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7 New maximum scattered linear sets of the

projective line

Bence Csajbók, Giuseppe Marino and Ferdinando Zullo∗

Abstract

In [2] and [19] are presented the first two families of maximum
scattered Fq-linear sets of the projective line PG(1, qn). More recently
in [23] and in [5], new examples of maximum scattered Fq-subspaces
of V (2, qn) have been constructed, but the equivalence problem of the
corresponding linear sets is left open.

Here we show that the Fq-linear sets presented in [23] and in [5],
for n = 6, 8, are new. Also, for q odd, q ≡ ±1, 0 (mod 5), we present
new examples of maximum scattered Fq-linear sets in PG(1, q6), arising
from trinomial polynomials, which define new Fq-linear MRD-codes of
F
6×6

q
with dimension 12, minimum distance 5 and middle nucleus (or

left idealiser) isomorphic to Fq6 .

AMS subject classification: 51E20, 51E22, 05B25

Keywords: linear set, scattered subspace, MRD-code

1 Introduction

Linear sets are natural generalisations of subgeometries. Let Λ = PG(W,Fqn)
= PG(r−1, qn), where W is a vector space of dimension r over Fqn . A point
set L of Λ is said to be an Fq-linear set of Λ of rank k if it is defined by the
non-zero vectors of a k-dimensional Fq-vector subspace U of W , i.e.

L = LU = {〈u〉Fqn
: u ∈ U \ {0}}.

∗The research was supported by Ministry for Education, University and Research of
Italy MIUR (Project PRIN 2012 ”Geometrie di Galois e strutture di incidenza”) and by
the Italian National Group for Algebraic and Geometric Structures and their Applications
(GNSAGA - INdAM).
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The maximum field of linearity of an Fq-linear set LU is Fqt if t | n is the
largest integer such that LU is an Fqt-linear set. Two linear sets LU and LW

of PG(r−1, qn) are said to be PΓL-equivalent (or simply equivalent) if there

is an element φ in PΓL(r, qn) such that Lφ
U = LW . It may happen that two

Fq–linear sets LU and LW of PG(r − 1, qn) are equivalent even if the two
Fq-vector subspaces U and W are not in the same orbit of ΓL(r, qn) (see [7]
and [3] for further details). In the recent years, starting from the paper [18]
by Lunardon, linear sets have been used to construct or characterise various
objects in finite geometry, such as blocking sets and multiple blocking sets
in finite projective spaces, two-intersection sets in finite projective spaces,
translation spreads of the Cayley Generalized Hexagon, translation ovoids of
polar spaces, semifield flocks and finite semifields. For a survey on linear sets
we refer the reader to [22], see also [13]. It is clear that in the applications it
is crucial to have methods to decide whether two linear sets are equivalent
or not.

In this paper we focus on maximum scattered Fq-linear sets of PG(1, qn)
with maximum field of linearity Fq, that is, Fq-linear sets of rank n of
PG(1, qn) of size (qn − 1)/(q − 1). If LU is a maximum scattered Fq-linear
set, then U is a maximum scattered Fq-subspace.

If 〈(0, 1)〉Fqn
is not contained in the linear set LU of rank n of PG(1, qn)

(which we can always assume after a suitable projectivity), then U = Uf :=

{(x, f(x)) : x ∈ Fqn} for some q-polynomial f(x) =
∑n−1

i=0 aix
qi ∈ Fqn [x].

In this case we will denote the associated linear set by Lf . The known
non-equivalent (under ΓL(2, qn)) maximum scattered Fq-subspaces are

1. U1,n
s := {(x, xq

s
) : x ∈ Fqn}, 1 ≤ s ≤ n− 1, gcd(s, n) = 1 ([2, 8]),

2. U2,n
s,δ := {(x, δxq

s
+ xq

n−s
) : x ∈ Fqn}, n ≥ 4, Nqn/q(δ) /∈ {0, 1} 1,

gcd(s, n) = 1 ([19] for s = 1, [23, 20] for s 6= 1),

3. U3,n
s,δ := {(x, δxq

s
+ xq

s+n/2
) : x ∈ Fqn}, n ∈ {6, 8}, gcd(s, n/2) = 1,

Nqn/qn/2(δ) /∈ {0, 1}, for the precise conditions on δ and q see [5, The-

orems 7.1 and 7.2] 2.

The stabilisers of the Fq-subspaces above in the group GL(2, qn) were
determined in [5, Sections 5 and 6]. They have the following orders:

1. for U1,n
s we have a group of order qn − 1,

1This condition implies q 6= 2.
2Also here q > 2, otherwise L

3,n
s,δ is not scattered.
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2. for U2,n
s,δ we have a group of order q2 − 1,

3. for U3,n
s,δ we have a group of order qn/2 − 1.

It is known, that for n = 3 the maximum scattered Fq-spaces of V (2, q3)

are ΓL(2, q3)-equivalent to U1,3
1 (cf. [15]), and for n = 4 they are GL(2, q4)-

equivalent either to U1,4
1 or to U2,4

1,δ (cf. [9]).

To make notation easier, by Li,n
s and Li,n

s,δ we will denote the Fq-linear

set defined by U i,n
s and U i,n

s,δ , respectively. The Fq-linear sets equivalent to

L1,n
s are called of pseudoregulus type. It is easy to see that L1,n

1 = L1,n
s for

any s with gcd(s, n) = 1 and that U2,n
s,δ is GL(2, qn)-equivalent to U2,n

n−s,δ−1 .

In [19, Theorem 3] Lunardon and Polverino proved that L2,n
1,δ and L1,n

1

are not PΓL(2, qn)-equivalent when q > 3, n ≥ 4. For n = 5, in [4] it is
proved that L2,5

2,δ is PΓL(2, q5)-equivalent neither to L2,5
1,δ′ nor to L1,5

1 .

In the first part of this paper we prove that for n = 6, 8 the linear sets
L1,n
1 , L2,n

s,δ and L3,n
s′,δ′ are pairwise non-equivalent for any choice of s, s′, δ, δ′.

In the second part of this paper we prove that the Fq-linear set defined
by

U4
b := {(x, xq + xq

3

+ bxq
5

) : x ∈ Fq6}

with b2+b = 1, q ≡ 0,±1 (mod 5) is maximum scattered in PG(1, q6) and it
is not PΓL(2, q6)-equivalent to any previously known example. Connections
between scattered Fq-subspaces and MRD-codes have been investigated in
[23, 6, 17]. Using the relation found in [23] we also present new examples of
such codes.

2 Classes of Fq-linear sets of rank n of PG(1, qn) and
preliminary results

For α ∈ Fqn and a divisor h of n we will denote by Nqn/qh(α) the norm of α

over the subfield Fqh , that is, Nqn/qh(α) = α1+qh+...+qn−h
.

By [1, 3] for f(x) =
∑n−1

i=0 aix
qi and f̂(x) =

∑n−1
i=0 aq

n−i

i xq
n−i

, the Fq-

subspaces Uf = {(x, f(x)) : x ∈ Fqn} and Uf̂ = {(x, f̂(x)) : x ∈ Fqn} define

the same linear set of PG(1, qn). On the other hand Uf and Uf̂ are not

necessarily ΓL(2, qn)-equivalent (see [3, Section 3.2]) and this motivates the
following definitions.
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Definition 2.1. ([3]) Let LU be an Fq−linear set of PG(W,Fqn) = PG(1, qn)
of rank n with maximum field of linearity Fq.

We say that LU is of ΓL-class s if s is the greatest integer such that
there exist Fq−subspaces U1, . . . , Us of W with LUi = LU for i ∈ {1, . . . , s}

and there is no f ∈ ΓL(2, qn) such that Ui = Uf
j for each i 6= j, i, j ∈

{1, 2, . . . , s}. If LU has ΓL-class one, then LU is said to be simple.
We say that LU is of Z(ΓL)-class r if r is the greatest integer such

that there exist Fq-subspaces U1, U2, . . . , Ur of W with LUi = LU for i ∈
{1, 2, . . . , r} and Ui 6= λUj for each λ ∈ F

∗
qn and for each i 6= j, i, j ∈

{1, 2, . . . , r}.

Result 2.2. ([3, Prop. 2.6]) Let LU be an Fq-linear set of PG(1, qn) of rank
n with maximum field of linearity Fq and let ϕ be a collineation of PG(1, qn).
Then LU and Lϕ

U have the same Z(ΓL)-class and ΓL-class. Also, the ΓL-
class of an Fq-linear set cannot be greater than its Z(ΓL)-class.

For a q-polynomial f(x) =
∑n−1

i=0 aix
qi over Fqn let Df denote the asso-

ciated Dickson matrix (or q-circulant matrix )

Df :=











a0 a1 . . . an−1

aqn−1 aq0 . . . aqn−2
...

...
...

...

aq
n−1

1 aq
n−1

2 . . . aq
n−1

0











.

The rank of the matrix Df equals the rank of the Fq-linear map f , see for
example [24].

We will use the following results.

Proposition 2.3. Let f and g be two q-polynomials over Fqn. Then Lf ⊆ Lg

if and only if
xq

n
− x | detDF (Y )(x) ∈ Fqn [x],

where F (Y ) = f(x)Y − g(Y )x. In particular, if deg detDF (Y )(x) < qn, then
Lf ⊆ Lg if and only if detDF (Y )(x) is the zero polynomial.

Proof. Lf ⊆ Lg if and only if

{

f(x)

x
: x ∈ F

∗
qn

}

⊆

{

g(x)

x
: x ∈ F

∗
qn

}

,

which means that
g(y)

y
=

f(x)

x
can be solved in y if we fix x ∈ F

∗
qn . Fix

x ∈ F
∗
qn , then the q-polynomial F (Y ) = f(x)Y − g(Y )x has rank less than
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n since it has a non-zero solution. Since the Dickson matrix DF (Y )(x) of
F (Y ) has the same rank as F (Y ), it follows that detDF (Y )(x) = 0 for each

x. It follows that xq
n
− x | detDF (Y )(x).

Lemma 2.4. [3, Lemma 3.6] Let f(x) =

n−1
∑

i=0

aix
qi and g(x) =

n−1
∑

i=0

bix
qi be

two q-polynomials over Fqn such that Lf = Lg. Then

a0 = b0, (1)

for k = 1, 2, . . . , n− 1 it holds that

aka
qk

n−k = bkb
qk

n−k, (2)

for k = 2, 3, . . . , n− 1 it holds that

a1a
q
k−1a

qk

n−k + aka
q
n−1a

qk

n−k+1 = b1b
q
k−1b

qk

n−k + bkb
q
n−1b

qk

n−k+1. (3)

3 The L
2,n
s,δ -linear sets in PG(1, qn), n = 6, 8

In this section we determine the Z(ΓL)-class of the maximum scattered Fq-
linear sets of PG(1, qn), n = 6, 8, introduced by Lunardon and Polverino,
and generalised by Sheekey. Recall that U2,n

s,δ is GL(2, qn)-equivalent to

U2,n
n−s,δ−1 , thus it is enough to study the linear sets L2,n

s,δ with s < n/2 and

gcd(s, n) = 1.

Proposition 3.1. If n = 6, then the Z(ΓL)-class of L2,6
1,δ is two.

Proof. Since g(x) = δxq + xq
5

and ĝ(x) = δq
5

xq
5

+xq define the same linear
set, we know L2,6

1,δ = L2,6

5,δq5
. Suppose Lf = L2,6

1,δ for some f(x) =
∑5

i=0 aix
qi ∈

Fq6 [x]. We show that there exists λ ∈ F
∗
q6 such that either λUf = U2,6

1,δ or

λUf = U2,6

5,δq5
.

By (1) we obtain a0 = 0, by (2) with k = 1, 3 we have

a1a
q
5 = δ (4)

and a3 = 0, respectively. Also, with k = 2 in (2) and (3), taking (4) into
account, we get a2 = a4 = 0.
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By Proposition (2.3) we get that the Dickson matrix associated to the
q-polynomial

F (Y ) =

(

δ

aq5
xq + a5x

q5
)

Y − x
(

δY q + Y q5
)

has zero determinant for each x ∈ Fq6 . Direct computation shows that this
determinant is

Nq6/q(x/a5)
(

Nq6/q(a5)− 1
) (

Nq6/q(a5)−Nq6/q(δ)
)

,

which has degree less than q6, thus it is the zero polynomial. We have two
possibilities:

1. If Nq6/q(a5) = 1, then putting a5 = λq5−1 we obtain λUf = U2,6
1,δ .

2. If Nq6/q(a5/δ) = 1, then choosing a5 = δq
5

λq5−1 we get λUf = U2,6

5,δq5
.

Because of the choice of δ, that is Nq6/q(δ) 6= 1, it follows that there is no

µ ∈ Fq6 such that µU2,6
1,δ = U2,6

5,δq5
and this proves that the Z(ΓL)-class of

L2,6
1,δ is exactly two.

Proposition 3.2. If n = 8, then the Z(ΓL)-class of L2,8
1,δ is two.

Proof. Since g(x) = δxq + xq
7

and ĝ(x) = δq
7

xq
7

+xq define the same linear
set, we have L2,8

1,δ = L2,8

7,δq7
. Suppose Lf = L2,8

1,δ for some f(x) =
∑7

i=0 aix
qi ∈

Fq8 [x]. We show that there exists λ ∈ F
∗
q8 such that either λUf = U2,8

1,δ or

λUf = U2,8

7,δq7
.

By (1) we obtain a0 = 0, by (2) with k = 1 we have

a1a
q
7 = δ (5)

and with k = 4 we get a4 = 0. Putting k = 2 in (2) and (3), taking (5) into
account, we get a2 = a6 = 0. By (2) with k = 3 we have a3a5 = 0.

If a3 = 0, then f(x) = a1x
q+a5x

q5+a7x
q7 . Using Proposition 2.3, we get

that the determinant of the Dickson matrix associated to the q-polynomial

F (Y ) = (a1x
q + a5x

q5 + a7x
q7)Y − x(a1a

q
7Y

q + Y q7)

is divisible by xq
8

− x. The coefficient of x2(1+q+q2+q3) after reducing the

determinant modulo xq
8

− x is a1+q+q2+q7

1 aq
3+q4+q5+q6

5 , which is zero only
when a5 = 0 by (5).
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On the other hand, if a5 = 0, then Lf = Lf̂ gives a3 = 0.

Then f(x) =
δ

aq7
xq+a7x

q7 . By Proposition 2.3, arguing as in the previous

proof,
Nq8/q(x/a7)

(

Nq8/q(a7)− 1
) (

Nq8/q(a7)−Nq8/q(δ)
)

is the zero polynomial. We have two possibilities:

1. If Nq8/q(a7) = 1, then putting a7 = λq7−1, we obtain λUf = U2,8
1,δ .

2. If Nq8/q(a7/δ) = 1, then choosing a7 = δq
7

λq7−1 we have λUf = U2,8

7,δq7
.

Because of the choice of δ, that is Nq8/q(δ) 6= 1, it follows that there is no

µ ∈ Fq8 such that µU2,8
1,δ = U2,8

7,δq7
and this proves that the Z(ΓL)-class of

L2,8
1,δ is exactly two.

Proposition 3.3. If n = 8, then the Z(ΓL)-class of L2,8
3,δ is two.

Proof. Since g(x) = δxq
3

+ xq
5

and ĝ(x) = δq
5

xq
5

+ xq
3

define the same
linear set, we know L2,8

3,δ = L2,8

5,δq5
. Suppose Lf = L2,8

3,δ for some f(x) =
∑7

i=0 aix
qi ∈ Fq8 [x]. We show that there exists λ ∈ F

∗
q8 such that either

λUf = U2,8
3,δ or λUf = U2,8

5,δq5
.

By (1) we obtain a0 = 0, by (2) with k = 3 we have

a3a
q3

5 = δ

and with k = 4 we get a4 = 0. Putting k = 1 and k = 2 in (2) we get

a1a7 = 0 and a2a6 = 0, (6)

respectively. With k = 2 and k = 3 in (3) we obtain

aq+1
1 aq

2

6 + a2a
q+q2

7 = 0. (7)

and
a1a

q
2a

q3

5 + a3a
q
7a

q3

6 = 0. (8)

By (7) and (8), taking (6) into account, at most one of {a1, a2, a6, a7} is
non-zero.

Hence f(x) = a3x
q3 + a5x

q5 + aix
qi with i ∈ {1, 2, 6, 7}. For each

i ∈ {1, 2, 6, 7}, by Proposition 2.3, the determinant of the Dickson matrix

DF (Y )(x) with F (Y ) = f(x)Y − x(a3a
q3

5 Y q3 + Y q5) is zero modulo xq
8

− x.
Then the following hold:

7



• for i = 1 the coefficient of x3+3q+q2+q3 in the reduced form of detDF (Y )(x)

is a1+q+q2+q7

1 aq
5+q6

3 aq
3+q4

5 ,

• for i = 2 the coefficient of x3+2q+q2+q3+q4 in the reduced form of
detDF (Y )(x) is a

1+q+q2+q6+q7

2 aq
5

3 aq
3+q4

5 .

Thus ai = 0 for i ∈ {1, 2} and since Lf = Lf̂ , the same holds for i ∈ {6, 7}.

Then from (7) we get f(x) =
δ

aq
3

5

xq
3

+ a5x
q5 . By Proposition 2.3, arguing

as in the previous proof,

Nq8/q(x/a5)
(

Nq8/q(a5)− 1
) (

Nq8/q(a5)−Nq8/q(δ)
)

is the zero polynomial. Then the following holds:

1. If Nq8/q(a5) = 1, then putting a5 = λq5−1 gives λUf = U2,8
3,δ .

2. If Nq8/q(a5/δ) = 1, then set a5 = δq
5

λq5−1, and hence λUf = U2,8

5,δq5
.

As in the previous proof, it can be easily seen that the Z(ΓL)-class is exactly
two.

Theorem 3.4. The linear set L2,n
s,δ is not of pseudoregulus type for each

n, s, δ, q. Also, the linear sets L2,8
1,δ and L2,8

3,ρ are not PΓL(2, q8)-equivalent.

Proof. Suppose that L2,n
s,δ is of pseudoregulus type. Then by [14] there exists

an element f of GL(2, qn) such that (U2,n
s,δ )

f = U1,n
r with gcd(r, n) = 1. Since

the Fqn-linear automorphism groups of U2,n
s,δ and (U2,n

s,δ )
f are conjugated and

since the groups of U1,n
r and U2,n

s,δ have orders qn−1 and q2−1, respectively
(cf. Introduction), we get a contradiction.

For the second part, suppose to the contrary that L2,8
1,δ and L2,8

3,ρ are

PΓL(2, q8)-equivalent. Then by Proposition 3.3 there exists a field auto-

morphism σ, an invertible matrix

(

a b
c d

)

and α, β ∈ F
∗
q8 such that for

each x ∈ Fq8 there exists z ∈ Fq8 satisfying

(

a b
c d

)(

xσ

δσxσq + xσq
7

)

=

(

z

αzq
3

+ βzq
5

)

.

Equivalently, for each x ∈ Fq8

cxσ + dδσxσq + dxσq
7

= α(aq
3

xσq
3

+ δσq
3

bq
3

xσq
4

+ bq
3

xσq
2

)+

8



β(aq
5

xσq
5

+ δσq
5

bq
5

xσq
6

+ bq
5

xσq
4

).

This is a polynomial identity in xσ. Comparing the coefficients of xq
2

and
xq

3

we get that a = b = 0, which is a contradiction.

4 The L
3,n
s,δ -linear sets in PG(1, qn), n = 6, 8

In this section we determine the Z(ΓL)-class of the maximum scattered Fq-
linear sets of PG(1, qn), n = 6, 8, introduced in [5]. According to [5, Section
5, pg. 7], U3,n

s,δ is GL(2, qn)-equivalent to U3,n

n−s,δqn−s and to U3,n
s+n/2,δ−1 , thus

it is enough to study the linear sets L3,n
s,δ with s < n/4, gcd(s, n/2) = 1 and

hence only with s = 1 for n = 6, 8.

Proposition 4.1. The Z(ΓL)-class of Lg, with g(x) = δxq + xq
4

, δ 6= 0, is

two and hence the Z(ΓL)-class of L3,6
1,δ is two as well. Moreover, L3,6

1,δ is a
simple linear set.

Proof. Since g(x) and ĝ(x) = δq
5

xq
5

+ xq
2

define the same linear set, we
know Lg = Lĝ. Suppose Lf = Lg for some f(x) =

∑5
i=0 aix

qi ∈ Fq6 [x]. We
show that there exists λ ∈ F

∗
q6 such that either λUf = Ug or λUf = Uĝ.

By (1), we obtain a0 = 0 and by (2) with k = 2 we get a3 = 0. Also, by
(2) with k = 1 and k = 2, we have

a1a5 = 0 (9)

and
a2a4 = 0, (10)

respectively. By (3) with k = 2 we get

aq+1
1 aq

2

4 + a2a
q+q2

5 = δq+1. (11)

From (9), (10) and (11) it follows that either

f(x) =
δq+1

aq+q2

5

xq
2

+ a5x
q5 ,

or

f(x) = a1x
q +

(

δ

a1

)q5+q4

xq
4

.

In both cases, the determinant of the Dickson matrix associated with F (Y ) =
f(x)Y −x(δY q +Y q4) is the zero-polynomial after reducing modulo xq

6

−x

9



and hence in the first case we obtain Nq6/q(a5/δ) = 1, in the second case

Nq6/q(a1/δ) = 1. In the former case a5 = δq
5

λq5−1 and hence λUf = Uĝ. In
the latter case a1 = δλq−1 implying λUf = Ug.

This means that the Z(ΓL)-class of Ug is at most two. Straightforward

computation shows that it is exactly two. In case of L3,6
1,δ (and hence with

Nq6/q3(δ) 6= 1) it follows from [5, Section 5] that U3,6
1,δ and U3,6

5,δq5
are ΓL(2, q6)-

equivalent and hence L3,6
1,δ is simple.

Proposition 4.2. The Z(ΓL)-class of Lg, with g(x) = δxq + xq
5

, δ 6= 0, is

two and hence the Z(ΓL)-class of L3,8
1,δ is two as well. Moreover, L3,8

1,δ is a
simple linear set.

Proof. Since g(x) = δxq+xq
5

and ĝ(x) = δq
7

xq
7

+xq
3

define the same linear
set, we have Lg = Lĝ. Suppose Lf = Lg for some f(x) =

∑7
i=0 aix

qi ∈
Fq8 [x]. We show that there exists λ ∈ F

∗
q8 such that either λUf = Ug or

λUf = Uĝ.
By (1), we obtain a0 = 0 and by (2) with k = 4 we get a4 = 0. Also, by

(2) with k = 1, k = 2 and k = 3 we get

a1a7 = a2a6 = a3a5 = 0. (12)

By (3), with k = 2 we obtain

aq+1
1 aq

2

6 + a2a
q+q2

7 = 0, (13)

and with k = 3 we get

a1a
q
2a

q3

5 + a3a
q
7a

q3

6 = 0. (14)

By (12), first suppose a1 = a2 = a3 = 0. Proposition 2.3 yields that the
determinant of the Dickson matrix associated with

F (Y ) = (a5x
q5 + a6x

q6 + a7x
q7)Y − x(δY q + Y q5),

has to be the zero polynomial after reducing modulo x8−x. The coefficient

of x1+2q+2q2+2q3+q4 is −aq
4+q5+q6+q7

5 δ1+q+q2 , hence a5 = 0. The coefficient

of x1+q+2q2+2q3+q4+q5 is −aq
4+q5+q6+q7

6 δ1+q+q2 , hence a6 = 0. The coefficient

of x1+q+q2+2q3+q4+q5+q6 is −aq
4+q5+q6+q7

7 δ1+q+q2 , hence a7 = 0, a contradic-
tion.

10



Now suppose a1 = a2 = a5 = a7 = 0. Again, Proposition 2.3 yields that
the determinant of the Dickson matrix associated with

F (Y ) = (a3x
q3 + a6x

q6)Y − x(δY q + Y q5),

has to be the zero polynomial after reducing modulo x8−x. The coefficient

of x2+2q+3q2+q3 is −aq
5+q6+q7

3 aq
4

6 δ1+q+q2 , hence a3a6 = 0. We cannot have
a3 = 0 because of the previous paragraph, hence a6 = 0, but then the

coefficient of x1+2q+2q2+2q3+q4 is −a1+q5+q6+q7

3 δq+q2+q3 . Then again a3 = 0
follows, a contradiction.

Taking into account Lf = Lf̂ and (12), (13), (14), two cases remain:

f(x) = a3x
q3 + a7x

q7 and f(x) = a1x
q + a5x

q5 .
In the former case Proposition 2.3 yields that the determinant of the

Dickson matrix associated with

F (Y ) = (a3x
q3 + a7x

q7)Y − x(δY q + Y q5),

has to the zero polynomial after reducing modulo x8 − x. The coefficient of

x2+2q+2q2+2q3 is aq
5+q6+q7

3 aq
4

7 (a3a
q+q2+q3

7 − δ1+q+q2), hence

a3 = δ1+q+q2/aq+q2+q3

7 .

Since the coefficient of x2+q+2q2+2q3+q5 is

(Nq8/q(δ) −Nq8/q(a7))δ
2+q+q2+q6+2q7/a3+2q+2q2+q3+q5+q6+2q7

7 ,

which has to be zero and hence it follows that Nq8/q(a7/δ) = 1. Then there

exists λ ∈ F
∗
q8 such that a7 = δq

7

λq7−1 and hence a3 = λq3−1, i.e. λUf = Uĝ.

On the other hand, if f(x) = a1x
q + a5x

q5 , then the previous paragraph
yields that there exists λ ∈ F

∗
q8 such that λUf̂ = Uĝ and hence λ−1Uf = Ug.

Since there is no µ ∈ F
∗
q8 such that Ug = µUĝ, it follows that the Z(ΓL)-

class of Ug is exactly two. In case of L3,8
1,δ (and hence with Nq8/q4(δ) 6= 1) it

follows from [5, Section 5] that U3,8
1,δ and U3,8

7,δq7
are ΓL(2, q8)-equivalent and

hence L3,8
1,δ is simple.

Theorem 4.3. The linear set L3,n
1,δ , n = 6, 8, is not of pseudoregulus type

and not PΓL(2, qn)-equivalent to L2,n
s,ρ .
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Proof. Since the Fqn-linear automorphism group of U3,n
1,δ has order qn/2 − 1

(cf. [5, Corollary 5.2]), the same arguments as in the proof of Theorem 3.4
can be applied to show that L3,n

1,δ is not of pseudoregulus type.

Suppose that L3,n
1,δ is equivalent to L2,n

s,ρ for some n ∈ {6, 8}. Then
by Propositions 3.1, 3.2, 3.3, there exists f ∈ ΓL(2, qn) such that either
(U3,n

1,δ )
f = U2,n

s,ρ or (U3,n
1,δ )

f = U2,n

n−s,ρqn−s . This gives a contradiction, since

the sizes of the corresponding automorphism groups are different.

5 New maximum scattered linear sets in PG(1, q6)

In this section we show that Lg with g(x) = xq + xq
3

+ bxq
5

∈ Fq6 [x], q
odd, q ≡ 0,±1 (mod 5), b2 + b = 1 is a maximum scattered Fq-linear set of
PG(1, q6) which is not equivalent to any other previously known example.
Note that, under these assumptions we have b ∈ Fq.

The Fq-subspace Ug = {(x, xq + xq
3

+ bxq
5

) : x ∈ Fq6} is scattered if and
only if for each m ∈ Fq6

xq + xq
3

+ bxq
5

x
= −m

has at most q solutions. Thosem which admit exactly q solutions correspond
to points 〈(1,−m)〉Fq6

of Lg with weight one. It follows that Ug is scattered
if and only if for each m ∈ Fq6 the kernel of

rm,b(x) := mx+ xq + xq
3

+ bxq
5

has dimension less than two, or, equivalently, the Dickson matrix associated
with rm,b(x), that is,

Dm,b =



















m 1 0 1 0 b
b mq 1 0 1 0

0 b mq2 1 0 1

1 0 b mq3 1 0

0 1 0 b mq4 1

1 0 1 0 b mq5



















has rank at least 5 for each m ∈ Fq6 .
Denote by Mi,j the determinant of the matrix obtained from Dm,b by

deleting the i-th row and j-th column and consider the two minors:

M6,3 = 2−3b+(b−1)(Nq6/q3(m)+Nq6/q3(m
q))+Nq6/q3(m)q+1+(1−b)(m1+q−mq3+q4),
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and

M6,4 = 2m−3bm+2mq2−3bmq2+mq4−bmq4+m1+q+q2+bm1+q+q4+bmq+q2+q4 .

Theorem 5.1. If q ≡ 0,±1 (mod 5), q odd and b2 + b = 1 (hence b ∈ Fq),

then Ug is a maximum scattered Fq-subspace for g(x) = xq + xq
3

+ bxq
5

.

Proof. It is sufficient to show that M6,3 and M6,4 cannot be both zeros for
the same value of m ∈ Fq6 . If m = 0, then M6,3 = 2− 3b 6= 0 since b = 2/3
does not satisfy our condition. First suppose that M6,3 vanishes for some
m ∈ F

∗
q6 . Then

m1+q−mq3+q4 =
2− 3b+ (b− 1)(Nq6/q3(m) + Nq6/q3(m

q)) + Nq6/q3(m)q+1

b− 1
,

and since the righ-hand side is in Fq3 , the same follows for the left-hand

side, and hence m1+q − mq3+q4 = mq3+q4 − m1+q, from which m1+q ∈ F
∗
q3

follows. So, if m1+q /∈ F
∗
q3 , then rk(Dm,b) ≥ 5. Now, suppose m1+q ∈ F

∗
q3 ,

then M6,3 can be written as

M6,3 = 2− 3b+ (1− b)(−m1+q3 −mq+q4) +m2(1+q) = ((1− b)−m1+q3)q+1.

Since M6,3 = 0, we have

1− b = m1+q3 ∈ Fq. (15)

Then m(q3+1)(q+1) = m2(q+1) = (1 − b)2 and hence either mq+1 = 1 − b, or
mq+1 = b−1. In both cases mq+1 ∈ Fq follows. The latter case cannot hold.

Indeed by (15) we would get mq3+1 = −mq+1, so mq2 = −m, which holds
only if m ∈ Fq4 ∩ Fq6 = Fq2 , a contradiction. In the former case, by (15) we

obtain mq3+1 = mq+1, so m ∈ Fq2 . It follows that, taking m1+q = 1− b = b2

into account, M6,4 = 4m(1− b), which cannot be zero.

Similarly to the proof of [5, Proposition 5.2] it is easy to prove the
following result.

Proposition 5.2. The linear automorphism group of Ug (defined as in The-
orem 5.1) is

G =

{(

λ 0
0 λq

)

: λ ∈ F
∗
q2

}

.
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Proposition 5.3. The maximum scattered Fq-subspace Ug defined in Theo-

rem 5.1 is not ΓL(2, q6)-equivalent to the Fq-subspaces U1,6
s , U2,6

t,ρ and U3,6
h,ξ .

Proof. As in the proof of Theorem 3.4, the size of the linear automorphism
group of Ug is different from the size of the group of U1,6

s and of U3,6
h,ξ (cf.

Introduction), hence it remains to show that Ug is not ΓL(2, q6)-equivalent

to U2,6
t,ρ .

Since any Fq-subspace of the form U2,6
5,η is GL(2, q6)-equivalent to U2,6

1,ρ

for some ρ, it is enough to show that Ug and U2,6
t,ρ lie on different orbits

of ΓL(2, q6). Suppose the contrary, then there exist σ ∈ Aut(Fq6) and an

invertible matrix

(

α β
γ δ

)

such that for each x ∈ Fq6 there exists z ∈ Fq6

satisfying

(

α β
γ δ

)(

xσ

ρσxσq + xσq
5

)

=

(

z

zq + zq
3

+ bzq
5

)

.

Equivalently, for each x ∈ Fq6 we have

γxσ + δ(ρσxσq + xσq
5

) = αqxσq + βq(ρσqxσq
2

+ xσ)+

+αq3xσq
3

+ βq3(ρσq
3

xσq
4

+ xσq
2

) + b(αq5xσq
5

+ βq5(ρσq
5

xσ + xσq
4

)).

This is a polynomial identity in xσ. Comparing coefficients we get α = δ = 0
and

{

βqρσq + βq3 = 0,

βq3ρσq
3

+ bβq5 = 0.

Subtracting the second equation from the q2-th power of the first gives
βq5(1− b) = 0, and hence β = 0, a contradiction.

Theorem 5.4. The maximum scattered Fq-linear set Lg of PG(1, q6), where
g is defined in Theorem 5.1, is not PΓL(2, q6)-equivalent to any any other
previously known maximum scattered Fq-linear set.

Proof. We have to confront Lg with L1,6
s , L2,6

t,ρ and L3,6
h,ξ. Suppose that Lg is

equivalent to one of these linear sets, then by [14] and by Propositions 3.1
and 4.1, respectively, there exists ϕ ∈ ΓL(2, qn) such that Uϕ

g equals one of
U1,6
s , U2,6

t,ρ and U3,6
h,ξ , a contradiction by Proposition 5.3.

For the sake of completeness we show that the Z(ΓL)-class of Lg, defined
as in Theorem 5.1, is one.
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Proposition 5.5. The Z(ΓL)-class of Lg of PG(1, q6), where g(x) = xq +

xq
3

+ bxq
5

, is at most two if b 6= 0.

Proof. Since g(x) and ĝ(x) = bqxq +xq
3

+xq
5

define the same linear set, we
know Lg = Lĝ. Suppose Lf = Lg for some f(x) =

∑5
i=0 aix

qi ∈ Fq6 [x]. We
show that there exists λ ∈ F

∗
q6 such that either λUf = Ug or λUf = Uĝ.

By (1) we obtain a0 = 0, by (2) with k = 1, 3 we have

a1a
q
5 = bq

and
aq

3+1
3 = 1. (16)

By (3), with k = 2 we have

aq+1
1 aq

2

4 + a2a
q+q2

5 = 0

and taking this into account, together with (2) applied for k = 2 we obtain
a2 = a4 = 0.

Using Proposition 2.3, we get that the determinant of the Dickson matrix
associated to the q-polynomial

F (Y ) = (a1x
q + a3x

q3 + a5x
q5)Y − x(Y q + Y q3 + bY q5)

is the zero-polynomial modulo xq
6

−x. Substituting a1 = (b/a5)
q it turns out

that the coefficient of x1+q+2q4+2q5 in the reduced form of this determinant
is

aq
2

3 a−1−q−q4−q5

5 (aq
3

3 a2+q+q4+2q5

5 (aq+q4

3 − 1)−

(a1+q+q5

5 − aq3)b
1+q+q5 + aq

4

3 a2+2q+2q5

5 − a1+q+q5

5 ).

Applying aq
3+1

3 = 1, it follows that

(aq3 − a1+q+q5

5 )b1+q+q5 = a1+q+q5

5 − aq
4

3 a2+2q+2q5

5 = (aq3 − a1+q+q5

5 )aq
4

3 a1+q+q5

5 .

If aq3 = a1+q+q5

5 , then (16) yields Nq6/q(a5) = 1, and hence there exists

λ ∈ F
∗
q6 such that a5 = λq5−1. It is easy to see that in this case λUf = Uĝ.

Now suppose aq3 6= a1+q+q5

5 and hence b1+q+q5 = aq
4

3 a1+q+q5

5 . Taking
(q3 + 1)-th powers yields N(b/a5) = 1 and hence there exists λ ∈ F

∗
q6 such

that a5 = bλq5−1. It is easy to see that in this case λUf = Ug.
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Corollary 5.6. The Z(ΓL)-class of Lg of PG(1, q6), where g(x) = xq +

xq
3

+ bxq
5

, is two if b2 + b = 1. In particular, it is two if g is defined as in
Theorem 5.1.

Proof. If λUg = Uĝ for some λ ∈ Fq6 , then λg(x) = ĝ(λx) for each x ∈ F
∗
q6

and hence comparing coefficients gives bqλq−1 = 1 and λq3−1 = 1. Then
b = λq2−1 and hence Nq6/q2(b) = 1. Also, b ∈ Fq2 from which b3 = 1 follows,
contradicting b2 + b = 1.

6 New MRD-codes

The set of m×n matrices Fm×n
q over Fq is a rank metric Fq-space with rank

metric distance defined by d(A,B) = rk (A−B) for A,B ∈ F
m×n
q . A subset

C ⊆ F
m×n
q is called a rank distance code (RD-code for short). The minimum

distance of C is
d(C) = min

A,B∈C, A 6=B
{d(A,B)}.

In [11] the Singleton bound for an m× n rank metric code C with mini-
mum rank distance d was proved:

#C ≤ qmax{m,n}(min{m,n}−d+1).

If this bound is achieved, then C is an MRD-code.
When C is an Fq-linear subspace of Fm×n

q , we say that C is an Fq-linear
code and the dimension dimq(C) is defined to be the dimension of C as a
subspace over Fq. If d is the minimum distance of C we say that C has
parameters (m,n, q; d).

We will use the following equivalence definition for codes of Fm×m
q . If

C and C′ are two codes then they are equivalent if and only if there exist
two invertible matrices A,B ∈ F

m×m
q and a field automorphism σ such

that {ACσB : C ∈ C} = C′, or {ACTσB : C ∈ C} = C′, where T denotes
transposition. The code CT is also called the adjoint of C.

In [23, Section 5] Sheekey showed that scattered Fq-linear sets of PG(1, qn)
of rank n yield Fq-linear MRD-codes with parameters (n, n, q;n − 1). We
briefly recall here the construction from [23]. Let Uf = {(x, f(x)) : x ∈ Fqn}
for some q-polynomial f(x). Then, after fixing an Fq-bases {b1, . . . , bn} for
Fqn we can define an isomorphism between the rings End(Fqn ,Fq) and F

n×n
q .

More precisely, to f ∈ End(Fqn ,Fq) we associate the matrixMf of Fn×n
q with
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i-th column (a1,i, . . . , an,i)
T , where f(bi) =

∑n
j=1 aj,ibj .

3 In this way the set

Cf := {x 7→ af(x) + bx : a, b ∈ Fqn}

corresponds to a set of n × n matrices over Fq forming an Fq-linear MRD-
code with parameters (n, n, q;n − 1). Also, since Cf is an Fqn-subspace of
End(Fqn ,Fq), its middle nucleus N (C) (cf. [21], or [16] where the term left
idealiser was used) is the set of scalar maps Fn := {x ∈ Fqn 7→ αx ∈
Fqn : α ∈ Fqn}, i.e. N (Cf ) ∼= Fqn . Note that equivalent codes have isomor-
phic middle nuclei. For further details see [5, Section 6].

Let Cf and Ch be two MRD-codes arising from maximum scattered sub-
spaces Uf and Uh of Fqn × Fqn . In [23, Theorem 8] the author showed that
there exist invertible matrices A, B and σ ∈ Aut(Fq) such that ACσ

fB = Ch
if and only if Uf and Uh are ΓL(2, qn)-equivalent.

Theorem 6.1. The Fq-linear MRD-code Cg arising from the maximum scat-
tered Fq-subspace Ug, g as in Theorem 5.1, with parameters (6, 6, q; 5) and
with middle nucleus isomorphic to Fq6 is not equivalent to any previously
known MRD-code.

Proof. From [5, Section 6], the previously known Fq-linear MRD-codes with
parameters (6, 6, q; 5) and with middle nucleus isomorphic to Fq6 , up to
equivalence, arise from one of the following maximum scattered subspaces
of Fq6 × Fq6 : U

1,6
s , U2,6

s,δ , U
3,6
s,δ . From Proposition 5.3 the result follows.
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