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Abstract

A digraph is d-dominating if every set of at most d vertices has a common out-
neighbor. For all integers d ≥ 2, let f(d) be the smallest integer such that the vertices
of every 2-edge-colored (finite or infinite) complete digraph (including loops) can be
covered by the vertices of at most f(d) monochromatic d-dominating subgraphs. Note
that the existence of f(d) is not obvious – indeed, the question which motivated this
paper was simply to determine whether f(d) is bounded, even for d = 2. We answer
this question affirmatively for all d ≥ 2, proving 4 ≤ f(2) ≤ 8 and 2d ≤ f(d) ≤

2d
(

dd−1

d−1

)

for all d ≥ 3. We also give an example to show that there is no analogous

bound for more than two colors.
Our result provides a positive answer to a question regarding an infinite analogue of

the Burr-Erdős conjecture on the Ramsey numbers of d-degenerate graphs. Moreover,
a special case of our result is related to properties of d-paradoxical tournaments.

1 Introduction

Throughout this note a directed graph (or digraph for short) is a pair (V,E) where V can be
finite or infinite and E ⊆ V ×V (so in particular, loops are allowed). A digraph is complete
if E = V × V . For v ∈ V , we write N+(v) = {u : (v, u) ∈ E} and N−(v) = {u : (u, v) ∈
E}. For a positive integer k, we define [k] := {1, . . . , k}. Note that regardless of whether
G = (V,E) is a graph or a digraph, if H = (V ′, E′) and V ′ ⊆ V and E′ ⊆ E, we will write
H ⊆ G and we will always refer to H as a subgraph of G rather than making a distinction
between “subgraph” and “subdigraph.”

Let G = (V,E) be a digraph. For X,Y ⊆ V we say that X dominates Y if (x, y) ∈ E
for all x ∈ X, y ∈ Y . We say that G is d-dominating if for all S ⊆ V with 1 ≤ |S| ≤ d,
S dominates some w ∈ V . Note that it is possible for w ∈ S, in which case we must have
(w,w) ∈ E. Reversing all edges of a d-dominating digraph gives a d-dominated digraph.
These notions are well studied for tournaments (see Section 3).

A cover of a digraph G = (V,E) is a set of subgraphs {H1, . . . , Ht} such that V (G) =
⋃

i∈[t] V (Hi). By a 2-coloring of G = (V,E), we will always mean a 2-coloring of the edges of

G; i.e. a function c : E → [2]. Given a 2-coloring of G, we let Ei be the set of edges receiving
color i (i.e. Ei = c−1({i})) and Gi = (V,Ei) for i ∈ [2]. A cover of G by monochromatic
subgraphs is a cover {H1, . . . , Ht} of G such that for all i ∈ [t] there exists j ∈ [2] such that
Hi ⊆ Gj .
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The following problem was raised in [4, Problem 6.6].

Problem 1.1. Given a 2-colored complete digraph K, is it possible to cover K with at most
four monochromatic 2-dominating subgraphs? (If not four, some other fixed number?)

Our main result is a positive answer for the qualitative part of Problem 1.1 in a more
general form.

Theorem 1.2. Let d be an integer with d ≥ 2. In every 2-colored complete digraph K, there

exists a cover of K with at most 2 ×
∑d

i=1 d
i = 2d

(

dd−1
d−1

)

monochromatic d-dominating

subgraphs. In case of d = 2 there exists a cover of K with at most eight monochromatic
2-dominating subgraphs.

For all integers d ≥ 1, let f(d) be the minimum number of monochromatic d-dominating
subgraphs needed to cover an arbitrarily 2-colored complete digraph. Note that obviously
f(1) = 2 since the two sets of monochromatic loops provide an optimal cover. For d ≥
2, Theorem 1.2 shows that f(d) is well-defined. Example 1.3 below (adapted from [4,
Proposition 6.3]) combined with Theorem 1.2 gives

4 ≤ f(2) ≤ 8 and 2d ≤ f(d) ≤ 2d

(

dd − 1

d− 1

)

for all integers d ≥ 3. (1)

Example 1.3. Let K be a complete digraph on at least 2d vertices and partition V (K) into
non-empty sets R1, . . . , Rd and B1, . . . , Bd, color all edges inside Ri red, all edges inside Bi

blue, all edges from Ri to Bj red, all edges from Bi to Rj blue, all edges between Ri and
Rj with i 6= j blue, and all edges between Bi and Bj with i 6= j red. One can check that
every monochromatic d-dominating subgraph of K is entirely contained inside one of the
sets R1, . . . , Rd, B1, . . . , Bd.

Finally, the following example shows that for d ≥ 2 there is no analogue of Theorem 1.2
for more than two colors (c.f. [4, Example 2.3]).

Example 1.4. Let V be a totally ordered set and let K be the complete digraph on V where
for all i ∈ V , (i, i) is green and for all i, j ∈ V with i < j, (i, j) is red and (j, i) is blue.
Note that for d ≥ 2 the only monochromatic d-dominating subgraphs are the green loops and
thus no bound can be put on the number of monochromatic d-dominating subgraphs needed
to cover V .

1.1 Motivation

A graph G is d-degenerate if there is an ordering of the vertices v1, v2, . . . such that for all
i ≥ 1, |N(vi) ∩ {v1, . . . , vi−1}| ≤ d (equivalently, every subgraph has a vertex of degree at
most d). Burr and Erdős conjectured [3] that for all positive integers d, there exists cd > 0
such that every 2-coloring ofKn contains a monochromatic copy of every d-degenerate graph
on at most cdn vertices. This conjecture was recently confirmed by Lee [8].

The motivation for Problem 1.1 relates to the following conjecture also raised in [4,
Problem 1.5, Conjecture 10.2] which can be thought of as an infinite analogue of the Burr-
Erdős conjecture.

Conjecture 1.5. For all positive integers d, there exists a real number cd > 0 such that
if G is a countably infinite d-degenerate graph with no finite dominating set, then in every
2-coloring of the edges of KN, there exists a monochromatic copy of G with vertex set V ⊆ N

such that the upper density of V is at least cd.
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The case d = 1 was solved completely in [4] (regardless of whether G has a finite dom-
inating set or not). For certain 2-colorings of KN, described below, Theorem 1.2 implies a
positive solution to Conjecture 1.5 for d ≥ 2.

Suppose that for some finite subset F ⊆ N, we have a partition of N \F into (finitely or
infinitely many) infinite sets X = {X1, . . . , Xn, . . . }. Also suppose that we have ultrafilters
U1,U2, . . . ,Un, . . . on N such that for all i ≥ 1,Xi ∈ Ui. Finally, suppose that for all i, j ≥ 1
there exists ci,j ∈ [2] such that for all v ∈ Xi, {u : {u, v} has color ci,j}∩Xj ∈ Uj . This last
condition ensures that if there exists Xi1 , . . . , Xin and Xj such that ci1,j = · · · = cin,j =: c,
then every finite collection of vertices inXi1∪· · ·∪Xin has infinitely many common neighbors
of color c in Xj . Note that such a scenario can be realized as follows: For all i, j, let ci,j ∈ [2]
and color the edges from Xi to Xj so that every vertex in Xi is incident with cofinitely many
edges of color ci,j (by using the half graph coloring1 when ci,j 6= cj,i for instance).

The above coloring of KN naturally corresponds to a 2-colored complete digraph in the
following way: Let K be a 2-colored complete digraph on X where we color (Xi, Xj) with
color c if for all v ∈ Xi, {u : {u, v} has color c} ∩ Xj ∈ Uj . Now by Theorem 1.2, K can
be covered by t ≤ f(d+ 1) monochromatic (d+1)-dominating subgraphs G1, . . . , Gt. Since

N \ F =
⋃

i∈[t]

(

⋃

X∈V (Gi)
X
)

, there exists i ∈ [t] such that Vi :=
⋃

X∈V (Gi)
X has upper

density at least 1/f(d+ 1). Without loss of generality, suppose the edges of Gi are red. By
the construction, Vi has the property that for all S ⊆ Vi with 1 ≤ |S| ≤ d + 1, there is an
infinite subset W ⊆ Vi such that every edge in E(S,W ) is red. As shown in [4, Proposition
6.1], if G is a graph satisfying the hypotheses of Conjecture 1.5, then there exists a red copy
of G which spans Vi and thus has upper density at least 1/f(d+ 1).

2 Covering digraphs, proof of Theorem 1.2

For a graph G, we denote the order of a largest clique (pairwise adjacent vertices) in G by
ω(G). Given a 2-colored complete digraph K and a set U ⊆ V (K), define G[U ]blue to be
the graph on U where {u, v} ∈ G[U ]blue if and only if (u, v) and (v, u) are blue in K; define
G[U ]red analogously.

Given positive integers ω and d, let f(ω, d) be the smallest positive integer D such
that if K is a 2-colored complete digraph on vertex set V where every loop has the same
color, say red, and ω(G[V ]blue) = ω, then V can be covered by at most D monochromatic
d-dominating subgraphs. Also define f(0, d) = 0.

Lemma 2.1.

(1) f(1, 2) = 1

(2) f(ω, d) ≤ d(f(ω − 1, d) + 1) for all 1 ≤ ω ≤ d (in particular, f(1, d) ≤ d). In fact, all
d-dominating subgraphs in the covering have the same color as the loops.

Note that the upper bound ω ≤ d is not strictly necessary, but we include it here for
clarity since in the next lemma, we will prove a stronger result when ω ≥ d+ 1.

Proof. Let K be a 2-colored complete digraph on vertex set V where all loops have the same
color, say red.

(1) is trivial since for all distinct u, v ∈ V both (u, u) and (v, v) are red and ω(G[V ]blue) =
1 implies that either (u, v) or (v, u) is red.

To see (2), note first that we may assume that K itself is not spanned by a red d-
dominating subgraph, otherwise we are done. This is witnessed by a set U = {u1, . . . , ud} ⊆
V , such that there is no w ∈ V with (ui, w) red for all i ∈ [d].

1Given a totally ordered set Z and disjoint X, Y ⊆ Z the half graph coloring of the complete bipartite
graph KX,Y is a 2-coloring of the edges of KX,Y where for all i ∈ X, j ∈ Y , {i, j} is red if and only if i ≤ j.
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For all i ∈ [d] we define

Wi = {v ∈ V : (v, ui) is red}.

Note that ui ∈ Wi and K[Wi] is spanned by a red d-dominating subgraph for all i ∈ [d].
Set V ′ = V \ (∪i∈[d]Wi) and define

Ti = {v ∈ V ′ : (ui, v) is blue}.

Note, that by the definition of V ′, (v, ui) is also blue for all v ∈ Ti and i ∈ [d]. Moreover,
from the selection of U , every vertex in V ′ receives a blue edge from some vertex in U and
therefore V ′ = ∪d

i=1Ti.
Note that if ω = 1, then Ti = ∅ for all i ∈ [d] and thus ∪i∈[d]Wi is a cover of K with d

red d-dominating subgraphs; i.e. f(1, d) ≤ d = d(f(0, d) + 1).
Otherwise, we have that ω(K[Ti]blue) ≤ ω − 1 and thus K is covered by at most

d+ d · f(ω − 1, d) = d(f(ω − 1, d) + 1)

red d-dominating subgraphs.

Lemma 2.2. Let K be a 2-colored complete digraph K where R is the set of red loops and
B is the set of blue loops. If ω(G[R]blue) ≥ d + 1, then V (K) can be covered by at most
d red d-dominating subgraphs and at most one blue d-dominating subgraph. Likewise, if
ω(G[B]red) ≥ d+ 1. In particular, this implies f(ω, d) ≤ d+ 1 for ω ≥ d+ 1.

Proof. Suppose ω(G[R]blue) ≥ d + 1 and let X = {x1, . . . , xd, xd+1} ⊆ R be a set of order
d+ 1 which witnesses this fact. For i ∈ [d] we define

Wi = {v ∈ V (K) : (v, xi) is red}.

Note that xi ∈ Wi and K[Wi] is spanned by a red d-dominating subgraph for all i ∈ [d].
Set V ′ = X ∪ (V (K) \ (∪i∈[d]Wi)) and note that for all v ∈ V ′, [v,X ] is blue. Now let

S ⊆ V ′ such that 1 ≤ |S| ≤ d. If S ⊆ X , then since |S| < |X |, there exists xi ∈ X \ S such
that every edge in [S, xi] is blue; otherwise |S ∩X | ≤ d− 1 and there exists i ∈ [d] such that
xi /∈ S and every edge in [S, xi] is blue. So there is one blue d-dominating subgraph which
covers V ′, which together with the red d-dominating subgraphs K[W1], . . . ,K[Wd] gives the
result.

When ω(G[B]red) ≥ d+ 1, the proof is the same by switching the colors.

Now we are ready to prove our main result.

Proof of Theorem 1.2. Let V (K) = R∪B where R,B are the vertex sets of the red and
blue loops, respectively. If ω(G[R]blue) ≥ d+ 1 or ω(G[B]red) ≥ d+ 1, then by Lemma 2.2,
R∪B can be covered by at most d+1 monochromatic d-dominating subgraphs. So suppose
ω(G[R]blue) ≤ d and ω(G[B]red) ≤ d. Now by Lemma 2.1, each of K[R] and K[B] can be
covered by at most 4 monochromatic d-dominating subgraphs when d = 2, and by at most
∑ω

i=1 d
i ≤

∑d

i=1 d
i monochromatic d-dominating subgraphs when d ≥ 3.

3 Paradoxical tournaments

In the above section, we proved that f(1, 2) = 1 and f(1, d) ≤ d for all d ≥ 3. Naturally,
we wondered if the upper bound on f(1, d) could be improved when d ≥ 3 (since any
improvement on f(1, d) would improve the general upper bound on f(d)). In this section
we show that it cannot; that is, f(1, d) = d for all d ≥ 3.
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A tournament is a digraph (V,E) such that for all distinct x, y ∈ V exactly one of
(x, y), (y, x) is in E and (x, x) /∈ E. Given a digraph G = (V,E), we say that S ⊆ V is
an out-dominating set if for all v ∈ V \ S, there exists u ∈ S such that (u, v) ∈ E, and
we say that S is an in-dominating set if for all v ∈ V \ S, there exists u ∈ S such that
(v, u) ∈ E. Note that a tournament T is d-dominating (d-dominated) if and only if T has
no in-dominating (out-dominating) set of order d.

We call a d-dominating (d-dominated) tournament critical if its proper subtournaments
are not d-dominating (d-dominated). For a tournament T , let T ∗ be the digraph obtained
from T by adding a loop at every vertex.

Our main result of this section is the following.

Theorem 3.1. For all integers d ≥ 2, if T is a critical d-dominated tournament with no
(d+ 1)-dominating subtournaments, then f(1, d+ 1) = d+ 1.

However, before proving Theorem 3.1, we show that such a tournament exists for all
d ≥ 2 from which we obtain the following corollary.

Corollary 3.2. For all d ≥ 3, f(1, d) = d.

Note that the absence of loops and two-way oriented edges make the existence of d-
dominated tournaments a nontrivial problem. This existence problem for d-dominated
tournaments was proposed by Schütte (see [5]) and was first proved by Erdős [5] with
the probabilistic method, then Graham and Spencer [6] gave an explicit construction using
sufficiently large Paley tournaments2.

Note that Babai [1] coined the term d-paradoxical tournament for what we refer to as
d-dominated tournament. In this spirit, we say that a tournament is perfectly d-paradoxical
if it is d-dominating, d-dominated, has no (d + 1)-dominating subtournaments, and has no
(d + 1)-dominated subtournaments. A result of Esther and George Szekeres [7] combined
with the fact that Paley tournaments are self-complementary implies that QT7 is perfectly
2-paradoxical and QT19 is perfectly 3-paradoxical. It is an open question (which to the best
of our knowledge we are raising here for the first time) whether every Paley tournament
is perfectly d-paradoxical for some d. While we can’t settle that question, the following
beautiful example of Bukh [2] shows that perfectly d-paradoxical tournaments exist for all
d ≥ 2. We repeat his proof here (tailored to the terminology of this paper) for completeness.

Example 3.3 (Bukh [2]). For all integers d ≥ 2, there exists a perfectly d-paradoxical
tournament. In particular, there exists a critical d-dominated tournament which has no
(d+ 1)-dominating subtournaments.

Proof. Let d be an integer with d ≥ 2 and let n = m(d + 1) where m = 23d. Let V =
{0, 1, . . . , n − 1} and let G be the oriented graph on V where (i, j) ∈ E(G) if and only if
1 ≤ j−i ≤ m−1 (with addition modulo n). In other words G is the oriented (m−1)st power
of a cycle on n vertices. Now we define a tournament T by starting with the oriented graph
G and for all distinct i, j ∈ V , if (i, j), (j, i) 6∈ E(G), then independently and uniformly at
random let (i, j) ∈ E(T ) or (j, i) ∈ E(T ).

First note that every induced subgraph of G has an in-dominating set of order at most
d+ 1 and an out-dominating set of order at most d+ 1 and thus the same is true of every
subtournament of T . This implies that T has no (d + 1)-dominating subtournaments and
no (d+ 1)-dominated subtournaments.

Now we claim that with positive probability, T has no out-dominating sets of order d
and no in-dominating sets of order d and thus T is d-dominated and d-dominating. Let

2For a prime power p, p ≡ −1 (mod 4), the Paley tournament QTp is defined on vertex set V = [0, p− 1]
and (a, b) is a directed edge if and only if a− b is a non-zero square in the finite field Fp.
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S ⊆ V with |S| = d and let

N+
G [S] = {v ∈ V : v ∈ S or there exists u ∈ S such that (u, v) ∈ E(G)}.

Let V ′ := V \N+
G [S] and note that |N+

G [S]| ≤ dm and thus |V ′| ≥ m. The probability that
v ∈ V ′ is dominated by S in T is 1− 2−d and thus the probability that every vertex in V ′ is

dominated by S is (1 − 2−d)|V
′| ≤ (1 − 2−d)m ≤ e−2−dm = e−4d . Likewise for every vertex

of V ′ dominating S. So the expected number of out-dominating or in-dominating sets of
order d is at most

2

(

n

d

)

e−4d < 2(em)de−4d < 2(e3d+1)de−4d < 1

(where the last inequality holds since (3d + 1)d < 4d for all d ≥ 2), which establishes the
claim.

Starting with a perfectly d-paradoxical tournament T , let T ′ be a minimal subtournament
of T which is d-dominated. So T ′ is critical d-dominated and has no (d + 1)-dominating
subtournaments.

The proof of Theorem 3.1 will follow from two more general lemmas.

Lemma 3.4. Let T be a tournament and let d ≥ 2. If T is 2-dominating and there exists
a set W ⊆ V (T ) with |W | = d such that W dominates exactly one vertex v, then T ∗ is
not (d+ 1)-dominating. In particular, if T is critical d-dominating, then T ∗ is not (d+ 1)-
dominating.

Proof. Let W = {w1, . . . , wd} and v be as in the statement. To see that T ∗ is not (d + 1)-
dominating, it is enough to prove that for some u ∈ N+(v) the set W ∪ {u} does not
dominate any vertex in T ∗ (note that since T is 2-dominating, N+(v) 6= ∅). Suppose for
contradiction that this is not the case; that is, for all u ∈ N+(v) the set W ∪{u} dominates
some vertex x in T ∗. Note that by the definition of W and the fact that u ∈ N+(v), it must
be the case that x ∈ W ; without loss of generality, suppose x = w1. This implies that for all
i ∈ [d], (wi, w1) ∈ E(T ). But now this implies that for all u ∈ N+(v), W ∪ {u} dominates
w1. On the other hand since T is 2-dominating, it must be the case that there exists a
vertex which is dominated by {w1, v} in T , but every outneighbor of v is an inneighbor of
w1 and thus we have a contradiction.

To get the second part of the lemma, first note that if T is critical d-dominating, then
T is 2-dominating. Moreover, for all v ∈ V , since T − v is not d-dominating there exists
W = {w1, . . . wd} ⊆ V (T )\{v} which does not dominate any vertex in V (T )\{v}, but since
T is d-dominating, W must dominate v.

If G = (V,E) is a digraph such that there exists w ∈ V such that (v, w) ∈ E for all
v ∈ V (including v = w), then note that G is d-dominating for all d ≤ |V |. In this case we
call G trivially d-dominating.

Lemma 3.5. Let T be a tournament. If T is critical d-dominating, then T ∗ cannot be
covered by less than d+ 1 (d+ 1)-dominating subgraphs.

Proof. Suppose for contradiction that for some t ≤ d there are (d+1)-dominating subgraphs
H1, . . . , Ht which cover T ∗. Since T is critical d-dominating we have by Lemma 3.4 that T ∗

is not (d+ 1)-dominating, and thus all V (Hi) are proper subsets of V (T ∗).

Claim 3.6. Each Hi is trivially (d+ 1)-dominating.

6



Proof. The claim is obvious if |V (Hi)| ≤ d; so suppose that |V (Hi)| ≥ d + 1. Since T is
critical d-dominating, the subtournament Ti of T spanned by V (Hi) is not d-dominating.
This is witnessed by a set W = {w1, . . . , wd} ⊆ V (Ti) such that W does not dominate any
vertex in U = V (Ti)\W . Let u ∈ U . Since Hi is (d+1)-dominating, W ∪u dominates some
vertex x ∈ V (Hi) which must be in W from the definition of W . Without loss of generality,
let x = w1. This implies that (u, x1) ∈ E(T ) and for all i ∈ [d], (wi, w1) ∈ E(T ). But
now this implies that for all u ∈ U , W ∪ {u} dominates w1 and thus all vertices of V (Hi)
(including w1) are oriented to w1 proving the claim.

Claim 3.6 implies that for all i ∈ [t] there is a vertex vi ∈ V (Hi) which is dominated by
all vertices of Hi. But since ∪t

i=1V (Hi) = V (T ), the set {v1, . . . , vt} does not dominate any
vertex in T , contradicting the fact that T is d-dominating.

Proof of Theorem 3.1. First note that f(1, d+ 1) ≤ d+ 1 by Lemma 2.1.
Let TB be a tournament on vertex set V such that TB is critical d-dominated and has

no (d + 1)-dominating subtournaments. Define the 2-colored complete digraph K on V by
coloring all edges of TB blue, and all edges of (V ×V )\E(TB) red. Let TR be the tournament
with E(TR) = {(y, x) : (x, y) ∈ E(TB)} and note that every edge of TR is red and TR has no
loops. Since TB is critical d-dominated, this implies that TR is critical d-dominating (since
TR is obtained by reversing all the edges of TB).

Note that by the assumption on TB, every monochromatic (d+1)-dominating subgraph
in K must be red. However, since TR is crtical d-dominating, we get that f(1, d+1) ≥ d+1
from Lemma 3.5.

Acknowledgements. We thank Boris Bukh for Example 3.3 and for his comments on
the paper.
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