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Abstract

A digraph is d-dominating if every set of at most d vertices has a common out-
neighbor. For all integers d > 2, let f(d) be the smallest integer such that the vertices
of every 2-edge-colored (finite or infinite) complete digraph (including loops) can be
covered by the vertices of at most f(d) monochromatic d-dominating subgraphs. Note
that the existence of f(d) is not obvious — indeed, the question which motivated this
paper was simply to determine whether f(d) is bounded, even for d = 2. We answer
this question affirmatively for all d > 2, proving 4 < f(2) < 8 and 2d < f(d) <

2d (d;:ll) for all d > 3. We also give an example to show that there is no analogous
bound for more than two colors.

Our result provides a positive answer to a question regarding an infinite analogue of
the Burr-Erdés conjecture on the Ramsey numbers of d-degenerate graphs. Moreover,

a special case of our result is related to properties of d-paradoxical tournaments.

1 Introduction

Throughout this note a directed graph (or digraph for short) is a pair (V, E) where V' can be
finite or infinite and E C V x V (so in particular, loops are allowed). A digraph is complete
if E=V xV. ForveV, wewrite NT(v) ={u: (v,u) € E} and N~ (v) = {u: (u,v) €
E}. For a positive integer k, we define [k] := {1,...,k}. Note that regardless of whether
G = (V,E) is a graph or a digraph, if H = (V/,E’) and V' CV and E' C E, we will write
H C G and we will always refer to H as a subgraph of G rather than making a distinction
between “subgraph” and “subdigraph.”

Let G = (V, E) be a digraph. For X,Y C V we say that X dominates Y if (v,y) € E
for all z € X,y € Y. We say that G is d-dominating if for all S C V with 1 < |S| < d,
S dominates some w € V. Note that it is possible for w € S, in which case we must have
(w,w) € E. Reversing all edges of a d-dominating digraph gives a d-dominated digraph.
These notions are well studied for tournaments (see Section [3]).

A cover of a digraph G = (V| E) is a set of subgraphs {Hq,..., H;} such that V(G) =
Uiepg V (Hi)- By a 2-coloring of G = (V, E), we will always mean a 2-coloring of the edges of
G; i.e. afunction ¢ : E — [2]. Given a 2-coloring of G, we let E; be the set of edges receiving
color i (i.e. BE; = ¢ 1({i})) and G; = (V, E;) for i € [2]. A cover of G by monochromatic
subgraphs is a cover {Hy, ..., H} of G such that for all ¢ € [t] there exists j € [2] such that
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The following problem was raised in [4, Problem 6.6].

Problem 1.1. Given a 2-colored complete digraph K, is it possible to cover K with at most
four monochromatic 2-dominating subgraphs? (If not four, some other fized number?)

Our main result is a positive answer for the qualitative part of Problem [[LI] in a more
general form.

Theorem 1.2. Let d be an integer with d > 2. In every 2-colored complete digraph K, there
exists a cover of K with at most 2 x Zle d' = 2d (%) monochromatic d-dominating

subgraphs. In case of d = 2 there exists a cover of K with at most eight monochromatic
2-dominating subgraphs.

For all integers d > 1, let f(d) be the minimum number of monochromatic d-dominating
subgraphs needed to cover an arbitrarily 2-colored complete digraph. Note that obviously
f(1) = 2 since the two sets of monochromatic loops provide an optimal cover. For d >
2, Theorem shows that f(d) is well-defined. Example [[.3] below (adapted from [4]
Proposition 6.3]) combined with Theorem gives

d _
4 < f(2) <8 and 2d < f(d) <2d (Cil 11) for all integers d > 3. (1)

Example 1.3. Let K be a complete digraph on at least 2d vertices and partition V(K) into
non-empty sets Ry,..., Rq and By, ..., By, color all edges inside R; red, all edges inside B;
blue, all edges from R; to B; red, all edges from B; to R; blue, all edges between R; and
R; with i # j blue, and all edges between B; and Bj with i # j red. One can check that
every monochromatic d-dominating subgraph of K is entirely contained inside one of the
sets Rl,...,Rd,Bl,...,Bd.

Finally, the following example shows that for d > 2 there is no analogue of Theorem [[.2]
for more than two colors (c.f. [4, Example 2.3]).

Example 1.4. Let V be a totally ordered set and let K be the complete digraph on V' where
for alli € V, (i,4) is green and for all i,j5 € V with i < j, (i,7) is red and (j,1) is blue.
Note that for d > 2 the only monochromatic d-dominating subgraphs are the green loops and
thus no bound can be put on the number of monochromatic d-dominating subgraphs needed
to cover V.

1.1 Motivation

A graph G is d-degenerate if there is an ordering of the vertices vy, v, ... such that for all
i > 1, |[N(v;) N {v1,...,v;-1}] < d (equivalently, every subgraph has a vertex of degree at
most d). Burr and Erdds conjectured [3] that for all positive integers d, there exists ¢q > 0
such that every 2-coloring of K,, contains a monochromatic copy of every d-degenerate graph
on at most cqn vertices. This conjecture was recently confirmed by Lee [8].

The motivation for Problem [[T] relates to the following conjecture also raised in [4]
Problem 1.5, Conjecture 10.2] which can be thought of as an infinite analogue of the Burr-
Erdés conjecture.

Conjecture 1.5. For all positive integers d, there exists a real number cq > 0 such that
if G is a countably infinite d-degenerate graph with no finite dominating set, then in every
2-coloring of the edges of Ky, there exists a monochromatic copy of G with vertex set V C N
such that the upper density of V is at least cq.



The case d = 1 was solved completely in [4] (regardless of whether G has a finite dom-
inating set or not). For certain 2-colorings of K, described below, Theorem implies a
positive solution to Conjecture for d > 2.

Suppose that for some finite subset F' C N, we have a partition of N\ F into (finitely or
infinitely many) infinite sets X = {X3,...,X,,...}. Also suppose that we have ultrafilters
U, Us, ..., U,...onNsuchthat foralli > 1, X; € %;. Finally, suppose that for all¢,j > 1
there exists ¢; ; € [2] such that for all v € X, {u: {u, v} has color ¢; ;}NX; € %;. This last
condition ensures that if there exists X; ,...,X;, and X; such that ¢;, j =---=¢;, ;=i ¢,
then every finite collection of vertices in X;, U---UX; has infinitely many common neighbors
of color ¢ in X;. Note that such a scenario can be realized as follows: For all 4, j, let ¢; ; € [2]
and color the edges from X; to X; so that every vertex in X is incident with cofinitely many
edges of color ¢; ; (by using the half graph coloringﬂ when ¢; ; # ¢;; for instance).

The above coloring of Ky naturally corresponds to a 2-colored complete digraph in the
following way: Let K be a 2-colored complete digraph on X where we color (X;, X;) with
color c if for all v € X;, {u : {u,v} has color ¢} N X; € %,. Now by Theorem [[.2] K can
be covered by ¢t < f(d+ 1) monochromatic (d 4+ 1)-dominating subgraphs G, ..., G:. Since
N\ F = Usep (UXGV(Gi) X), there exists ¢ € [t] such that Vi :== Uxcy(g,) X has upper
density at least 1/f(d+ 1). Without loss of generality, suppose the edges of G; are red. By
the construction, V; has the property that for all S C V; with 1 < |S| < d + 1, there is an
infinite subset W C V; such that every edge in E(S, W) is red. As shown in [4, Proposition
6.1], if G is a graph satisfying the hypotheses of Conjecture LT then there exists a red copy
of G which spans V; and thus has upper density at least 1/f(d+ 1).

2 Covering digraphs, proof of Theorem

For a graph G, we denote the order of a largest clique (pairwise adjacent vertices) in G by
w(G). Given a 2-colored complete digraph K and a set U C V(K), define G[U]pjye to be
the graph on U where {u,v} € G[U]pe if and only if (u,v) and (v,u) are blue in K; define
G[U]rea analogously.

Given positive integers w and d, let f(w,d) be the smallest positive integer D such
that if K is a 2-colored complete digraph on vertex set V' where every loop has the same
color, say red, and w(G[V]plue) = w, then V can be covered by at most D monochromatic
d-dominating subgraphs. Also define f(0,d) = 0.

Lemma 2.1.
(1) f(1,2)=1
(2) flw,d) <d(flw—1,d)+1) for all 1 <w < d (in particular, f(1,d) < d). In fact, all

d-dominating subgraphs in the covering have the same color as the loops.

Note that the upper bound w < d is not strictly necessary, but we include it here for
clarity since in the next lemma, we will prove a stronger result when w > d + 1.

Proof. Let K be a 2-colored complete digraph on vertex set V where all loops have the same
color, say red.

(1) is trivial since for all distinct u, v € V both (u,u) and (v, v) are red and w(G[V]plue) =
1 implies that either (u,v) or (v, u) is red.

To see (2), note first that we may assume that K itself is not spanned by a red d-
dominating subgraph, otherwise we are done. This is witnessed by a set U = {u1,...,uq} C
V, such that there is no w € V' with (u;, w) red for all i € [d].

1Given a totally ordered set Z and disjoint X,Y C Z the half graph coloring of the complete bipartite
graph Kx y is a 2-coloring of the edges of Kx y where for alli € X, j €Y, {i,;5} is red if and only if ¢ < j.



For all i € [d] we define
W, ={veV:(vu;)is red}.

Note that u; € W; and K[W;] is spanned by a red d-dominating subgraph for all ¢ € [d].
Set V! =V \ (Uje[qWi) and define

T, ={veV": (u;,v) is blue}.

Note, that by the definition of V', (v, u;) is also blue for all v € T; and i € [d]. Moreover,
from the selection of U, every vertex in V' receives a blue edge from some vertex in U and
therefore V' = U, T

Note that if w = 1, then T; = () for all i € [d] and thus U;c[gW; is a cover of K with d
red d-dominating subgraphs; i.e. f(1,d) <d =d(f(0,d)+1).

Otherwise, we have that w(K[T;]biue) < w — 1 and thus K is covered by at most

d+d-flw—=1,d)=d(f(w—-1,d)+1)
red d-dominating subgraphs. |

Lemma 2.2. Let K be a 2-colored complete digraph K where R is the set of red loops and
B is the set of blue loops. If w(G[R]piwe) > d + 1, then V(K) can be covered by at most
d red d-dominating subgraphs and at most one blue d-dominating subgraph. Likewise, if
W(G[Blred) > d+ 1. In particular, this implies f(w,d) <d+1 forw > d+ 1.

Proof. Suppose w(G[R]ple) > d+ 1 and let X = {z1,...,24,24+1} C R be a set of order
d + 1 which witnesses this fact. For i € [d] we define

W, ={veV(K): (v,a;) is red}.

Note that x; € W; and K[W;] is spanned by a red d-dominating subgraph for all i € [d].
Set V' = X U (V(K) \ (Uieiq)Wi)) and note that for all v € V', [v, X] is blue. Now let
S C V' such that 1 <|S| <d. If S C X, then since |S| < |X|, there exists x; € X \ S such
that every edge in [S, z;] is blue; otherwise |SNX| < d—1 and there exists i € [d] such that
x; ¢ S and every edge in [S, z;] is blue. So there is one blue d-dominating subgraph which

covers V', which together with the red d-dominating subgraphs K[W1],..., K[Wy] gives the
result.
When w(G[Blrea) > d + 1, the proof is the same by switching the colors. O

Now we are ready to prove our main result.

Proof of Theorem [1.2. Let V(K)= RUB where R, B are the vertex sets of the red and
blue loops, respectively. If w(G[R]piue) = d + 1 or w(G[Blred) > d + 1, then by Lemma 2:2]
RU B can be covered by at most d+ 1 monochromatic d-dominating subgraphs. So suppose
W(G[R]plue) < d and w(G[Blrea) < d. Now by Lemma 2] each of K[R] and K[B] can be
covered by at most 4 monochromatic d-dominating subgraphs when d = 2, and by at most
Yoo di < Zle d® monochromatic d-dominating subgraphs when d > 3. O

3 Paradoxical tournaments

In the above section, we proved that f(1,2) = 1 and f(1,d) < d for all d > 3. Naturally,
we wondered if the upper bound on f(1,d) could be improved when d > 3 (since any
improvement on f(1,d) would improve the general upper bound on f(d)). In this section
we show that it cannot; that is, f(1,d) =d for all d > 3.



A tournament is a digraph (V| E) such that for all distinct x,y € V exactly one of
(,y), (y,z) is in E and (z,2) ¢ E. Given a digraph G = (V, E), we say that S C V is
an out-dominating set if for all v € V' \ S, there exists v € S such that (u,v) € E, and
we say that S is an in-dominating set if for all v € V' \ S, there exists u € S such that
(v,u) € E. Note that a tournament T is d-dominating (d-dominated) if and only if T has
no in-dominating (out-dominating) set of order d.

We call a d-dominating (d-dominated) tournament critical if its proper subtournaments
are not d-dominating (d-dominated). For a tournament T, let T* be the digraph obtained
from T by adding a loop at every vertex.

Our main result of this section is the following.

Theorem 3.1. For all integers d > 2, if T' is a critical d-dominated tournament with no
(d + 1)-dominating subtournaments, then f(1,d+1)=d+ 1.

However, before proving Theorem B, we show that such a tournament exists for all
d > 2 from which we obtain the following corollary.

Corollary 3.2. For alld >3, f(1,d) =d.

Note that the absence of loops and two-way oriented edges make the existence of d-
dominated tournaments a nontrivial problem. This existence problem for d-dominated
tournaments was proposed by Schiitte (see [5]) and was first proved by Erd6s [B] with
the probabilistic method, then Graham and Spencer [6] gave an explicit construction using
sufficiently large Paley tournamentdi.

Note that Babai [I] coined the term d-paradozical tournament for what we refer to as
d-dominated tournament. In this spirit, we say that a tournament is perfectly d-paradozical
if it is d-dominating, d-dominated, has no (d + 1)-dominating subtournaments, and has no
(d + 1)-dominated subtournaments. A result of Esther and George Szekeres [7] combined
with the fact that Paley tournaments are self-complementary implies that Q77 is perfectly
2-paradoxical and QTyg is perfectly 3-paradoxical. It is an open question (which to the best
of our knowledge we are raising here for the first time) whether every Paley tournament
is perfectly d-paradoxical for some d. While we can’t settle that question, the following
beautiful example of Bukh [2] shows that perfectly d-paradoxical tournaments exist for all
d > 2. We repeat his proof here (tailored to the terminology of this paper) for completeness.

Example 3.3 (Bukh [2]). For all integers d > 2, there exists a perfectly d-paradozical
tournament. In particular, there exists a critical d-dominated tournament which has no
(d + 1)-dominating subtournaments.

Proof. Let d be an integer with d > 2 and let n = m(d + 1) where m = 23%. Let V =
{0,1,...,n — 1} and let G be the oriented graph on V where (¢,7j) € E(G) if and only if
1 < j—i <m—1 (with addition modulo n). In other words G is the oriented (m —1)st power
of a cycle on n vertices. Now we define a tournament 7" by starting with the oriented graph
G and for all distinct i,7 € V', if (4,7), (j,7) € E(G), then independently and uniformly at
random let (4, j) € E(T) or (j,%) € E(T).

First note that every induced subgraph of G has an in-dominating set of order at most
d+ 1 and an out-dominating set of order at most d + 1 and thus the same is true of every
subtournament of 7. This implies that T" has no (d 4+ 1)-dominating subtournaments and
no (d + 1)-dominated subtournaments.

Now we claim that with positive probability, 7" has no out-dominating sets of order d
and no in-dominating sets of order d and thus T is d-dominated and d-dominating. Let

2For a prime power p, p = —1 (mod 4), the Paley tournament QT), is defined on vertex set V = [0, p — 1]
and (a, b) is a directed edge if and only if a — b is a non-zero square in the finite field Fy,.



S CV with |S| = d and let
NE[S)={v €V :v €S or there exists u € S such that (u,v) € E(G)}.

Let V' :=V \ N/ [S] and note that [N} [S]| < dm and thus |V’| > m. The probability that
v € V' is dominated by S in T is 1 — 2% and thus the probability that every vertex in V" is
dominated by § is (1 — 2Vl < (1 —2-d)m < ¢=27"m — =4 Likewise for every vertex
of V' dominating S. So the expected number of out-dominating or in-dominating sets of
order d is at most

2(3) e < 2(em)de=4 < 2(e3d+1)de_4d <1

(where the last inequality holds since (3d + 1)d < 4¢ for all d > 2), which establishes the
claim.

Starting with a perfectly d-paradoxical tournament 7', let 7’ be a minimal subtournament
of T which is d-dominated. So T is critical d-dominated and has no (d 4+ 1)-dominating
subtournaments. O

The proof of Theorem [3.I] will follow from two more general lemmas.

Lemma 3.4. Let T be a tournament and let d > 2. If T is 2-dominating and there exists
a set W C V(T) with [W| = d such that W dominates exactly one vertex v, then T* is
not (d + 1)-dominating. In particular, if T is critical d-dominating, then T* is not (d+ 1)-
dominating.

Proof. Let W = {w1,...,wq} and v be as in the statement. To see that T™* is not (d + 1)-
dominating, it is enough to prove that for some u € Nt (v) the set W U {u} does not
dominate any vertex in T* (note that since T is 2-dominating, N (v) # @). Suppose for
contradiction that this is not the case; that is, for all w € Nt (v) the set W U {u} dominates
some vertex z in T*. Note that by the definition of W and the fact that w € NT(v), it must
be the case that x € W; without loss of generality, suppose x = w;. This implies that for all
i € [d], (wi,wy) € E(T). But now this implies that for all w € N*(v), W U {u} dominates
wi. On the other hand since T' is 2-dominating, it must be the case that there exists a
vertex which is dominated by {ws,v} in T, but every outneighbor of v is an inneighbor of
w1 and thus we have a contradiction.

To get the second part of the lemma, first note that if 7" is critical d-dominating, then
T is 2-dominating. Moreover, for all v € V, since T — v is not d-dominating there exists
W = {ws,...wg} CV(T)\{v} which does not dominate any vertex in V(T')\ {v}, but since
T is d-dominating, W must dominate v. O

If G = (V,E) is a digraph such that there exists w € V such that (v,w) € E for all
v € V (including v = w), then note that G is d-dominating for all d < |[V/|. In this case we
call G trivially d-dominating.

Lemma 3.5. Let T be a tournament. If T is critical d-dominating, then T cannot be
covered by less than d + 1 (d + 1)-dominating subgraphs.

Proof. Suppose for contradiction that for some ¢ < d there are (d+ 1)-dominating subgraphs
Hy,..., H which cover T*. Since T is critical d-dominating we have by Lemma [3.4] that T™*
is not (d 4+ 1)-dominating, and thus all V/(H;) are proper subsets of V(T*).

Claim 3.6. FEach H; is trivially (d + 1)-dominating.



Proof. The claim is obvious if |V (H;)| < d; so suppose that |V (H;)| > d+ 1. Since T is
critical d-dominating, the subtournament 7T; of T spanned by V(H;) is not d-dominating.
This is witnessed by a set W = {wy,...,wqs} C V(T;) such that W does not dominate any
vertex in U = V(T;) \W. Let w € U. Since H; is (d+ 1)-dominating, W Uu dominates some
vertex x € V(H;) which must be in W from the definition of W. Without loss of generality,
let * = wq. This implies that (u,z1) € E(T) and for all i € [d], (w;,w1) € E(T). But
now this implies that for all w € U, W U {u} dominates w; and thus all vertices of V(H;)
(including wq) are oriented to w; proving the claim. O

Claim 3.0 implies that for all i € [t] there is a vertex v; € V(H;) which is dominated by
all vertices of H;. But since U!_,V(H;) = V(T), the set {v1,...,v;} does not dominate any
vertex in T, contradicting the fact that 7" is d-dominating. O

Proof of Theorem [31]. First note that f(1,d+ 1) < d+ 1 by Lemma 2.1]

Let Ts be a tournament on vertex set V such that T’g is critical d-dominated and has
no (d + 1)-dominating subtournaments. Define the 2-colored complete digraph K on V by
coloring all edges of Tz blue, and all edges of (V xV)\ E(Tg) red. Let T be the tournament
with E(Tr) = {(y,x) : (z,y) € E(Tp)} and note that every edge of T is red and Tg has no
loops. Since T's is critical d-dominated, this implies that Ty is critical d-dominating (since
T is obtained by reversing all the edges of Tg).

Note that by the assumption on T, every monochromatic (d 4 1)-dominating subgraph
in K must be red. However, since T is crtical d-dominating, we get that f(1,d+1) > d+1
from Lemma O
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