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Abstract. We effectively solve the class number one problem for a certain family Q
(√

D
)

(D ∈ F) of real quadratic fields, where F is an infinite subset of the set of odd positive

fundamental discriminants. The set F contains the Yokoi discriminants n2 + 4, so our

result is a generalization of the solution of Yokoi’s Conjecture. But this family may contain

also infinitely many fields with comparatively larger fundamental units than the fields in

the Yokoi family (it may be as large as log2D instead of logD). The proof is also a

generalization of the proof of Yokoi’s Conjecture.

1. Introduction

For integers b ≥ 0, c > 0, n ≥ 2 write

D = Dn,b,c := (b (1 + bc)
n
+ c)

2
+ 4 (1 + bc)

n
,

and assume that D is squarefree. Let K = Kn,b,c = Q
(√

Dn,b,c

)
. These discriminants

appear already in [5]. The fundamental unit ϵD of these fields can be computed explicitly

and it is ≪ log2D (see below). Then, using Dirichlet’s class number formula

h(D) log ϵD = D1/2L(1, χD)

Research partially supported by NKFIH (National Research, Development and Innovation

Office) grants K135885, K119528 and by the Rényi Intézet Lendület Automorphic Research
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(where h(D) denotes the class number of K, χD(n) =
(
n
D

)
is a Jacobi symbol, L (s, χD)

is the corresponding Dirichlet L-function) and Siegel’s theorem (see [3])

L(1, χD) ≫ϵ |D|−ϵ

(which is an ineffective estimate), we see that there are only finitely many fields in this

family having class number 1.

But the effective (and unconditional) determination of every field of class number one in

this family is not known. Partial results were proved in [7] and in [8] (the problem was

solved there for some fixed values of the pair (b,c), in particular, for the so-called Shanks

sequence b = c = 1), and also in [1] (for b = 0; this case was Yokoi’s Conjecture). Assuming

the Riemann Hypohesis, every field of class number one in this family was determined in

[6], Theorem 5.2.

In the present paper we solve the problem under the condition that b is divisible by a

certain fixed positive integer N0.

THEOREM 1.1. Let b ≥ 0, c > 0, n ≥ 2 be integers, assume that Dn,b,c is squarefree

and the field Kn,b,c = Q
(√

Dn,b,c

)
has class number one. Suppose that N0 divides b, where

N0 denotes the product of 52, 7, 41, 61, and 1861. Then b = 0, and c ∈ {1, 3, 5, 7, 13, 17}.

It is possible that similar statements may be proved with other specific values of N0.

However, we cannot show it with N0 = 1, i.e. the class number one problem for the entire

family remains open.

The b = 0 case of the above theorem is exactly the statement of Yokoi’s Conjecture (proved

in [1]). The present theorem is proved by the method of [1]. During the proof an important

tool is a formula proved in [2] for the special value at 0 of a certain zetafunction belonging

to a real quadratic field, which is a generalization of a similar formula of [1] proved for the

Yokoi family.

By Satz 1 of [4] we know that for the fundamental unit ϵD of K we have

ϵD =
b (1 + bc)

n
+ c+

√
D

2

(
b2 (1 + bc)

n
+ 2 + bc+ b

√
D

2 (1 + bc)

)n

.
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One can then see easily that if 0 < bc = O(1), then

log2D ≪ log ϵD ≪ log2D

(as it is noted on p 158 of [4]). One also sees that if we assume only that bc is not too

large in terms of n, precisely we assume bc > 0 and log(1 + bc) = no(1), then we have

log ϵD ≫ log2−o(1)D.

In contrast, in the Yokoi family D = n2 + 4 with squarefree D, we have

log ϵD ≪ logD.

Hence we see that the method of [1] can be applied for a family with comparatively larger

fundamental units than the fields in the Yokoi family.

In Section 2 our main goal is to prove Lemma 2.8 below, which shows that under the

conditions of Theorem 1.1 Dn,b,c must be a square modulo at least one element of a fixed

finite set of primes (this corresponds to the Theorem of [1]). The proof (just as in [1])

ultimately depends on some computer work. But the computations needed here are exactly

the same which was carried out in [1], so here we can simply refer to them. Section 2 is

the most important part of the proof. It would be possible to finish the proof from this

point by using the theory of reduced ideals, as in [8]. But we prefer to give a direct proof

in Section 3, similarly as we proved Fact B in [1], using here some well-known results from

diophantine approximation.

2. The main reasoning

Let R be the ring of algebraic integers of K, denote by I(K) the set of nonzero ideals of

R and by P (K) the set of nonzero principal ideals of R. Let N(a) be the norm of an ideal

a ∈ I(K). For ℜs > 1 and a character χ define

ζP (K)(s, χ) = ζP (Kn,b,c)(s, χ) =
∑

a∈P (K)

χ (N(a))

N(a)s
.
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Our first main goal is to prove Lemma 2.4 below. The statement of that lemma will be

the important property of ζP (K)(0, χ) needed in our class number problem.

LEMMA 2.1. Let

D = Dn,b,c := (b (1 + bc)
n
+ c)

2
+ 4 (1 + bc)

n

with integers b ≥ 0, c > 0, n ≥ 2, and let D be squarefree. Let χ be an odd primitive

character modulo q > 1 with (q, 2D) = 1, and assume that the order of χ is greater than

2. Assume that q|b. Then ζP (K)(s, χ) extends meromorphically in s to the whole complex

plane and ζP (K)(0, χ) equals the sum of

2

q2

∑
1≤u,v≤q−1

uvχ
(
u2 + cuv − v2

)
and

τ (χ)
2
L
(
2, χ2

)
π2

χ (−D)

(
D

q

)(
b (1 + bc)

n
+ c+ 2

(1 + bc)
n − 1

c

)
,

where
(

D
q

)
is the Jacobi symbol, τ (χ) =

∑q−1
a=1χ (a) e2πia/q is the Gauss sum, and if ψ is

a character, then L (s, ψ) denotes the corresponding Dirichlet L-function.

Proof. First let b = 0. Then the result is proved on p 1825 of [2] (see p 1809 there for the

definition of βχ).

Now assume that b > 0. Let

ωD =
1 +

√
D

2
. (2.1)

Then the regular continued fraction expansion

ωD = [a0, a1, a2, . . . , al] ,

where l is the least period of the expansion can be explicitly described as follows, see Satz

1 and p 161 of [4]. We have l = 2n+ 1,

a0 =
1

2
(b (1 + bc)

n
+ c+ 1) , (2.2)

for 0 ≤ i ≤ n− 1 we have

a2i+1 = b (1 + bc)
i
, (2.3)
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a2i+2 = b (1 + bc)
n−1−i

, (2.4)

finally

a2n+1 = b (1 + bc)
n
+ c. (2.5)

Let

α := ωD − a0. (2.6)

As in [2], for 1 ≤ j ≤ 2n+ 1 define the relatively prime positive integers pj and qj by

pj
qj

= [0, a1, a2, . . . , aj ] ,

and write

αj := pj − qjα.

Define also α0 = −α. For 1 ≤ j ≤ 2n+ 1 introduce the quadratic forms

Qj (x, y) = (αj−1x+ αjy) (αj−1x+ αjy) ,

where β denotes the algebraic conjugate of β ∈ K. Since every αj (0 ≤ j ≤ 2n+ 1) is an

algebraic integer, so for every 1 ≤ j ≤ 2n+ 1 we have

Qj (x, y) = Ajx
2 +Bjxy + Cjy

2 (2.7)

with rational integer coefficients Aj , Bj , Cj . For these coefficients we clearly have the

following formulae:

Aj = αj−1αj−1 = p2j−1 − pj−1qj−1 (α+ α) + q2j−1αα

for 2 ≤ j ≤ 2n+ 1,

A1 = αα,

Bj = αj−1αj + αjαj−1 = 2pj−1pj + 2qj−1qjαα− (pj−1qj + pjqj−1) (α+ α)

for 2 ≤ j ≤ 2n+ 1,

B1 = −αα1 − α1α = 2q1αα− p1 (α+ α) ,

Cj = αjαj = p2j − pjqj (α+ α) + q2jαα
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for 1 ≤ j ≤ 2n+ 1.

It is easy to check by direct computation that

p1 = 1, q1 = b,

p2 = b (1 + bc)
n−1

, q2 = 1 + b2 (1 + bc)
n−1

.

On the other hand, we have well-known recursions (see e.g. Lemma 3A of [9])

pj = ajpj−1 + pj−2, qj = ajqj−1 + qj−2

for 3 ≤ j ≤ 2n + 1. Since by the condition q|b and by formulas (2.3) and (2.4) we have

q|aj for 1 ≤ j ≤ 2n, so we get that

p1 ≡ p3 ≡ p5 ≡ . . . ≡ p2n−1 ≡ 1 (mod q),

p2 ≡ p4 ≡ p6 ≡ . . . ≡ p2n ≡ 0 (mod q),

q1 ≡ q3 ≡ q5 ≡ . . . ≡ q2n−1 ≡ 0 (mod q),

q2 ≡ q4 ≡ q6 ≡ . . . ≡ q2n ≡ 1 (mod q).

By (2.5) we have

a2n+1 ≡ c (mod q),

hence by the above relations we get

p2n+1 ≡ 1 (mod q), q2n+1 ≡ c (mod q).

By formulas (2.1), (2.2) and (2.6) we see that

α =

√
D

2
− 1

2
(b (1 + bc)

n
+ c) ,

so

−α− α = b (1 + bc)
n
+ c ≡ c (mod q),

αα =
(b (1 + bc)

n
+ c)

2 −D

4
= − (1 + bc)

n ≡ −1 (mod q).
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Then, using our expressions above for Aj , Bj , Cj and our congruences for pj and qj we

get examining a few cases that

Aj ≡ (−1)
j
(mod q),

Cj ≡ (−1)
j−1

(mod q)

for 1 ≤ j ≤ 2n+ 1,

Bj ≡ c (mod q)

for 1 ≤ j ≤ 2n,

B2n+1 ≡ −c (mod q).

Now, applying Theorem 1 of [2] (taking into account (2.7) above and the well-know fact

that 1, 1+
√
D

2 is an integral basis of K) we get that ζP (K)(0, χ)/2 equals the sum of

1

q2

2n+1∑
j=1

∑
1≤u,v≤q−1

uvχ
(
(−1)

j (
Aju

2 +Bjuv + Cjv
2
))

(2.8)

and
τ (χ)

2
L
(
2, χ2

)
2π2

χ (−D)

(
D

q

) 2n+1∑
j=1

ajχ
(
(−1)

j
Aj

)
, (2.9)

Inserting the expressions above for the residues modulo q of Aj , Bj and Cj we get that

(2.8) equals

1

q2

2n∑
j=1

∑
1≤u,v≤q−1

uvχ
(
u2 + (−1)

j
cuv − v2

)
+

1

q2

∑
1≤u,v≤q−1

uvχ
(
u2 + cuv − v2

)
, (2.10)

and (2.9) equals

τ (χ)
2
L
(
2, χ2

)
2π2

χ (−D)

(
D

q

) 2n+1∑
j=1

aj . (2.11)

Now, ∑
1≤u,v≤q−1

uvχ
(
u2 + cuv − v2

)
+

∑
1≤u,v≤q−1

uvχ
(
u2 − cuv − v2

)
(2.12)

equals (by interchanging the role of u and v in the second sum)∑
1≤u,v≤q−1

uvχ
(
u2 + cuv − v2

)
+

∑
1≤u,v≤q−1

uvχ
(
v2 − cuv − u2

)
,
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and since χ is odd, we get that (2.12) equals zero, and hence (2.10), and so also (2.8)

equals
1

q2

∑
1≤u,v≤q−1

uvχ
(
u2 + cuv − v2

)
.

Using (2.3), (2.4), (2.5) in (2.11) and summing the geometric series we obtain the lemma.

LEMMA 2.2. Under the assumptions of Lemma 2.1 we have that

τ (χ)
2
L
(
2, χ2

)
π2

χ (−D)

(
D

q

)
=

∑
0≤u,v≤q−1

(
v2

q2
− v

q

)
χ
(
u2 + cuv − v2

)
. (2.13)

Proof. Note first that because of the condition q|b we have

D = Dn,b,c ≡ c2 + 4 (mod q).

Hence Proposition 6.1 of [2] implies (writing l = 2 there) that the left-hand side of (2.13)

equals ∑
0≤u,v≤q−1

B2

(
v

q

)
χ
(
u2 + cuv − v2

)
,

where B2 (x) = x2 − x+ 1
6 is the second Bernoulli polynomial. Hence it is enough to show

that

S :=
∑

0≤u,v≤q−1

χ
(
u2 + cuv − v2

)
= 0.

But by the substitution (u, v) → (−v, u) we see that

S =
∑

0≤u,v≤q−1

χ
(
v2 − cuv − u2

)
= −S,

since χ is odd. The lemma is proved.

LEMMA 2.3. Let c be an integer, let χ be an odd primitive character modulo q > 1 with(
q, 2

(
c2 + 4

))
= 1, and assume that the order of χ is greater than 2. Then

2

q2

∑
1≤u,v≤q−1

uvχ
(
u2 + cuv − v2

)
+ c

∑
0≤u,v≤q−1

(
v2

q2
− v

q

)
χ
(
u2 + cuv − v2

)
(2.14)

equals
1

q
Aχ(c),
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where for any integer a we write (⌈t⌉ is the least integer not smaller than t)

Aχ(a) =
∑

0≤C,D≤q−1

χ(D2 − C2 − aCD)⌈(aC −D)/q⌉(C − q).

Proof. Introduce the notation

A = A (C,D) = ⌈(cC −D)/q⌉,

and recall from p 95 of [1] the transformation

T ((C,D)) = (Ĉ, D̂)

with

Ĉ = D − cC − q [(D − cC)/q] , D̂ = C

(where we use lower integer part) and the relation

qA = cC −D + Ĉ.

Then it is easy to check that

1

q
A(C − q) =

1

q2

(
(C − q) (cC −D) + ĈD̂ − qĈ

)
. (2.15)

As it is noted on p 95 of [1], T is a permutation of the set of the pairs (C,D) with

0 ≤ C,D ≤ q − 1, any orbit of T (where χ is not 0) has an even number of elements, and

the value of χ
(
D2 − C2 − cCD

)
changes to its negative at each step by T . Then (2.15)

and the definition of Aχ(c) imply that

1

q
Aχ(c) =

1

q2

∑
0≤C,D≤q−1

χ(D2 − C2 − cCD) ((C − q) (cC −D)− CD + qC) ,

and so (writing D in place of u, q − C in place of v in (2.14)) the difference of (2.14) and

1
qAχ(c) equals

−2

q

q−1∑
D=1

χ
(
D2
)
D+

1

q

∑
0≤C,D≤q−1

χ(D2−C2− cCD)D− 1

q

∑
0≤C,D≤q−1

χ(D2−C2− cCD)C.

(2.16)
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It is enough to show that this is zero. Note first that

2

q−1∑
D=1

χ
(
D2
)
D =

q−1∑
D=1

χ
(
D2
)
D +

q−1∑
D=1

χ
(
D2
)
(q −D) = q

q−1∑
D=1

χ
(
D2
)
= 0,

since the order of χ is greater than 2. Using again that the order of χ is greater than 2,

we see that (2.16) equals

1

q

q∑
D=0

D
∑

C mod q

χ(D2 − C2 − cCD)− 1

q

q∑
C=0

C
∑

D mod q

χ(D2 − C2 − cCD). (2.17)

Writing q −D in place of D and −C in place of C in the first sum, and similarly, q − C

in place of C and −D in place of D in the second sum, and averaging the old and new

expressions we get that (2.17) equals

1

2

q∑
D=0

∑
C mod q

χ(D2 − C2 − cCD)− 1

2

q∑
C=0

∑
D mod q

χ(D2 − C2 − cCD).

The D ̸= 0 part of the first sum and the C ̸= 0 part of the second sum cancels out, while

the D = 0 part of the first sum and the C = 0 part of the second sum is zero since the

order of χ is greater than 2. The lemma is proved.

LEMMA 2.4. Under the assumptions of Lemma 2.1 we have that

qζP (Kn,b,c)(0, χ)−Aχ(c)

equals b
q times an algebraic integer, where Aχ(c) is defined Lemma 2.3.

Proof. This follows at once from Lemmas 2.1, 2.2 and 2.3 above.

If χ is a character modulo q, denote by Lχ the field generated over Q by the values χ(a)

(1 ≤ a ≤ q), and write

mχ =

q∑
a=1

aχ(a).

We start to apply the class number one condition from now on. The following lemma can

be proved by the reasoning on pp 87-88 of [1].

LEMMA 2.5. For some integers b ≥ 0, c > 0, n ≥ 2 assume that Dn,b,c is squarefree

and Kn,b,c = Q
(√

Dn,b,c

)
has class number one. Then, if q is an integer with q > 2,
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(q, 2Dn,b,c) = 1, and χ is a primitive character modulo q with χ(−1) = −1, then we have

that mχ ̸= 0, and

qζP (Kn,b,c)(0, χ)m
−1
χ

is an algebraic integer.

LEMMA 2.6. We use the notations and assumptions of Lemma 2.5. Assume also that

there is a prime ideal I of Lχ and a rational prime r such that r ∈ I, mχ ∈ I. Suppose

that q divides b, and r divides b
q . Then Aχ(c) ∈ I.

Proof. By Lemmas 2.1 and 2.2 we see that ζP (Kn,b,c)(0, χ) ∈ Lχ. By Lemma 2.5 above

and by the condition mχ ∈ I we then get qζP (Kn,b,c)(0, χ) ∈ I. Then by Lemma 2.4 above,

using the conditions r ∈ I, q divides b, and r divides b
q we obtain the lemma.

In Section 4 of [1] three characters χ1, χ2, χ3 and four prime ideals I1,1, I1,2, I2 and I3

are defined (we denote here by I1,1 the ideal given in Example 1 of [1], by I1,2 the ideal

given in Example 2 of [1], by I2 the ideal given in Example 3 of [1], finally by I3 the ideal

given in Example 4 of [1]). We do not need here the precise definitions, only the following

properties, which are clear from [1]:

χ1 is a character modulo 175, χ2 and χ3 are characters modulo 61,

I1,1 is a prime ideal of Lχ1 , mχ1 ∈ I1,1, I1,1 lies above the rational prime 61,

I1,2 is a prime ideal of Lχ1 , mχ1 ∈ I1,2, I1,2 lies above the rational prime 1861,

I2 is a prime ideal of Lχ2 , mχ2 ∈ I2, I2 lies above the rational prime 1861,

I3 is a prime ideal of Lχ3 , mχ3 ∈ I3, I3 lies above the rational prime 41.

The following lemma is proved in [1]. It is not stated explicitly there, but following the

reasoning in Sections 4, 5 and 6 of [1] we see that it is actually proved there.

LEMMA 2.7. Assume that c is an integer and

Aχ1(c) ∈ I1,1, Aχ1(c) ∈ I1,2, Aχ2(c) ∈ I2, Aχ3(c) ∈ I3.

Then d = c2 + 4 is a square for at least one of the following moduli: q = 5, 7, 41, 61, 1861

(that is, (d/q) = 0 or 1 for at least one of the listed values of q).
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LEMMA 2.8. For some integers b ≥ 0, c > 0, n ≥ 2 assume that Dn,b,c is squarefree

and Kn,b,c = Q
(√

Dn,b,c

)
has class number one. Suppose that the product of 41, 61,

175 and 1861 divides b. Then Dn,b,c is a square for at least one of the following moduli:

q = 5, 7, 41, 61, 1861.

Proof. It follows easily by combining Lemmas 2.6 and 2.7 that c2 + 4 is a square for at

least one such q. Since every possible q divides b, hence Dn,b,c is also a square modulo q.

The lemma is proved.

3. The end of the proof

As it is noted in the Introduction, the b = 0 case is proved in [1]. So we may assume b > 0.

Let q ∈ {5, 7, 41, 61, 1861} be fixed such that Dn,b,c is a square modulo q, we know by

Lemma 2.8 that there is such a q. It is well-known that the ideal (q) is then a product

of two prime ideals in R; both prime ideals must have norm q. Since the class number of

Kn,b,c is 1, it follows that there is a β ∈ R such that |ββ| = q. We will show that this is

impossible.

Since 1, 1+
√
D

2 is an integral basis, so we have

β = A−B
1 +

√
D

2

with rational integers A and B. We have |ββ| = q with a prime q, so B is nonzero, and

(A,B) = 1. The expression |ββ| is invariant under the transformations (A,B) → (−A,−B)

and (A,B) → (B −A,B), so we may assume that B > 0 and A ≥ B
2 . We have

B

∣∣∣∣∣A−B
1 +

√
D

2

∣∣∣∣∣ = Bq∣∣∣A− B
2 +B

√
D
2

∣∣∣ ≤ 2q√
D
<

1

2
. (3.1)

The last inequality easily follows from b ≥ N0. Hence the fraction A
B approximates 1+

√
D

2

so well that by Theorem 5C of [9] A
B must be a convergent of 1+

√
D

2 , i.e. we must have

A

B
= [a0, a1, a2, . . . , aj ]
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with some j ≥ 0, where
1 +

√
D

2
= [a0, a1, a2, . . .]

is the continued fraction expansion of 1+
√
D

2 . By the third displayed formula on p 17 of

[9] we then have

1

aj+1 + 2
≤ B

∣∣∣∣∣A−B
1 +

√
D

2

∣∣∣∣∣ ≤ 1

aj+1
. (3.2)

Returning to (3.1) we first get ∣∣∣∣∣A−B
1 +

√
D

2

∣∣∣∣∣ ≤ 2q

B
√
D
,

hence ∣∣∣∣∣A− B

2
+B

√
D

2

∣∣∣∣∣ ≤ B
√
D +

2q

B
√
D
,

so, again by (3.1), we get

Bq

B
√
D + 2q

B
√
D

≤ B

∣∣∣∣∣A−B
1 +

√
D

2

∣∣∣∣∣ ≤ 2q√
D
. (3.3)

So there must be an integer j ≥ 0 such that the inequalities (3.3) and (3.2) simultaneously

hold. By the description of the continued fraction expansion of ωD (see (2.1) for this

notation) during the proof of Lemma 2.1 we see that we may assume 0 ≤ j ≤ 2n.

If 0 ≤ j < 2n, then by (2.3) and (2.4) we see that

1 ≤ aj+1 ≤ b (1 + bc)
n−1

,

hence
1

aj+1 + 2
≥ 1

3b (1 + bc)
n−1 .

By (3.3) and (3.2) we then must have

1

3b (1 + bc)
n−1 ≤ 2q√

D
,

so
√
D ≤ 6bq (1 + bc)

n−1
.
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But
√
D ≥ b (1 + bc)

n
, so we would get

1 + bc ≤ 6q,

but this is a contradiction by the conditions b ≥ N0, q ≤ 1861.

We are left with the case j = 2n. Then by (2.5), (3.3) and (3.2) we have

Bq

B
√
D + 2q

B
√
D

≤ 1

b (1 + bc)
n
+ c

,

hence

b (1 + bc)
n
+ c ≤

√
D

q
+

2

B2
√
D
.

But trivially
√
D ≤ b (1 + bc)

n
+ c+ 1.

Since q ≥ 5, we get

4
b (1 + bc)

n
+ c+ 1

5
≤ 1 +

2

B2
√
D
.

The right-hand side is clearly smaller than 3, so this is a contradiction. Theorem 1.1 is

proved.
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