New maximum scattered linear sets of the projective line

Bence Csajbók, Giuseppe Marino and Ferdinando Zullo*

Abstract

In [2] and [19] are presented the first two families of maximum scattered \mathbb{F}_{q}-linear sets of the projective line $\operatorname{PG}\left(1, q^{n}\right)$. More recently in [23] and in [5], new examples of maximum scattered \mathbb{F}_{q}-subspaces of $V\left(2, q^{n}\right)$ have been constructed, but the equivalence problem of the corresponding linear sets is left open.

Here we show that the \mathbb{F}_{q}-linear sets presented in [23] and in [5], for $n=6,8$, are new. Also, for q odd, $q \equiv \pm 1,0(\bmod 5)$, we present new examples of maximum scattered \mathbb{F}_{q}-linear sets in $\operatorname{PG}\left(1, q^{6}\right)$, arising from trinomial polynomials, which define new \mathbb{F}_{q}-linear MRD-codes of $\mathbb{F}_{q}^{6 \times 6}$ with dimension 12 , minimum distance 5 and middle nucleus (or left idealiser) isomorphic to $\mathbb{F}_{q^{6}}$.

AMS subject classification: 51E20, 51E22, 05B25
Keywords: linear set, scattered subspace, MRD-code

1 Introduction

Linear sets are natural generalisations of subgeometries. Let $\Lambda=\mathrm{PG}\left(W, \mathbb{F}_{q^{n}}\right)$ $=\operatorname{PG}\left(r-1, q^{n}\right)$, where W is a vector space of dimension r over $\mathbb{F}_{q^{n}}$. A point set L of Λ is said to be an \mathbb{F}_{q}-linear set of Λ of rank k if it is defined by the non-zero vectors of a k-dimensional \mathbb{F}_{q}-vector subspace U of W, i.e.

$$
L=L_{U}=\left\{\langle\mathbf{u}\rangle_{\mathbb{F}_{q^{n}}}: \mathbf{u} \in U \backslash\{\mathbf{0}\}\right\} .
$$

[^0]The maximum field of linearity of an $\mathbb{F}_{q^{-}}$linear set L_{U} is $\mathbb{F}_{q^{t}}$ if $t \mid n$ is the largest integer such that L_{U} is an $\mathbb{F}_{q^{t}}$-linear set. Two linear sets L_{U} and L_{W} of $\operatorname{PG}\left(r-1, q^{n}\right)$ are said to be PГL-equivalent (or simply equivalent) if there is an element ϕ in $\operatorname{P\Gamma L}\left(r, q^{n}\right)$ such that $L_{U}^{\phi}=L_{W}$. It may happen that two \mathbb{F}_{q}-linear sets L_{U} and L_{W} of $\mathrm{PG}\left(r-1, q^{n}\right)$ are equivalent even if the two \mathbb{F}_{q}-vector subspaces U and W are not in the same orbit of $\Gamma \mathrm{L}\left(r, q^{n}\right)$ (see [7] and [3] for further details). In the recent years, starting from the paper [18] by Lunardon, linear sets have been used to construct or characterise various objects in finite geometry, such as blocking sets and multiple blocking sets in finite projective spaces, two-intersection sets in finite projective spaces, translation spreads of the Cayley Generalized Hexagon, translation ovoids of polar spaces, semifield flocks and finite semifields. For a survey on linear sets we refer the reader to [22], see also [13]. It is clear that in the applications it is crucial to have methods to decide whether two linear sets are equivalent or not.

In this paper we focus on maximum scattered \mathbb{F}_{q}-linear sets of $\operatorname{PG}\left(1, q^{n}\right)$ with maximum field of linearity \mathbb{F}_{q}, that is, \mathbb{F}_{q}-linear sets of rank n of $\operatorname{PG}\left(1, q^{n}\right)$ of size $\left(q^{n}-1\right) /(q-1)$. If L_{U} is a maximum scattered \mathbb{F}_{q}-linear set, then U is a maximum scattered \mathbb{F}_{q}-subspace.

If $\langle(0,1)\rangle_{\mathbb{F}_{q^{n}}}$ is not contained in the linear set L_{U} of rank n of $\operatorname{PG}\left(1, q^{n}\right)$ (which we can always assume after a suitable projectivity), then $U=U_{f}:=$ $\left\{(x, f(x)): x \in \mathbb{F}_{q^{n}}\right\}$ for some q-polynomial $f(x)=\sum_{i=0}^{n-1} a_{i} x^{q^{i}} \in \mathbb{F}_{q^{n}}[x]$. In this case we will denote the associated linear set by L_{f}. The known non-equivalent (under $\Gamma L\left(2, q^{n}\right)$) maximum scattered \mathbb{F}_{q}-subspaces are

1. $U_{s}^{1, n}:=\left\{\left(x, x^{q^{s}}\right): x \in \mathbb{F}_{q^{n}}\right\}, 1 \leq s \leq n-1, \operatorname{gcd}(s, n)=1([2, ~ 8])$,
2. $U_{s, \delta}^{2, n}:=\left\{\left(x, \delta x^{q^{s}}+x^{q^{n-s}}\right): x \in \mathbb{F}_{q^{n}}\right\}, n \geq 4, \mathrm{~N}_{q^{n} / q}(\delta) \notin\{0,1\}$ 1 , $\operatorname{gcd}(s, n)=1([19]$ for $s=1,[23,20]$ for $s \neq 1)$,
3. $U_{s, \delta}^{3, n}:=\left\{\left(x, \delta x^{q^{s}}+x^{q^{s+n / 2}}\right): x \in \mathbb{F}_{q^{n}}\right\}, n \in\{6,8\}, \operatorname{gcd}(s, n / 2)=1$, $\mathrm{N}_{q^{n} / q^{n / 2}}(\delta) \notin\{0,1\}$, for the precise conditions on δ and q see [5, Theorems 7.1 and 7.2] 2.

The stabilisers of the \mathbb{F}_{q}-subspaces above in the group $\mathrm{GL}\left(2, q^{n}\right)$ were determined in [5, Sections 5 and 6]. They have the following orders:

1. for $U_{s}^{1, n}$ we have a group of order $q^{n}-1$,

[^1]2. for $U_{s, \delta}^{2, n}$ we have a group of order $q^{2}-1$,
3. for $U_{s, \delta}^{3, n}$ we have a group of order $q^{n / 2}-1$.

It is known, that for $n=3$ the maximum scattered \mathbb{F}_{q}-spaces of $V\left(2, q^{3}\right)$ are $\Gamma \mathrm{L}\left(2, q^{3}\right)$-equivalent to $U_{1}^{1,3}$ (cf. [15]), and for $n=4$ they are GL $\left(2, q^{4}\right)$ equivalent either to $U_{1}^{1,4}$ or to $U_{1, \delta}^{2,4}$ (cf. 9]).

To make notation easier, by $L_{s}^{i, n}$ and $L_{s, \delta}^{i, n}$ we will denote the \mathbb{F}_{q}-linear set defined by $U_{s}^{i, n}$ and $U_{s, \delta}^{i, n}$, respectively. The $\mathbb{F}_{q^{-}}$-linear sets equivalent to $L_{s}^{1, n}$ are called of pseudoregulus type. It is easy to see that $L_{1}^{1, n}=L_{s}^{1, n}$ for any s with $\operatorname{gcd}(s, n)=1$ and that $U_{s, \delta}^{2, n}$ is $\operatorname{GL}\left(2, q^{n}\right)$-equivalent to $U_{n-s, \delta-1}^{2, n}$.

In [19, Theorem 3] Lunardon and Polverino proved that $L_{1, \delta}^{2, n}$ and $L_{1}^{1, n}$ are not $\operatorname{P\Gamma L}\left(2, q^{n}\right)$-equivalent when $q>3, n \geq 4$. For $n=5$, in [4] it is proved that $L_{2, \delta}^{2,5}$ is $\operatorname{P\Gamma L}\left(2, q^{5}\right)$-equivalent neither to $L_{1, \delta^{\prime}}^{2,5}$ nor to $L_{1}^{1,5}$.

In the first part of this paper we prove that for $n=6,8$ the linear sets $L_{1}^{1, n}, L_{s, \delta}^{2, n}$ and $L_{s^{\prime}, \delta^{\prime}}^{3, n}$ are pairwise non-equivalent for any choice of $s, s^{\prime}, \delta, \delta^{\prime}$.

In the second part of this paper we prove that the \mathbb{F}_{q}-linear set defined by

$$
U_{b}^{4}:=\left\{\left(x, x^{q}+x^{q^{3}}+b x^{q^{5}}\right): x \in \mathbb{F}_{q^{6}}\right\}
$$

with $b^{2}+b=1, q \equiv 0, \pm 1(\bmod 5)$ is maximum scattered in $\mathrm{PG}\left(1, q^{6}\right)$ and it is not $\operatorname{P\Gamma L}\left(2, q^{6}\right)$-equivalent to any previously known example. Connections between scattered \mathbb{F}_{q}-subspaces and MRD-codes have been investigated in [23, 6, 17]. Using the relation found in [23] we also present new examples of such codes.

2 Classes of \mathbb{F}_{q}-linear sets of rank n of $\operatorname{PG}\left(1, q^{n}\right)$ and preliminary results

For $\alpha \in \mathbb{F}_{q^{n}}$ and a divisor h of n we will denote by $\mathrm{N}_{q^{n} / q^{h}}(\alpha)$ the norm of α over the subfield $\mathbb{F}_{q^{h}}$, that is, $\mathrm{N}_{q^{n} / q^{h}}(\alpha)=\alpha^{1+q^{h}+\ldots+q^{n-h}}$.

By [1, 3] for $f(x)=\sum_{i=0}^{n-1} a_{i} x^{q^{i}}$ and $\hat{f}(x)=\sum_{i=0}^{n-1} a_{i}^{q^{n-i}} x^{q^{n-i}}$, the $\mathbb{F}_{q^{-}}$ subspaces $U_{f}=\left\{(x, f(x)): x \in \mathbb{F}_{q^{n}}\right\}$ and $U_{\hat{f}}=\left\{(x, \hat{f}(x)): x \in \mathbb{F}_{q^{n}}\right\}$ define the same linear set of $\mathrm{PG}\left(1, q^{n}\right)$. On the other hand U_{f} and $U_{\hat{f}}$ are not necessarily $\Gamma \mathrm{L}\left(2, q^{n}\right)$-equivalent (see [3, Section 3.2]) and this motivates the following definitions.

Definition 2.1. ([级) Let L_{U} be an \mathbb{F}_{q}-linear set of $\mathrm{PG}\left(W, \mathbb{F}_{q^{n}}\right)=\mathrm{PG}\left(1, q^{n}\right)$ of rank n with maximum field of linearity \mathbb{F}_{q}.

We say that L_{U} is of $\Gamma \mathrm{L}$-class s if s is the greatest integer such that there exist \mathbb{F}_{q}-subspaces U_{1}, \ldots, U_{s} of W with $L_{U_{i}}=L_{U}$ for $i \in\{1, \ldots, s\}$ and there is no $f \in \Gamma \mathrm{~L}\left(2, q^{n}\right)$ such that $U_{i}=U_{j}^{f}$ for each $i \neq j, i, j \in$ $\{1,2, \ldots, s\}$. If L_{U} has $\Gamma \mathrm{L}$-class one, then L_{U} is said to be simple.

We say that L_{U} is of $\mathcal{Z}(\Gamma \mathrm{L})$-class r if r is the greatest integer such that there exist \mathbb{F}_{q}-subspaces $U_{1}, U_{2}, \ldots, U_{r}$ of W with $L_{U_{i}}=L_{U}$ for $i \in$ $\{1,2, \ldots, r\}$ and $U_{i} \neq \lambda U_{j}$ for each $\lambda \in \mathbb{F}_{q^{n}}^{*}$ and for each $i \neq j, i, j \in$ $\{1,2, \ldots, r\}$.

Result 2.2. ([3, Prop. 2.6]) Let L_{U} be an \mathbb{F}_{q}-linear set of $\mathrm{PG}\left(1, q^{n}\right)$ of rank n with maximum field of linearity \mathbb{F}_{q} and let φ be a collineation of $\operatorname{PG}\left(1, q^{n}\right)$. Then L_{U} and L_{U}^{φ} have the same $\mathcal{Z}(\Gamma \mathrm{L})$-class and $\Gamma \mathrm{L}$-class. Also, the $\Gamma \mathrm{L}$ class of an \mathbb{F}_{q}-linear set cannot be greater than its $\mathcal{Z}(\Gamma \mathrm{L})$-class.

For a q-polynomial $f(x)=\sum_{i=0}^{n-1} a_{i} x^{q^{i}}$ over $\mathbb{F}_{q^{n}}$ let D_{f} denote the associated Dickson matrix (or q-circulant matrix)

$$
D_{f}:=\left(\begin{array}{cccc}
a_{0} & a_{1} & \ldots & a_{n-1} \\
a_{n-1}^{q} & a_{0}^{q} & \ldots & a_{n-2}^{q} \\
\vdots & \vdots & \vdots & \vdots \\
a_{1}^{q^{n-1}} & a_{2}^{q^{n-1}} & \ldots & a_{0}^{q^{n-1}}
\end{array}\right) .
$$

The rank of the matrix D_{f} equals the rank of the \mathbb{F}_{q}-linear map f, see for example [24].

We will use the following results.
Proposition 2.3. Let f and g be two q-polynomials over $\mathbb{F}_{q^{n}}$. Then $L_{f} \subseteq L_{g}$ if and only if

$$
x^{q^{n}}-x \mid \operatorname{det} D_{F(Y)}(x) \in \mathbb{F}_{q^{n}}[x],
$$

where $F(Y)=f(x) Y-g(Y) x$. In particular, if $\operatorname{deg} \operatorname{det} D_{F(Y)}(x)<q^{n}$, then $L_{f} \subseteq L_{g}$ if and only if $\operatorname{det} D_{F(Y)}(x)$ is the zero polynomial.

Proof. $L_{f} \subseteq L_{g}$ if and only if

$$
\left\{\frac{f(x)}{x}: x \in \mathbb{F}_{q^{n}}^{*}\right\} \subseteq\left\{\frac{g(x)}{x}: x \in \mathbb{F}_{q^{n}}^{*}\right\},
$$

which means that $\frac{g(y)}{y}=\frac{f(x)}{x}$ can be solved in y if we fix $x \in \mathbb{F}_{q^{n}}^{*}$. Fix $x \in \mathbb{F}_{q^{n}}^{*}$, then the q-polynomial $F(Y)=f(x) Y-g(Y) x$ has rank less than
n since it has a non-zero solution. Since the Dickson matrix $D_{F(Y)}(x)$ of $F(Y)$ has the same rank as $F(Y)$, it follows that $\operatorname{det} D_{F(Y)}(x)=0$ for each x. It follows that $x^{q^{n}}-x \mid \operatorname{det} D_{F(Y)}(x)$.

Lemma 2.4. [3, Lemma 3.6] Let $f(x)=\sum_{i=0}^{n-1} a_{i} x^{q^{i}}$ and $g(x)=\sum_{i=0}^{n-1} b_{i} x^{q^{i}}$ be two q-polynomials over $\mathbb{F}_{q^{n}}$ such that $L_{f}=L_{g}$. Then

$$
\begin{equation*}
a_{0}=b_{0}, \tag{1}
\end{equation*}
$$

for $k=1,2, \ldots, n-1$ it holds that

$$
\begin{equation*}
a_{k} a_{n-k}^{q^{k}}=b_{k} b_{n-k}^{q^{k}}, \tag{2}
\end{equation*}
$$

for $k=2,3, \ldots, n-1$ it holds that

$$
\begin{equation*}
a_{1} a_{k-1}^{q} a_{n-k}^{q^{k}}+a_{k} a_{n-1}^{q} a_{n-k+1}^{q^{k}}=b_{1} b_{k-1}^{q} b_{n-k}^{q^{k}}+b_{k} b_{n-1}^{q} b_{n-k+1}^{q^{k}} . \tag{3}
\end{equation*}
$$

3 The $L_{s, \delta}^{2, n}$-linear sets in $\operatorname{PG}\left(1, q^{n}\right), n=6,8$

In this section we determine the $\mathcal{Z}(\Gamma L)$-class of the maximum scattered $\mathbb{F}_{q^{-}}$ linear sets of $\mathrm{PG}\left(1, q^{n}\right), n=6,8$, introduced by Lunardon and Polverino, and generalised by Sheekey. Recall that $U_{s, \delta}^{2, n}$ is $\mathrm{GL}\left(2, q^{n}\right)$-equivalent to $U_{n-s, \delta^{-1}}^{2, n}$, thus it is enough to study the linear sets $L_{s, \delta}^{2, n}$ with $s<n / 2$ and $\operatorname{gcd}(s, n)=1$.

Proposition 3.1. If $n=6$, then the $\mathcal{Z}(\Gamma \mathrm{L})$-class of $L_{1, \delta}^{2,6}$ is two.
Proof. Since $g(x)=\delta x^{q}+x^{q^{5}}$ and $\hat{g}(x)=\delta^{q^{5}} x^{q^{5}}+x^{q}$ define the same linear set, we know $L_{1, \delta}^{2,6}=L_{5, \delta q^{5}}^{2,6}$. Suppose $L_{f}=L_{1, \delta}^{2,6}$ for some $f(x)=\sum_{i=0}^{5} a_{i} x^{q^{i}} \in$ $\mathbb{F}_{q^{6}}[x]$. We show that there exists $\lambda \in \mathbb{F}_{q^{6}}^{*}$ such that either $\lambda U_{f}=U_{1, \delta}^{2,6}$ or $\lambda U_{f}=U_{5, \delta q^{5}}^{2,6}$.

By (11) we obtain $a_{0}=0$, by (2) with $k=1,3$ we have

$$
\begin{equation*}
a_{1} a_{5}^{q}=\delta \tag{4}
\end{equation*}
$$

and $a_{3}=0$, respectively. Also, with $k=2$ in (2) and (3), taking (4) into account, we get $a_{2}=a_{4}=0$.

By Proposition (2.3) we get that the Dickson matrix associated to the q-polynomial

$$
F(Y)=\left(\frac{\delta}{a_{5}^{q}} x^{q}+a_{5} x^{q^{5}}\right) Y-x\left(\delta Y^{q}+Y^{q^{5}}\right)
$$

has zero determinant for each $x \in \mathbb{F}_{q^{6}}$. Direct computation shows that this determinant is

$$
\mathrm{N}_{q^{6} / q}\left(x / a_{5}\right)\left(\mathrm{N}_{q^{6} / q}\left(a_{5}\right)-1\right)\left(\mathrm{N}_{q^{6} / q}\left(a_{5}\right)-\mathrm{N}_{q^{6} / q}(\delta)\right),
$$

which has degree less than q^{6}, thus it is the zero polynomial. We have two possibilities:

1. If $\mathrm{N}_{q^{6} / q}\left(a_{5}\right)=1$, then putting $a_{5}=\lambda^{q^{5}-1}$ we obtain $\lambda U_{f}=U_{1, \delta}^{2,6}$.
2. If $\mathrm{N}_{q^{6} / q}\left(a_{5} / \delta\right)=1$, then choosing $a_{5}=\delta^{q^{5}} \lambda^{q^{5}-1}$ we get $\lambda U_{f}=U_{5, \delta q^{5}}^{2,6}$.

Because of the choice of δ, that is $\mathrm{N}_{q^{6} / q}(\delta) \neq 1$, it follows that there is no $\mu \in \mathbb{F}_{q^{6}}$ such that $\mu U_{1, \delta}^{2,6}=U_{5, \delta^{5}}^{2,6}$ and this proves that the $\mathcal{Z}(\Gamma L)$-class of $L_{1, \delta}^{2,6}$ is exactly two.

Proposition 3.2. If $n=8$, then the $\mathcal{Z}(\Gamma \mathrm{L})$-class of $L_{1, \delta}^{2,8}$ is two.
Proof. Since $g(x)=\delta x^{q}+x^{q^{7}}$ and $\hat{g}(x)=\delta^{q^{7}} x^{q^{7}}+x^{q}$ define the same linear set, we have $L_{1, \delta}^{2,8}=L_{7, \delta q^{7}}^{2,8}$. Suppose $L_{f}=L_{1, \delta}^{2,8}$ for some $f(x)=\sum_{i=0}^{7} a_{i} x^{q^{i}} \in$ $\mathbb{F}_{q^{8}}[x]$. We show that there exists $\lambda \in \mathbb{F}_{q^{8}}^{*}$ such that either $\lambda U_{f}=U_{1, \delta}^{2,8}$ or $\lambda U_{f}=U_{7, \delta q^{7}}^{2,8}$.

By (1) we obtain $a_{0}=0$, by (2) with $k=1$ we have

$$
\begin{equation*}
a_{1} a_{7}^{q}=\delta \tag{5}
\end{equation*}
$$

and with $k=4$ we get $a_{4}=0$. Putting $k=2$ in (2) and (3), taking (5) into account, we get $a_{2}=a_{6}=0$. By (2) with $k=3$ we have $a_{3} a_{5}=0$.

If $a_{3}=0$, then $f(x)=a_{1} x^{q}+a_{5} x^{q^{5}}+a_{7} x^{q^{7}}$. Using Proposition 2.3, we get that the determinant of the Dickson matrix associated to the q-polynomial

$$
F(Y)=\left(a_{1} x^{q}+a_{5} x^{q^{5}}+a_{7} x^{q^{7}}\right) Y-x\left(a_{1} a_{7}^{q} Y^{q}+Y^{q^{7}}\right)
$$

is divisible by $x^{q^{8}}-x$. The coefficient of $x^{2\left(1+q+q^{2}+q^{3}\right)}$ after reducing the determinant modulo $x^{q^{8}}-x$ is $a_{1}^{1+q+q^{2}+q^{7}} a_{5}^{q^{3}+q^{4}+q^{5}+q^{6}}$, which is zero only when $a_{5}=0$ by (5).

On the other hand, if $a_{5}=0$, then $L_{f}=L_{\hat{f}}$ gives $a_{3}=0$.
Then $f(x)=\frac{\delta}{a_{7}^{q}} x^{q}+a_{7} x^{q^{7}}$. By Proposition 2.3, arguing as in the previous proof,

$$
\mathrm{N}_{q^{8} / q}\left(x / a_{7}\right)\left(\mathrm{N}_{q^{8} / q}\left(a_{7}\right)-1\right)\left(\mathrm{N}_{q^{8} / q}\left(a_{7}\right)-\mathrm{N}_{q^{8} / q}(\delta)\right)
$$

is the zero polynomial. We have two possibilities:

1. If $\mathrm{N}_{q^{8} / q}\left(a_{7}\right)=1$, then putting $a_{7}=\lambda^{q^{7}-1}$, we obtain $\lambda U_{f}=U_{1, \delta}^{2,8}$.
2. If $\mathrm{N}_{q^{8} / q}\left(a_{7} / \delta\right)=1$, then choosing $a_{7}=\delta^{q^{7}} \lambda^{q^{7}-1}$ we have $\lambda U_{f}=U_{7, \delta q^{7}}^{2,8}$. Because of the choice of δ, that is $\mathrm{N}_{q^{8} / q}(\delta) \neq 1$, it follows that there is no $\mu \in \mathbb{F}_{q^{8}}$ such that $\mu U_{1, \delta}^{2,8}=U_{7, \delta q^{7}}^{2,8}$ and this proves that the $\mathcal{Z}(\Gamma \mathrm{L})$-class of $L_{1, \delta}^{2,8}$ is exactly two.
Proposition 3.3. If $n=8$, then the $\mathcal{Z}(\Gamma \mathrm{L})$-class of $L_{3, \delta}^{2,8}$ is two.
Proof. Since $g(x)=\delta x^{q^{3}}+x^{q^{5}}$ and $\hat{g}(x)=\delta^{q^{5}} x^{q^{5}}+x^{q^{3}}$ define the same linear set, we know $L_{3, \delta}^{2,8}=L_{5, \delta q^{5}}^{2,8}$. Suppose $L_{f}=L_{3, \delta}^{2,8}$ for some $f(x)=$ $\sum_{i=0}^{7} a_{i} x^{q^{i}} \in \mathbb{F}_{q^{8}}[x]$. We show that there exists $\lambda \in \mathbb{F}_{q^{8}}^{*}$ such that either $\lambda U_{f}=U_{3, \delta}^{2,8}$ or $\lambda U_{f}=U_{5, \delta^{5}}^{2,8}$.

By (1) we obtain $a_{0}=0$, by (2) with $k=3$ we have

$$
a_{3} a_{5}^{q^{3}}=\delta
$$

and with $k=4$ we get $a_{4}=0$. Putting $k=1$ and $k=2$ in (2) we get

$$
\begin{equation*}
a_{1} a_{7}=0 \text { and } a_{2} a_{6}=0, \tag{6}
\end{equation*}
$$

respectively. With $k=2$ and $k=3$ in (3) we obtain

$$
\begin{equation*}
a_{1}^{q+1} a_{6}^{q^{2}}+a_{2} a_{7}^{q+q^{2}}=0 . \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{1} a_{2}^{q} a_{5}^{q^{3}}+a_{3} a_{7}^{q} a_{6}^{q^{3}}=0 \tag{8}
\end{equation*}
$$

By (77) and (8), taking (6) into account, at most one of $\left\{a_{1}, a_{2}, a_{6}, a_{7}\right\}$ is non-zero.

Hence $f(x)=a_{3} x^{q^{3}}+a_{5} x^{q^{5}}+a_{i} x^{q^{i}}$ with $i \in\{1,2,6,7\}$. For each $i \in\{1,2,6,7\}$, by Proposition [2.3, the determinant of the Dickson matrix $D_{F(Y)}(x)$ with $F(Y)=f(x) Y-x\left(a_{3} a_{5}^{q^{3}} Y^{q^{3}}+Y^{q^{5}}\right)$ is zero modulo $x^{q^{8}}-x$. Then the following hold:

- for $i=1$ the coefficient of $x^{3+3 q+q^{2}+q^{3}}$ in the reduced form of det $D_{F(Y)}(x)$ is $a_{1}^{1+q+q^{2}+q^{7}} a_{3}^{q^{5}+q^{6}} a_{5}^{q^{3}+q^{4}}$,
- for $i=2$ the coefficient of $x^{3+2 q+q^{2}+q^{3}+q^{4}}$ in the reduced form of $\operatorname{det} D_{F(Y)}(x)$ is $a_{2}^{1+q+q^{2}+q^{6}+q^{7}} a_{3}^{q^{5}} a_{5}^{q^{3}+q^{4}}$.
Thus $a_{i}=0$ for $i \in\{1,2\}$ and since $L_{f}=L_{\hat{f}}$, the same holds for $i \in\{6,7\}$. Then from (7) we get $f(x)=\frac{\delta}{a_{5}^{q^{3}}} x^{q^{3}}+a_{5} x^{q^{5}}$. By Proposition 2.3, arguing as in the previous proof,

$$
\mathrm{N}_{q^{8} / q}\left(x / a_{5}\right)\left(\mathrm{N}_{q^{8} / q}\left(a_{5}\right)-1\right)\left(\mathrm{N}_{q^{8} / q}\left(a_{5}\right)-\mathrm{N}_{q^{8} / q}(\delta)\right)
$$

is the zero polynomial. Then the following holds:

1. If $\mathrm{N}_{q^{8} / q}\left(a_{5}\right)=1$, then putting $a_{5}=\lambda^{q^{5}-1}$ gives $\lambda U_{f}=U_{3, \delta}^{2,8}$.
2. If $\mathrm{N}_{q^{8} / q}\left(a_{5} / \delta\right)=1$, then set $a_{5}=\delta^{q^{5}} \lambda^{q^{5}-1}$, and hence $\lambda U_{f}=U_{5, \delta^{5}}^{2,8}$.

As in the previous proof, it can be easily seen that the $\mathcal{Z}(\Gamma \mathrm{L})$-class is exactly two.

Theorem 3.4. The linear set $L_{s, \delta}^{2, n}$ is not of pseudoregulus type for each n, s, δ, q. Also, the linear sets $L_{1, \delta}^{2,8}$ and $L_{3, \rho}^{2,8}$ are not $\mathrm{P} \Gamma \mathrm{L}\left(2, q^{8}\right)$-equivalent.
Proof. Suppose that $L_{s, \delta}^{2, n}$ is of pseudoregulus type. Then by [14] there exists an element f of GL $\left(2, q^{n}\right)$ such that $\left(U_{s, \delta}^{2, n}\right)^{f}=U_{r}^{1, n}$ with $\operatorname{gcd}(r, n)=1$. Since the $\mathbb{F}_{q^{n}}$-linear automorphism groups of $U_{s, \delta}^{2, n}$ and $\left(U_{s, \delta}^{2, n}\right)^{f}$ are conjugated and since the groups of $U_{r}^{1, n}$ and $U_{s, \delta}^{2, n}$ have orders $q^{n}-1$ and $q^{2}-1$, respectively (cf. Introduction), we get a contradiction.

For the second part, suppose to the contrary that $L_{1, \delta}^{2,8}$ and $L_{3, \rho}^{2,8}$ are $\operatorname{P\Gamma L}\left(2, q^{8}\right)$-equivalent. Then by Proposition 3.3 there exists a field automorphism σ, an invertible matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $\alpha, \beta \in \mathbb{F}_{q^{8}}^{*}$ such that for each $x \in \mathbb{F}_{q^{8}}$ there exists $z \in \mathbb{F}_{q^{8}}$ satisfying

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x^{\sigma}}{\delta^{\sigma} x^{\sigma q}+x^{\sigma q^{7}}}=\binom{z}{\alpha z^{q^{3}}+\beta z^{q^{5}}} .
$$

Equivalently, for each $x \in \mathbb{F}_{q^{8}}$

$$
c x^{\sigma}+d \delta^{\sigma} x^{\sigma q}+d x^{\sigma q^{7}}=\alpha\left(a^{q^{3}} x^{\sigma q^{3}}+\delta^{\sigma q^{3}} b^{q^{3}} x^{\sigma q^{4}}+b^{q^{3}} x^{\sigma q^{2}}\right)+
$$

$$
\beta\left(a^{q^{5}} x^{\sigma q^{5}}+\delta^{\sigma q^{5}} b^{q^{5}} x^{\sigma q^{6}}+b^{q^{5}} x^{\sigma q^{4}}\right)
$$

This is a polynomial identity in x^{σ}. Comparing the coefficients of $x^{q^{2}}$ and $x^{q^{3}}$ we get that $a=b=0$, which is a contradiction.

4 The $L_{s, \delta}^{3, n}$-linear sets in $\operatorname{PG}\left(1, q^{n}\right), n=6,8$

In this section we determine the $\mathcal{Z}(\Gamma L)$-class of the maximum scattered $\mathbb{F}_{q^{-}}$ linear sets of $\mathrm{PG}\left(1, q^{n}\right), n=6,8$, introduced in 5]. According to 5, Section 5 , pg. 7], $U_{s, \delta}^{3, n}$ is $\mathrm{GL}\left(2, q^{n}\right)$-equivalent to $U_{n-s, \delta^{n-s}}^{3, n}$ and to $U_{s+n / 2, \delta^{-1}}^{3, n}$, thus it is enough to study the linear sets $L_{s, \delta}^{3, n}$ with $s<n / 4, \operatorname{gcd}(s, n / 2)=1$ and hence only with $s=1$ for $n=6,8$.

Proposition 4.1. The $\mathcal{Z}(\Gamma \mathrm{L})$-class of L_{g}, with $g(x)=\delta x^{q}+x^{q^{4}}, \delta \neq 0$, is two and hence the $\mathcal{Z}(\Gamma \mathrm{L})$-class of $L_{1, \delta}^{3,6}$ is two as well. Moreover, $L_{1, \delta}^{3,6}$ is a simple linear set.

Proof. Since $g(x)$ and $\hat{g}(x)=\delta^{q^{5}} x^{q^{5}}+x^{q^{2}}$ define the same linear set, we know $L_{g}=L_{\hat{g}}$. Suppose $L_{f}=L_{g}$ for some $f(x)=\sum_{i=0}^{5} a_{i} x^{q^{i}} \in \mathbb{F}_{q^{6}}[x]$. We show that there exists $\lambda \in \mathbb{F}_{q^{6}}^{*}$ such that either $\lambda U_{f}=U_{g}$ or $\lambda U_{f}=U_{\hat{g}}$.

By (1), we obtain $a_{0}=0$ and by (2) with $k=2$ we get $a_{3}=0$. Also, by (2) with $k=1$ and $k=2$, we have

$$
\begin{equation*}
a_{1} a_{5}=0 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{2} a_{4}=0 \tag{10}
\end{equation*}
$$

respectively. By (3) with $k=2$ we get

$$
\begin{equation*}
a_{1}^{q+1} a_{4}^{q^{2}}+a_{2} a_{5}^{q+q^{2}}=\delta^{q+1} \tag{11}
\end{equation*}
$$

From (9), (10) and (11) it follows that either

$$
f(x)=\frac{\delta^{q+1}}{a_{5}^{q+q^{2}}} x^{q^{2}}+a_{5} x^{q^{5}}
$$

or

$$
f(x)=a_{1} x^{q}+\left(\frac{\delta}{a_{1}}\right)^{q^{5}+q^{4}} x^{q^{4}}
$$

In both cases, the determinant of the Dickson matrix associated with $F(Y)=$ $f(x) Y-x\left(\delta Y^{q}+Y^{q^{4}}\right)$ is the zero-polynomial after reducing modulo $x^{q^{6}}-x$
and hence in the first case we obtain $\mathrm{N}_{q^{6} / q}\left(a_{5} / \delta\right)=1$, in the second case $\mathrm{N}_{q^{6} / q}\left(a_{1} / \delta\right)=1$. In the former case $a_{5}=\delta^{q^{5}} \lambda^{q^{5}-1}$ and hence $\lambda U_{f}=U_{\hat{g}}$. In the latter case $a_{1}=\delta \lambda^{q-1}$ implying $\lambda U_{f}=U_{g}$.

This means that the $\mathcal{Z}(\Gamma \mathrm{L})$-class of U_{g} is at most two. Straightforward computation shows that it is exactly two. In case of $L_{1, \delta}^{3,6}$ (and hence with $\left.\mathrm{N}_{q^{6} / q^{3}}(\delta) \neq 1\right)$ it follows from [5, Section 5] that $U_{1, \delta}^{3,6}$ and $U_{5, \delta^{5}}^{3,6}$ are $\Gamma \mathrm{L}\left(2, q^{6}\right)$ equivalent and hence $L_{1, \delta}^{3,6}$ is simple.

Proposition 4.2. The $\mathcal{Z}(\Gamma \mathrm{L})$-class of L_{g}, with $g(x)=\delta x^{q}+x^{q^{5}}, \delta \neq 0$, is two and hence the $\mathcal{Z}(\Gamma \mathrm{L})$-class of $L_{1, \delta}^{3,8}$ is two as well. Moreover, $L_{1, \delta}^{3,8}$ is a simple linear set.
Proof. Since $g(x)=\delta x^{q}+x^{q^{5}}$ and $\hat{g}(x)=\delta^{q^{7}} x^{q^{7}}+x^{q^{3}}$ define the same linear set, we have $L_{g}=L_{\hat{g}}$. Suppose $L_{f}=L_{g}$ for some $f(x)=\sum_{i=0}^{7} a_{i} x^{q^{i}} \in$ $\mathbb{F}_{q^{8}}[x]$. We show that there exists $\lambda \in \mathbb{F}_{q^{8}}^{*}$ such that either $\lambda U_{f}=U_{g}$ or $\lambda U_{f}=U_{\hat{g}}$.

By (1), we obtain $a_{0}=0$ and by (2) with $k=4$ we get $a_{4}=0$. Also, by (2) with $k=1, k=2$ and $k=3$ we get

$$
\begin{equation*}
a_{1} a_{7}=a_{2} a_{6}=a_{3} a_{5}=0 \tag{12}
\end{equation*}
$$

By (3), with $k=2$ we obtain

$$
\begin{equation*}
a_{1}^{q+1} a_{6}^{q^{2}}+a_{2} a_{7}^{q+q^{2}}=0 \tag{13}
\end{equation*}
$$

and with $k=3$ we get

$$
\begin{equation*}
a_{1} a_{2}^{q} a_{5}^{q^{3}}+a_{3} a_{7}^{q} a_{6}^{q^{3}}=0 \tag{14}
\end{equation*}
$$

By (12), first suppose $a_{1}=a_{2}=a_{3}=0$. Proposition 2.3 yields that the determinant of the Dickson matrix associated with

$$
F(Y)=\left(a_{5} x^{q^{5}}+a_{6} x^{q^{6}}+a_{7} x^{q^{7}}\right) Y-x\left(\delta Y^{q}+Y^{q^{5}}\right)
$$

has to be the zero polynomial after reducing modulo $x^{8}-x$. The coefficient of $x^{1+2 q+2 q^{2}+2 q^{3}+q^{4}}$ is $-a_{5}^{q^{4}+q^{5}+q^{6}+q^{7}} \delta^{1+q+q^{2}}$, hence $a_{5}=0$. The coefficient of $x^{1+q+2 q^{2}+2 q^{3}+q^{4}+q^{5}}$ is $-a_{6}^{q^{4}+q^{5}+q^{6}+q^{7}} \delta^{1+q+q^{2}}$, hence $a_{6}=0$. The coefficient of $x^{1+q+q^{2}+2 q^{3}+q^{4}+q^{5}+q^{6}}$ is $-a_{7}^{q^{4}+q^{5}+q^{6}+q^{7}} \delta^{1+q+q^{2}}$, hence $a_{7}=0$, a contradiction.

Now suppose $a_{1}=a_{2}=a_{5}=a_{7}=0$. Again, Proposition 2.3 yields that the determinant of the Dickson matrix associated with

$$
F(Y)=\left(a_{3} x^{q^{3}}+a_{6} x^{q^{6}}\right) Y-x\left(\delta Y^{q}+Y^{q^{5}}\right),
$$

has to be the zero polynomial after reducing modulo $x^{8}-x$. The coefficient of $x^{2+2 q+3 q^{2}+q^{3}}$ is $-a_{3}^{q^{5}+q^{6}+q^{7}} a_{6}^{q^{4}} \delta^{1+q+q^{2}}$, hence $a_{3} a_{6}=0$. We cannot have $a_{3}=0$ because of the previous paragraph, hence $a_{6}=0$, but then the coefficient of $x^{1+2 q+2 q^{2}+2 q^{3}+q^{4}}$ is $-a_{3}^{1+q^{5}+q^{6}+q^{7}} \delta^{q+q^{2}+q^{3}}$. Then again $a_{3}=0$ follows, a contradiction.

Taking into account $L_{f}=L_{\hat{f}}$ and (12), (13), (14), two cases remain: $f(x)=a_{3} x^{q^{3}}+a_{7} x^{q^{7}}$ and $f(x)=a_{1} x^{q}+a_{5} x^{q^{5}}$.

In the former case Proposition 2.3 yields that the determinant of the Dickson matrix associated with

$$
F(Y)=\left(a_{3} x^{q^{3}}+a_{7} x^{q^{7}}\right) Y-x\left(\delta Y^{q}+Y^{q^{5}}\right),
$$

has to the zero polynomial after reducing modulo $x^{8}-x$. The coefficient of $x^{2+2 q+2 q^{2}+2 q^{3}}$ is $a_{3}^{q^{5}+q^{6}+q^{7}} a_{7}^{q^{4}}\left(a_{3} a_{7}^{q+q^{2}+q^{3}}-\delta^{1+q+q^{2}}\right)$, hence

$$
a_{3}=\delta^{1+q+q^{2}} / a_{7}^{q+q^{2}+q^{3}} .
$$

Since the coefficient of $x^{2+q+2 q^{2}+2 q^{3}+q^{5}}$ is

$$
\left(\mathrm{N}_{q^{8} / q}(\delta)-\mathrm{N}_{q^{8} / q}\left(a_{7}\right)\right) \delta^{2+q+q^{2}+q^{6}+2 q^{7}} / a_{7}^{3+2 q+2 q^{2}+q^{3}+q^{5}+q^{6}+2 q^{7}},
$$

which has to be zero and hence it follows that $\mathrm{N}_{q^{8} / q}\left(a_{7} / \delta\right)=1$. Then there exists $\lambda \in \mathbb{F}_{q^{8}}^{*}$ such that $a_{7}=\delta^{q^{7}} \lambda^{q^{7}-1}$ and hence $a_{3}=\lambda^{q^{3}-1}$, i.e. $\lambda U_{f}=U_{\hat{g}}$.

On the other hand, if $f(x)=a_{1} x^{q}+a_{5} x^{q^{5}}$, then the previous paragraph yields that there exists $\lambda \in \mathbb{F}_{q^{8}}^{*}$ such that $\lambda U_{\hat{f}}=U_{\hat{g}}$ and hence $\lambda^{-1} U_{f}=U_{g}$.

Since there is no $\mu \in \mathbb{F}_{q^{8}}^{*}$ such that $U_{g}=\mu U_{\hat{g}}$, it follows that the $\mathcal{Z}(\Gamma L)$ class of U_{g} is exactly two. In case of $L_{1, \delta}^{3,8}$ (and hence with $\mathrm{N}_{q^{8} / q^{4}}(\delta) \neq 1$) it follows from [5, Section 5] that $U_{1, \delta}^{3,8}$ and $U_{7, \delta q^{7}}^{3,8}$ are $\Gamma \mathrm{L}\left(2, q^{8}\right)$-equivalent and hence $L_{1, \delta}^{3,8}$ is simple.

Theorem 4.3. The linear set $L_{1, \delta}^{3, n}, n=6,8$, is not of pseudoregulus type and not $\mathrm{P} \Gamma \mathrm{L}\left(2, q^{n}\right)$-equivalent to $L_{s, \rho}^{2, n}$.

Proof. Since the $\mathbb{F}_{q^{n}}$-linear automorphism group of $U_{1, \delta}^{3, n}$ has order $q^{n / 2}-1$ (cf. [5, Corollary 5.2]), the same arguments as in the proof of Theorem 3.4 can be applied to show that $L_{1, \delta}^{3, n}$ is not of pseudoregulus type.

Suppose that $L_{1, \delta}^{3, n}$ is equivalent to $L_{s, \rho}^{2, n}$ for some $n \in\{6,8\}$. Then by Propositions 3.1, 3.2 , 3.3, there exists $f \in \Gamma L\left(2, q^{n}\right)$ such that either $\left(U_{1, \delta}^{3, n}\right)^{f}=U_{s, \rho}^{2, n}$ or $\left(U_{1, \delta}^{3, n}\right)^{f}=U_{n-s, \rho^{q^{n-s}}}^{2, n}$. This gives a contradiction, since the sizes of the corresponding automorphism groups are different.

5 New maximum scattered linear sets in $\operatorname{PG}\left(1, q^{6}\right)$

In this section we show that L_{g} with $g(x)=x^{q}+x^{q^{3}}+b x^{q^{5}} \in \mathbb{F}_{q^{6}}[x], q$ odd, $q \equiv 0, \pm 1(\bmod 5), b^{2}+b=1$ is a maximum scattered \mathbb{F}_{q}-linear set of $\operatorname{PG}\left(1, q^{6}\right)$ which is not equivalent to any other previously known example. Note that, under these assumptions we have $b \in \mathbb{F}_{q}$.
 only if for each $m \in \mathbb{F}_{q^{6}}$

$$
\frac{x^{q}+x^{q^{3}}+b x^{q^{5}}}{x}=-m
$$

has at most q solutions. Those m which admit exactly q solutions correspond to points $\langle(1,-m)\rangle_{\mathbb{F}_{q^{6}}}$ of L_{g} with weight one. It follows that U_{g} is scattered if and only if for each $m \in \mathbb{F}_{q^{6}}$ the kernel of

$$
r_{m, b}(x):=m x+x^{q}+x^{q^{3}}+b x^{q^{5}}
$$

has dimension less than two, or, equivalently, the Dickson matrix associated with $r_{m, b}(x)$, that is,

$$
D_{m, b}=\left(\begin{array}{llllll}
m & 1 & 0 & 1 & 0 & b \\
b & m^{q} & 1 & 0 & 1 & 0 \\
0 & b & m^{q^{2}} & 1 & 0 & 1 \\
1 & 0 & b & m^{q^{3}} & 1 & 0 \\
0 & 1 & 0 & b & m^{q^{4}} & 1 \\
1 & 0 & 1 & 0 & b & m^{q^{5}}
\end{array}\right)
$$

has rank at least 5 for each $m \in \mathbb{F}_{q^{6}}$.
Denote by $M_{i, j}$ the determinant of the matrix obtained from $D_{m, b}$ by deleting the i-th row and j-th column and consider the two minors:
$M_{6,3}=2-3 b+(b-1)\left(\mathrm{N}_{q^{6} / q^{3}}(m)+\mathrm{N}_{q^{6} / q^{3}}\left(m^{q}\right)\right)+\mathrm{N}_{q^{6} / q^{3}}(m)^{q+1}+(1-b)\left(m^{1+q}-m^{q^{3}+q^{4}}\right)$,
and
$M_{6,4}=2 m-3 b m+2 m^{q^{2}}-3 b m^{q^{2}}+m^{q^{4}}-b m^{q^{4}}+m^{1+q+q^{2}}+b m^{1+q+q^{4}}+b m^{q+q^{2}+q^{4}}$.

Theorem 5.1. If $q \equiv 0, \pm 1(\bmod 5), q$ odd and $b^{2}+b=1\left(\right.$ hence $\left.b \in \mathbb{F}_{q}\right)$, then U_{g} is a maximum scattered \mathbb{F}_{q}-subspace for $g(x)=x^{q}+x^{q^{3}}+b x^{q^{5}}$.

Proof. It is sufficient to show that $M_{6,3}$ and $M_{6,4}$ cannot be both zeros for the same value of $m \in \mathbb{F}_{q^{6}}$. If $m=0$, then $M_{6,3}=2-3 b \neq 0$ since $b=2 / 3$ does not satisfy our condition. First suppose that $M_{6,3}$ vanishes for some $m \in \mathbb{F}_{q^{6}}^{*}$. Then
$m^{1+q}-m^{q^{3}+q^{4}}=\frac{2-3 b+(b-1)\left(\mathrm{N}_{q^{6} / q^{3}}(m)+\mathrm{N}_{q^{6} / q^{3}}\left(m^{q}\right)\right)+\mathrm{N}_{q^{6} / q^{3}}(m)^{q+1}}{b-1}$,
and since the righ-hand side is in $\mathbb{F}_{q^{3}}$, the same follows for the left-hand side, and hence $m^{1+q}-m^{q^{3}+q^{4}}=m^{q^{3}+q^{4}}-m^{1+q}$, from which $m^{1+q} \in \mathbb{F}_{q^{3}}^{*}$ follows. So, if $m^{1+q} \notin \mathbb{F}_{q^{3}}^{*}$, then $r k\left(D_{m, b}\right) \geq 5$. Now, suppose $m^{1+q} \in \mathbb{F}_{q^{3}}^{*}$, then $M_{6,3}$ can be written as
$M_{6,3}=2-3 b+(1-b)\left(-m^{1+q^{3}}-m^{q+q^{4}}\right)+m^{2(1+q)}=\left((1-b)-m^{1+q^{3}}\right)^{q+1}$.
Since $M_{6,3}=0$, we have

$$
\begin{equation*}
1-b=m^{1+q^{3}} \in \mathbb{F}_{q} . \tag{15}
\end{equation*}
$$

Then $m^{\left(q^{3}+1\right)(q+1)}=m^{2(q+1)}=(1-b)^{2}$ and hence either $m^{q+1}=1-b$, or $m^{q+1}=b-1$. In both cases $m^{q+1} \in \mathbb{F}_{q}$ follows. The latter case cannot hold. Indeed by (15) we would get $m^{q^{3}+1}=-m^{q+1}$, so $m^{q^{2}}=-m$, which holds only if $m \in \mathbb{F}_{q^{4}} \cap \mathbb{F}_{q^{6}}=\mathbb{F}_{q^{2}}$, a contradiction. In the former case, by (15) we obtain $m^{q^{3}+1}=m^{q+1}$, so $m \in \mathbb{F}_{q^{2}}$. It follows that, taking $m^{1+q}=1-b=b^{2}$ into account, $M_{6,4}=4 m(1-b)$, which cannot be zero.

Similarly to the proof of [5, Proposition 5.2] it is easy to prove the following result.

Proposition 5.2. The linear automorphism group of U_{g} (defined as in Theorem (5.1) is

$$
\mathcal{G}=\left\{\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{q}
\end{array}\right): \lambda \in \mathbb{F}_{q^{2}}^{*}\right\} .
$$

Proposition 5.3. The maximum scattered \mathbb{F}_{q}-subspace U_{g} defined in Theorem 5.1 is not $\Gamma \mathrm{L}\left(2, q^{6}\right)$-equivalent to the \mathbb{F}_{q}-subspaces $U_{s}^{1,6}, U_{t, \rho}^{2,6}$ and $U_{h, \xi}^{3,6}$.

Proof. As in the proof of Theorem 3.4, the size of the linear automorphism group of U_{g} is different from the size of the group of $U_{s}^{1,6}$ and of $U_{h, \xi}^{3,6}$ (cf. Introduction), hence it remains to show that U_{g} is not $\Gamma \mathrm{L}\left(2, q^{6}\right)$-equivalent to $U_{t, \rho}^{2,6}$.

Since any $\mathbb{F}_{q^{-}}$-subspace of the form $U_{5, \eta}^{2,6}$ is $\operatorname{GL}\left(2, q^{6}\right)$-equivalent to $U_{1, \rho}^{2,6}$ for some ρ, it is enough to show that U_{g} and $U_{t, \rho}^{2,6}$ lie on different orbits of $\Gamma \mathrm{L}\left(2, q^{6}\right)$. Suppose the contrary, then there exist $\sigma \in \operatorname{Aut}\left(\mathbb{F}_{q^{6}}\right)$ and an invertible matrix $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ such that for each $x \in \mathbb{F}_{q^{6}}$ there exists $z \in \mathbb{F}_{q^{6}}$ satisfying

$$
\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\binom{x^{\sigma}}{\rho^{\sigma} x^{\sigma q}+x^{\sigma q^{5}}}=\binom{z}{z^{q}+z^{q^{3}}+b z^{q^{5}}} .
$$

Equivalently, for each $x \in \mathbb{F}_{q^{6}}$ we have

$$
\begin{gathered}
\gamma x^{\sigma}+\delta\left(\rho^{\sigma} x^{\sigma q}+x^{\sigma q^{5}}\right)=\alpha^{q} x^{\sigma q}+\beta^{q}\left(\rho^{\sigma q} x^{\sigma q^{2}}+x^{\sigma}\right)+ \\
+\alpha^{q^{3}} x^{\sigma q^{3}}+\beta^{q^{3}}\left(\rho^{\sigma q^{3}} x^{\sigma q^{4}}+x^{\sigma q^{2}}\right)+b\left(\alpha^{q^{5}} x^{\sigma q^{5}}+\beta^{q^{5}}\left(\rho^{\sigma q^{5}} x^{\sigma}+x^{\sigma q^{4}}\right)\right) .
\end{gathered}
$$

This is a polynomial identity in x^{σ}. Comparing coefficients we get $\alpha=\delta=0$ and

$$
\left\{\begin{array}{l}
\beta^{q} \rho^{\sigma q}+\beta^{q^{3}}=0, \\
\beta^{q^{3}} \rho^{\sigma q^{3}}+b \beta^{q^{5}}=0
\end{array}\right.
$$

Subtracting the second equation from the q^{2}-th power of the first gives $\beta^{q^{5}}(1-b)=0$, and hence $\beta=0$, a contradiction.

Theorem 5.4. The maximum scattered \mathbb{F}_{q}-linear set L_{g} of $\mathrm{PG}\left(1, q^{6}\right)$, where g is defined in Theorem 5.1, is not $\mathrm{P} \Gamma \mathrm{L}\left(2, q^{6}\right)$-equivalent to any any other previously known maximum scattered \mathbb{F}_{q}-linear set.

Proof. We have to confront L_{g} with $L_{s}^{1,6}, L_{t, \rho}^{2,6}$ and $L_{h, \xi}^{3,6}$. Suppose that L_{g} is equivalent to one of these linear sets, then by [14] and by Propositions 3.1 and 4.1, respectively, there exists $\varphi \in \Gamma \mathrm{L}\left(2, q^{n}\right)$ such that U_{g}^{φ} equals one of $U_{s}^{1,6}, U_{t, \rho}^{2,6}$ and $U_{h, \xi}^{3,6}$, a contradiction by Proposition 5.3.

For the sake of completeness we show that the $\mathcal{Z}(\Gamma \mathrm{L})$-class of L_{g}, defined as in Theorem 5.1, is one.

Proposition 5.5. The $\mathcal{Z}(\Gamma \mathrm{L})$-class of L_{g} of $\mathrm{PG}\left(1, q^{6}\right)$, where $g(x)=x^{q}+$ $x^{q^{3}}+b x^{q^{5}}$, is at most two if $b \neq 0$.
Proof. Since $g(x)$ and $\hat{g}(x)=b^{q} x^{q}+x^{q^{3}}+x^{q^{5}}$ define the same linear set, we know $L_{g}=L_{\hat{g}}$. Suppose $L_{f}=L_{g}$ for some $f(x)=\sum_{i=0}^{5} a_{i} x^{q^{i}} \in \mathbb{F}_{q^{6}}[x]$. We show that there exists $\lambda \in \mathbb{F}_{q^{6}}^{*}$ such that either $\lambda U_{f}=U_{g}$ or $\lambda U_{f}=U_{\hat{g}}$.

By (1) we obtain $a_{0}=0$, by (2) with $k=1,3$ we have

$$
a_{1} a_{5}^{q}=b^{q}
$$

and

$$
\begin{equation*}
a_{3}^{q^{3}+1}=1 . \tag{16}
\end{equation*}
$$

By (3), with $k=2$ we have

$$
a_{1}^{q+1} a_{4}^{q^{2}}+a_{2} a_{5}^{q+q^{2}}=0
$$

and taking this into account, together with (2) applied for $k=2$ we obtain $a_{2}=a_{4}=0$.

Using Proposition 2.3, we get that the determinant of the Dickson matrix associated to the q-polynomial

$$
F(Y)=\left(a_{1} x^{q}+a_{3} x^{q^{3}}+a_{5} x^{q^{5}}\right) Y-x\left(Y^{q}+Y^{q^{3}}+b Y^{q^{5}}\right)
$$

is the zero-polynomial modulo $x^{q^{6}}-x$. Substituting $a_{1}=\left(b / a_{5}\right)^{q}$ it turns out that the coefficient of $x^{1+q+2 q^{4}+2 q^{5}}$ in the reduced form of this determinant is

$$
\begin{gathered}
a_{3}^{q^{2}} a_{5}^{-1-q-q^{4}-q^{5}}\left(a_{3}^{q^{3}} a_{5}^{2+q+q^{4}+2 q^{5}}\left(a_{3}^{q+q^{4}}-1\right)-\right. \\
\left.\left(a_{5}^{1+q+q^{5}}-a_{3}^{q}\right) b^{1+q+q^{5}}+a_{3}^{q^{4}} a_{5}^{2+2 q+2 q^{5}}-a_{5}^{1+q+q^{5}}\right) .
\end{gathered}
$$

Applying $a_{3}^{q^{3}+1}=1$, it follows that
$\left(a_{3}^{q}-a_{5}^{1+q+q^{5}}\right) b^{1+q+q^{5}}=a_{5}^{1+q+q^{5}}-a_{3}^{q^{4}} a_{5}^{2+2 q+2 q^{5}}=\left(a_{3}^{q}-a_{5}^{1+q+q^{5}}\right) a_{3}^{q^{4}} a_{5}^{1+q+q^{5}}$.
If $a_{3}^{q}=a_{5}^{1+q+q^{5}}$, then (16) yields $\mathrm{N}_{q^{6} / q}\left(a_{5}\right)=1$, and hence there exists $\lambda \in \mathbb{F}_{q^{6}}^{*}$ such that $a_{5}=\lambda^{q^{5}-1}$. It is easy to see that in this case $\lambda U_{f}=U_{\hat{g}}$.

Now suppose $a_{3}^{q} \neq a_{5}^{1+q+q^{5}}$ and hence $b^{1+q+q^{5}}=a_{3}^{q^{4}} a_{5}^{1+q+q^{5}}$. Taking $\left(q^{3}+1\right)$-th powers yields $\mathrm{N}\left(b / a_{5}\right)=1$ and hence there exists $\lambda \in \mathbb{F}_{q^{6}}^{*}$ such that $a_{5}=b \lambda^{q^{5}-1}$. It is easy to see that in this case $\lambda U_{f}=U_{g}$.

Corollary 5.6. The $\mathcal{Z}(\Gamma \mathrm{L})$-class of L_{g} of $\mathrm{PG}\left(1, q^{6}\right)$, where $g(x)=x^{q}+$ $x^{q^{3}}+b x^{q^{5}}$, is two if $b^{2}+b=1$. In particular, it is two if g is defined as in Theorem 5.1.

Proof. If $\lambda U_{g}=U_{\hat{g}}$ for some $\lambda \in \mathbb{F}_{q^{6}}$, then $\lambda g(x)=\hat{g}(\lambda x)$ for each $x \in \mathbb{F}_{q^{6}}^{*}$ and hence comparing coefficients gives $b^{q} \lambda^{q-1}=1$ and $\lambda^{q^{3}-1}=1$. Then $b=\lambda^{q^{2}-1}$ and hence $\mathrm{N}_{q^{6} / q^{2}}(b)=1$. Also, $b \in \mathbb{F}_{q^{2}}$ from which $b^{3}=1$ follows, contradicting $b^{2}+b=1$.

6 New MRD-codes

The set of $m \times n$ matrices $\mathbb{F}_{q}^{m \times n}$ over \mathbb{F}_{q} is a rank metric \mathbb{F}_{q}-space with rank metric distance defined by $d(A, B)=r k(A-B)$ for $A, B \in \mathbb{F}_{q}^{m \times n}$. A subset $\mathcal{C} \subseteq \mathbb{F}_{q}^{m \times n}$ is called a rank distance code (RD-code for short). The minimum distance of \mathcal{C} is

$$
d(C)=\min _{A, B \in \mathcal{C}, A \neq B}\{d(A, B)\}
$$

In [11] the Singleton bound for an $m \times n$ rank metric code \mathcal{C} with minimum rank distance d was proved:

$$
\# \mathcal{C} \leq q^{\max \{m, n\}(\min \{m, n\}-d+1)}
$$

If this bound is achieved, then \mathcal{C} is an MRD-code.
When \mathcal{C} is an \mathbb{F}_{q}-linear subspace of $\mathbb{F}_{q}^{m \times n}$, we say that \mathcal{C} is an \mathbb{F}_{q}-linear code and the dimension $\operatorname{dim}_{q}(\mathcal{C})$ is defined to be the dimension of \mathcal{C} as a subspace over \mathbb{F}_{q}. If d is the minimum distance of \mathcal{C} we say that \mathcal{C} has parameters ($m, n, q ; d$).

We will use the following equivalence definition for codes of $\mathbb{F}_{q}^{m \times m}$. If \mathcal{C} and \mathcal{C}^{\prime} are two codes then they are equivalent if and only if there exist two invertible matrices $A, B \in \mathbb{F}_{q}^{m \times m}$ and a field automorphism σ such that $\left\{A C^{\sigma} B: C \in \mathcal{C}\right\}=\mathcal{C}^{\prime}$, or $\left\{A C^{T \sigma} B: C \in \mathcal{C}\right\}=\mathcal{C}^{\prime}$, where T denotes transposition. The code \mathcal{C}^{T} is also called the adjoint of \mathcal{C}.

In [23, Section 5] Sheekey showed that scattered \mathbb{F}_{q}-linear sets of $\mathrm{PG}\left(1, q^{n}\right)$ of rank n yield \mathbb{F}_{q}-linear MRD-codes with parameters $(n, n, q ; n-1)$. We briefly recall here the construction from [23]. Let $U_{f}=\left\{(x, f(x)): x \in \mathbb{F}_{q^{n}}\right\}$ for some q-polynomial $f(x)$. Then, after fixing an \mathbb{F}_{q}-bases $\left\{b_{1}, \ldots, b_{n}\right\}$ for $\mathbb{F}_{q^{n}}$ we can define an isomorphism between the rings $\operatorname{End}\left(\mathbb{F}_{q^{n}}, \mathbb{F}_{q}\right)$ and $\mathbb{F}_{q}^{n \times n}$. More precisely, to $f \in \operatorname{End}\left(\mathbb{F}_{q^{n}}, \mathbb{F}_{q}\right)$ we associate the matrix M_{f} of $\mathbb{F}_{q}^{n \times n}$ with
i-th column $\left(a_{1, i}, \ldots, a_{n, i}\right)^{T}$, where $f\left(b_{i}\right)=\sum_{j=1}^{n} a_{j, i} b_{j} \sqrt[3]{ }$ In this way the set

$$
\mathcal{C}_{f}:=\left\{x \mapsto a f(x)+b x: a, b \in \mathbb{F}_{q^{n}}\right\}
$$

corresponds to a set of $n \times n$ matrices over \mathbb{F}_{q} forming an \mathbb{F}_{q}-linear MRDcode with parameters $(n, n, q ; n-1)$. Also, since \mathcal{C}_{f} is an $\mathbb{F}_{q^{n}}$-subspace of $\operatorname{End}\left(\mathbb{F}_{q^{n}}, \mathbb{F}_{q}\right)$, its middle nucleus $\mathcal{N}(\mathcal{C})$ (cf. [21], or [16] where the term left idealiser was used) is the set of scalar maps $\mathcal{F}_{n}:=\left\{x \in \mathbb{F}_{q^{n}} \mapsto \alpha x \in\right.$ $\left.\mathbb{F}_{q^{n}}: \alpha \in \mathbb{F}_{q^{n}}\right\}$, i.e. $\mathcal{N}\left(\mathcal{C}_{f}\right) \cong \mathbb{F}_{q^{n}}$. Note that equivalent codes have isomorphic middle nuclei. For further details see [5, Section 6].

Let \mathcal{C}_{f} and \mathcal{C}_{h} be two MRD-codes arising from maximum scattered subspaces U_{f} and U_{h} of $\mathbb{F}_{q^{n}} \times \mathbb{F}_{q^{n}}$. In [23, Theorem 8] the author showed that there exist invertible matrices A, B and $\sigma \in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$ such that $A \mathcal{C}_{f}^{\sigma} B=\mathcal{C}_{h}$ if and only if U_{f} and U_{h} are $\Gamma \mathrm{L}\left(2, q^{n}\right)$-equivalent.

Theorem 6.1. The \mathbb{F}_{q}-linear $M R D$-code \mathcal{C}_{g} arising from the maximum scattered \mathbb{F}_{q}-subspace U_{g}, g as in Theorem 5.1, with parameters $(6,6, q ; 5)$ and with middle nucleus isomorphic to $\mathbb{F}_{q^{6}}$ is not equivalent to any previously known MRD-code.

Proof. From [5, Section 6], the previously known \mathbb{F}_{q}-linear MRD-codes with parameters $(6,6, q ; 5)$ and with middle nucleus isomorphic to $\mathbb{F}_{q^{6}}$, up to equivalence, arise from one of the following maximum scattered subspaces of $\mathbb{F}_{q^{6}} \times \mathbb{F}_{q^{6}}: U_{s}^{1,6}, U_{s, \delta}^{2,6}, U_{s, \delta}^{3,6}$. From Proposition 5.3 the result follows.

Acknowledgments

The first author is very grateful for the hospitality of the Department of Mathematics and Physics, University of Campania "Luigi Vanvitelli", Caserta, Italy, where he was a visiting researcher for 3 months during the development of this research. The third author also thanks for the hospitality of the Institute of Mathematics, Eötvös Loránd University, Budapest, Hungary, where he spent 3 months as a PhD student during this work.

References

[1] D. Bartoli, M. Giulietti, G. Marino and O. Polverino: Maximum scattered linear sets and complete caps in Galois spaces, to appear in Combinatorica. DOI: 10.1007/s00493-016-3531-6.

[^2][2] A. Blokhuis and M. Lavrauw: Scattered spaces with respect to a spread in PG($n, q)$, Geom. Dedicata 81 (2000), 231-243.
[3] B. Csajbók, G. Marino and O. Polverino: Classes and equivalence of linear sets in $\operatorname{PG}\left(1, q^{n}\right)$, https://arxiv.org/abs/1607.06962.
[4] B. Csajbók, G. Marino and O. Polverino: Linear sets of rank 5 in $\operatorname{PG}\left(1, q^{5}\right)$. Manuscript.
[5] B. Csajbók, G. Marino, O. Polverino and C. Zanella: A new family of MRD-codes, https://arxiv.org/abs/1707.08487.
[6] B. Csajbók, G. Marino, O. Polverino and F. Zullo: Maximum scattered linear sets and MRD-codes. J. Algebraic. Combin. (2017), 1$15, \mathrm{DOI}: 10.1007 / \mathrm{s} 10801-017-0762-6$.
[7] B. Csajbók and C. Zanella: On the equivalence of linear sets, Des. Codes Cryptogr. 81 (2016), 269-281.
[8] B. Csajbók and C. Zanella: On linear sets of pseudoregulus type in PG(1, $\left.q^{t}\right)$, Finite Fields Appl. 41 (2016), 34-54.
[9] B. Csajbók And C. Zanella: Maximum scattered $\mathbb{F}_{q^{-}}$ linear sets of $\operatorname{PG}\left(1, q^{4}\right)$, to appear in Discrete Math., https://arxiv.org/abs/1705.00731, May 2017.
[10] J. de la Cruz, M. Kiermaier, A. Wasserman and W. Williems: Algebraic structures of MRD Codes, http://arxiv.org/abs/1502.02711, Jan 2015.
[11] P. Delsarte: Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A 25 (1978), 226-241.
[12] E. Gabidulin: Theory of codes with maximum rank distance, Problems of information transmission, 21(3) (1985), 3-16.
[13] M. Lavrauw: Scattered spaces in Galois Geometry, Contemporary Developments in Finite Fields and Applications, 2016, 195-216.
[14] M. Lavrauw, J. Sheekey and C. Zanella: On embeddings of minimum dimension of $\mathrm{PG}(n, q) \times \mathrm{PG}(n, q)$, Des. Codes Cryptogr. 74. n. 2 (2015), 427-440.
[15] M. Lavrauw and G. Van de Voorde: On linear sets on a projective line, Des. Codes Cryptogr. 56 (2010), 89-104.
[16] D. Liebhold and G. Nebe: Automorphism groups of Gabidulin-like codes, Archiv der Mathematik 107 (4) (2016), 355-366.
[17] G. Lunardon: MRD-codes and linear sets, J. Combin. Theory Ser. A 149 (2017), 1-20.
[18] G. Lunardon: Normal spreads, Geom. Dedicata 75 (1999), 245-261.
[19] G. Lunardon and O. Polverino: Blocking Sets and Derivable Partial Spreads, J. Algebraic Combin. 14 (2001), 49-56.
[20] G. Lunardon, R. Trombetti and Y. Zhou: Generalized Twisted Gabidulin Codes, http://arxiv.org/abs/1507.07855.
[21] G. Lunardon, R. Trombetti and Y. Zhou: On kernels and nuclei of rank metric codes, J. Algebraic Combin., to appear. DOI 10.1007/s10801-017-0755-5.
[22] O. Polverino: Linear sets in finite projective spaces, Discrete Math. 310 (2010), 3096-3107.
[23] J. Sheekey: A new family of linear maximum rank distance codes, Adv. Math. Commun. 10(3) (2016), 475-488.
[24] B. Wu and Z. Liu:, Linearized polynomials over finite fields revisited, Finite Fields Appl. 22 (2013), 79-100.

Bence Csajbók
MTA-ELTE Geometric and Algebraic Combinatorics Research Group
ELTE Eötvös Loránd University, Budapest, Hungary
Department of Geometry
1117 Budapest, Pázmány P. stny. 1/C, Hungary
csajbokb@cs.elte.hu
Giuseppe Marino, Ferdinando Zullo
Dipartimento di Matematica e Fisica,
Università degli Studi della Campania "Luigi Vanvitelli",
Viale Lincoln 5, I- 81100 Caserta, Italy
giuseppe.marino@unicampania.it, ferdinando.zullo@unicampania.it

[^0]: *The research was supported by Ministry for Education, University and Research of Italy MIUR (Project PRIN 2012 "Geometrie di Galois e strutture di incidenza") and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INdAM).

[^1]: ${ }^{1}$ This condition implies $q \neq 2$.
 ${ }^{2}$ Also here $q>2$, otherwise $L_{s, \delta}^{3, n}$ is not scattered.

[^2]: ${ }^{3}$ In the paper 21 the anti-isomorphism $f \mapsto M_{f}^{T}$ is considered.

