ge d+1$, then V(K) can be covered by at most d red d-dominating subgraphs and at most one blue d-dominating subgraph. Likewise, if $\omega(G[B]_{red}) \ge d+1$. In particular, this implies $f(\omega, d) \le d+1$ for $\omega \ge d+1$.

Proof. Suppose $\omega(G[R]_{\text{blue}}) \ge d+1$ and let $X = \{x_1, \ldots, x_d, x_{d+1}\} \subseteq R$ be a set of order d+1 which witnesses this fact. For $i \in [d]$ we define

$$W_i = \{ v \in V(K) : (v, x_i) \text{ is red} \}.$$

Note that $x_i \in W_i$ and $K[W_i]$ is spanned by a red d-dominating subgraph for all $i \in [d]$.

Set $V' = X \cup (V(K) \setminus (\cup_{i \in [d]} W_i))$ and note that for all $v \in V'$, [v, X] is blue. Now let $S \subseteq V'$ such that $1 \leq |S| \leq d$. If $S \subseteq X$, then since |S| < |X|, there exists $x_i \in X \setminus S$ such that every edge in $[S, x_i]$ is blue; otherwise $|S \cap X| \leq d-1$ and there exists $i \in [d]$ such that $x_i \notin S$ and every edge in $[S, x_i]$ is blue. So there is one blue *d*-dominating subgraph which covers V', which together with the red *d*-dominating subgraphs $K[W_1], \ldots, K[W_d]$ gives the result.

When $\omega(G[B]_{red}) \ge d+1$, the proof is the same by switching the colors.

Now we are ready to prove our main result.

Proof of Theorem 1.2. Let $V(K) = R \cup B$ where R, B are the vertex sets of the red and blue loops, respectively. If $\omega(G[R]_{\text{blue}}) \ge d + 1$ or $\omega(G[B]_{\text{red}}) \ge d + 1$, then by Lemma 2.2, $R \cup B$ can be covered by at most d + 1 monochromatic d-dominating subgraphs. So suppose $\omega(G[R]_{\text{blue}}) \le d$ and $\omega(G[B]_{\text{red}}) \le d$. Now by Lemma 2.1, each of K[R] and K[B] can be covered by at most 4 monochromatic d-dominating subgraphs when d = 2, and by at most $\sum_{i=1}^{\omega} d^i \le \sum_{i=1}^{d} d^i$ monochromatic d-dominating subgraphs when $d \ge 3$.

3 Paradoxical tournaments

In the above section, we proved that f(1,2) = 1 and $f(1,d) \leq d$ for all $d \geq 3$. Naturally, we wondered if the upper bound on f(1,d) could be improved when $d \geq 3$ (since any improvement on f(1,d) would improve the general upper bound on f(d)). In this section we show that it cannot; that is, f(1,d) = d for all $d \geq 3$.

A tournament is a digraph (V, E) such that for all distinct $x, y \in V$ exactly one of (x, y), (y, x) is in E and $(x, x) \notin E$. Given a digraph G = (V, E), we say that $S \subseteq V$ is an out-dominating set if for all $v \in V \setminus S$, there exists $u \in S$ such that $(u, v) \in E$, and we say that S is an in-dominating set if for all $v \in V \setminus S$, there exists $u \in S$ such that $(v, u) \in E$. Note that a tournament T is d-dominating (d-dominated) if and only if T has no in-dominating (out-dominating) set of order d.

We call a *d*-dominating (*d*-dominated) tournament *critical* if its proper subtournaments are not *d*-dominating (*d*-dominated). For a tournament T, let T^* be the digraph obtained from T by adding a loop at every vertex.

Our main result of this section is the following.

Theorem 3.1. For all integers $d \ge 2$, if T is a critical d-dominated tournament with no (d+1)-dominating subtournaments, then f(1, d+1) = d+1.

However, before proving Theorem 3.1, we show that such a tournament exists for all $d \ge 2$ from which we obtain the following corollary.

Corollary 3.2. For all $d \ge 3$, f(1, d) = d.

Note that the absence of loops and two-way oriented edges make the existence of d-dominated tournaments a nontrivial problem. This existence problem for d-dominated tournaments was proposed by Schütte (see [5]) and was first proved by Erdős [5] with the probabilistic method, then Graham and Spencer [6] gave an explicit construction using sufficiently large Paley tournaments².

Note that Babai [1] coined the term *d-paradoxical tournament* for what we refer to as *d*-dominated tournament. In this spirit, we say that a tournament is *perfectly d-paradoxical* if it is *d*-dominating, *d*-dominated, has no (d + 1)-dominating subtournaments, and has no (d + 1)-dominated subtournaments. A result of Esther and George Szekeres [7] combined with the fact that Paley tournaments are self-complementary implies that QT_7 is perfectly 2-paradoxical and QT_{19} is perfectly 3-paradoxical. It is an open question (which to the best of our knowledge we are raising here for the first time) whether every Paley tournament is perfectly *d*-paradoxical for some *d*. While we can't settle that question, the following beautiful example of Bukh [2] shows that perfectly *d*-paradoxical tournaments exist for all $d \geq 2$. We repeat his proof here (tailored to the terminology of this paper) for completeness.

Example 3.3 (Bukh [2]). For all integers $d \ge 2$, there exists a perfectly d-paradoxical tournament. In particular, there exists a critical d-dominated tournament which has no (d+1)-dominating subtournaments.

Proof. Let d be an integer with $d \ge 2$ and let n = m(d+1) where $m = 2^{3d}$. Let $V = \{0, 1, \ldots, n-1\}$ and let G be the oriented graph on V where $(i, j) \in E(G)$ if and only if $1 \le j-i \le m-1$ (with addition modulo n). In other words G is the oriented (m-1)st power of a cycle on n vertices. Now we define a tournament T by starting with the oriented graph G and for all distinct $i, j \in V$, if $(i, j), (j, i) \notin E(G)$, then independently and uniformly at random let $(i, j) \in E(T)$ or $(j, i) \in E(T)$.

First note that every induced subgraph of G has an in-dominating set of order at most d + 1 and an out-dominating set of order at most d + 1 and thus the same is true of every subtournament of T. This implies that T has no (d + 1)-dominating subtournaments and no (d + 1)-dominated subtournaments.

Now we claim that with positive probability, T has no out-dominating sets of order d and no in-dominating sets of order d and thus T is d-dominated and d-dominating. Let

²For a prime power $p, p \equiv -1 \pmod{4}$, the Paley tournament QT_p is defined on vertex set V = [0, p-1] and (a, b) is a directed edge if and only if a - b is a non-zero square in the finite field \mathbb{F}_p .

 $S \subseteq V$ with |S| = d and let

 $N_G^+[S] = \{ v \in V : v \in S \text{ or there exists } u \in S \text{ such that } (u, v) \in E(G) \}.$

Let $V' := V \setminus N_G^+[S]$ and note that $|N_G^+[S]| \le dm$ and thus $|V'| \ge m$. The probability that $v \in V'$ is dominated by S in T is $1 - 2^{-d}$ and thus the probability that every vertex in V' is dominated by S is $(1 - 2^{-d})^{|V'|} \le (1 - 2^{-d})^m \le e^{-2^{-d}m} = e^{-4^d}$. Likewise for every vertex of V' dominating S. So the expected number of out-dominating or in-dominating sets of order d is at most

$$2\binom{n}{d}e^{-4^{d}} < 2(em)^{d}e^{-4d} < 2(e^{3d+1})^{d}e^{-4^{d}} < 1$$

(where the last inequality holds since $(3d + 1)d < 4^d$ for all $d \ge 2$), which establishes the claim.

Starting with a perfectly *d*-paradoxical tournament T, let T' be a minimal subtournament of T which is *d*-dominated. So T' is critical *d*-dominated and has no (d + 1)-dominating subtournaments.

The proof of Theorem 3.1 will follow from two more general lemmas.

Lemma 3.4. Let T be a tournament and let $d \ge 2$. If T is 2-dominating and there exists a set $W \subseteq V(T)$ with |W| = d such that W dominates exactly one vertex v, then T^* is not (d+1)-dominating. In particular, if T is critical d-dominating, then T^* is not (d+1)dominating.

Proof. Let $W = \{w_1, \ldots, w_d\}$ and v be as in the statement. To see that T^* is not (d + 1)dominating, it is enough to prove that for some $u \in N^+(v)$ the set $W \cup \{u\}$ does not dominate any vertex in T^* (note that since T is 2-dominating, $N^+(v) \neq \emptyset$). Suppose for contradiction that this is not the case; that is, for all $u \in N^+(v)$ the set $W \cup \{u\}$ dominates some vertex x in T^* . Note that by the definition of W and the fact that $u \in N^+(v)$, it must be the case that $x \in W$; without loss of generality, suppose $x = w_1$. This implies that for all $i \in [d], (w_i, w_1) \in E(T)$. But now this implies that for all $u \in N^+(v), W \cup \{u\}$ dominates w_1 . On the other hand since T is 2-dominating, it must be the case that there exists a vertex which is dominated by $\{w_1, v\}$ in T, but every outneighbor of v is an inneighbor of w_1 and thus we have a contradiction.

To get the second part of the lemma, first note that if T is critical d-dominating, then T is 2-dominating. Moreover, for all $v \in V$, since T - v is not d-dominating there exists $W = \{w_1, \ldots, w_d\} \subseteq V(T) \setminus \{v\}$ which does not dominate any vertex in $V(T) \setminus \{v\}$, but since T is d-dominating, W must dominate v.

If G = (V, E) is a digraph such that there exists $w \in V$ such that $(v, w) \in E$ for all $v \in V$ (including v = w), then note that G is d-dominating for all $d \leq |V|$. In this case we call G trivially d-dominating.

Lemma 3.5. Let T be a tournament. If T is critical d-dominating, then T^* cannot be covered by less than d + 1 (d + 1)-dominating subgraphs.

Proof. Suppose for contradiction that for some $t \leq d$ there are (d+1)-dominating subgraphs H_1, \ldots, H_t which cover T^* . Since T is critical d-dominating we have by Lemma 3.4 that T^* is not (d+1)-dominating, and thus all $V(H_i)$ are proper subsets of $V(T^*)$.

Claim 3.6. Each H_i is trivially (d + 1)-dominating.

Proof. The claim is obvious if $|V(H_i)| \leq d$; so suppose that $|V(H_i)| \geq d + 1$. Since T is critical d-dominating, the subtournament T_i of T spanned by $V(H_i)$ is not d-dominating. This is witnessed by a set $W = \{w_1, \ldots, w_d\} \subseteq V(T_i)$ such that W does not dominate any vertex in $U = V(T_i) \setminus W$. Let $u \in U$. Since H_i is (d+1)-dominating, $W \cup u$ dominates some vertex $x \in V(H_i)$ which must be in W from the definition of W. Without loss of generality, let $x = w_1$. This implies that $(u, x_1) \in E(T)$ and for all $i \in [d], (w_i, w_1) \in E(T)$. But now this implies that for all $u \in U$, $W \cup \{u\}$ dominates w_1 and thus all vertices of $V(H_i)$ (including w_1) are oriented to w_1 proving the claim.

Claim 3.6 implies that for all $i \in [t]$ there is a vertex $v_i \in V(H_i)$ which is dominated by all vertices of H_i . But since $\cup_{i=1}^t V(H_i) = V(T)$, the set $\{v_1, \ldots, v_t\}$ does not dominate any vertex in T, contradicting the fact that T is d-dominating.

Proof of Theorem 3.1. First note that $f(1, d+1) \leq d+1$ by Lemma 2.1.

Let T_B be a tournament on vertex set V such that T_B is critical d-dominated and has no (d + 1)-dominating subtournaments. Define the 2-colored complete digraph K on V by coloring all edges of T_B blue, and all edges of $(V \times V) \setminus E(T_B)$ red. Let T_R be the tournament with $E(T_R) = \{(y, x) : (x, y) \in E(T_B)\}$ and note that every edge of T_R is red and T_R has no loops. Since T_B is critical d-dominated, this implies that T_R is critical d-dominating (since T_R is obtained by reversing all the edges of T_B).

Note that by the assumption on T_B , every monochromatic (d+1)-dominating subgraph in K must be red. However, since T_R is critical d-dominating, we get that $f(1, d+1) \ge d+1$ from Lemma 3.5.

Acknowledgements. We thank Boris Bukh for Example 3.3 and for his comments on the paper.

References

- L. Babai, Character sums, Weil's estimate and paradoxical tournaments, http://people.cs.uchicago.edu/laci/reu02/paley.pdf (2002).
- [2] B. Bukh. Dominating sets in subtournaments of the Paley tournament, https://mathoverflow.net/q/383245
- [3] S. A. Burr, P. Erdős. On the magnitude of generalized Ramsey numbers for graphs, Colloq. Math. Soc. János Bolyai 10 (1975), 215–240.
- [4] J. Corsten, L. DeBiasio, P. McKenney. Density of monochromatic infinite subgraphs II, arXiv preprint arXiv:2007.14277 (2020).
- [5] P. Erdős. On a problem in Graph Theory, Math. Gazette 47 (1963) 220-223.
- [6] R. L. Graham, J. H. Spencer, A constructive solution to a tournament problem, *Cana*dian Math. Bulletin 14 (1971) 45-48.
- [7] E. Szekeres, G. Szekeres, On a problem of Schütte and Erdős, Math. Gazette 49 (1965) 290-293.
- [8] C. Lee. Ramsey numbers of degenerate graphs, Ann. of Math. 185 (2017), no. 3, 791-829.