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1 Introduction

Quantum Field Theories play an important role in many branches of physics. On the one

hand, they provide the language in which we formulate the fundamental interactions of Nature

including the electro-weak and strong interactions. On the other hand, they are frequently

used in effective models appearing in particle, solid state or statistical physics. In most of

these applications the physical system has a finite size: scattering experiments are performed

in a finite accelerator/detector, solid state systems are analyzed in laboratories, even the

lattice simulations of gauge theories are performed on finite lattices etc. The understanding

of finite size effects are therefore unavoidable and the ultimate goal is to solve QFTs for any

finite volume. Fortunately, finite size corrections can be formulated purely in terms of the

infinite volume characteristics of the theory, such as the masses and scattering matrices of

the constituent particles and the form factors of local operators [1–3, 5]. For a system in a

box of finite sizes the leading volume corrections are polynomial in the inverse of these sizes

and are related to the quantization of the momenta of the particles [2]. In massive theories

the subleading corrections are exponentially suppressed and are due to virtual processes in

which virtual particles “travel around the world” [1].

The typical observables of an infinite volume QFT (with massive excitations) are the mass

spectrum, the scattering matrix, the matrix elements of local operators, i.e. the form factors,

and the correlation functions of these operators. The mass spectrum and the scattering matrix

is the simplest information, which characterize the QFT on the mass-shell. The form factors

are half on-shell half off-shell data, while the correlation functions are completely off-shell

information. These can be seen from the Lehmann-Symanzik-Zimmermann (LSZ) reduction

formula, which connects the scattering matrix and form factors to correlation functions: The

scattering matrix is the amputated momentum space correlation function on the mass-shell,

while for form factors only the momenta, which correspond to the asymptotic states are put on

shell. Clearly, correlation functions are the most general objects as form factors and scattering

matrices can be obtained from them by restriction. Alternatively, however, the knowledge of

the spectrum and form factors provides a systematic expansion of the correlation functions

as well.

The field of two dimensional integrable models is an adequate testing ground for finite

size effects. These theories are not only relevant as toy models, but, in many cases, describe

highly anisotropic solid state systems and via the AdS/CFT correspondence, solve four di-

mensional gauge theories [6–8]. Additionally, they can be solved exactly and the structure

of the solution provides valuable insight for higher dimensional theories. For simplicity we
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restrict our attention in this paper to a theory with a single massive particle, which does not

form any boundstate.

The finite size energy spectrum has been systematically calculated in integrable theories.

The leading finite size correction is polynomial in the inverse of the volume and originates

from momentum quantization [2]. The finite volume wave-function of a particle has to be

periodic, thus when moving the particle around the volume, L, it has to pick up the pL

translational phase. If the theory were free this phase should be 2πn, in an interacting

theory, however, the particle scatters on all the other particles suffering phase shifts, −i logS,

which adds to the translational phase and corrects the free quantization condition. These

equations are called the Bethe-Yang (BY) equations. The energy of a multiparticle state is

simply the sum of infinite volume energies but with the quantized momenta depending on the

infinite volume scattering matrix. The exponentially small corrections are related to virtual

processes. In the leading process a virtual particle anti-particle pair appears from the vacuum,

one of them travels around the world, scatters on the physical particles and annihilates with

its pair. Similar process modifies the large volume momentum quantization of the particles

[9]. The total energy contains not only the particles’ energies, but also the contribution of the

sea of virtual particles. The next exponential correction contains two virtual particle pairs

and a single pair which wraps twice around the cylinder [10]. For an exact description all

of these virtual processes have to be summed up, which is provided by the Thermodynamic

Bethe Ansatz (TBA) equations [11]. TBA equations can be derived (only for the ground

state) by evaluating the Euclidean torus partition function in the limit, when one of the sizes

goes to infinity. If this size is interpreted as Euclidean time, then only the lowest energy

state, namely the finite volume ground state contributes. If, however, it is interpreted as

a very large volume, then the partition function is dominated by the contribution of finite

density states. Since the volume eventually goes to infinity the BY equations are almost exact

and can be used to derive (nonlinear) TBA integral equations to determine the density of

the particles, which minimize the partition function in the saddle point approximation. By

careful analytical continuations this exact TBA integral equation can be extended for excited

states [12].

The similar program to determine the finite volume matrix elements of local operators,

i.e. form factors, is still in its infancy. Since there is a sharp difference between diagonal and

non-diagonal form factors they have to be analyzed separately. For nondiagonal form factors

the polynomial finite size corrections, besides the already explained momentum quantization,

involve also the renormalization of states, to conform with the finite volume Kronecker delta

normalization [3]. The polynomial corrections for diagonal form factors are much more com-

plicated, as they contain disconnected terms. They were conjectured in [4, 5] and confirmed in

[13]. For exponential corrections the situation is the opposite. Exact expressions for the finite

volume one-point function can be obtained in terms of the TBA minimizing particle density

and the infinite volume form factors by evaluating the one-point function on an Euclidean

torus where one of the sizes is sent to infinity [14]. The analytical continuation trick used for

the spectrum can be generalized and leads to exact expressions for all finite volume diagonal
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form factors [15]. For non-diagonal form factors, however, not even the leading exponential

correction is known for theories without boundstates. In case of boundstates the leading ex-

ponential volume correction is in fact the so called µ term, which originates from a process in

which the particle can virtually decay in a finite volume into its constituents. This idea was

used to calculate the leading µ term explicitly for the simplest non-diagonal form factor in

[16]. As we would like to calculate the leading volume correction coming from virtual particles

travelling around the world, i.e. the F-term, we focus on theories without boundstates. The

aim of this paper is to initiate research into the calculation of these corrections.

We develop a framework which provides direct access both to excited states’ energy

levels and finite volume form factors. The idea is to calculate the Euclidean torus two-point

function in the limit, when one of the sizes is sent to infinity. The exact finite volume two-

point function then can be used, similarly to the LSZ formula, to extract the information

needed: the momentum space two-point function, when continued analytically to imaginary

values, has poles exactly at the finite volume energy levels whose residues are the products of

finite volume form factors. Of course, the exact determination of the finite-volume two-point

function is hopeless in interacting theories, but developing any systematic expansion leads

to a systematic expansion of both the energy levels and the form factors. We analyze two

such expansions in this paper: in the first, we expand the two-point function in the volume,

which leads to the leading exponential corrections. We perform the calculation for a moving

one-particle state. In the second expansion, we calculate the same quantities perturbatively in

the coupling in the sinh-Gordon theory. By comparing the two approaches in the overlapping

domain we find complete agreement.

The paper is organized as follows: In the next section we give an overview of the method

and present our main result for the leading exponential volume correction of the simplest

nondiagonal form factor. In section 3 we present the details of the calculation in the mirror

channel and derive the correction explicitly. In section 4 we specify the results for the sinh-

Gordon theory in preparation for a perturbative check. We use Hamiltonian perturbation

theory in section 5 to derive the leading finite size correction in the coupling both to the

one-particle energy and form factor. Technical details are relegated to Appendix B. We then

expand these results in the volume and confirm the previously derived leading exponential

finite size corrections. Finally, we finish the main body of the paper with conclusions in

section 6. We have several Appendices. Appendix A contains the perturbative expansion of

the exact TBA equations. In Appendix C we make a perturbative expansion of the finite

volume two point function in the sinh-Gordon theory and extract the leading correction to

the finite volume energy and form factors confirming the results of section 4. Appendix D

shows the equivalence of the finite volume regularizations of [17] with our infinite volume

regularizations.
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2 Overview of the method and summary of the results

In the following we analyze a relativistic integrable QFT in two dimensions with a single

particle of mass m and scattering matrix S(θ), which satisfies unitarity and crossing symmetry

S(θ) = S(−θ)−1 = S(iπ − θ) and does not have any pole in the physical strip. Such theory

is the sinh-Gordon theory and the generalization for more species with diagonal scatterings

is straightforward. We put this QFT in a finite volume of size L and focus on the finite size

energy spectrum and the finite size form factors.

2.1 Finite size energy spectrum

We analyze the energy of an N particle state with rapidities θk, k = 1, . . . , N . As explained

in the introduction the polynomial corrections come from the quantization of momenta for-

mulated by the Bethe-Yang equations

ε(0)(θ
(0)
j + i

π

2
) = i(2nj + 1)π ; ε(0)(θ + i

π

2
) = imL sinh θ +

∑
k

logS(θ − θ(0)
k ) (2.1)

where, by the superscript (0), we indicated that only the polynomial volume corrections are

kept. Given integers n1, . . . , nN the rapidities θ
(0)
1 , . . . , θ

(0)
N can be determined leading to the

energy formula

EN (L) =
∑
i

m cosh θ
(0)
i +O(e−mL) (2.2)

The leading exponential correction was conjectured in [9] and has two sources. First one

has to take into account how the sea of virtual particles changes the quantization condition

ε(1)(θ
(1)
j + i

π

2
) = i(2nj + 1)π ; ε(1)(θ) = ε(0)(θ) + δε(θ)

δε(θ) = i

∫ ∞
−∞

dθ
′

2π

S′(θ − θ′)
S(θ − θ′)

∏
k

S(i
π

2
+ θ

(0)
k − θ

′
)e−mL cosh θ

′
(2.3)

where S′(θ) denotes dS(θ)
dθ . We then have to add the direct energy contribution of the virtual

particles. By expressing all contributions in terms of the leading rapidities, θ
(0)
j , we have:

EN (L) =
∑
k

m cosh θ
(0)
k + i

∑
k,j

m sinh θ
(0)
k

(
ρ̄

(0)
N

)kj
δε(θ

(0)
j + i

π

2
)

−m
∫ ∞
−∞

dθ

2π
cosh θ

∏
k

S(
iπ

2
+ θ − θ(0)

k )e−mL cosh θ (2.4)

where ρ̄
(0)
N is the inverse of the matrix ρ

(0)
N with entries ρ

(0)
jk = −i∂

θ
(0)
j

ε(0)(θ
(0)
k + iπ2 ).

The exact equations come either from an analytical continuation of the groundstate TBA

result [12, 20] or from a continuum limit of a solved integrable lattice regularization [19]. The

quantization condition for the exact rapidities θj is

ε(θj + i
π

2
) = i(2nj + 1)π (2.5)
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where ε satisfies the coupled non-linear integral equation

ε(θ) = mL cosh θ +
∑
j

logS(θ − θj −
iπ

2
) + i

∫ ∞
−∞

dθ
′

2π

S′(θ − θ′)
S(θ − θ′)

log(1 + e−ε(θ
′
)) (2.6)

and the energy is

EN (L) = m
∑
i

cosh θi −m
∫ ∞
−∞

dθ

2π
cosh θ log(1 + e−ε(θ)) (2.7)

In particular, for a moving one-particle state at leading order we obtain

− iε(0)(θ
(0)
1 + i

π

2
) = mL sinh θ

(0)
1 + π = (2n1 + 1)π (2.8)

and the corresponding energy is

E1(L) = m cosh θ
(0)
1 +O(e−mL) (2.9)

The leading exponential correction of the quantization condition contains an extra term of

the form

δε
(
θ

(0)
1 + i

π

2

)
= i

∫ ∞
−∞

dθ
′

2π
S′(i

π

2
+ θ

(0)
1 − θ

′
)e−mL cosh θ

′
(2.10)

The one-particle energy (measured from the finite volume vacuum) is [21, 22]:

E1(L)− E0(L) = m cosh θ
(0)
1 − (2.11)

m

cosh θ
(0)
1

∫ ∞
−∞

dθ

2π
cosh(θ − θ(0)

1 ) (S(
iπ

2
+ θ − θ(0)

1 )− 1)e−mL cosh θ

We will reproduce this result from the study of the finite volume two-point function.

2.2 Finite size form factors

Form factors are defined as the matrix elements of local operators sandwiched between finite

volume energy eigenstates. These states are normalized to Kronecker-δ functions

〈n′1, . . . , n′M |n1, . . . , nN 〉L = δN,M
∏
j

δn′jnj (2.12)

opposed to infinite volume states, which are normalized to Dirac-δ functions: 〈θ′|θ〉 = δ(θ′ −
θ). The finite volume states can be equivalently labeled by the rapidities |n1, . . . , nN 〉L ≡
|θ1, . . . , θN 〉L. The space-time dependence of the form factors can be easily calculated

〈θ′1, . . . , θ′M |O(x, t)|θ1, . . . , θN 〉L = ei∆Et−i∆Px〈θ′1, . . . , θ′M |O|θ1, . . . , θN 〉L (2.13)

where ∆E = EM (L)− EN (L) and ∆P = PM (L)− PN (L) with PN (L) = 2π
L

∑
j nj , while we

simply abbreviated O(0, 0) by O.
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The polynomial finite size corrections purely change the normalization of states and give

[3]:

〈θ′1, . . . , θ′M |O|θ1, . . . , θN 〉L =
FOM+N (θ′1 + iπ, . . . , θ′M + iπ, θ1, . . . , θN )√

(2π)−N−Mdetρ
(0)
M det ρ

(0)
N

+O(e−mL) (2.14)

where FOM+N denotes the infinite volume form factor

FOM+N (θ′1, . . . , θ
′
M , θ1, . . . , θN ) = 〈0|O|θ′1, . . . , θ′M , θ1, . . . , θN 〉 (2.15)

and all the rapidities can be taken at the leading order values with superscript (0). Since even

the leading exponential correction is not known for these form factors we develop a systematic

method based on the two-point function to calculate them.

In particular, for the one-particle form factor the formulae simplify as

〈0|O|θ1〉L =
FO1 (θ

(0)
1 )√

ρ
(0)
1 /(2π)

+O(e−mL) (2.16)

where

ρ
(0)
1 = −i∂

θ
(0)
1

ε(0)(θ
(0)
1 + i

π

2
) = mL cosh θ

(0)
1 (2.17)

and the aim of our paper is to calculate the leading exponential corrections to these formulae.

2.3 Finite volume two-point function

Let us focus on the Euclidean finite volume two-point function, which is defined by the path

integral1

〈O(x, t)O〉L =

∫
[Dφ]O(x, t)O(0, 0)e−S[φ]∫

[Dφ]e−S[φ]
(2.18)

where configurations are periodic in x with L and t ∈ R. The momentum space form is

obtained by its Fourier transform

Γ(ω, q) =
1

L

∫ L/2

−L/2
dx

∫ ∞
−∞

dt ei(ωt+qx)〈O(x, t)O〉L (2.19)

where periodicity in x requires that eiqL = 1. Taking t as Euclidean time the two point

function is the vacuum expection value of the time ordered product:

〈O(x, t)O〉L = 〈0|T (O(x, t)O)|0〉L = Θ(t)〈0|O(x, t)O|0〉L + Θ(−t)〈0|OO(x, t)|0〉L (2.20)

1We restrict our attention to the case when the two operators are the same. The generalization for different

operators is straightforward.
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We can insert a complete system of finite volume energy-momentum eigenstates and use the

Euclidean version of the space-time dependence (2.13). By performing the integrals we obtain

Γ(ω, q) =
∑
N

|〈0|O|θ1, . . . , θN 〉L|2
{

δq−PN (L)

EN (L)− iω
+

δq+PN (L)

EN (L) + iω

}
(2.21)

For a fixed q we can determine the energy levels by searching for poles in the analytically con-

tinued ω. For a generic volume and fixed momentum q the energy levels are never degenerate.

Thus the poles are located at ω = ±iEN (L) with residue

lim
ω→±iEN (L)

(EN (L)± iω)Γ(ω,±PN (L)) = |〈0|O|θ1, . . . , θN 〉L|2 (2.22)

which is nothing but the square of the finite volume form factor.

In order to obtain the exponential corrections of these form factors we have to expand

the two point function on the space-time cylinder in L. The Euclidean version of this cylinder

can be thought of as the large size limit of the torus. On the torus we can exchange the role

of the Euclidean time and space and represent the two point function as

〈O(x, t)O〉L = Θ(x)
Tr[O(0, t)e−HxOe−H(L−x)]

Tr[e−HL]
+ Θ(−x)

Tr[OeHxO(0, t)e−H(L+x)]

Tr[e−HL]
(2.23)

Inserting two complete system of (mirror) states denoted by |µ〉 and |ν〉 and exploiting the

|〈ν|O|µ〉| = |〈µ|O|ν〉| symmetry together with eiqL = 1 we obtain:

ZΓ(ω, q) =
2π

L

∑
µ,ν

|〈ν|O|µ〉|2e−EνLδ(Pµ − Pν + ω)

{
1

Eµ − Eν − iq
+

1

Eµ − Eν + iq

}
(2.24)

where Z = Tr[e−HL]. Note that the expansion in ν naturally corresponds to expansions in

Lüscher orders. In the bulk of the paper we perform a systematic expansion related to a

moving one-particle state. Let us summarize the result we got.

For a one-particle state we focus on the one-particle finite volume pole

Γ(ω, q) =
F(q)2

E(q) + iω
+ . . . ; F(q) = 〈0|O|q〉 (2.25)

where E(q) is the exact finite volume energy with momentum q and F(q) is the corresponding

exact finite volume form factor. We choose the phase of the one-particle state so that F(q) is

real and positive. We used the momentum variable to label the state, which is related to the

rapidity as q = m sinh θ1, such that the corresponding energy is E(q) = m cosh θ1. We can

expand Γ around the large volume Bethe-Yang pole at ω = iE(q). At the leading Lüscher

order we have first and second order poles

Γ(ω, q) =
2πF 2

1

LE(q)

−i
ω − iE(q)

+
L0(q)

(ω − iE(q))2
+
L1(q)

ω − iE(q)
+ regular (2.26)
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such that the leading exponential corrections of the energy and form factor can be written as

E(q) = E(q)

{
1 +

L

2πF 2
1

L0(q) + . . .

}
; F(q) =

√
2πF1√
LE(q)

{
1 +

iLE(q)

4πF 2
1

L1(q) + . . .

}
(2.27)

We calculate Γ in the mirror channel (2.24). The leading order result comes from terms, when

〈ν| is the vacuum state 〈0| and |µ〉 is a one-particle state. The leading Lüscher corrections,

L0 and L1, come from terms when 〈ν| is a one-particle state and |µ〉 is either the vacuum or

a two-particle state.

Having performed the calculations we could reproduce the Lüscher correction of the 1-

particle energy (2.11). For the form factors we obtained the result

F(q) =

√
2π√
ρ

(1)
1

{
F1 +

∫ ∞
−∞

dθ F reg
3 (θ + iπ, θ, θ

(0)
1 − i

π

2
)e−mL cosh θ + . . .

}
(2.28)

where the density of states at the leading exponential order is

ρ
(1)
1 = −i∂θ(1)ε(1)(θ(1) + i

π

2
) (2.29)

and the regularized form factor is defined to be

F reg
3 (θ, θ1, θ2) = F3(θ, θ1, θ2)− iF1

2π

1− S(θ1 − θ2)

θ − θ1 − iπ
+
iF1

4π
S′(θ1 − θ2) (2.30)

In the rest of the paper we derive this result and check it by a second order perturbative

calculation in the sinh-Gordon theory.

3 Mirror representation

We perform our calculation starting from the mirror representation (2.24). The denominator

has the Hilbert space representation

Z =
∑
ν

〈ν|ν〉e−EνL (3.1)

and we see that its Lüscher expansion,

Z = 1 + δ(0)

∫
du e−mL coshu + . . . (3.2)

is divergent. The divergent constant δ(0) comes from the continuum normalization. As we

will see, this divergence cancels with a similar term from the numerator. However, we need

some regularization to make intermediate steps well-defined. In the main text we will use

continuum regularization, but as shown in Appendix D, this is completely equivalent to finite

volume regularization.
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The leading (0th order) term in the Lüscher expansion of Γ(ω, q) is

4π

L

∑
µ

|〈0|O|µ〉|2Eµ δ(Pµ + ω)

E2
µ + q2

. (3.3)

It is easy to see that this is regular in ω (around the 1-particle pole) unless |µ〉 is a 1-particle

state. Indeed, the n-particle contribution can be written as

4π

L

∫ ∞
−∞

dβ1

∫ β1

−∞
dβ2 · · ·

∫ βn−1

−∞
dβn |〈0|O|β1, . . . βn〉|2

En(β)δ(Pn(β) + ω)

E2
n(β) + q2

. (3.4)

After changing the integration variables to the relative rapidities ui = βi − β1, i = 2, . . . , n

and the global rapidity λ = (
∑n

i=1 βi)/n this becomes:

4π

L

∫ ∞
−∞

dλ

∫
(Du)n|Fn(u)|2 Mn(u) coshλ δ(Mn(u) sinhλ+ ω)

M2
n(u) cosh2 λ+ q2

, (3.5)

where the matrix element (n-particle form factor Fn) only depends on the relative rapidities2

and Mn(u) is the n-particle invariant mass. Performing the λ integral with the help of the

delta function we get
4π

L

∫
(Du)n|Fn(u)|2 1

M2
n(u) + ω2 + q2

. (3.6)

Since Mn(u) ≥ nm there is a singularity at ω2 + q2 = −m2 only for n = 1.

Similarly, the first Lüscher correction in (2.24) (i.e. terms where |ν〉 is a one-particle

state) is regular unless |µ〉 is the vacuum or a 2-particle state. As we will see, the n-particle

contribution can be evaluated (after regularization) by shifting the integration contour for the

rapidity integration away from the real axis. Performing the β1 integration first, we notice

that the matrix element (form factor)

〈u|O|β1, . . . , βn〉 (3.7)

has a pole singularity in the variable β1 at β1 = u and so the total contribution consists of a

residue term plus a shifted integral. As we will see, the shifted integral is not singular in ω

at the 1-particle pole, while the residue term is proportional to∫ ∞
−∞

dλ
δ(Mn−1(u) sinhλ+ ω)

Mn−1(u) coshλ− iq
, (3.8)

where λ is the global rapidity of the remaining (n−1)-particle system, λ = (
∑n

i=2 βi)/(n−1),

Mn−1(u) is the invariant mass of this remaining system and ui = βi− β2, i = 3, . . . , n. After

performing the λ integral, the denominator

M2
n−1(u) + ω2 + q2 (3.9)

leads to pole singularities only for n = 2.

2Remember we are considering a scalar operator O.
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The (potentially) singular part of the first Lüscher correction to the 2-point function is

of the form

Lsing(ω, q) =
2π

m2L

∫
coshu<2

du e−mL coshu
[
J(u, ψ, q) + J(u, ψ,−q)

]
, (3.10)

where

J(u, ψ, q) = −δ(0)F 2
1

1

coshψ(coshψ − iq̂)
−F 2

1 δ(u−ψ)
1

coshψ(coshψ − iq̂)
+j(u, ψ, q) (3.11)

and

j(u, ψ, q) =

∫ ∞
−∞

dβ1

∫ β1

−∞
dβ2|〈u|O|β1, β2〉|2

δ(sinhβ1 + sinhβ2 − sinhu− sinhψ)

coshβ1 + coshβ2 − coshu− iq̂
. (3.12)

Here we introduced the notations

q = mq̂, ω = −m sinhψ. (3.13)

The first term in (3.11) comes from the combination of the 1-particle contribution to the 0th

order correlation function with the first order term, proportional to δ(0), coming from the

denominator in (2.24) (see (3.6) and (3.2)). The second term comes from (2.24) when |µ〉 is

the vacuum state and finally the third term is the 2-particle contribution when |µ〉 = |β1, β2〉.
Note that we restricted the u integration to the range coshu < 2. This is possible since for

coshu > 2 the contribution is subleading to the second Lüscher order, which is O(e−2mL)

and which we neglect. This restriction is also necessary for some of our later estimates to be

valid.

The matrix element 〈u|O|β1, β2〉 can be represented in terms of the S-matrix S(θ) and

the 3-particle form factor F3(u, β1, β2) as [23]

〈u|O|β1, β2〉 = δ(u− β1)F1 + S(β1 − β2)δ(u− β2)F1 + F3(u+ iπ − iε, β1, β2). (3.14)

The integral of its square is divergent and needs to be regularized.

3.1 Regularization

We will use the regularized delta function

δ(x)→ i

2π

(
1

x+ iε
− 1

x− iε

)
(3.15)

in (3.14) and take the limit ε→ 0 only at the end of the calculation.

The regularized delta function terms can be nicely combined with those coming from the

pole terms in the 3-particle form factor and the regularized matrix element becomes

〈u|O|β1, β2〉reg =
iF1

2π

[
1

u− β1 + iε
− S(β1 − β2)

u− β1 − iε
+
S(β1 − β2)

u− β2 + iε
− 1

u− β2 − iε

]
+ F c3 (u+ iπ − iε, β1, β2).

(3.16)
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Here F c3 is the finite part of the form factor, defined by

F3(u, β1, β2) = F c3 (u, β1, β2) +
iF1

2π(u− β1 − iπ)
[1− S(β1 − β2)]

+
iF1

2π(u− β2 − iπ)
[S(β1 − β2)− 1]. (3.17)

The finite part is obtained by explicitly removing the pole singularities required by the form

factor axioms [23]. F c3 (u, β1, β2) is finite at u = β1 + iπ, u = β2 + iπ. For later use, we now

also define the modified form factor F̂3:

F3(u, β1, β2) =
iF1

2π(u− β1 − iπ)
[1− S(β1 − β2)] + F̂3(u, β1, β2). (3.18)

F reg
3 , defined by (2.30), can be written as

F reg
3 (u, β1, β2) = F̂3(u, β1, β2) +

iF1

4π
S′(β1 − β2). (3.19)

Next we introduce the variables b, w by

β1 = b+ w, β2 = b− w (3.20)

and integrate (3.12) over b using the delta function. This means that after this integration b

stands for the solution of

sinh b =
sinhu+ sinhψ

2 coshw
. (3.21)

We have

j(u, ψ, q) =

∫ ∞
−∞

dw|〈u|O|b+ w, b− w〉reg|2 1

C(C − coshu− iq̂)
, (3.22)

where

C = cosh(b+ w) + cosh(b− w). (3.23)

Next we make use of the analyticity of the form factors and shift the w integral from real w

to w = v + iγ, where γ > 0 is small. We have to pay attention to the following.

A) The right hand side of (3.21) must not cross the cut of the arcsinh function (which

runs from i to i∞ along the imaginary axis).

B) Avoid points where C = coshu+ iq̂.

C) Take into account the poles of the regularized matrix elements at w = ±(u− b± iε).

Problems A) and B) can be easily avoided if coshu < 2 and the parameter γ is small

enough. The form factor poles can be taken into account explicitly, using the residue theorem.
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(Only two of the poles lie above the real axis.) After a long computation, we find (up to terms

vanishing in the ε→ 0 limit):

J(u, ψ, q) =

(
F 2

1

2πε
− δ(0)F 2

1

)
1

coshψ(coshψ − iq̂)
+ I(u, ψ, q)

+
F1

coshψ(coshψ − iq̂)
[F c3 (u+ iπ, u, ψ) + F c3 (u+ iπ, ψ, u)]

+
iF 2

1

4π

sinh(u− ψ)[S(ψ − u)− S(u− ψ)]

cosh2 ψ(coshψ − iq̂)2

+
iF 2

1

4π

1

coshψ(coshψ − iq̂)

[2[S(u− ψ)− S(ψ − u)]

u− ψ
+
ν[S′(ψ − u) + S′(u− ψ)]

coshψ

+
sinh(u− ψ)[S(ψ − u)− S(u− ψ)]

ν coshψ

+
(sinhψ + sinhu)(1 + sinhu sinhψ)[S(u− ψ)− S(ψ − u)]

ν cosh2 ψ

]
.

(3.24)

Here the notation

ν = coshψ + coshu (3.25)

is used and I(u, ψ, q) is the shifted integral (w = v + iγ):

I(u, ψ, q) =

∫ ∞
−∞

dv

C(C − coshu− iq̂)
S(−2w)

{
iF1

2π

[
1− S(2w)

u− b− w
+
S(2w)− 1

u− b+ w

]
+ F c3 (u+ iπ − b, w,−w)

}2

. (3.26)

The (negative) divergent term coming from the denominator is accompanied with a (pos-

itive) divergent term coming from the calculation of the numerator. They both multiply

the same function. Our main assumption is that the divergences cancel3 and the remaining

finite terms are correct. Indeed, in appendix D we show that our heuristic regularization

is completely equivalent to the well-defined finite volume regularization. We will make the

substitution (
1

2πε
− δ(0)

)
→ ∆, (3.27)

where ∆ is a finite renormalization constant, which will be fixed later.

3.2 Analytic continuation

(3.24) is our final result for the Fourier space 2-point function for real ω. We need to analyt-

ically continue this function towards ω → iE(q). We will do it in two steps. First we extend

it to a small region where ω is just above the real axis. The explicit terms are analytic, so

we have to concentrate on the integral I(u, ψ, q). In this region there is no problem with A)

3Note that putting blindly x = 0 to the definition of the regularized delta function gives δ(0) = 1/πε.
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and B), but as we increase the imaginary part of ω, the integration contour will cross the

double pole at w = (u − ψ)/2 coming from the form factor function squared. We can take

into account the effects of this pole explicitly, using the residue theorem. After a second long

calculation, we find that adding these new contributions to (3.24) many terms cancel and we

have

J(u, ψ, q) = I0(u, ψ, q) +
iF 2

1

2π

sinh(u− ψ)[1− S(u− ψ)]

cosh2 ψ(coshψ − iq̂)2

+
1

coshψ(coshψ − iq̂)

{
F 2

1 ∆ + 2F1F̂3(u+ iπ, u, ψ)+

iF 2
1

2π

[νS′(u− ψ)

coshψ
+

sinhψ coshu

cosh2 ψ
[S(u− ψ)− 1]

]}
,

(3.28)

where I0(u, ψ, q) is the same integral as (3.26), but with the w integration contour moved

back to the real axis. (We are allowed to do this after ω is already above the contour.)

In the second step we continue ω further towards ω = iE(q). We can show (for coshu < 2)

that I0(u, ψ, q) is analytic in ω in the vicinity of the imaginary axis, except for a cut starting

at ω = im. The cut appears as the consequence of the definition ω = −m sinhψ and the limit

ω → iE(q) in the language of the ψ variable becomes

ψ → − iπ
2
± θ, (3.29)

where q = m sinh θ. The sign is ± according to whether we go around the branch point from

the right or from the left. Since no pole terms are coming from the integral, we are left with

the explicitly evaluated terms in (3.28) and the singular terms of the Lüscher correction can

be written

Lsing(ω, q) =
4π

L

∫
coshu<2

du e−mL coshu

{
R̃(ω, q)

[ω2 + E2(q)]2
+

Q̃(ω, q)

ω2 + E2(q)

}
, (3.30)

where

R̃(ω, q) =
iF 2

1

2π

m2(m2 + ω2 − q2)

m2 + ω2
sinh(u− ψ)[1− S(u− ψ)], (3.31)

Q̃(ω, q) = F 2
1 ∆ + 2F1F̂3(u+ iπ, u, ψ) +

iF 2
1

2π

[
νS′(u− ψ)

coshψ
+

sinhψ coshu

cosh2 ψ
[S(u− ψ)− 1]

]
.

(3.32)

Finally we calculate the residues of the simple and double poles of the Lüscher term:

L0(q) =
2π

L

∫
coshu<2

du e−mL coshuR(iE(q), q), (3.33)

L1(q) =
2π

L

∫
coshu<2

du e−mL coshu

[
Q(iE(q), q) +

dR

dω
(iE(q), q)

]
. (3.34)

Here

R(ω, q) = − 1

2E2(q)
R̃(ω, q), Q(ω, q) = − i

E(q)
Q̃(ω, q)− i

2E3(q)
R̃(ω, q). (3.35)
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3.3 Lüscher’s formula

From (2.27) and (3.33) we can now calculate the Lüscher (Klassen-Melzer, Janik-Lukowski,

Bajnok-Janik) correction [1, 9, 21, 22] to the 1-particle energy:

E(q) = E(q)− m

2π cosh θ

∫
coshu<2

du e−mL coshu cosh(u∓ θ)[Σ(u∓ θ)− 1]. (3.36)

Here

Σ(Θ) = S

(
iπ

2
+ Θ

)
. (3.37)

The S-matrix is real analytic and satisfies crossing:

[S(Θ)]∗ = S(−Θ∗), S(iπ −Θ) = S(Θ), (3.38)

from which we conclude that for real Θ Σ(Θ) is real and satisfies

Σ(Θ) = Σ(−Θ). (3.39)

Thus E(q) is real and independent of the ± sign.

(3.40)

3.4 Finite volume form factor

Finally using (2.27) and (3.34) the Lüscher correction to the finite volume form factor can be

written as

F(q) =

√
2πF1√
LE(q)

{1 + δF(q) + . . . }, (3.41)

where

δF(q) =

∫
coshu<2

du e−mL coshu
{∆

2
+

1

F1
F reg

3 (u+ iπ, u,− iπ
2
± θ)

− 1

4π cosh θ
sinhuΣ′(u∓ θ)∓ sinh θ sinhu

4π cosh2 θ
[Σ(u∓ θ)− 1]

}
.

(3.42)

δF(q) is real and independent of the ± sign, since using the form factor axioms we can show

that{
F reg

3 (u+ iπ, u,− iπ
2

+ θ)

}∗
= F reg

3 (−u+iπ,−u,− iπ
2
−θ) = F reg

3 (u+iπ, u,− iπ
2

+θ). (3.43)

If we require that at infinite energy the interaction can be neglected and the form factor is

given by its free field value,

lim
q→∞

δF(q) = 0, (3.44)

then this fixes the integration constant to ∆ = 0.
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Finally if we notice that in the first Lüscher approximation (2.29) can be written

ρ
(1)
1 (q) = mL cosh θ

{
1 +

1

2π

∫ ∞
−∞

du e−mL coshu sinhu

[
sinh θ

cosh2 θ
Σ(u− θ) +

Σ′(u− θ)
cosh θ

]}
(3.45)

we can rewrite (3.41) in the suggestive form

F(q) =

√
2π

ρ
(1)
1 (q)

{
F1 +

∫ ∞
−∞

du e−mL coshu F reg
3 (u+ iπ, u,− iπ

2
+ θ)

}
. (3.46)

4 Sinh-Gordon form factors

The classical sinh-Gordon theory is a field theory with a single scalar field ϕ(x) and is defined

by the Lagrangian density

L =
1

2
∂νϕ∂νϕ+

m2
0

8πb2

[
cosh(

√
8πbϕ)− 1

]
, (4.1)

where m0 is the classical mass and b is a dimensionless coupling constant. It is a super-

renormalizable field theory in which only the mass is renormalized. It is also integrable, both

classically and quantum-mechanically. Its bootstrap S-matrix and all of its form factors are

exactly known [19, 25]. In the bootstrap description it is a theory of a single neutral particle

of (infinite volume) mass m and scattering matrix

S(θ) =
sinh θ − iα
sinh θ + iα

, α = sin
πB

2
, B =

2b2

1 + b2
. (4.2)

This can also be written as

S(θ) = exp

{
−i
∫ ∞

0

dx

x
K(x) sin

(
θx

π

)}
, (4.3)

where

K(x) = 8
sinh xB

4 sinh x
2

(
1− B

2

)
sinh x

2

sinhx
. (4.4)

An important building block of the form factors is the minimal 2-particle form factor [24, 25]:

F (β) = exp

{
−1

2

∫ ∞
0

dx

x
K(x)

cos xπ (iπ − β)

sinhx

}
. (4.5)

It is also useful to note the following properties of the minimal form factor:

F (iπ − β) = F (iπ + β), F (β) = S(β)F (−β), F (iπ + β)F (β) =
sinhβ

sinhβ + iα
. (4.6)

The 3-particle form factor is written as

F3(β1, β2, β3) =
2αF1

πF (iπ)
x1x2x3

F (β1 − β2)

x1 + x2

F (β1 − β3)

x1 + x3

F (β2 − β3)

x2 + x3
, (4.7)
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where xj = eβj . Removing the singular part we can calculate the subtracted form factor

F̂3(u+ iπ, u,− iπ
2

+ θ) =
iF1

2π
[1− Σ(w)]

{
−1

2

ew − i
ew + i

+
F ′(3iπ

2 + w)

F (3iπ
2 + w)

}
, (4.8)

where w = u − θ. Adding the S-matrix derivative contribution and noting that the odd (in

w) terms cancel, we find

F reg
3 (u+ iπ, u,− iπ

2
+ θ) = −αF1

2π

1

coshw + α

{
1

coshw
+

1

2π

∫ ∞
0

dxK(x)
cos xwπ
cosh x

2

}
. (4.9)

The remaining terms in (3.42) give

α

2π cosh2 θ(coshw + α)2

{
α sinhu sinh θ + cosh2 θ − cosh2w

}
. (4.10)

We can expand (4.9) and (4.10) in the coupling α:

1

F1
F reg

3 (u+iπ, u,− iπ
2

+θ) = − α

2π

1

cosh2w
+
α2

2π

{
1

cosh3w
+

2

π

[
w sinhw

cosh3w
− 1

cosh2w

]}
+O(α3),

(4.11)

and the remaining terms give

α

2π

(
1

cosh2w
− 1

cosh2 θ

)
+
α2

2π

{
sinhu sinh θ

cosh2 θ cosh2w
+

2

cosh2 θ coshw
− 2

cosh3w

}
+ O(α3).

(4.12)

The perturbative expansion of the full Lüscher correction is

δF(q) =

∫ ∞
−∞

du e−mL coshu

{
− α

2π cosh2 θ
+
α2

2π

(
sinhu sinh θ

cosh2 θ cosh2w

+
2

cosh2 θ coshw
− 1

cosh3w
+

2

π

[
w sinhw

cosh3w
− 1

cosh2w

])}
+ O(α3).

(4.13)

We have checked the form factor (4.13) by direct second order perturbative calculations.

These calculations are presented in sect.5 and Appendix C.

5 Hamiltonian perturbation theory

In this section we use time-independent perturbation theory in the finite volume sinh-Gordon

theory in order to test the leading Lüscher corrections both to the one-particle energy and

form factor.
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5.1 Finite volume form of the Hamiltonian

The sinh-Gordon model in a finite volume L is described by a Hamilton operator HL of the

following form

HL = H0
L + VL (5.1)

where H0
L =

∫ L
0 dx : 1

2π
2 + 1

2 (∂xϕ)2 + 1
2µ

2ϕ2 :µ,L is a free Hamiltonian, and

VL =

L∫
0

dx :
µ2

8πb2

(
cosh

(√
8πbϕ

)
− 1
)
− µ2

2
ϕ2 :µ,L +O

(
e−mL

)
(5.2)

contains the interaction. The field operator admits a mode expansion

ϕ (x, t) =
∑
n∈Z

1√
2Lωn

(
ane

i(knx−ωnt) + a†ne
−i(knx−ωnt)

)
(5.3)

ωn =
√
µ2 + k2

n, kn =
2πn

L
(5.4)

where the ladder operators satisfy the usual bosonic commutation relations
[
an, a

†
m

]
= δn,m

and [an, am] = 0. The normal ordering : :µ,L is understood in the sense that these creation

operators (creating a particle of mass µ in the free theory of volume L) are arranged to the

left of the annihilation operators.

The spectrum of H0
L is generated by acting with creation operators on the lowest energy

state, the vacuum |0〉:

|Nn1 , Nn2 , . . . , Nnk〉 =
1

N ({Nni})

k∏
i=1

(
a†ni

)Nni |0〉 , ni ∈ Z (5.5)

H0
L |Nn1 , Nn2 , . . . , Nnk〉 =

∑
i

Nniωni (5.6)

where we have introduced the symbol

N ({Nni}) =

√√√√ k∏
i=1

Nni ! (5.7)

The exponential corrections to VL indicated in (5.2) are due to the following [26]. In

infinite volume, the sinh-Gordon Hamiltonian is naturally expressed in terms of operators

normal ordered with respect to the ladder operators of an infinite volume free theory. As

we decrease the volume, we want to keep the UV behaviour of the theory unaffected, which

means leaving the coefficients of the bare fields unchanged (instead of the normal ordered

ones) in the Hamiltonian density. By temporarily introducing an UV regulator Λ, normal

ordered powers of the field can be expressed in terms of the bare powers by utilizing Wick’s

theorem:

ϕn (x, t) =

bn/2c∑
k=0

n!

2kk! (n− 2k)!

(〈
0
∣∣ϕ2
∣∣ 0〉

µ,L

)k
: ϕn−2k :µ,L (5.8)
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where |0〉 is the ground state of H0
L. Moreover,

〈
0
∣∣ϕ2
∣∣ 0〉

µ,L
= [ϕ+, ϕ−] =

1

2L

NΛ∑
n=−NΛ

1

ωn
(5.9)

〈
0
∣∣ϕ2
∣∣ 0〉

µ,∞ = [ϕ+, ϕ−] =
1

4π

Λ∫
−Λ

dk

ωk
. (5.10)

Equation (5.8) together with (5.9) and (5.10) can be used to derive the exponential corrections

arising from the different normal ordering prescriptions at finite and infinite volume.

After eliminating the cutoff Λ we arrive at the following exact form of the finite volume

interaction term

VL =

L∫
0

dx :
µ2eπρ̄b

2

8πb2

(
cosh

(√
8πbϕ

)
− 1
)
− µ2

2
ϕ2 :µ,L +E0 (L) (5.11)

where

ρ̄ =
2

π

∞∫
−∞

du
1

eµL coshu − 1
(5.12)

(the bar indicates that now the bare Lagrangian parameter µ appears in the exponent) and

E0 is a (scalar) Casimir term whose value can be calculated exactly but does not affect the

masses and form factors, and therefore we now neglect it.

The interaction term (5.11) can be expanded in the coupling b to yield

VL = b2V
(1)
L + b4V

(2)
L +O

(
b6
)

(5.13)

V
(1)
L = 2πµ2

(
1

6
O4 +

ρ̄

4
O2

)
; V

(2)
L = 4π2µ2

(
1

45
O6 +

ρ̄

12
O4 +

ρ̄2

16
O2

)
(5.14)

where

On =

L∫
0

: ϕn (x) :µ,L dx. (5.15)

5.2 Time-independent perturbation theory

Since HL has a discrete spectrum, one can treat it as a conventional quantum mechanical

Hamilton-operator and attempt to approximate the eigenvalues and eigenvectors by means

of time-independent perturbation theory. In this framework the corrections of the energies

(non-degenerate in the free theory) up to b4 can be written in the form

En = E(0)
n + b2E(1)

n + b4E(2)
n +O

(
b6
)
, (5.16)

E(1)
n =

〈
n
∣∣∣V (1)
L

∣∣∣n〉 ≡ V (1)
nn (5.17)

E(2)
n = V (2)

nn +
∑
|k〉∈H

′

∣∣∣V (1)
kn

∣∣∣2
E

(0)
nk

; E
(0)
nk = E(0)

n − E
(0)
k ; V

(i)
kn =

〈
k
∣∣∣V (i)
L

∣∣∣n〉 (5.18)
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In the above, E
(0)
n denotes the energy of the nth lowest energy state in the free theory, the state

vectors |n〉 , |m〉 are understood to be the eigenvectors of H0
L, and the sum in (5.18) is for all

elements of an eigenbasis of H0
L, except |n〉 itself, which is indicated by

∑′. Correspondingly,

the expansion of the interacting eigenvectors have the form

|n (b)〉 = |n〉+ b2 |n〉(1) + b4 |n〉(2) +O
(
b6
)
, (5.19)∣∣∣n(1)

〉
=
∑
|k〉∈H

′V
(1)
kn

E
(0)
nk

|k〉 (5.20)

∣∣∣n(2)
〉

=
∑
|k〉∈H

′V
(2)
kn

E
(0)
nk

|k〉+
∑

|k〉,|l〉∈H

′′V
(1)
kl V

(1)
ln

E
(0)
nkE

(0)
nl

|k〉 −
∑
|k〉∈H

′V
(1)
nn V

(1)
kn

(E
(0)
nk )2

|k〉

− 1

2

∑
|k〉∈H

′V
(1)
nk V

(1)
kn

(E
(0)
nk )2

|n〉 (5.21)

where by
∑′′

we indicated that we leave out from the sum the |k〉 = |n〉 and |l〉 = |n〉 terms.

The vector |n (b)〉 at each order is normalized to 1.

5.3 Corrections to the one-particle energy

In the following we use perturbation theory to calculate the energy corrections to a one-

particle state at leading and next to leading orders.

5.3.1 O
(
b2
)

correction

For a one-particle state |q (b)〉, having momentum q = 2πnqL
−1 in the free theory, the sole

first-order (O
(
b2
)
) contribution to the energy difference E (q)−E0 comes from the expectation

value
π

2
µ2b2ρ̄ 〈nq |O2|nq〉 . (5.22)

The matrix element is easily evaluated using the mode expansion (5.3), the explicit form of

Fock vectors (5.5) and the commutation relations of ladder operators. As a result, one gets

E (q)− E0 = ωnq + b2
πµ2ρ̄

2ωnq
+O

(
b4
)

(5.23)

5.3.2 O
(
b4
)

correction

The second corrections can be obtained by a longer, but largely straightforward calculation.

The general scheme of the computation can be summarized in the following steps.

1. First, observe that due to the absolute square appearing in (5.18) and the fact that VL
starts with terms proportional to b2, only V

(1)
L contributes to this order. In addition,

O2 and O4 will only have nonzero matrix elements between states of equal overall

momenta. Furthermore, due to normal ordering, the following restrictions apply to the

Hilbert space sum in the above formula:
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(a) 〈k |O2| 0〉 is only nonzero if |k〉 is a two-particle state;

(b) 〈k |O4| 0〉 is only nonzero if |k〉 is a four-particle state;

(c) 〈k |O2|nq〉 is only nonzero if |k〉 is a three-particle state (for a one-particle state,

|k〉 should be equal to |nq〉 due to momentum conservation. However, this term is

excluded from the sum);

(d) 〈k |O4|nq〉 is only non-zero for |k〉 containing either 3 or 5 particles.

2. One then evaluates the relevant matrix elements 〈k1, k2 |O2| 0〉, 〈k1, k2, k3, k4 |O4| 0〉,
〈k1, k2, k3 |O2|nq〉,
〈k1, k2, k3 |O4|nq〉 and 〈k1, k2, k3, k4, k5 |O4|nq〉 by commuting creation-annihilation op-

erators. After collecting the symmetry factors arising from the fact that some subsets

of {ki} might be equal, these matrix elements turn out to be simply proportional to the

symbol 1/N ({ki}) (which actually comes from normalization), and generally consist of a

sum of multiple terms containing a product of momentum-dependent Kronecker-deltas.

For example,

〈k1, k2, k3 |O2|nq〉 =
1

N (k1, k2, k3)

(
δk3,nqδk1+k2,0

ωk1

+
δk2,nqδk1+k3,0

ωk1

+
δk1,nqδk2+k3,0

ωk2

)
3. Finally, these matrix elements are substituted back to (5.18) and the appropriately

restricted sums are reduced by the aid of the Kronecker deltas. Here another symmetry

factor arises due to the fact that permutations of the order of different momenta as

written inside a Fock vector |k1, . . . , ki〉 denotes the same vector in the Hilbert space.

This symmetry factor actually cancels the 1/N s coming from the matrix elements.

This calculation leads to a linear combination of single, double and triple sums. The triple

sums fortunately cancel, and we arrive at the following O
(
b4
)

result:

E (q)− E0 = ωnq + b2
π

2

µ2

ωnq
ρ̄+ b4

(
π2

4

µ2

ωnq
ρ̄2 − π2

8

µ4

ω3
nq

ρ̄2

)
− b4π

2

2

µ4

ωnq
ρ̄

1

L

∑
k∈Z

1

ω3
k

−b4 2π2

3

µ4

ωnq

1

L2

∑
k1,k2∈Z

D1 (k1, k2) +O
(
b6
)

(5.24)

where

D1(k1, k2) =
1

ωk1ωk2ωk1+k2−nq

(
1

ωk1 + ωk2 + ωk1+k2−nq + ωnq

+
1

ωk1 + ωk2 + ωk1+k2−nq − ωnq

)
. (5.25)
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5.3.3 Extracting Lüscher corrections

The single and double sums appearing in (5.24) can be transformed into integrals by a method

well-known from complex analysis. The idea is to introduce a complex function with an infinite

number of poles at appropriate positions along the real line, such that one can reproduce a

sum by means of a contour integral. In general, for a sum
∑

n∈Z f (n), one such integral

representation is provided by∑
n∈Z

f

(
2πn

L

)
=

L

2π

∫
C

dz
eiLz

eiLz − 1
f (z) (5.26)

where the closed contour C moves from −∞ − iε to +∞− iε infinitesimally below the real

line, then from ∞ + iε to −∞ + iε just above the real line (additional care is needed when

f (z) is not holomorphic in the region enclosed by C). Then the contour C can be blown

up assuming f (z) is analytic on the complex plane, except possibly a number of poles and

branch cuts. If f (z)decays rapidly enough at complex infinity, then the original sum can be

turned into another one containing residual terms and integrals corresponding to different

poles and branch cuts of f (z).

For example, the sum
∑

n∈Z
1
ω3
n

does not lead to additional poles in f (z) =
(
µ2 + z2

)−3/2
.

It has, however, two branch points at z = ±iµ. The two branch cuts lie along the imaginary

axis of the z plane. One connects iµ and i∞, the other starts at −iµ and goes down to

−i∞. Upon deforming the contour, the neighborhood of the branch cut singularities needs

careful analysis. The integrals coming from tightening the contour to the lower and upper

branch cuts can be mapped onto each other. Then, after a variable change u → coshu and

symmetrization in the integration domain, one gets

∞∑
k=−∞

1

ω3
k

=
L

πµ2

1 + µL

∞∫
−∞

du
eµL coshu

(eµL coshu − 1)
2 coshu

 (5.27)

Transforming the double sum is more complicated. It is advantageous for later purposes

to separate the k2 = nq part of the sum:∑
k1,k2∈Z

D1 (k1, k2) =
∑
k1∈Z

∑
k2 6=nq

D1 (k1, k2) +
1

2ωnq

∑
k1∈Z

1

ω3
k1

+
1

2ωnq

∑
k1∈Z

1

ω2
k1

1

ωk1 + ωnq
(5.28)

The last term is easily seen to be a special case of the integral formula

∑
k1∈Z

1

ω2
k1

1

A+ ωk1

=
L

2Aµ
coth

µL

2
− L

2π

∞∫
−∞

du
coth

(
µL
2 coshu

)
A2 + µ2 sinh2 u

. (5.29)

After a lengthy calculation, which we spell out in detail in Appendix B, we obtain the

following nice representation of the double sum:

∑
k1,k2

D1 (k1, k2) =
L2

µ2

1

8
+ 3

∞∫
−∞

du

2π

eµL coshu

(eµL coshu − 1)
2

1

cosh (u− θ)

 (5.30)
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where we introduced θ as the rapidity variable q = µ sinh θ.

We can now give an integral representation of the O
(
b4
)

one-particle energy, from which

all the O
(
b4
)

Luscher corrections can be read directly:

E (θ)− E0 =µ cosh θ + b2
π

2

µ

cosh θ
ρ̄+ b4

(
π2

4

µ

cosh θ
ρ̄2 − π2

8

µ

cosh3 θ
ρ̄2

)

− b4π2 µ

cosh θ
ρ̄

1

2π
− b4π2 µ

cosh θ
ρ̄µL

∞∫
−∞

du

2π

eµL coshu

(eµL coshu − 1)
2 coshu− b4π

2

12

µ

cosh θ

− b42π2 µ

cosh θ

∞∫
−∞

du

2π

eµL coshu

(eµL coshu − 1)
2

1

cosh (u− θ)
+O

(
b6
)

(5.31)

As a final step we expand this result in the bootstrap parameter α

α = sin
πb2

1 + b2
⇔ b2 =

α

π
+
α2

π2
+O

(
α3
)

(5.32)

up to O
(
α2
)
. The O

(
α2
)

term arising from the O
(
b2
)

correction of the energy cancels with

another term in (5.31). Using the trigonometric identity

coshu

cosh θ
=

1

cosh (u− θ)
+

sinhu

cosh θ
tanh (u− θ) (5.33)

and performing an integration by parts, we arrive at

E (θ)− E0 = µ cosh θ + α
µρ̄

2 cosh θ
− α2

12

µ

cosh θ
+

α2µ

cosh θ

[(
1 + tanh2 θ

) ρ̄2

8

−
(
µLρ̄

2
cosh θ + 1

)
ξ̄1 (θ)− ρ̄

2
f̄2 (θ)

]
+O

(
α3
)

(5.34)

where we introduced the functions

ξ̄1 (θ) =

∞∫
−∞

du

π

eµL coshu

(eµL coshu − 1)
2

1

cosh (u− θ)
(5.35)

f̄k (θ) =

∞∫
−∞

du

π

1

eµL coshu − 1

1

coshk (u− θ)
(5.36)

However, since the first correction to the physical mass is of order α2, in an O
(
α2
)

formula we

can actually omit the bars and arrive at the result from TBA what we calculate in Appendix

A.
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5.4 Corrections to the form factor 〈0 (b) |ϕ| q (b)〉

By an analogous, albeit more cumbersome calculation, we can obtain the coupling-expanded

finite volume form factors and extract their first Lüscher correction. Using the eigenstate

expansion (5.21), we can expand the form factor as

〈0 (b) |ϕ| q (b)〉 = 〈0 |ϕ| q〉
(
order b0

)
(5.37)

+
〈
0(1) |ϕ| q

〉
+
〈
0 |ϕ| q(1)

〉 (
order b2

)
(5.38)

+
〈
0(2) |ϕ| q

〉
+
〈
0(1) |ϕ| q(1)

〉
+
〈
0 |ϕ| q(2)

〉 (
order b4

)
(5.39)

+O
(
b6
)
. (5.40)

Note that since we are effectively working in Schrödinger picture, operators are time-independent,

and as a consequence, we can use the free field operator (5.3) in calculating these matrix el-

ements.

5.4.1 O
(
b2
)

correction

The zero order term 〈0 |ϕ| q〉 is easily evaluated and in our normalization its value is

〈0 |ϕ| q〉 =
1√

2Lωnq
. (5.41)

The first order contribution comes solely from the
〈
0 |ϕ| q(1)

〉
term. It takes the form〈

0 |ϕ| q(1)
〉

= − 1√
2Lωnq

µ2b2πρ̄

4ω2
nq

(5.42)

5.4.2 O
(
b4
)

correction

Following the steps outlined in subsection 5.3.2, an even lengthier calculation leads us to an

explicit (volume-exact) order b4 correction to the form factor in the form of single, double

and triple sums.4 Again, the triple sums cancel, leading to

〈0 (b) |ϕ| q (b)〉 =
1√

2Lωnq

{
1− µ2b2πρ̄

4ω2
nq

+N0 +
µ4π2b4ρ̄

8L

∑
k

S1 (k)

+
µ4π2b4

3L2

∑
k1,k2

(D1 (k1, k2)

ω2
nq

+
D2 (k1, k2)

ωnq

)}
(5.43)

where

N0 =
π2b4ρ̄2

8

(
5µ4

4ω4
nq

− µ2

ωn2
q

)
4 It should be noted that no O6 matrix element gives contribution to the result, therefore the infinite-volume

limit of the results obtained here are the same as in the ϕ4 theory. The finite-volume behaviour is, however,

different from the ϕ4 case because VL gets different corrections.
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S1 (k) =
1

ω2
nqω

3
k

+
1

ω2
nqω

2
k

(
ωnq + ωk

) +
1

ωnqω
3
k

(
ωnq + ωk

)
D2 (k1, k2) =

1

ωk1ωk2ωk1+k2−nq

(( 1

ωk1 + ωk2 + ωk1+k2−nq + ωnq

)2

−
( 1

ωk1 + ωk2 + ωk1+k2−nq − ωnq

)2)
(5.44)

and D1 (k1, k2) was defined in (5.25).

5.4.3 Extracting first Lüscher correction

We proceed with the complex analytical method presented previously to transform the sums

to integrals from which the Lüscher corrections can be obtained. The integral representations

of some (parts) of these sums are already presented in formulas (5.27), (5.29) and (5.30). The

only single sum appearing in
∑

k S1 (k) not covered before is a special case of the following

sum possessing the integral representation∑
k

1

ω3
k (A+ ωk)

= − L

2µA2
coth

(
µL

2

)
+
LA

µ2

∞∫
−∞

du

2π

 µL coshu

2 sinh2
(
µL
2 coshu

) (
A2 + µ2 sinh2 u

)
+

2µ2 cosh2 u coth
(
µL
2 coshu

)
(
A2 + µ2 sinh2 u

)2
 (5.45)

The transformations of the double sums
∑

k1,k2
D2 (k1, k2) into integrals can be done similarly

to the case
∑

k1,k2
Di (k1, k2), which then can be expanded for large volumes. The detailed

calculations are relegated to Appendix B and results in

〈0 (b) |ϕ| q (b)〉 =
1√

2Lµ cosh θ

{
1− α

∫
du

2π

[
e−µL coshu

cosh2 θ

]
+ α2

(
1

48
+

1

24 cosh2 θ

− 1

4π2

)
+ α2

∞∫
−∞

du

2π
e−µL coshu

[
sinhu sinh θ

cosh2 θ cosh2w
+

2

cosh2 θ coshw

− 1

cosh3w
+

2

π

(
w sinhw

cosh3w
− 1

cosh2w

)]
+ . . . (5.46)

Finally, expressing the rhs in terms of the physical mass

m = µ− α2

12
µ+O

(
α3
)

(5.47)

we obtain our final result:

〈0 (b) |ϕ| q (b)〉 =
1√

2Lm cosh θ

{
1− α

∫
du

2π

[
e−mL coshu

cosh2 θ

]
+ α2

(
1

48
− 1

4π2

)

+ α2

∞∫
−∞

du

2π
e−mL coshu

[
sinhu sinh θ

cosh2 θ cosh2w
+

2

cosh2 θ coshw
− 1

cosh3w

+
2

π

(
w sinhw

cosh3w
− 1

cosh2w

)]
+ . . . (5.48)

– 25 –



which completely agrees with the perturbative expansion of our exact Lüscher correction. We

perform an alternative check using Lagrangian perturbation theory in Appendix C.

6 Conclusions

In this paper we initiated a programme to calculate systematically both the finite volume

energy levels and the finite volume form factors. Our method can be considered as the

finite volume generalization of the LSZ reduction formula as it relates energy levels and

form factors to the momentum space finite volume two-point function. We performed two

different expansions of this finite volume two-point function: In the first we expanded it in

the volume by separating the polynomial and exponential volume corrections. In the second

we made a perturbative expansion in the coupling in the sinh-Gordon theory. We performed

all calculations explicitly for a moving one-particle state. There we could manage to extract

the leading exponential volume correction both to the energy level and to the simplest non-

diagonal form factor.

We compared this energy correction to the expansion of the TBA equation and found

complete agreement. The correction contains both the effect of the modification of the Bethe-

Yang equation by virtual particles and also these particles’ direct contribution to the energy.

In the case of the simplest non-diagonal form factor a local operator is sandwiched between

the vacuum and a moving one-particle state. Our result for the Lüscher correction is valid for

any local operator and has two types of contributions. The first comes from the normalization

of the state. Since virtual particles change the Bethe-Yang equations, they also change the

finite volume norm of the moving one-particle state. The other correction can be interpreted

as the contribution of a virtual particle traveling around the world as displayed on Figure 1.

Since the appearing 3-particle form factor is infinite, we had to regularize it by subtracting the

kinematical singularity contribution. In addition, a new finite piece appears in our calculation

which is related to the derivative of the scattering matrix. It would be very interesting

to understand the physical meaning of this extra finite term or to provide its alternative

derivation. We tested all of our results against second order Lagrangian and Hamiltonian

perturbation theory in the sinh-Gordon theory and we obtained perfect agreement.

There could be other ways to check our results, or its generalizations for the sine-Gordon

theory. As the sine-Gordon theory is the continuum limit of the inhomogenous XXZ spin

chain one could calculate the relevant vacuum-one-particle from factor on the lattice and

evaluate carefully its continuum limit. The works [34–36] can be relevant in this direction.

The original purpose of the perturbative calculations was to check our main result (3.41),

which gives the first Lüscher correction of the 1-particle form factor. Indeed, the second

order form factor formula (4.13) is perfectly reproduced by (5.48) obtained by Hamiltonian

perturbation theory. Equivalently we have checked (C.36), analytically for q = 0 and numer-

ically for q 6= 0, in Lagrangian perturbation theory. The perturbative calculations actually

go beyond the Lüscher approximation because they are exact in the volume. Indeed, the

volume-exact second order energy formula (5.34) exactly matches (A.22), obtained from the
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Figure 1. Graphical interpretation of the Lüscher correction is shown. Solid thick line represents the

physical particle which arrives from the infinite past and is absorbed by the operator represented by

a solid circle. The trajectory of a virtual (mirror) particle is represented by a half solid, half dashed

ellipse. The operator emits this virtual particle, which travels around the world and is absorbed by

the operator again leading to a 3-particle form factor.

TBA equations. Our perturbative form factor calculations can be used to check any future

result (or conjecture) for a volume-exact 1-particle form factor. For this purpose one can use

the formula (C.46), which can be evaluated numerically.

Clearly our novel result for the Lüscher correction of the simplest non-diagonal finite

volume form factor is just a first step in calculating exactly the finite size corrections of form

factors. We have projects to extend our result for generic non-diagonal form factors5 and also

for their second Lüscher correction. However, in a long term, one should relate the appearing

quantities to infinite volume form factors and the TBA densities similarly how it is done for

the one-point function [14] and for the diagonal finite volume form factors [15, 18].

Our results are relevant not only for two-dimensional integrable models, but via the

AdS/CFT correspondence they can provide exact information for the string vertex in the

AdS5 × S5 background [27] and also on 3-point function in the maximally supersymmetric 4

dimensional gauge theory [28]. The string vertex describes a process in which a big string splits

into two smaller ones. The integrable description decompactifies the strings by cutting the pair

of pants worldsheet into several parts [29]. Introducing one cut we obtain the decompactified

string vertex, two cuts leads to the octagon amplitude, while introducing three cuts splits the

worldsheet into two hexagons [32]. To reach an exact description the cut pieces have to be

glued back again [31, 33]. These include the introduction of a pair of virtual (mirror) particle

states. Unfortunately the amplitude, as it stands, is divergent and one has to figure out how

to regulate it [30]. This is exactly what we figured out in the case when the cylinder with a

5Although it is not clear to us yet how to obtain even the asymptotic Bethe-Yang result.
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local operator insertion was cut into a square as we started to glue it back by introducing a

single pair of virtual particles.
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A Perturbative expansion of the sinh-Gordon TBA equations

In this appendix we expand analytically the sinh-Gordon vacuum and excited state TBA

equations in the coupling. As the zeroth order term of the TBA kernel is the Dirac delta

function one has to be careful. One can either explicitly subtract this term and then make

the expansion, or alternatively it is also possible to shift the integration contour, to take

additionally into account the pole of the kernel and expand the shifted equations with the

new source term. We performed both calculations and got the same result, which we present

now.

The vacuum TBA is an integral equation for the unknown function Y (0)(u) and is of the

form

Y (0)(u) = e−mL coshu exp

{
1

2π

∫ ∞
−∞

dv σ(u− v)L(0)(v)

}
, (A.1)

where

L(0) = ln[1 + Y (0)] (A.2)

and

σ(u) =
2α coshu

sinh2 u+ α2
. (A.3)

This TBA corresponds to the S-matrix

S(θ) =
sinh θ − iα
sinh θ + iα

. (A.4)

We will use the parameter α as our expansion parameter. The solution of (A.1) can be used

to calculate the ground state energy, which is given by

E(0) = −m
2π

∫ ∞
−∞

du coshuL(0)(u). (A.5)

Similarly, the unknown function in the 1-particle TBA is Y (1)(u, γ), which satisfies

Y (1)(u, γ) = Σ(u− γ)e−mL coshu exp

{
1

2π

∫ ∞
−∞

dv σ(u− v)L(1)(v, γ)

}
, (A.6)
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where

L(1) = ln[1 + Y (1)] (A.7)

and

Σ(u) =
coshu− α
coshu+ α

. (A.8)

Let us introduce

D(γ) = mL sinh γ − 1

2π

∫ ∞
−∞

du σ̃(u− γ)L(1)(u, γ), (A.9)

where

σ̃(u) =
2α sinhu

cosh2 u− α2
. (A.10)

The exact rapidity β is defined to be the solution of the exact Bethe-Yang equation

D(β) =
2π

L
n = mL sinh θ. (A.11)

We have to solve the coupled system (A.6) and (A.11) to calculate the energy of the first

excited state with momentum

q = m sinh θ. (A.12)

It is given by

E(1) = m coshβ − m

2π

∫ ∞
−∞

du coshuL(1)(u, β). (A.13)

Finally the 1-particle spectrum is given by

E(q) = E(1)(q)− E(0) = E0(q) + αE1(q) + α2E2(q) + . . . (A.14)

and the density of states by

R(q) = D′(β) = R0(q) + αR1(q) + α2R2(q) + . . . (A.15)

We can now perturbatively solve the TBA equations and after a long computation we

find that the expansion coefficients can be expressed in terms of the following integrals:

fk(q) =
1

π

∫ ∞
−∞

du
1

emL coshu − 1

1

coshk w
, (A.16)

gk(q) =
1

π

∫ ∞
−∞

du
1

emL coshu − 1

sinhw

coshk w
, (A.17)

ξ1(q) =
1

π

∫ ∞
−∞

du
emL coshu

(emL coshu − 1)2

1

coshw
, (A.18)

where

w = u− θ. (A.19)
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We will also use

ρ = 2f0, (A.20)

which has been introduced earlier in the bulk of the paper.

The expansion coefficients are

E0(q) = m cosh θ, E1(q) =
mρ

2 cosh θ
, (A.21)

E2(q) = m

{
−
(

1

cosh θ
+
mLρ

2

)
ξ1 + (1 + tanh2 θ)

ρ2

8 cosh θ
− ρf2

2 cosh θ

}
(A.22)

and

R0(q) = mL cosh θ, R1(q) = mL
{ ρ

2 cosh θ
− cosh θf2

}
, (A.23)

R2(q) = 4f2−6f4−2 tanh θg3+mL

{(
1

cosh θ
− 1

2 cosh3 θ

)
ρ2

4
+ cosh θf2

2 −
ρf2

cosh θ

}
. (A.24)

In the Lüscher approximation these coefficients agree with those we get from the α-

expansion of the formulas (2.10) and (2.11):

E1(q) =
mρ̄

2 cosh θ
=

m

π cosh θ

∫ ∞
−∞

du e−mL coshu, (A.25)

E2(q) = − mξ̄1

cosh θ
= − m

π cosh θ

∫ ∞
−∞

du e−mL coshu 1

coshw
, (A.26)

R1(q) = mL
{ ρ̄

2 cosh θ
− cosh θf̄2

}
= −mL

π

∫ ∞
−∞

du e−mL coshu sinhu

[
tanh θ

1

coshw
− sinhw

cosh2w

]
,

(A.27)

R2(q) = 4f̄2 − 6f̄4 − 2 tanh θḡ3

=
mL

π

∫ ∞
−∞

du e−mL coshu sinhu

[
tanh θ

1

cosh2w
− 2 sinhw

cosh3w

]
.

(A.28)

We always use an overline notation to indicate the Lüscher approximation of the same quan-

tity.

B Details of the Hamiltonian perturbative calculations

In this appendix we explain how we turned the double sums in the Hamiltonian perturbation

theory to integrals and how we performed their large volume expansions.
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B.1 The double sum in the energy correction

In this part we provide an integral representation for the double sum∑
k1∈Z

∑
k2 6=nq

D1 (k1, k2) (B.1)

with

D1(k1, k2) =
1

ωk1ωk2ωk1+k2−nq

(
1

ωk1 + ωk2 + ωk1+k2−nq + ωnq

+
1

ωk1 + ωk2 + ωk1+k2−nq − ωnq

)
(B.2)

We start by applying the residue method to the k1 variable. The analytically continued

function D1 (z, k2) contains two pairs of branch cuts on the z plane, starting from ±iµ and

q − 2πk2
L ± iµ, and going away from the real axis towards complex infinity in the imaginary

direction. The integrals coming from the cuts below the real axis can be combined nicely to

those above the real axis after a change of integration variable. Introducing κ2 = 2πk2L
−1,

the resulting integral can be written as

∑
k1∈Z

∑
k2 6=nq

D1 (k1, k2) =
∑
k2 6=nq

∞∫
1

du iµ
L

2π
coth

(
µLu

2

)
(Θq,µ (κ2 − q, u) + ∆q,µ (κ2, u)

+Θq,µ (κ2 − q,−u) + ∆q,µ (κ2,−u)) (B.3)

where

Θq,µ (κ, u) =
κ (µ+ iqu)− µq

(
u2 − 1

)
κµ2 (κ+ q + iµu) (iq + µu)

√
(u2 − 1)

(
µ2 + (κ+ iµu)2

) (B.4)

and

∆q,µ (κ, u) = − κqu+ µ2u+ iµq − iκµ
µ2 (κ− q) (q − iµu) (κ+ iµu)

√
(u2 − 1) (µ2 + κ2)

(B.5)

We now turn the remaining summation to integration.

We note that in (B.3) both Θq,µ and ∆q,µ having +u argument are the contributions

of the branch cuts starting from +iµ and −iµ + q − κ2, whereas the terms of −u argument

correspond to the other two cuts. Interchanging the k2 sum with the integral, the remaining

sums to be evaluated have the form

SΘ =
∑
k2 6=nq

[Θq,µ (κ2 − q, u) + Θq,µ (κ2 − q,−u)]

=
∑
k2 6=0

[Θq,µ (κ2, u) + Θq,µ (κ2,−u)]

=
∑
k2 6=0

[Θq,µ (κ2, u) + Θq,µ (−κ2,−u)]
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=
∑
k2 6=0

2u
(
µ2 + q2

)
(κ2 + iµu)

µ2(q2 + µ2u2) [(κ2 + iµu)2 − q2]

√
(u2 − 1)

[
µ2 + (κ2 + iµu)2

] (B.6)

and

S∆ =
∑
k2 6=nq

[∆q,µ (κ2, u) + ∆q,µ (κ2,−u)]

= −
∑
k2 6=nq

2iκ2q
√
u2 − 1

µωk2

(
κ2

2 + µ2u2
)

(q2 + µ2u2)

=
2iq2
√
u2 − 1

µωnq (q2 + µ2u2)2 (B.7)

where in the last step we used the antisymmetry of the summand.

We now proceed by obtaining an integral representation of the sum SΘ. Analytically

continuing the summand of (B.6) into the complex κ2 plane, we find a pair of branch cuts

and two single poles. However, this time the branch points of the cuts lie at iµ (±1− u),

and since u > 1, the upper cut intersects the real axis. The k2 = nq terms of the double

sum in (5.28) were separated for precisely this reason. Now an integral representation can be

achieved by writing SΘ as a sum of two contour integrals

SΘ =
L

2π

∫
C1

dz
eiLz

eiLz − 1
fΘ (z) +

∫
C2

dz
eiLz

eiLz − 1
fΘ (z)

 (B.8)

with

fΘ (z) =
2u
(
µ2 + q2

)
(z + iµu)

µ2 (z − q + iµu) (z + q + iµu) (q2 + µ2u2)

√
(u2 − 1)

[
µ2 + (z + iµu)2

] . (B.9)

The closed contours C1 and C2 are chosen such that C1 goes from −∞− iε to −2πL−1 − iε
just below the real axis, then from −2πL−1 + iε back to −∞ + iε just above the real axis,

while C2 is the mirror image of C1 with respect to the imaginary axis except that it is

also directed counterclockwise. Now both contours can be blown up such that they are

tightened to the cuts. As a result of the deformation, the poles of fΘ at z = ±q − iµu

become encircled in the negative direction which results in additional residual terms. After

the variable changes u→ coshu, v → cosh v, and extending the intagration domain over the

real line by symmetrization6, we get an integral representation of SΘ as

SΘ =
2L

iµ2

eµLu

eµLu − 1

√
µ2 + q2u

(q2 + µ2u2)
√
u2 − 1

+
L

iπµ

∞∫
−∞

dv (λ (u, v) s (u, v) + singΘ (u, v)) (B.10)

6The region around the branch-overlapped pole needs special treatment.

– 32 –



where

λ (u, v) =
eµL coshu

eµL cosh v − eµL coshu
− eµL(coshu+cosh v)

eµL(coshu+cosh v) − 1
, (B.11)

s (u, v) =

(
µ2 + q2

)
coshu cosh v(

q2 + µ2 cosh2 u
) (
q2 + µ2 cosh2 v

) , (B.12)

singΘ (u, v) =
2

µL

1

u2 − v2

s (u, u)u

sinhu
(B.13)

The term of (B.13) comes from the neighbourhood of the branch-overlapped pole. Note that

both λ (u, v) and singΘ (u, v) are singular along the lines u = ±v; their sum is, however, finite

everywhere.

At this stage, we can represent the original double sum as a formula containing the

following double integral

∑
k1,k2∈Z

D1 (k1, k2) = L2

∞∫
−∞

du

2π

∞∫
−∞

dv

2π
coth

(
µL

2
coshu

)
(λ (u, v) s (u, v) + singΘ (u, v))

+ (other terms) (B.14)

Since the double integral is absolutely convergent, we can perform a symmetrization of the

integrand as
∞∫
−∞

∞∫
−∞

dudv f (u, v) =
1

2

∞∫
−∞

∞∫
−∞

dudv (f (u, v) + f (v, u)) (B.15)

which leaves the value of the integral unchanged. Upon this transformation, the first term of

(B.14) becomes

L2

∞∫
−∞

du

2π

∞∫
−∞

dv

2π

1 + eµL coshu + eµL cosh v − 3eµL(coshu+cosh v)

2 (eµL coshu − 1) (eµL cosh v − 1)
s (u, v) (B.16)

which can be further simplified as

L2

∞∫
−∞

du

2π

∞∫
−∞

dv

2π

1 + eµL coshu + eµL cosh v − 3eµL(coshu+cosh v)

2 (eµL coshu − 1) (eµL cosh v − 1)
s (u, v) =

−L
2

µ2

3

8
+

∞∫
−∞

du

2π

1

eµL coshu − 1

µ
√
µ2 + q2 coshu

q2 + µ2 cosh2 u

 (B.17)

if we note that

1 + eµL coshu + eµL cosh v − 3eµL(coshu+cosh v)

2 (eµL coshu − 1) (eµL cosh v − 1)
= −3

2
− 1

eµL coshu − 1
− 1

eµL cosh v − 1
(B.18)
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We now calculate the integral of the symmetrized second term of the integrand. For

brevity, we introduce the function

sing (u, v) = coth

(
µL

2
coshu

)
singΘ (u, v) .

In this notation, the symmetrized integral has the following form

L2

2

∞∫
−∞

du

2π

∞∫
−∞

dv

2π
(sing (u, v) + sing (v, u)) .

Both terms of this integrand are divergent by themselves; their sum, however, is finite every-

where. To perform the integrations, we notice that due to the symmetry of the integrand,

L2

2

∞∫
−∞

du

2π

∞∫
−∞

dv

2π
(sing (u, v) + sing (v, u)) =

4L2

2

∞∫
0

du

2π

u∫
−u

dv

2π
(sing (u, v) + sing (v, u))

(B.19)

which we regularize7 as

2L2 lim
ε→0

 ∞∫
ε

du

2π

u−ε∫
−u+ε

dv

2π
sing (u, v) +

∞∫
ε

du

2π

u−ε∫
−u+ε

dv

2π
sing (v, u)

 =

2L2 lim
ε→0

 ∞∫
ε

du

2π

u−ε∫
−u+ε

dv

2π
sing (u, v) + 2

∞∫
0

du

2π

∞∫
u+ε

dv

2π
sing (u, v)

 (B.20)

In the last step we made use of the identity

∞∫
ε

du

2π

u−ε∫
−u+ε

dv

2π
=

∞∫
−∞

dv

2π

∞∫
v+ε

du

2π
, (B.21)

and the fact that sign (u, v) is symmetric in v together with the freedom to switch the labeling

of integration variables. Now the integrals over v in (B.20) can be performed. Combining the

remaining u integrals, we obtain

8L

µ
lim
ε→0

− ε∫
0

du

(2π)2

s̃ (u)

sinhu
arctanh

(
u

u+ ε

)
+

1

2

∞∫
ε

du

(2π)2

s̃ (u)

sinhu
ln

(
1− 2ε

ε+ 2u

) (B.22)

with

s̃ (u) = s (u, u) coth

(
µL

2
coshu

)
. (B.23)

7This regularization comes from regularizing the contour integral around the overlapped pole and then

performing the change of variables.
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Both integrands approximate Dirac δ-like peaks centered at u = 0 in the ε→ 0 limit. Thus,

we approximate the regular part s̃ (u) with its value at the top of the peaks, and integrate

analytically the singular part. Finally, taking the ε→ 0 limit, we get

L2

2

∞∫
−∞

du

2π

∞∫
−∞

dv

2π
(sing (u, v) + sing (v, u)) =

L

µ (µ2 + q2)π2
coth

(
µL

2

)(
Li2 (−2)

+
1

2
Li2

(
1

4

)
− π2

6
+ (ln 2)2

)
(B.24)

where Li2 (x) is the dilogarithm function

Li2 (x) =

∞∫
0

t

et/x− 1
, x ∈ C \ {x ∈ R ∧ x ≥ 1} . (B.25)

Using the above integral representation, the Abel identity

Li2

(
x

1− y

)
+ Li2

(
y

1− x

)
− Li2

(
xy

(1− x) (1− y)

)
= Li2 (x) + Li2 (y) + ln (1− x) ln (1− y)

(B.26)

with x = −1 and y = 1
2 , and the special value

Li2 (−1) = −π
2

12
, (B.27)

we obtain

Li2 (−2) +
1

2
Li2

(
1

4

)
− π2

6
+ (ln 2)2 = −π

2

4
(B.28)

Putting everything together, the double sum of (5.28) can be written as∑
k1,k2∈Z

D1 (k1, k2) = C1 + C2 + C∆ + Cr + Cord + Csing (B.29)

where:

• C1 and C2 contains the single sums separated in (5.28). Using (5.27) and (5.29),

C1 =
L

ωnqµ
2

 1

2π
+ µL

∞∫
−∞

du

2π

eµL coshu

(eµL coshu − 1)
2 coshu

 (B.30)

C2 =
L

4ω2
nqµ

coth

(
µL

2

)
− L

2ωnq

∞∫
−∞

du

2π

coth
(
µL
2 coshu

)
ω2
nq + µ2 sinh2 u

(B.31)

• C∆ stands for the term coming from (B.7)

C∆ = −
∞∫
−∞

du

2π

L

ωnq
coth

(
µL coshu

2

)
q2 sinh2 u(

q2 + µ2 cosh2 u
)2 (B.32)
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• Cr contains the residual terms emerging from the contour deformation of the integral

representation of SΘ appearing in (B.10)

Cr =

∞∫
−∞

du

2π

L2

µ
coth

(
µL coshu

2

)
eµL coshu

eµL coshu − 1

√
µ2 + q2 coshu(

q2 + µ2 cosh2 u
) (B.33)

• Cord is the symmetrized double integral contribution (B.17)

Cord = −L
2

µ2

3

8
+

∞∫
−∞

du

2π

1

eµL coshu − 1

µ
√
µ2 + q2 coshu

q2 + µ2 cosh2 u

 (B.34)

• Finally, Csing is the symmetrized singular contribution (B.24)

Csing = − L

4µ (µ2 + q2)
coth

(
µL

2

)
. (B.35)

Combining these terms, significant simplifiactions can be achieved. First of all, notice that

Csing is cancelled by a similar term appearing in C2. As a next step, we combine C∆ and the

integral part of C2, and perform integration by parts. The resulting boundary term cancels

the explicit term appearing in C1. Cr contains an infinite-volume term that can be separated

and integrated analytically. Then, the remaining part of the integral in Cr, the integral part

of Cord, the integral appearing in C1 and the result of the previous integration by parts can be

combined beautifully together and lead to the following nice representation of the full double

sum: ∑
k1,k2

D1 (k1, k2) =
L2

µ2

1

8
+ 3

∞∫
−∞

du

2π

eµL coshu

(eµL coshu − 1)
2

1

cosh (u− θ)

 (B.36)

where we introduced θ as the rapidity variable q = µ sinh θ.

B.2 Expansion of the form factor

We first provide an integral representation of the double sum
∑

k1,k2
D2 (k1, k2) , we then

calculate the large volume expansion of the full form factor 〈0 (b) |ϕ| q (b)〉.
The transformation of ∑

k1,k2

D2 (k1, k2) (B.37)

with

D2 (k1, k2) =
1

ωk1ωk2ωk1+k2−nq

[( 1

ωk1 + ωk2 + ωk1+k2−nq + ωnq

)2

−
( 1

ωk1 + ωk2 + ωk1+k2−nq − ωnq

)2
]

(B.38)
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can be started in parallel to the steps done in the case of D1 (k1, k2). We first separate the

k2 = nq terms analogously to (5.28)∑
k1,k2∈Z

D2 (k1, k2) =
∑
k1∈Z

∑
k2 6=nq

D2 (k1, k2)− 1

4ωnq

∑
k1∈Z

1

ω4
k1

+
1

4ωnq

∑
k1∈Z

1

ω2
k1

1(
ωk1 + ωnq

)2
(B.39)

These separated terms can be easily calculated using the derivative of (5.29) with respect to

A and the formula ∑
k∈Z

1

ω4
k

=
2L coth

(
µL
2

)
+ µL2csch2

(
µL
2

)
8µ3

. (B.40)

Now we turn the sum over k1 into an integral. This can be done in a straightforward

manner. Using the variable κ2 = 2πk2L
−1, we get

∑
k1∈Z

∑
k2 6=nq

D2 (k1, k2) =
∑
k2 6=nq

L

2π

∞∫
−∞

du coth

(
µL

2
coshu

)(
Ξ
(
k2, ωnq , q

)
+Ξ

(
k2, ωnq ,−q

)
− Ξ

(
k2,−ωnq , q

)
− Ξ

(
k2,−ωnq ,−q

))
(B.41)

with

Ξ (k2, A, q) =

(√
µ2 + (q − κ2)2 +

√
µ2 + (κ2 + iµ coshu)2 − iµ sinhu+A

)−2

√
µ2 + (q − κ2)2

√
µ2 + (κ2 + iµ coshu)2

. (B.42)

By means of equivalent transformations including a shift of the summation variable

κ2 = κ̃2 + q, symmetrization of the integrand and algebraic manipulations, (B.41) simpli-

fies miraculously to a sum of two terms, plus the same sum with the sign of q switched, each

term containing only a single pair of branch cuts:

∑
k1∈Z
k2 6=nq

D2(k1, k2) =−
Lωnq
16µ2

∑
k2 6=0

∞∫
−∞

du

2π

[
coth

(µL
2 coshu

)
κ2

2(κ2 − q + iµ coshu)2(q + iµ coshu)2

×
(
G(κ2 − q, q) + G(−κ2 − iµ coshu, q)

)
+ (q → −q)

]
(B.43)

where

G (x, q) =
4µ2 (x+ q)2 − 2iµP1 (x, q) coshu− 2P2 (x, q) [2 (x+ q) cosh 2u+ iµ cosh 3u]√

µ2 + x2

P1 (x, q) = 4x3 + 6x2q + x
(
µ2 + 4q2

)
− µ2q

P2 (x, q) = 2x2q − xµ2 + µ2q

Now we proceed to transform the remaining sum (over k2) in these terms.
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Let us first examine the sum containing G (κ2 − q). The arising complex function contains

the usual set of poles on the real line and a pair of branch cuts starting from z = ±iµ + q

to complex infinity. It also has one pole of order 3 at z = 0 and another of order 2 at

z = q − iµ coshu. The latter is overlapped by the lower branch cut. After the deformation

of the contour, the pole of order 3 is encircled in the clockwise direction. Other finite terms

come from the overlapped second-order pole which cancel the divergences of the branch cut

integral. We obtain

−
Lωnq
16µ2

∑
k2 6=0

∞∫
−∞

du

2π

coth
(
µL
2 coshu

)
G (κ2 − q, q)

κ2
2 (κ2 − q + iµ coshu)2 (q + iµ coshu)2 = I+

1 (q)+I−1 (q)+R1 (q) (B.44)

where

I−1 (q) = −
L2ωnq
8µ2

∞∫
−∞

du

2π

∫
dv

2π

[
coth

(µL
2

coshu
) eµL cosh v

eµL cosh v − 1

G (coshu, cosh v, q)

(coshu− cosh v)2

+ sing1 (u, v, q)

]
(B.45)

I+
1 (q) = −

L2ωnq
8µ2

∞∫
−∞

du

2π

∫
dv

2π

coth
(
µL
2 coshu

)
eµL cosh v − 1

G (coshu,− cosh v, q)

(coshu+ cosh v)2 (B.46)

R1 (q) =
L

192µ2

∞∫
−∞

du

2π

coth
(
µL
2 coshu

)
PR1 (coshu, q)

(q − iµ coshu)4 (q + iµ coshu)2 (B.47)

with

G (x, y, q) =
−4

(q + iµx)2 (q − iµy)2

[
µ2xy

(
−1 + x2 − xy + y2

)
+ q2

(
1− xy − y2 + x2

(
−1 + 2y2

))
+iµq

(
x− y + y3 − 2x2y3 + x3

(
−1 + 2y2

))]
(B.48)

sing1 (u, v, q) =− 2 coth

(
µL

2
coshu

)
eµL coshu

eµL coshu − 1

{
u2 + v2

(u2 − v2)2

G (coshu, coshu, q)

sinh2 u

+
u

sinhu

1

u2 − v2

[(
µL

eµL coshu − 1
+

coshu

sinh2 u

)
G(coshu, coshu, q)

−∂G (coshu, y, q)

∂y

∣∣∣∣
y=coshu

]}
(B.49)

and PR1 (x, q) is some complicated polynomial of x,q,L and µ.

We can immediately calculate the infinite volume limit and first Lüscher correction of

(B.44) and its opposite momentum pair. For the infinite volume limit, we can analytically
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take both integrals in (B.45) and (B.46). For the first Lüscher correction, one integral can be

done analytically, and we are led to a formula containing only a single integral, as expected.

We note that higher Lüscher corrections seem to be much harder to get in the form of explicit

single-integral formulas. In the following, we use the rapidity variable q = µ cosh θ.

The term I+
1 (q) + I+

1 (−q) does not contribute to the infinite volume limit, and gives a

first order Lüscher contribution

Ĩ+
1 =

L2

πµ3

∞∫
−∞

du

2π

e−µL coshu

(cosh 2θ + cosh 2u)3

[
− cosh θ

(
(3 + cosh 4θ) cosh 2u+ cosh 2θ(3 + cosh 4u)

)
+π coshu(−3 + cosh 4θ − 2 cosh 2θ cosh 2u) sinh2 u

−u cosh θ(−3 + cosh 4θ − 2 cosh 2θ cosh 2u) sinh 2u

−θ cosh θ(−3 + cosh 4u− 2 cosh 2θ cosh 2u) sinh 2θ

]
(B.50)

The term I−1 (q) + I−1 (−q) has the infinite volume limit

I∞1 =
L2
(
π2 − 4

)
cosh θ

8π2µ3
(B.51)

and admits a first Lüscher correction

Ĩ−1 =
3L2

πµ3

∞∫
−∞

du

2π

e−µL coshu

(cosh 2θ + cosh 2u)3

[
− cosh θ

(
(3 + cosh 4θ) cosh 2u+ cosh 2θ (3 + cosh 4u)

)
−π coshu (−3 + cosh 4θ − 2 cosh 2θ cosh 2u) sinh2 u

−u cosh θ (−3 + cosh 4θ − 2 cosh 2θ cosh 2u) sinh 2u

−θ cosh θ (−3 + cosh 4u− 2 cosh 2θ cosh 2u) sinh 2θ

]
(B.52)

The residual part R1 (q) +R1 (−q) contributes to the infinite volume limit with

R∞1 = −L
2 cosh θ

8µ3
+
L (−1 + 2θ coth 2θ)

µ4π sinh2 2θ
(B.53)

while its first Lüscher correction is

R̃1 = − L

µ4

∞∫
−∞

du

2π

e−µL coshu

(cosh 2u+ cosh 2θ)4

[
− 16 + 2 cosh 4θ + cosh 6u cosh 2θ

+ cosh 4u(2− 4 cosh 4θ) + cosh 2u (−18 cosh 2θ + cosh 6θ)

]

− L2

µ3

∞∫
−∞

du

2π

e−µL coshu

(cosh 2u+ cosh 2θ)4
2 coshu sinh2 u

×
[
4 cosh 2u+ cosh 2θ(4 + cosh 4u− cosh 4θ)

]
(B.54)
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To deal with the other sums of (B.43) containing G (−κ2 − iµ coshu, q), it is expedient

to desingularize the summand with a small auxiliary parameter a, in the following way:

−
Lωnq
16µ2

∑
k2 6=0

∞∫
−∞

du

2π

coth
(
µL
2 coshu

)
G (−κ2 − iµ coshu, q)

(κ2 − µa) (κ2 + µa) (κ2 − q + iµ coshu)2 (q + iµ coshu)2

= I+
2a (q) + I−2a (q) +R2a (q) (B.55)

Here I+
2a (q) contains the upper branch cut integral surrounding a single pole, similar to the one

arising in the computation of D1 (k1, k2), plus the sum of residues r2a (u, v, q) of regularized

poles at z = ±µa. I−2a (q) denotes the lower, regular branch cut integral, while R2a (q) is the

residual term coming from the pole at z = q− iµ coshu. The limit a→ 0 can immediately be

taken for I−2a (q) and R2a (q), and the corresponding Lüscher- and infinite volume corrections

are easily obtained (after the final momentum-combination) as

I−,∞2 = −
L2
(
4 + π2

)
cosh θ

8µ3π2
(B.56)

Ĩ−2 = 2Ĩ+
1 (B.57)

R∞2 =
L2 cosh θ

4µ3
(B.58)

R̃2 =
6L2

µ3

∞∫
−∞

du

2π

e−µL coshu

(cosh 2u+ cosh 2θ)3 coshu sinh2 u

×
[
3 + cosh (2 (u− θ))− cosh 4θ + cosh (2 (u+ θ))

]
. (B.59)

Extracting the finite volume corrections of I+
2a (q) is a harder task. The form of the term

is

I+
2a (q) =

L2ωnq
8µ2

∞∫
−∞

du

2π

∞∫
−∞

dv

2π

[
coth

(
µL

2
coshu

)
eµL coshu

eµL coshu − eµL cosh v

× G (coshu, cosh v, q)

a2 + (coshu− cosh v)2 + sing2a (u, v, q)

]
+ r2a (q) (B.60)

with

sing2a (u, v, q) = − 2

a2µL
coth

(
µL

2
coshu

)
u

sinhu

G (coshu, coshu, q)

u2 − v2
(B.61)

To obtain the first Lüscher correction, we apply the symmetrization transformation (B.15)

to the double integral appearing in (B.60). The form of the resulting integral is analogous to
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what we already saw in the case of the one-particle energy. In contrast to that calculation,

now the part involving the function sing2a (u, v, q) does not contribute to the value of the

integral, since a factor sinh2 u coming from G (coshu, coshu) assures that the regular part of

the integrand at u = 0 is zero. The symmetrization removes the singularity of the integrand,

and one can notice that there is no first order Lüscher term in the resulting integral. This

means that any first order Lüscher correction of I+
2a (q) must come solely from the residual

term r2a (q). The complication is that both r2a (q) and the double integral part of I+
2a (q) are

divergent in the a→ 0 limit, even after symmetrization. In the following, we will outline the

circumvention of this problem.

In the case of the double integral part, the root of the problem is that even though the

series expansion starts with O
(
a0
)
, the integrand becomes divergent at v → ±u. At this

point, it is convenient to reintroduce the variables x = coshu, y = cosh v. In terms of these,

we can write

I+
2a − r2a (q) =

∞∫
1

dx

∞∫
1

dy
f (x, y)

a2 + (x− y)2 (B.62)

and we separate this integral as

∞∫
1

dx

∞∫
1

dy
f (x, y)

a2 + (x− y)2 = J1 + J2 (B.63)

with

J1 =

∞∫
1

dx

∞∫
1

dy
1

a2 + (x− y)2

(
f (x, y)− f (x, x)− (y − x)

∂f

∂y
(x, y = x)

)
(B.64)

J2 =

∞∫
1

dx

∞∫
1

dy
1

a2 + (x− y)2

(
f (x, x) + (y − x)

∂f

∂y
(x, y = x)

)
(B.65)

Now the integrand of J1 remains regular after the a→ 0 limit and the related integrals can be

performed analytically. On the other hand, J2 can be converted further by returning to the

integration measure
∫∞
−∞ dv, and shifting the contour corresponding to a change of variables

v = ṽ − iπ . Upon shifting the contour, we have to encircle another pair of poles appearing

at z = −acosh (−ia+ x) and z = acosh (ia+ x), respectively. We will call their contribution

r3a (q). Aside from the residual terms, the shifted integrals are again finite at a → 0 and

can be evaluated analytically. After momentum combination, these integrals yield the simple

infinite-volume contributions

J1 = −L
2 cosh θ

16µ3
(B.66)

J2 − r3a (q) =
L2 cosh θ

4π2µ3
(B.67)
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All that remains to be done is the evaluation of the a→ 0 limit of the residual contribution

r2a (q) + r3a (q). These terms can be expressed in terms of the integrals

Jk (a, q) =

∞∫
1

dy jk (a, q, y) (B.68)

jk (a, q, y) =
(y − 1)k

q2 + µ2y2

1√
1 + a2 + 2iay − y2

1√
y2 − 1

(B.69)

as follows:

r2a (q) + r3a (q) =

∞∫
1

dy

[
1

a2

(
ξ22 (q)<e [j2 (a, q, y)] + ξ21 (q)<e [j1 (a, q, y)]

)
+

1

a

(
ξ11 (q)=m [j1 (a, q, y)] + ξ10 (q)=m [j0 (a, q, y)]

)
+ξ0 (q)<e [j0 (a, q, y)]

]
+O (a) (B.70)

Next, we can separate these integrals analogously to (B.63)-(B.65) into a part which can be

expanded in a up to O
(
a0
)

preserving finiteness and another part that needs to be calculated

explicitely in the regularization. Fortunately the indefinite integrals
∫
dy jk (a, q, y) can be

expressed for k = 0, 1, 2 in terms of elliptic integrals:∫
dy j0 (a, q, y) =

2

qµ2 cosh2 θ
√

4 + a2
{qF (c2 (a) | c3 (a))

+iµ [Π (c1 (a, q) , c2 (a) | c3 (a))−Π (c1 (a,−q) , c2 (a) | c3 (a))]} (B.71)∫
dy j1 (a, q, y) = − 2

qµ2 cosh2 θ
√

4 + a2
[(iµ+ q) Π (c1 (a, q) , c2 (a) | c3 (a))

+ (−iµ+ q) Π (c1 (a,−q) , c2 (a) | c3 (a))] (B.72)∫
dy j2 (a, q, y) =

2i

qµ3 cosh2 θ
√

4 + a2

[
(µ− iq)2 Π (c1 (a, q) , c2 (a) | c3 (a))

− (µ+ iq)2 Π (c1 (a,−q) , c2 (a) | c3 (a))
]

(B.73)

These formulas enable us to calculate the definite integrals (B.68) by taking the appropriate

limits. In taking these limits, sometimes it is useful to use the identity

Π
(
n, i sinh−1 (tan z) | 1−m

)
=

i

1− n
[F (z | m)− nΠ (1− n, z | m)] (B.74)

It should be noted, however, that Newton-Leibniz formula assumes the starting and ending

point of the integration lie on the same Riemann sheet of the function. Any possible branch

cuts crossed along the line of integration need to be taken care of by hand. In the above
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formulas,

c1 (a, q) = − a (µ− iq)
(2i+ a) (µ+ iq)

(B.75)

c2 (a) = sin−1

(√
(2i+ a) (1 + y)

a (−1 + y)

)
(B.76)

c3 (a) =
a2

4 + a2
(B.77)

One then needs to make a series expansion of the Jk in a, which can be performed by a

lengthy calculation. This yields

<eJ0 =
π

4µ2 cosh2 θ
+
a
(

1 + ln
(

a
2 cosh2 θ

))
2µ2 cosh4 θ

−
a2π

(
21− 2 sinh2 θ + sinh4 θ

)
64µ2 cosh6 θ

+O
(
a3
)

<eJ1 = −
a
[
4 sinh θ tan−1 (sinh θ) + sinh2 θ ln

(
a
8

)
+ ln

(
2a

cosh4 θ

)]
4µ2 cosh4 θ

+
a2π

(
12 + cosh2θ

)
64µ2 cosh4 θ

+O
(
a3
)

<eJ2 = −
a
[
cosh2 θ − 4 sinh θ tan−1 (sinh θ) + 2

(
1− sinh2 θ

)
ln
(

cosh θ
2

)]
2µ2 cosh4 θ

− a23π

32µ2 cosh2 θ
+O

(
a3
)

(B.78)

=mJ0 =
2 tan−1 (sinh θ) + sinh θ ln

(
a
8

)
2µ2 sinh θ cosh2 θ

− aπ

4µ2 cosh4 θ
+O

(
a2
)

=mJ1 = −
tan−1 (sinh θ) + sinh θ ln

(
cosh θ

2

)
µ2 sinh θ cosh2 θ

+
aπ

8µ2 cosh2 θ
+O

(
a2
)

(B.79)

The expanded part of (B.70) can be integrated analytically (surprisingly, even the terms

containing the Lüscher correction e−µL coshu possess explicit integral formulas in terms of

exponential integrals). As a result, all singular terms cancel, and we arrive at

r2a (q) + r3a (q) = −
L
(
1− sinh2 θ

)
16µ4 cosh3 θ

+
e−µLL

(
−1 + sinh2 θ + Lµ cosh2 θ

)
8µ4 cosh3 θ

(B.80)

At this point, we are in the position to collect all contributions of the form factor (5.43).

First of all, up to first Lüscher order, the explicit terms in N0 do not contribute. The sum∑
k S1 (k) can be transformed using (5.27), (5.29) and (5.45). Since the sum is multiplied by

ρ̄, we only need to consider its infinite volume part, leading to terms of first Lüscher order.

After some cancellations, we find∑
k∈Z

S1 (k) =
2L

µ4π cosh2 θ
+O

(
e−µL

)
(B.81)

According to (5.30), the double sum
∑

k1,k2
D1 (k1, k2) admits the Lüscher expansion

∑
k1,k2

D1 (k1, k2) =
L2

8µ2
+

3L2

µ2

∞∫
−∞

du

2π

e−µL coshu

cosh (u− θ)
+O

(
e−2µL

)
(B.82)
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To deal with the nontrivial sum
∑

k1,k2
D2 (k1, k2), we first collect the explicit terms (i.e.

those that can be expressed without integrals) appearing in the expansion. These terms come

from the following places:

• The single sums separated in (B.39) as well as the regularized residual term r2a (q) +

r3a (q) of (B.80) contain explicit terms proportional to L, Le−µL and L2e−µL.

• The residual term R∞1 defined in (B.53) contains terms proportional to L and L2.

• The terms coming from the quantities I∞1 , I−,∞2 , R∞2 , J1, J2 − r3a (q) (appearing in

(B.51), (B.56), (B.58), (B.66) and (B.67), respectively) only contain terms proportional

to L2.

The above terms combine nicely so that all explicit contributions proportional to L, Le−µL

and L2e−µL cancel. All other terms sum up to∑
k1,k2

D2 (k1, k2) =
3L2

µ3

(
1

48
− 1

4π2

)
cosh θ +O

(
e−µL

)
(B.83)

We now proceed to combine the various integral contributions into a more transparent

form. First, Ĩ−1 , Ĩ+
1 and Ĩ−2 of (B.52), (B.50) and (B.57) can be combined, and after trigono-

metric manipulations and the exploitation of the symmetry of the integration domain, we

find

Ĩ+
1 + Ĩ−1 + Ĩ−2 =

3L2 cosh θ

µ3π2

∞∫
−∞

du

(
w sinhw

cosh3w
− 1

cosh2w

)
e−µL coshu (B.84)

where

w = u− θ. (B.85)

The integrand of the residual term R̃1 of (B.54) contains a part proportional in Le−µL coshu.

This term can be combined with a similar integrand coming from the first Lüscher correc-

tion Z̃ of the separated single sum
∑

k1∈Z
1
ω2
k1

1

(ωk1
+ωnq)

2 . These can be integrated by parts,

yielding an integrand that is proportional to L2e−µL coshu. This resulting integrand can be

combined with the remaining part of R̃1 and also with R̃2 appearing in (B.59), and the result

can be transformed using both trigonometric identities and the symmetry of the integration

domain, to the following form

R̃1 + R̃2 + Z̃ =
3L2

2πµ3

∞∫
−∞

du

(
coshu

cosh2w
− cosh θ

cosh3w

)
e−µL coshu (B.86)

Using the above formulas, we can express the form factor as a function of the S-matrix

parameter α

〈0 (b) |ϕ| q (b)〉 =
1√

2Lµ cosh θ

{
1− α

∫
du

2π

[
e−µL coshu

cosh2 θ

]
+ α2

(
1

48
+

1

24 cosh2 θ
− 1

4π2

)
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+α2

∞∫
−∞

du

2π
e−µL coshu

[
sinhu sinh θ

cosh2 θ cosh2w
+

2

cosh2 θ coshw
− 1

cosh3w

+
2

π

(
w sinhw

cosh3w
− 1

cosh2w

)]}
(B.87)

C Lagrangian perturbation theory

In section 4, we have derived the Lüscher corrections for the sinh-Gordon model up to the

second order in the coupling constant α. In this appendix, we would like to check these

formulas by using Lagrangian perturbation theory.

The theory is defined on a 2-dimensional infinite Euclidean cylinder with coordinates

x = (t, x), where the space variable x is periodic as x ∼ x + L and the Euclidean time

t is infinite. The momentum for a particle on the cylinder is q = (ω, q) with the spatial

component q = 2πn/L (n is an integer). We will use the measure
∫ d2q

(2π)2 =
∞∑

n=−∞

∫∞
−∞

dω
2π for

Fourier transformation integrals.

The sinh-Gordon Lagrangian density is

L =
1

2
∂νϕ∂νϕ+

µ2

8πb2

[
cosh(

√
8πbϕ)− 1

]
=

1

2
∂νϕ∂νϕ+

µ2

2
ϕ2 + λϕ4 +

sλ2

µ2
ϕ6 + . . . , (C.1)

where λ = πµ2b2

3 , s = 4/5 and µ is a Lagrangian mass parameter. The coupling b is related

to the bootstrap parameter α by

α = sin
πb2

1 + b2
= πb2 − πb4 + . . . . (C.2)

For the moment we leave the parameter s free, in order to see whether the sinh-Gordon model

is special among the scalar models with only ϕ4 and ϕ6 couplings. The Feynman rules for

(C.1) are

q
=

1

L(q2 + µ2)
, = −4!Lλ, = −6!L

sλ2

µ2
, (C.3)

where q2 = ω2 + q2.

We now are ready to calculate the 2-point function

Γ(q) =
1

L

∫
d2xeiq·x〈ϕ(x)ϕ(0)〉 (C.4)

to obtain the exact 1-particle energy and form factor. The former is given by the position of

the pole and the latter by using the formula

F2(q) = lim
ω→iE1(q)

[E1(q) + iω]Γ(q). (C.5)
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The 1-loop corrected propagator can be calculated as

= − 12λZ(µ)

L(q2 + µ2)2
, (C.6)

where Z(µ) = 〈ϕ2(0)〉0 = Z∞ + 1
4ζ(µ) is the amplitude of only the loop part in the above

diagram. Z∞ is the contribution of the zero Fourier mode which can be calculated using

dimensional regularization in D = 2− 2ε dimensions:

Z∞(µ) =
1

4πε
+

1

4π
[−γ + ln(4π)] +

1

2π
ln
κ

µ
, (C.7)

where γ is the Euler constant and κ is a mass parameter related to the regularization. ζ is the

contribution from the non-zero Fourier modes. It is responsible for the finite volume effects

and is given by

ζ(µ) =
2

π

∫ ∞
−∞

dθ

eµL cosh θ − 1
. (C.8)

We have been brief describing the 1-loop calculation of Z(µ) because it was obtained by the

same methods which we will discuss below for the case of the 2-loop sunset diagram.

There are 4 diagrams responsible for the 2-loop corrections to the propagator:

(a)

=
144λ2Z2(µ)

L(q2 + µ2)3
,

(b)

=
96λ2W (q2, q;µ)

L(q2 + µ2)2
,

(C.9)

(c)

= −144λ2Z(µ)Z ′(µ)

L(q2 + µ2)2
,

(d)

= − 90sλ2Z2(µ)

Lµ2(q2 + µ2)2
.

(C.10)

In the above formulae,

Z ′(µ) =
∂Z(µ)

∂µ2
= Z ′∞(µ) +

1

4
ζ ′(µ) = − 1

4πµ2
+

1

4
ζ ′(µ), (C.11)

which shows that Z ′ is finite. Since the diagrams (a), (c) and (d) all depend on Z(µ), so we

only need to calculate the sunset diagram (b). The loop amplitude of the sunset diagram is
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W (q2, q;µ) which can be calculated as

W (q2, q;µ) =
1

L2

∑
n1,n2

+∞∫∫
−∞

dω1

2π

dω2

2π

1

(q2
1 + µ2)(q2

2 + µ2)[(ω1 + ω2 − ω)2 + (q1 + q2 − q)2 + µ2]
,

(C.12)

where q1,2 = 2πn1,2/L and eiqL = 1.

Before we perform the calculation for W (q2, q;µ), we would like first to find how the

1-particle energy and form factors are related to the loop corrections. W (q2, q;µ) can also be

divided into its infinite volume limit and an L-dependent part as W (q2, q;µ) = w(q2;µ) +

σ(q2, q;µ), where the infinite volume limit part w(q2;µ) depends only on q2 due to Euclidean

invariance.

The inverse propagator up to two loops is

Γ−1(q) = L

[
q2 + µ2 + 4πµ2b2Z(µ) + π2b4

(
− 32µ4

3
W (q2, q;µ) + 16µ4Z(µ)Z ′(µ)

+ 10sµ2Z2(µ)

)]
. (C.13)

We will use the infinite volume physical mass m instead of the Lagrangian mass parameter

µ in the following, since the former is also used in the bootstrap description. In terms of

the physical mass, the infinite volume 1-particle energy is E(q) =
√
q2 +m2 = m cosh θ to

all orders. Then we can eliminate µ2 by requiring that m2 is the pole of 2-point correlation

function in the infinite volume limit: limL→∞ Γ−1(iE(q), q) = 0, which gives us an equation

relating m2 to µ2. By expanding µ2 as µ2 = m2 + αµ2
(1) + α2µ2

(2) and putting it into this

equation one can express µ2 as

µ2 = m2 − 4αm2Z∞(m) + α2

[
(16− 10s)m2Z2

∞(m)− 4m2

π
Z∞(m) +

32m4

3
w(−m2;m)

]
.

(C.14)

If we put (C.14) back into (C.13), we will find that the 2-loop inverse propagator is finite

only if s = 4/5, which means that the sinh-Gordon model is indeed special. The finite result

of the inverse propagator is

Γ−1(q) = L

[
q2 +m2 + αm2ζ + α2

(
32m4

3
w(−m2)− 32m4

3
W (q2, q) +m4ζζ ′ +

m2ζ2

2

)]
,

(C.15)

where we used some simplified notations that do not display the dependence on m such as

w(−m2) = w(−m2;m), W (q2, q) = W (q2, q;m) and ζ = ζ(m), also remember that ζ ′(m) =

∂ζ(m)/∂m2.

Then the 1-particle energy is just the pole of the above which is

E1(q) = E(q) +
αm2ζ

2E(q)
+

α2

2E(q)

(
m4ζζ ′ +

m2ζ2

2
− m4ζ2

4E2(q)
− 32m4

3
σ(iE(q), q)

)
. (C.16)
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We will write σ(ω, q) instead of σ(q2, q) from now on. The form factor can be obtained from

(C.5) as

F(q) =
1√

2LE(q)

[
1− αm2ζ

4E2(q)
+ α2

(
3

32

m4ζ2

E4(q)
− E

(2)
1 (q)

2E(q)
− 8im4

3E(q)

∂W

∂ω
(iE(q), q)

)]
, (C.17)

where E
(2)
1 denotes the second order part of E1(q) in the α expansion (C.16). We can find

the infinite volume form factor from limL→∞F(q) =
√

2πF1/
√
LE(q) as

F1 =
1√
4π

(
1 +

16m4α2

3
w′(−m2)

)
. (C.18)

Then one can also formulate F in terms of F1 as

F(q) =

√
2πF1√
LE(q)

[
1− αm2ζ

4E2(q)
+ α2

(
3

32

m4ζ2

E4(q)
− E

(2)
1 (q)

2E(q)
− 8im4

3E(q)

∂σ

∂ω
(iE(q), q)

)
+ . . .

]
,

(C.19)

By comparing (A.22) to the result of the Lagrangian perturbation theory (C.16), one has

ξ1 =
16m2

3
σ(iE(q), q). (C.20)

This is one of the key equations which we will check below. We will do it in two steps. First

we will check it in the Lüscher limit, in which E
(2)
1 (q) and the second order part of the form

factor δ(2)(q) will be simplified to

E
(2)
1 (q) = −16m4

3E(q)
σ̄(iE(q), q), δ̄(2)(q) = −E

(2)
1 (q)

2E(q)
− 8im4

3E(q)

∂σ̄

∂ω
(iE(q), q). (C.21)

In the following, we will calculate W (q2, q;m) explicitly to get the finite volume cor-

rections on both the 1-particle energy and the form factor. Using the Poisson resummation

formula

1

L

∑
ñ

g̃

(
2πñ

L

)
=
∑
n

g(nL) =
∑
n

∫
dp

2π
einLpg̃(p), (C.22)

we can reformulate W (q2, q;m) as

W (q2, q;m) =
∑
n1,n2

+∞∫∫
−∞

d2p1

(2π)2

d2p2

(2π)2

× eiL(n1p1+n2p2)

(p2
1 +m2)(p2

2 +m2)[(ω1 + ω2 − ω)2 + (p1 + p2 − q)2 +m2]
, (C.23)

where p1,2 = (ω1,2, p1,2). Next we introduce the Schwinger parameters α, β, γ and exponenti-

ate the propagators A, B and C using

1

ABC
=

∫ ∞
0

dα

∫ ∞
0

dβ

∫ ∞
0

dγ e−αA−βB−γC. (C.24)
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Doing the integrals for p1,2 we will get a result which depends on q2 and q. Since we only

need the result of W (q2, q;m) at a special value of q2, namely q2 = −m2, we define a function

f
(#)
n1,n2(q) (# = {σ, ∂σ}) which depends only on q as8

f (#)
n1,n2

(q) =

∫ ∞
0

dαdβdγ p(#)(α, β, γ) exp {Bn1,n2(q;α, β, γ)} , (C.25)

Bn1,n2 =−m2 (α+ β)(α+ γ)(β + γ)

∆
− L2

4∆

[
βn2

1 + αn2
2 + γ(n1 + n2)2

]
+
iLγq

∆
(n1β − n2α). (C.26)

Here ∆ = αβ + γ(α + β), p(σ) = 1
∆ and p(∂σ) = αβγ

∆2 . Then we can rewrite W (q2, q;m) and

∂m2W (q2, q;m) at the point ω = iE(q) as9

W (−m2, q;m) =
1

16π2

∑
n1,n2

f (σ)
n1,n2

(q), ∂m2W (−m2, q;m) =
1

16π2

∑
n1,n2

f (∂σ)
n1,n2

(q). (C.27)

It can be shown that fn1,n2 with non-negative indices n1, n2 is of Lüscher order n1 + n2. So

we can split the summation of n1, n2 into zero mode w which is its infinite volume limit, and

nonzero modes σ which represents the finite L corrections as

w(−m2) =
1

16π2
f

(σ)
0,0 , σ(iE(q), q) =

1

16π2

∑
n1,n2

′
f (σ)
n1,n2

(q), (C.28)

w′(−m2) = − 1

16π2
f

(∂σ)
0,0 ,

∂σ

∂ω
(iE(q), q) = − iE(q)

8π2

∑
n1,n2

′
f (∂σ)
n1,n2

(q), (C.29)

where the summation with a prime
∑
n1,n2

′ means that the term n1 = n2 = 0 is left out. One

can check that fn1,n2 has the following symmetry fn1,n2(q) = fn2,n1(−q) = f−n1,−n2(−q) =

fn1,−n1−n2(−q). With this we can express the primed summation in terms of fn1,n2 with

non-negative indices:∑
n1,n2

′
fn1,n2(q) = 3

∞∑
n=1

[fn,0(q) + fn,0(−q)] + 3

∞∑
n,k=1

[fn,k(q) + fn,k(−q)] . (C.30)

Now we are ready to compute the sunset diagram and compare the results of Lagrangian

perturbation theory with that of TBA. Sometimes it is more convenient to calculate the

integrations of {α, β, γ} via the Feynman parameters {x, y, z} which are related with the

former ones by {α, β, γ} = t {x, y, z} such that the integral will become∫ ∞
0

dα

∫ ∞
0

dβ

∫ ∞
0

dγ F(α, β, γ) =

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz δ(x+ y+ z− 1)

∫ ∞
0

t2dtF(xt, yt, zt).

(C.31)

8We have changed the sign of n2 in the expression of Bn1,n2 . We will also denote the integration of

Schwinger parameters as
∫∞

0
dαdβdγ for short hereafter.

9Note that ω = iE(q) is equal to q2 = −m2.
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Then it is easy to get the infinite volume limit of W :

w(−m2) =
1

64m2
, w′(−m2) =

π2 − 12

256π2m4
. (C.32)

So one has the infinite volume form factor by (C.18) as

F1 =
1√
4π

[
1 + α2

(
1

48
− 1

4π2

)]
. (C.33)

At the first Lüscher order, we have

σ̄(iE(q), q) =
3

16π2

[
f

(σ)
1,0 (q) + f

(σ)
1,0 (−q)

]
,

∂σ̄

∂ω
(iE(q), q) = −3iE(q)

8π2

[
f

(∂σ)
1,0 (q) + f

(∂σ)
1,0 (−q)

]
.

(C.34)

Using (C.21) and comparing with the previous results by TBA method, the above have to

satisfy

m2

π

[
f

(σ)
1,0 (q) + f

(σ)
1,0 (−q)

]
=

∫ ∞
−∞

du e−mL coshu 1

coshw
, (C.35)

−2m4

π

[
f

(∂σ)
1,0 (q) + f

(∂σ)
1,0 (−q)

]
=

∫ ∞
−∞

du e−mL coshu

[
sinhu sinh θ

cosh2 θ cosh2w
+

1

cosh2 θ coshw

− 1

cosh3w
+

2

π

(
w sinhw

cosh3w
− 1

cosh2w

)]
. (C.36)

In the above integrals w = u − θ. We have checked the relations (C.35) and (C.36) at zero

momentum only. In this case,

f
(σ)
1,0 (0) =

L

2m

∫ ∞
0

dαdβdγ

∆
exp

[
−mLβ + γ

2∆
[1 + (α+ β)(α+ γ)]

]
=

L

2m

∫ ∞
1

dre−mLrR(r),

(C.37)

where

R(r) =

∫ ∞
0

dαdβdγ
1

∆
δ

(
r − β + γ

2∆
[1 + (α+ β)(α+ γ)]

)
. (C.38)

After using the delta function a double integral remains, which can be done analytically

resulting R(r) = 2π arctan(
√
r2 − 1). Then by integration by parts, we have

f
(σ)
1,0 (0) =

L

2m

∫ ∞
1

dre−mLrR(r) =
π

m2

∫ ∞
1

dre−mLr
1

r
√
r2 − 1

. (C.39)

By an analogous calculation we get

f
(∂σ)
1,0 (0) = − π

2m4

∫ ∞
1

dre−mLr

[√
r2 − 1

r3
+

2

π

(
arccosh(r)

r3
− 1

r2
√
r2 − 1

)]
. (C.40)

Setting r = coshu, one can see that the above two results are really consistent with (C.35)

and (C.36) for q = 0.
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The second step of checking (C.20) is to check the case with full finite volume effects

by summing all the nonzero Fourier modes for the 2nd order α expansion. This can be

done by rescaling the Schwinger parameters as {α, β, γ} → L
2m(n1 + n2ξ) {α, β, γ} where

ξ = (γ + i
√

∆)/(β + γ). After the rescaling, f
(σ)
n1,n2 and f

(∂σ)
n1,n2 become

f (σ)
n1,n2

=
L

2m

∫ ∞
0

dαdβdγ
(n1 + ξn2)

∆
An1Bn2 , (C.41)

f (∂σ)
n1,n2

=
L2

4m2

∫ ∞
0

dαdβdγ
αβγ(n1 + ξn2)2

∆2
An1Bn2 , (C.42)

where

A = exp

{
−mL

2∆
[(α+ β)(α+ γ)(β + γ) + (β + γ)− 2iβγq̃]

}
, (C.43)

B = exp

{
−mL

2∆

[
(γ + i

√
∆)(α+ β)(α+ γ) + (γ − i

√
∆) + 2iαγq̃

]}
, (C.44)

with q̃ = q/m = sinh θ. We can now perform the summation of these geometric series and

find

σ(iE(q), q) =
3L

32π2m

∫ ∞
0

dαdβdγ
1

∆

[(
A

(1−A)2
+

A

(1−A)2

B

(1−B)

+ξ
A

(1−A)

B

(1−B)2

)
+ (q → −q)

]
, (C.45)

∂σ

∂ω
(iE(q), q) =

−3iL2E(q)

32π2m2

∫ ∞
0

dαdβdγ
αβγ

∆2

[(
A(1 +A)

(1−A)3
+
A(1 +A)

(1−A)3

B

(1−B)

+2ξ
A

(1−A)2

B

(1−B)2
+ ξ2 A

(1−A)

B(1 +B)

(1−B)3

)
+ (q → −q)

]
. (C.46)

Unfortunately, the integration for Schwinger parameters in the above can not be done ana-

lytically. So we can only check (C.20) in the second step numerically. This is achieved by

writing (C.20) as the following form:

π

`

∫ ∞
−∞

du

cosh(u− θ)
e` coshu

(e` coshu − 1)2
=

∫ ∞
0

dαdβdγ
1

∆

∑
[n,k]

exp

{
− `

2∆

[
(α+ β)(α+ γ)(β + γ)

+ αk2 + βn2 + γ(n+ k)2
]}

cos

[
2πνγ

∆
(nβ − kα)

]
.

(C.47)

Here ` = mL, sinh θ = 2πν/` with ν an integer and
∑

[n,k] =
∑∞

n=1 +
∑∞

n,k=1. (C.47) is only

valid for integer ν.

D Equivalence of finite and infinite volume regularizations

In this appendix we show that the heuristic regularization we used in the bulk of the paper

is in fact completely equivalent to finite volume regularizations. Finite volume regularization
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for the finite temperature two-point function was suggested in [17, 18] and implemented for

states with small particle numbers. Here, on the one hand, we follow their calculations for

the term containing a finite volume one-particle and a two-particle state, while on the other

hand, we recover the analogous terms from our infinite volume regularization10.

In calculating the finite temperature two-point function

〈O(x, t)O〉L = Θ(x)
Tr[O(0, t)e−HxOe−H(L−x)]

Tr[e−HL]
+ Θ(−x)

Tr[OeHxO(0, t)e−H(L+x)]

Tr[e−HL]
(D.1)

we need to insert two complete system of states. We focus on the term which contains a

one-particle and a two-particle state.

D.1 Finite volume regularization

In the finite volume regularization scheme the space is compactified on the circle of length

R with periodic boundary condition. Terms are organized in powers of R and those having

positive powers cancel with the corresponding terms from the denominator leading to a finite

result in the R→∞ limit.

The rapidity un of a finite volume one-particle state satisfies the free quantization con-

dition

eip(un)R = 1 ; φ(un) ≡ p(un)R = 2πn (D.2)

The rapidities β1, β2 of a two particle state satisfy the Bethe-Yang equations

eip1RS12 ≡ eip(β1)RS(β1 − β2) = 1 ; eip2RS21 = 1 (D.3)

Having taken logarithm the states are labelled by the quantization numbers n1 and n2:

φ1 ≡ p1R− i logS12 = 2πn1 ; φ2 ≡ p2R− i logS21 = 2πn2 (D.4)

The contribution of these one- and two-particle states to the numerator of the two-point

function (D.1) has the structure

I =
∑

n,n1<n2

|〈u|O|β1, β2〉R|2g(u, β1, β2) (D.5)

where u ≡ un, βi ≡ βi(n1, n2) and we used the finite volume matrix element 〈u|O|β1, β2〉R.

In the calculation we will be quite general and do not specify g. It can be different for

the two-point function or for its Fourier transform but the equivalence between the finite

and infinite volume regularization will not be sensitive to it. Since for generic volumes the

quantized rapidities for one- and two-particle states never agree we can use the finite volume

non-diagonal form factor formula (2.14):

〈u|O|β1, β2〉R =
F3(u+ iπ, β1, β2)√
ρ1(u)ρ2(β1, β2)

+O(e−mR) (D.6)

10In order to be comparable to the calculations of [17, 18] we use their normalization for form factors, which

is related to the normalization 〈θ|θ′〉 = 2πδ(θ′ − θ).
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which is valid up to exponentially small volume corrections negligible in the R → ∞ limit.

The relevant quantity we would like to evaluate is then

I =
∑

n,n1<n2

F3(u+ iπ, β1, β2)F3(β2 + iπ, β1 + iπ, u)

ρ1(u)ρ2(β1, β2)
g(u, β1, β2) (D.7)

where the density of states are

ρ1(u) = φ′(u) ; ρ2(β1, β2) =
∂φ1

∂β1

∂φ2

∂β2
− ∂φ1

∂β2

∂φ2

∂β1
(D.8)

We further use that for scalar operators the form factor axioms relate F3(β2 + iπ, β1 + iπ, u)

to F3(u+ iπ, β1, β2) as

F3(β2+iπ, β1+iπ, u) = F3(u, β2−iπ, β1−iπ) = F3(u+iπ, β2, β1) = S21F3(u+iπ, β1, β2) (D.9)

In the following we turn the sums into integrals. We start with the sum for n. We use

the following identity∑
n

h(un)

ρ1(un)
=
∑
n

∮
Cn

du

2πi

ip′(u)R

1− e−ip(u)R

h(u)

ρ1(u)
=
∑
n

∮
Cn

du

2π

h(u)

1− e−ip(u)R
(D.10)

where the contour Cn is surrounding the pR = 2πn singularity. We then would like to open

the contours into C± which lie just above and below the real axis. In doing this contour

deformation singularities of the form factor on the real line at u = βi have to be taken

into account. We will collect these terms later, but now we focus on the shifted integrals.

Taking the R → ∞ limit on the upper contour we have 1
1−e−ip(u)R → 0, thus this term will

not contribute, while on the lower contour we have 1
1−e−ip(u)R → 1 and the shifted integral

u → u − iη remains. On this shifted u-contour the form factor F3(u + iπ, β1, β2) has no

singularity for any real βi, thus the other two summations, in the R→∞ limit, can be safely

turned into integrations
∑

n1<n2
→ 1

2

∫ dβ1

2π
dβ2

2π ρ2(β1, β2) leading to the shifted finite integrals

I− =
1

2

∫
du

2π

dβ1

2π

dβ2

2π
S(β2 − β1)F3(u+ iπ − iη, β1, β2)2g(u− iη, β1, β2) (D.11)

Now we focus on the singularities coming from the form factor at u = βi, which can be

written (in the normalization used in this appendix) as

F3(u+ iπ, β1, β2) =
i

u− β1
(1− S12)F1 +

i

u− β2
(S12 − 1)F1 + F c3 (u+ iπ, β1, β2) (D.12)

where the connected form factor was defined in eq. (3.17).

Let us start with the singularity at u = β1. We have simple and double poles:

S21F3(u+ iπ, β1, β2)2 = −S21(1− S12)2F 2
1

(u− β1)2
+ (D.13)

2S21i

(u− β1)
(1− S12)

(
i

u− β2
(S12 − 1)F1 + F c3 (β1 + iπ, β1, β2)

)
F1 + . . .
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where the dots represents terms regular at u = β1. Using that at the pole position 1 −
e−ip(β1)R = 1− S12, the contribution of the simple pole term at u = β1 gives

− 2S21

(
i

β1 − β2
(S12 − 1)F1 + F c3 (β1 + iπ, β1, β2)

)
F1g(β1, β1, β2)

ρ2(β1, β2)
(D.14)

In the double pole term we calculate the derivative ∂u
g(u,β1,β2)

1−e−ip(u)R |u=β1 leading to

i
(1− S21)F 2

1

ρ2(β1, β2)
∂ug(u, β1, β2)|u=β1 −

F 2
1 ρ1(β1)

ρ2(β1, β2)
g(β1, β1, β2) (D.15)

Observe that ρ1(β1) = mR coshβ1 is leading in the volume among all the terms. Its contribu-

tion is cancelled by a diagonal one-particle term in the denominator of the two point function

(D.1). Similar calculations for the pole at u = β2 leads to expressions, which can be obtained

from the previous ones by the β1 ↔ β2 replacement11.

Now we have to turn the remaining summations for n1 < n2 into integrations. We should

be careful with the diagonal terms and use∑
n1<n2

f(β1, β2) =
1

2

∑
n1,n2

f(β1, β2)− 1

2

∑
n1=n2

f(β1, β1) (D.16)

→ 1

2

∫
dβ1

2π

dβ2

2π
ρ2(β1, β2)f(β1, β2)− 1

2

∫
dβ1

2π
ρ1(β1)f(β1, β1)

Clearly, diagonal terms are supressed in the R → ∞ limit only if the summand is not pro-

portional to ρ1. That is, the divergent term in the R→∞ limit

IR = −F
2
1

2

∫
dβ1

2π

dβ2

2π
(ρ1(β1)g(β1, β1, β2) + ρ1(β2)g(β2, β1, β2)) (D.17)

which eventually will be cancelled by a term from the denominator, will lead to a finite

diagonal contribution

1

2

∫
dβ1

2π
ρ1(β1)

F 2
1

ρ2(β1, β2)
(ρ1(β1)g(β1, β1, β2) + ρ1(β2)g(β1, β1, β2))→ Id = F 2

1

∫
dβ

2π
g(β, β, β)

(D.18)

In the remaining terms we have

Ir =

∫
dβ1

2π

dβ2

2π
F1

[
i

β1 − β2
(1− S12)F1 (S21g(β1, β1, β2) + g(β2, β1, β2))

−S21F
c
3 (β1 + iπ, β1, β2)g(β1, β1, β2)− F c3 (β2 + iπ, β1, β2)g(β2, β1, β2)

]
+

∫
dβ1

2π

dβ2

2π
i(1− S21)F 2

1 (∂ug(u, β1, β2)|u=β1 − S12∂ug(u, β1, β2)|u=β2) (D.19)

11Actually g(β1, β1, β2) should be replaced with g(β2, β1, β2). In all the cases we considered however,

g(u, β1, β2) was symmetric in β1 and β2.
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Observe that, since S(β1 − β2) = −1 for β1 = β2, the integrand is not singular at all.

The terms I = I− + IR + Id + Ir are the generalizations of the result [17, 18] for generic

functions g(u, β1, β2). In the following we show how these contributions can be extracted

from an infinite volume calculation.

D.2 Infinite volume calculation

Let us calculate directly the contribution of the term having a one-particle and a two-particle

state in infinite volume:

I =
1

2

∫
du

2π

dβ1

2π

dβ2

2π
|〈u|φ|β1, β2〉|2g(u, β1, β2) (D.20)

The crossing relation of form factors is understood in the distributional sense [23]:

〈u|φ|β1, β2〉 = 2πδ(u− β1)F1 + S212πδ(u− β2)F1 + F3(u+ iπ − iε, β1, β2) (D.21)

As we introduced in the bulk of the paper we regulate the δ-functions as

2πδ(x) =
i

x+ iε
− i

x− iε
(D.22)

We will now show that it will be equivalent to the finite volume regularization. Using the

definition of the connected form factor (D.12) the pole contributions nicely combine together:

〈u|φ|β1, β2〉 = F c3 (u+ iπ − iε, β1, β2) + (D.23)

F1

(
i

u− β1 + iε
+

iS12

u− β2 + iε
− iS12

u− β1 − iε
− i

u− β2 − iε

)
In order to make contact with the finite volume calculation we shift the u contour to −iη,

with η > ε. This is a different contour deformation, what we used in Section 3, but is a

completely equivalent regularization. On the shifted contour we can take the ε → 0 limit,

which basically kills the δ functions and we arrive at:

1

2

∫
du

2π

dβ1

2π

dβ2

2π
S(β2 − β1)F3(u+ iπ − iη, β1, β2)2g(u− iη, β1, β2) (D.24)

which is just the same as the surviving C− contour’s contribution I−. In the following we

compare the remaining terms.

In shifting the contour we should pick up the contributions of the poles at u = β1 − iε
and at u = β2 − iε. In the following we focus on the integrand only. It is understood that we

integrate the expressions for β1 and β2. The pole at u = β1 − iε has the structure

S(β2 − β1)〈u|φ|β1, β2〉2 = − S21F
2
1

(u− β1 + iε)2
+

2iS21F1

u− β1 + iε
× (D.25)(

F c3 (u+ iπ − iε, β1, β2) +
iF1S12

u− β2 + iε
− iF1S12

u− β1 − iε
− iF1

u− β2 − iε

)
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The contribution of the double pole is

− 1

2
iS21F

2
1 ∂ug(u, β1, β2)|u=β1−iε (D.26)

while the simple pole gives

− F1S21

(
F c3 (β1 + iπ − 2iε, β1, β2) +

iF1S12

β1 − β2
+
F1S12

2ε
− iF1

β1 − β2 − 2iε

)
g(β1 − iε, β1, β2)

(D.27)

We also have similar contributions from the pole at u = β2 − iε, which can be obtained by

the β1 ↔ β2 transformation, (where we do not exchange the last two arguments of g ).

The divergent term in this formalism appears as

− F 2
1

2ε
(g(β1, β1, β2) + g(β2, β1, β2)) (D.28)

which is the analogue of IR. This term is cancelled by a diagonal one-particle term in the

denominator of the two-point function (D.1). By expanding the function g in ε and combining

with the double pole terms we get

iF 2
1

2
(1− S21)∂ug(u, β1, β2)|u=β1 +

iF 2
1

2
(1− S12)∂ug(u, β1, β2)|u=β2 (D.29)

The contributions of the connected form factors are

− F1 (S21F
c
3 (β1 + iπ, β1, β2)g(β1, β1, β2) + F c3 (β2 + iπ, β1, β2)g(β2, β1, β2)) (D.30)

There are two terms where we should be careful with the ε terms. There we use

1

β1 − β2 ∓ 2iε
= P 1

β1−β2

± iπδ(β1 − β2) (D.31)

The contribution of the δ-function is

2πF 2
1 δ(β1 − β2)g(β1, β1, β1) (D.32)

which is equivalent to the term Id. In the remaining terms the principal value description can

be omitted as the full integrand is regular at β1 = β2:

iF 2
1

1

β1 − β2
((1− S12)g(β2, β1, β2)− (1− S21)g(β1, β1, β2)) (D.33)

Clearly, summing up the results we completely agree with the integrand of the finite volume

regularization.
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