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The observation of Higgs boson production in association with a top quark pair (tt̄H),
based on the analysis of proton–proton collision data at a centre-of-mass energy of 13 TeV
recorded with the ATLAS detector at the Large Hadron Collider, is presented. Using data
corresponding to integrated luminosities of up to 79.8 fb−1, and considering Higgs boson
decays into bb̄,WW∗, τ+τ−, γγ, and Z Z∗, the observed significance is 5.8 standard deviations,
compared to an expectation of 4.9 standard deviations. Combined with the tt̄H searches using
a dataset corresponding to integrated luminosities of 4.5 fb−1 at 7 TeV and 20.3 fb−1 at 8 TeV,
the observed (expected) significance is 6.3 (5.1) standard deviations. Assuming Standard
Model branching fractions, the total tt̄H production cross section at 13 TeV is measured to
be 670 ± 90 (stat.) +110

−100 (syst.) fb, in agreement with the Standard Model prediction.
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1 Introduction

After the discovery of the Higgs boson in 2012 by the ATLAS and CMS Collaborations [1, 2], many
measurements of its properties were performed [3–8]. No significant deviations from the Standard Model
(SM) predictions were found. A probe of fundamental interest to further explore the nature of the Higgs
boson is its coupling to the top quark, the heaviest particle in the SM. Indirect measurements of the
Yukawa coupling between the Higgs boson and the top quark were made by the ATLAS and CMS
Collaborations [3], assuming no contribution from unknown particles in the gluon–gluon fusion (ggF)
loop. A more direct test of this coupling can be performed through the production of the Higgs boson in
association with a top quark pair, tt̄H. Using a proton–proton (pp) dataset corresponding to an integrated
luminosity of 36.1 ± 0.8 fb−1 [9], at a centre-of-mass energy

√
s = 13 TeV, evidence of this production

mode was found in 2017 by the ATLAS Collaboration [10], with an observed (expected) significance
relative to the background-only hypothesis of 4.2 (3.8) standard deviations. Combining data at 7, 8,
and 13 TeV, the CMS Collaboration reported an observed (expected) significance of 5.2 (4.2) standard
deviations [11].

This Letter presents results of the search for the tt̄H process and the measurement of the tt̄H production
cross section using data produced in pp collisions by the Large Hadron Collider (LHC) and recorded
with the ATLAS detector. The ATLAS detector is described in detail in Refs. [12, 13]. Compared to
Ref. [10], the H → γγ and H → Z Z∗ → 4` (` = e, µ) analyses are updated with the 13 TeV data
collected in 2017. Improved lepton and photon reconstruction algorithms [14] and analysis techniques
are used. The updated analyses are combined with the H → bb̄ and multilepton analyses from Refs. [10,
15], the latter targeting Higgs boson decays into WW∗, H → τ+τ− with hadronically and leptonically
decaying τ-leptons, and H → Z Z∗ without Z Z∗ → 4`. Furthermore, a combination is performed with
the results based on 4.5 ± 0.4 fb−1 and 20.3 ± 0.1 fb−1 of pp data recorded in 2011 and 2012 at

√
s = 7 TeV

and
√

s = 8 TeV respectively [16–20]. A Higgs boson mass corresponding to the measured value of
125.09 ± 0.24 GeV [21] is assumed everywhere.

2 H → γγ

In the H → γγ analysis, using a dataset corresponding to an integrated luminosity of 79.8 ± 1.6 fb−1 at√
s = 13 TeV, events with two isolated photon candidates with transverse momenta1 pT larger than 35 GeV

and 25 GeV are selected. Both photons must satisfy the quality requirements discussed in Ref. [6]; the
diphoton mγγ invariant mass must be in the range mγγ ∈ [105 − 160]GeV, and the leading (subleading)
photon must have pT/mγγ > 0.35 (0.25). At least one jet with pT > 25 GeV and containing a b-hadron,
identified using a b-tagging algorithm with an efficiency of 77% [22–24], is required. Two signal regions
targeting tt̄H production are defined. One is enriched in hadronic top-quark decays by requiring at least
two additional jets and zero isolated leptons (electrons or muons). This ‘Had’ region contains events where
both top quarks decay into hadrons or the leptons from decays of the top quarks are not reconstructed or

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the
detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis
points upwards. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis.
The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2). Angular distance is measured in units of
∆R ≡

√
(∆η)2 + (∆φ)2.
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identified. The ‘Lep’ region is instead enriched in semileptonic top-quark decays by requiring events to
have at least one isolated lepton.

The sensitivity of the analysis is improved relative to Ref. [6]. Two dedicated boosted decision trees
(BDTs) are trained using the XGBoost package [25] to discriminate the tt̄H signal from the main
background processes. These are non-resonant diphoton production processes, including tt̄ production
together with a photon pair. The background processes also include non-tt̄H Higgs boson production:
mainly associated production with a single top quark tH and ggF in the Had region, and tH and associated
production with a vector boson VH, where V = W, Z , in the Lep region. The tt̄H, ggF, vector-boson
fusion (VBF), and VH production processes were simulated with Powheg+Pythia8 [26–34]. The
production of a Higgs boson in association with two b-quarks, bb̄H, and tH were modelled using
Madgraph5_aMC@NLO+Pythia8 [35, 36]. The BDT in the Lep region is trained with simulated tt̄H
events, and with background events from a data control region that differs from the Lep region by requiring
exactly zero b-tagged jets, at least one jet, and at least one photon failing either identification or isolation
requirements. This BDT uses the transverse momentum pT, the pseudorapidity η, the azimuthal angle
φ, and the energy E of up to four (two) leading jets (leptons) in pT. It was verified that the BDT is not
sensitive to the value of the jet mass. Furthermore, the BDT uses the magnitude and the azimuthal angle φ
of the missing transverse momentum Emiss

T , the transverse momentum of each of the two photons divided
by the diphoton invariant mass pT/mγγ, as well as the η and φ of each photon. The BDT in the Had region
is also trained with simulated tt̄H signal events, and with background events from a data control region
with the same selection as the Had region, except that at least one photon has to fail either identification
or isolation requirements. This BDT uses the pT, η, φ, E and the b-tagging decision of up to six leading
jets, plus the Emiss

T information and the same photon observables as used by the BDT in the Lep region.
In the Had region, the Emiss

T information adds discriminating power due to semileptonic top-quark decays
with undetected leptons. The data control regions for the Had and Lep BDT training are chosen with the
goal to maximize the expected sensitivity, which is affected by the number of events in the training sample
and background composition. Events with low values of the BDT response are removed: about 85%
(97%) of the tt̄H signal events are selected and about 89% (43%) of the non-resonant background events
are rejected in the Had (Lep) region. The remaining events are categorized into four (three) bins in the
Had (Lep) region depending on the value of the BDT response. The number and boundaries of the BDT
bins are chosen to optimize the expected sensitivity to the tt̄H signal. Figure 1 shows the distribution of
the BDT response for simulated tt̄H signal, simulated non-tt̄H Higgs boson production and non-resonant
background from data in the diphoton invariant-mass sideband regions mγγ ∈ [105 − 120]GeV and
mγγ ∈ [130 − 160]GeV.

In each BDT bin, the tt̄H signal yield is measured using a combined unbinned maximum-likelihood fit
to the diphoton invariant mass spectrum in the range 105GeV < mγγ < 160GeV, constraining the Higgs
boson mass to 125.09± 0.24 GeV. Signal and background shapes are modelled by analytical functions as
discussed in Ref. [6]. The functions modelling the Higgs boson signal, used for both the tt̄H signal and
the resonant background from the other Higgs boson production modes, are based on the simulated mγγ

distributions. The functional form used to model the continuum background distribution in each BDT bin
is chosen using simulated background events for the Lep region and a dedicated data control region for the
Had region, following the procedure described in Refs. [1, 6]. This procedure imposes stringent conditions
on potential biases in the extracted signal yield, in order to avoid losses in sensitivity. No evidence of
such a bias is observed within the statistical accuracy of the available control samples. Depending on the
BDT bin, either a power-law or an exponential function is chosen, each with one parameter determining
the functional shape, and one accounting for the overall background normalization. The parameters of
the continuum background model are left free in the fit. The contributions from the non-tt̄H production
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Figure 1: Distribution of the BDT output in the (a) Had and (b) Lep region in the H → γγ analysis. The distribution
of the simulated tt̄H signal is compared with that of the other Higgs boson production modes, as well as to the
continuum background from data in the diphoton invariant-mass sidebands of 105 GeV < mγγ < 120 GeV and
130 GeV < mγγ < 160 GeV. Events to the left of the vertical line are rejected. The distributions are normalized to
unity.

modes are fixed to their SM expectations [26–37]. The predicted ggF, VBF and VH (both qq → ZH
and gg → ZH) yields are each assigned a conservative 100% uncertainty, which is due to the theoretical
uncertainty in the radiation of additional heavy-flavour jets in these Higgs boson production modes. This
is supported by measurements using H → Z Z∗ → 4` [38], tt̄bb̄ [39], and Vb [40, 41] events. The impact
of this uncertainty on the H → γγ and combined results is small.

The most important theoretical uncertainties affecting the tt̄H cross-section measurement in the H → γγ

decay channel are those related to the parton-shower modelling in the tt̄H simulation, which are evaluated
by comparing the shower and hadronizationmodelling of Pythia8withHerwig7 [42, 43], and correspond
to a relative uncertainty of 8% in the tt̄H cross-section measurement, and the modelling uncertainty in the
Higgs boson plus heavy-flavour background (4%). The dominant experimental uncertainties are related to
the reconstruction of the jet energy (5%), the photon isolation requirements (4%), and the photon energy
resolution (6%) and scale (4%).

This analysis is about 50% more sensitive than the one in Ref. [6] for the same integrated luminosity, with
the two regions (Had and Lep) achieving similar sensitivity. The improvements include new reconstruction
algorithms, the relaxed requirements on jets and b-tagged jets, and a BDT-based instead of a cut-based
selection for the Lep region. The largest sensitivity improvement (about 30%) is achieved by using four-
momentum information of photons, jets and leptons, as well as b-tagging information of jets, as input to
the BDT. Both the Had BDT and the Lep BDT use the scaled photon pT/mγγ observable to prevent the
diphoton mass being used as a discriminating variable by the BDT. This is further verified using fits of
the functional forms chosen in each BDT bin in several additional control regions in data and simulation,
and no evidence of a bias is found.

Figure 2 shows the observed mγγ distribution in the tt̄H-sensitive BDT bins. For illustration purposes,
events are weighted by ln(1+S90/B90), where S90 (B90) for each BDT bin is the expected tt̄H signal [26–28,
37, 44–52] (background) in the smallest mγγ window containing 90% of the expected signal. Both the
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Figure 2: Weighted diphoton invariant mass spectrum in the tt̄H-sensitive BDT bins observed in 79.8 fb−1 of
13 TeV data. Events are weighted by ln(1 + S90/B90), where S90 (B90) for each BDT bin is the expected tt̄H signal
(background) in the smallest mγγ window containing 90% of the expected signal. The error bars represent 68%
confidence intervals of the weighted sums. The solid red curve shows the fitted signal-plus-background model with
the Higgs boson mass constrained to 125.09 ± 0.24 GeV. The non-resonant and total background components
of the fit are shown with the dotted blue curve and dashed green curve. Both the signal-plus-background and
background-only curves shown here are obtained from the weighted sum of the individual curves in each BDT bin.

signal-plus-background and background-only curves shown here are obtained from the weighted sum of
the individual curves in each BDT bin. The expected and observed event yields are presented in Table 1
and shown in Figure 3. In Figure 3, a tt̄H signal strength µ = σ/σSM of 1.4 is assumed. The total
number of fitted tt̄H signal events in the mass range 105 GeV < mγγ < 160 GeV is 36+12

−11. For 13 TeV data
corresponding to an integrated luminosity of 79.8 fb−1, the expected significance of the tt̄H signal in the
H → γγ channel is 3.7 standard deviations. The significance of the observed tt̄H signal is 4.1 standard
deviations. The expected significance in the Had (Lep) region is 2.7 (2.5) standard deviations, while the
observed significance in the Had (Lep) region is 3.8 (1.9) standard deviations.

3 H → ZZ∗ → 4`

In the H → Z Z∗ → 4` analysis, using the same data as in the H → γγ analysis, events with at least
four isolated leptons (four electrons, four muons, or two electrons and two muons) corresponding to two
same-flavour opposite-charge pairs are selected. The four-lepton invariant mass is required to be in a
window of 115 GeV < m4` < 130 GeV. To search for tt̄H events, at least one jet is required, with
pT > 30 GeV and containing a b-hadron identified using a b-tagging algorithm with an efficiency of
70%. The event selection is described in more detail in Ref. [5]. The current analysis improves the
expected tt̄H significance by defining two signal regions, and by applying a BDT in one of them. A ‘Had’
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Figure 3: Number of data events in the different BDT bins of the H → γγ analysis, in the smallest diphoton
mass window that contains 90% of the tt̄H signal. The expected background and tt̄H signal (for a signal strength
µ = σ/σSM of 1.4) are shown as well. The expected continuum background is extracted from the diphoton mass
fits. The lower panel shows the residuals between the data and the background. The red line shows the expected
signal. The BDT bins are shown in ascending order of signal purity.

region enriched in hadronic top-quark decays is formed by requiring at least three additional jets and zero
additional isolated leptons, and a ‘Lep’ region enriched in semileptonic top-quark decays is formed by
requiring at least one additional jet and at least one additional isolated lepton. The main backgrounds
in both regions are tt̄W , tt̄Z , and non-tt̄H Higgs boson production (ggF and tH for the Had and tH for
the Lep region), estimated from simulation. The same event generators and cross sections are used as
in the H → γγ analysis. Uncertainties due to parton distribution functions (PDF) and αS, and missing
higher-order corrections are considered. To account for the theoretical uncertainty in the radiation of
additional heavy-flavour jets, a 100% uncertainty is assigned to the predicted ggF yields. In the Had
region, a BDT [53] is employed to separate the tt̄H signal from the background. Eleven observables
are used, including the invariant mass, the dijet pT, and the difference in pseudorapidity ∆η of the two
leading jets, as well as the difference between the η of the four-lepton system and the average η of the
two leading jets. Further input observables are Emiss

T , the angular separation ∆R between the four-lepton
system and the leading jet, as well as between the dilepton pair with invariant mass closest to the Z boson
mass and the leading jet, the scalar sum of the pT of the jets in the event, the number of jets, the number
of b-tagged jets, and the value of the leading-order matrix element describing the Higgs boson decay [5].
This matrix-element value will be larger for the leptons from the Higgs boson decay than for those from
the tt̄Z and tt̄W background. The output discriminant of this BDT is divided into two bins, which are
chosen to maximize the expected tt̄H significance in the Had region. The bin with the higher values of
the BDT discriminant and the Lep region are expected to have a tt̄H signal purity of more than 80%. The
other BDT bin is expected to have a tt̄H signal purity of about 35%.
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Table 1: Observed number of events in the different bins of the H → γγ and H → Z Z∗ → 4` searches, using
13 TeV data corresponding to an integrated luminosity of 79.8 fb−1. The observed yields are compared with the sum
of expected tt̄H signal, normalized to the SM prediction, background from non-tt̄H Higgs boson production and
other background sources, with the systematic uncertainties assigned to the observed result in the H → γγ analysis,
and expected systematic uncertainties in the H → Z Z∗ → 4` analysis. The numbers for H → γγ are counted in
the smallest mγγ window containing 90% of the expected signal. The numbers for H → Z Z∗ → 4` are derived in a
four-lepton mass window of 115 GeV < m4` < 130 GeV. In the H → γγ analysis, the background yield is extracted
from the fit with freely floating signal. The BDT bins are in descending order of signal purity.

Expected Observed
Bin tt̄H (signal) Non-tt̄H Higgs Non-Higgs Total Total

H → γγ

Had 1 4.2 ± 1.1 0.49 ± 0.33 1.8 ± 0.5 6.4 ± 1.3 10
Had 2 3.4 ± 0.7 0.7 ± 0.6 7.5 ± 1.1 11.6 ± 1.5 14
Had 3 4.7 ± 0.9 2.0 ± 1.7 32.9 ± 2.2 39.6 ± 3.2 47
Had 4 3.0 ± 0.5 3.2 ± 3.1 55.0 ± 2.8 61 ± 5 67
Lep 1 4.5 ± 1.0 0.24 ± 0.09 2.2 ± 0.6 6.9 ± 1.2 7
Lep 2 2.2 ± 0.4 0.27 ± 0.10 4.6 ± 0.9 7.1 ± 1.0 7
Lep 3 0.82 ± 0.18 0.30 ± 0.13 4.6 ± 0.9 5.7 ± 0.9 5

H → Z Z∗ → 4`
Had 1 0.169 ± 0.031 0.021 ± 0.007 0.008 ± 0.008 0.198 ± 0.033 0
Had 2 0.216 ± 0.032 0.20 ± 0.09 0.22 ± 0.12 0.63 ± 0.16 0
Lep 0.212 ± 0.031 0.0256 ± 0.0023 0.015 ± 0.013 0.253 ± 0.034 0

The observed events and expected background yields in the two Had BDT bins and the Lep region, in
a four-lepton invariant mass window of 115 GeV < m4` < 130 GeV, are used as input to a likelihood
fit that extracts the tt̄H yield. The expected dominant uncertainties in the cross section are due to the
parton-shower modelling affecting the acceptance of the selection, and to the cross-section uncertainty in
the Higgs boson plus heavy-flavour background (about 10% each). The leading experimental uncertainty
arises from the calibration of the jet energy scale (6%). The expected and observed numbers of events are
presented in Table 1. No event is observed. The expected significance is 1.2 standard deviations.

4 Combination

The tt̄H searches in the H → γγ and H → Z Z∗ → 4` decay channels are combined with the H → bb̄
and multilepton searches from Refs. [10, 15]. These analyses use a dataset corresponding to an integrated
luminosity of 36.1 fb−1 at

√
s = 13 TeV, and find observed (expected) significances of 1.4 (1.6) standard

deviations for H → bb̄ and 4.1 (2.8) for the multilepton search. The combination is performed using
the profile likelihood method described in Ref. [54], based on simultaneous fits to the signal regions and
control regions of the individual analyses. The overlap between the selected events in the different analyses
is found to be negligible. The asymptotic approximation used in the fit is verifiedwith pseudo-experiments,
and the results are corrected if necessary. The effect of systematic uncertainties in the predicted yields

7



and distributions is incorporated into the statistical model through nuisance parameters. The correlation
scheme of all systematic uncertainties between the H → bb̄ and multilepton analyses, as well as the
correlation scheme of the theory uncertainties between all channels are the same as in Ref. [10]. Since
the H → γγ and H → Z Z∗ → 4` analyses employ improved reconstruction software compared with the
H → bb̄ and multilepton analyses, the correlations between the experimental systematic uncertainties are
evaluated for each source individually. Some components of the systematic uncertainties in the luminosity,
the jet energy scale, the electron/photon resolution and energy scale, and in the electron reconstruction
and identification efficiencies are correlated between the channels. All Higgs boson production processes
other than tt̄H, including Higgs boson production in association with a single top quark, are considered
as background and their cross sections are fixed to the SM predictions [37]. The respective cross-
section uncertainties are considered as systematic uncertainties. The total tt̄H cross section is extracted
assuming SM branching fractions and using the detector acceptance and efficiencies predicted from the
tt̄H simulation discussed above. The respective uncertainties are included in the fit.

A combination is also performed with the tt̄H searches based on datasets corresponding to integrated
luminosities of 4.5 fb−1 at

√
s = 7 TeV and 20.3 fb−1 at

√
s = 8 TeV [16]. The combined observable

is the signal strength µ = σ/σSM. The SM cross-section expectations σSM and branching ratios used
in the 7 and 8 TeV analyses are updated with the values in Ref. [37], while their uncertainties are not
changed. Theoretical uncertainties in the SM cross-section prediction for tt̄H are included in the signal-
strength extraction. The branching-fraction uncertainties and the uncertainties due to missing higher-order
corrections in the tt̄H cross-section prediction are correlated between the 7 and 8 TeV and 13 TeV analyses.
Furthermore, the relevant uncertainties in the electron/photon energy scale and resolution are correlated.

5 Results

Table 2 shows a summary of the systematic uncertainties in the 13 TeV tt̄H production cross-section
measurement. The dominant uncertainties arise from the modelling of the tt̄ + heavy-flavour processes in
theH → bb̄ analysis [15] and themodelling of the tt̄H process, which affects the acceptance of the selection
in all analyses. Further important uncertainties come from uncertainties in the estimate of leptons from
heavy-flavour decays, conversions or misidentified hadronic jets, mainly in the multilepton analysis [10],
and in the jet energy scale and resolution in all analyses. The jet, electron, and photon uncertainties,
as well as the uncertainties associated with hadronically decaying τ-leptons, include uncertainties in the
reconstruction and identification efficiencies, as well as in the energy scale and resolution. The τ-lepton
uncertainty affects the multilepton analysis. TheMonte Carlo (MC) statistical uncertainty is due to limited
numbers of simulated events in the H → bb̄ and multilepton analyses.

Using 13 TeV data, the likelihood fit to extract the tt̄H signal yield in the H → γγ, H → Z Z∗ → 4`,
H → bb̄, andmultilepton analyses results in an observed (expected) excess relative to the background-only
hypothesis of 5.8 (4.9) standard deviations. A combined fit using the 7, 8, and 13 TeV analyses gives
an observed (expected) significance of 6.3 (5.1) standard deviations. Table 3 shows the significances of
the individual and combined analyses relative to the background-only hypothesis. Figure 4 shows the
combined event yields in all analysis categories as a function of log10(S/B), where S is the expected signal
yield and B the background yield extracted from the fit with freely floating signal. A clear tt̄H signal-like
excess over the background is visible for high log10(S/B).

Based on the analyses performed at 13 TeV, the measured total cross section for tt̄H production is
670 ± 90 (stat.) +110

−100 (syst.) fb, in agreement with the SM prediction of 507+35
−50 fb [37, 44–52], which is

8



Table 2: Summary of the systematic uncertainties affecting the combined tt̄H cross-section measurement at 13 TeV.
Only systematic uncertainty sources with at least 1% impact are listed. The fake-lepton uncertainty is due to the
estimate of leptons from heavy-flavour decay, conversions or misidentified hadronic jets. The jet, electron, and
photon uncertainties, as well as the uncertainties associated with hadronically decaying τ-leptons, include those in
reconstruction and identification efficiencies, as well as in the energy scale and resolution. The Monte Carlo (MC)
statistical uncertainty is due to limited numbers of simulated events. More detailed descriptions of the sources of
the systematic uncertainties are given in Refs. [10, 15].

Uncertainty source ∆σt t̄H/σt t̄H [%]
Theory uncertainties (modelling) 11.9

tt̄ + heavy flavour 9.9
tt̄H 6.0
Non-tt̄H Higgs boson production 1.5
Other background processes 2.2

Experimental uncertainties 9.3
Fake leptons 5.2
Jets, Emiss

T 4.9
Electrons, photons 3.2
Luminosity 3.0
τ-leptons 2.5
Flavour tagging 1.8

MC statistical uncertainties 4.4

Table 3: Measured total tt̄H production cross sections at 13 TeV, as well as observed (Obs.) and expected (Exp.)
significances (sign.) relative to the background-only hypothesis. The results of the individual analyses, as well as the
combined results are shown. Since no event is observed in the H → Z Z∗ → 4` decay channel, an observed upper
limit is set at 68% confidence level on the tt̄H production cross section in that channel using pseudo-experiments.

Analysis Integrated tt̄H cross Obs. Exp.
luminosity [fb−1] section [fb] sign. sign.

H → γγ 79.8 710 +210
−190 (stat.)

+120
−90 (syst.) 4.1σ 3.7σ

H → multilepton 36.1 790 ±150 (stat.) +150
−140 (syst.) 4.1σ 2.8σ

H → bb̄ 36.1 400 +150
−140 (stat.) ± 270 (syst.) 1.4σ 1.6σ

H → Z Z∗ → 4` 79.8 <900 (68% CL) 0σ 1.2σ
Combined (13 TeV) 36.1−79.8 670 ± 90 (stat.) +110

−100 (syst.) 5.8σ 4.9σ
Combined (7, 8, 13 TeV) 4.5, 20.3, 36.1−79.8 − 6.3σ 5.1σ

9
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Figure 4: Observed event yields in all analysis categories in up to 79.8 fb−1 of 13 TeV data. The background yields
correspond to the observed fit results, and the signal yields are shown for both the observed results (µ = 1.32) and the
SM prediction (µ = 1). The discriminant bins in all categories are ranked by log10(S/B), where S is the signal yield
and B the background yield extracted from the fit with freely floating signal, and combined such that log10(S + B)
decreases approximately linearly. For the H → γγ analysis, only events in the smallest mγγ window containing 90%
of the expected signal are considered. The lower panel shows the ratio of the data to the background estimated from
the fit with freely floating signal, compared to the expected distribution including the signal assuming µ = 1.32 (full
red) and µ = 1 (dashed orange). The error bars on the data are statistical.

calculated to next-to-leading-order accuracy (both QCD and electroweak). The cross section extracted
in the combined likelihood fit, as well as the results from the individual analyses, are shown in Table 3,
while their ratios to the SM predictions are displayed in Figure 5. The measured total cross section for tt̄H
production at 8 TeV is 220 ± 100 (stat.) ± 70 (syst.) fb. Figure 6 shows the tt̄H production cross sections
measured in pp collisions at centre-of-mass energies of 8 and 13 TeV, compared to the SM predictions.
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Figure 5: Combined tt̄H production cross section, as well as cross sections measured in the individual analyses,
divided by the SM prediction. The γγ and Z Z∗ → 4` analyses use 13 TeV data corresponding to an integrated
luminosity of 79.8 fb−1, and the multilepton and bb̄ analyses use data corresponding to an integrated luminosity
of 36.1 fb−1. The black lines show the total uncertainties, and the bands indicate the statistical and systematic
uncertainties. The red vertical line indicates the SM cross-section prediction, and the grey band represents the
PDF+αS uncertainties and the uncertainties due to missing higher-order corrections.
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corrections.
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6 Conclusion

Using proton–proton collision data at centre-of-mass energies of 7, 8, and 13 TeV, produced by the
Large Hadron Collider and recorded with the ATLAS detector, the production of the Higgs boson in
association with a top quark pair is observed with a significance of 6.3 standard deviations relative to the
background-only hypothesis. The expected significance is 5.1 standard deviations. The tt̄H production
cross section at 13 TeV is measured in data corresponding to integrated luminosities of up to 79.8 fb−1 to
be 670 ± 90 (stat.) +110

−100 (syst.) fb, in agreement with the Standard Model prediction. This constitutes a
direct observation of the Yukawa coupling between the Higgs boson and the top quark.
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