EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

Constraining gluon distributions in nuclei using dijets in proton-proton and proton-lead collisions at $\sqrt{s_{_{\rm NN}}} = 5.02 \,\text{TeV}$

The CMS Collaboration*

Abstract

The pseudorapidity distributions of dijets as functions of their average transverse momentum (p_T^{ave}) are measured in proton-lead (pPb) and proton-proton (pp) collisions. The data samples were collected by the CMS experiment at the CERN LHC, at a nucleon-nucleon center-of-mass energy of 5.02 TeV. A significant modification of the pPb spectra with respect to the pp spectra is observed in all p_T^{ave} intervals investigated. The ratios of the pPb and pp distributions are compared to next-to-leading order perturbative quantum chromodynamics calculations with unbound nucleon and nuclear parton distribution functions (PDFs). These results give the first evidence that the gluon PDF at large Bjorken x in lead ions is strongly suppressed with respect to the PDF in unbound nucleons.

Published in Physical Review Letters as doi:10.1103/PhysRevLett.121.062002.

© 2018 CERN for the benefit of the CMS Collaboration. CC-BY-4.0 license

^{*}See Appendix B for the list of collaboration members

Relativistic heavy ion collisions aim to study the properties of the quark-gluon plasma (QGP) [1– 4], a deconfined state of quarks and gluons expected by quantum chromodynamics (QCD) [5] to exist for very high temperatures and energy densities. These studies are often performed by investigating changes in observables, such as jets and hadron spectra, in going from protonproton (pp) to heavy-ion collisions. The changes can be attributed to both initial-state effects (e.g., different parton distribution functions (PDFs) for heavy nuclei than for nucleons) and final-state effects due to the creation of the QGP [6, 7]. Knowledge of the nuclear parton distribution functions (nPDFs) in heavy nuclei is thus crucial in extracting QGP properties from experimental data. While the quark nPDF of lead ions (Pb) is well understood from deep inelastic scattering data [8], the gluon nPDF, which is particularly important for perturbative QCD (pQCD) calculations at the CERN LHC energies, is not well constrained. This is because of the limited amount of experimental data that are sensitive to the nPDFs of gluons at perturbative scales [9, 10]. The pion spectra in deuteron-gold collisions at a nucleon-nucleon center-of-mass energy $\sqrt{s_{NN}} = 200 \text{ GeV} [11, 12]$ are the only relativistic heavy ion collision data from the BNL RHIC used in the global fits of nPDFs. Global fits including these data predict, with respect to the unbound PDFs, a suppression in the small Bjorken *x* region $x \leq 10^{-2}$ (i.e., shadowing), an enhancement in the intermediate *x* region $10^{-2} \le x \le 10^{-1}$ (i.e., antishadowing), and a suppression in the $x \ge 10^{-1}$ region (i.e., the EMC effect, named after its first observation by the European Muon Collaboration [13]) for gluon PDFs, as parametrized in the EPS09 [14], nCTEQ15 [15], and EPPS16 [16] nPDFs. These three nPDFs are similar in that they are all based on next-to-leading (NLO) perturbative QCD calculations. They differ in their parametrization of the three mentioned nuclear effects and in the input experimental data used in the global fit, with the EPPS16 nPDF being the only one using LHC dijet and W and Z bosons data from proton–lead (pPb) collisions at $\sqrt{s_{NN}} = 5.02$ TeV. However, the RHIC pion data can also be interpreted as nuclear modification of the parton-to-pion fragmentation function [17] without significant nuclear modification of the gluon PDF. This is the approach adopted in the deFlorian-Sassot-Stratmann-Zurita (DSSZ) nPDF [18]. Therefore, high transverse momentum $(p_{\rm T})$ jet data, which are relatively insensitive to a possible modification of the parton fragmentation, the underlying event (UE), and hadronization effects [19], can provide crucial inputs to global fits of the nPDFs and thereby test their underlying parametrization assumptions. At the CERN LHC, jet measurements at high $p_{\rm T}$ can also be used to test the collinear factorization theorem in QCD [20], namely that the cross section of a process is a convolution in partonic momentum space of a perturbatively calculable part, with non-perturbative distributions of partons inside the hadrons involved in the process. The jet measurements are complementary to measurements of the J/ ψ meson production cross-section in ultra-peripheral lead-lead (PbPb) collisions [21, 22] and low- $p_{\rm T}$ hadron spectra in pPb collisions [23–25], which are sensitive to nPDFs at lower values of the momentum transfer in a collision (Q^2).

The production of dijets, pairs of two jets consisting of the most energetic (leading) and the second most energetic (subleading) jets in the event, has been previously measured in pPb collisions at the LHC [26, 27]. In contrast to what is observed in head-on PbPb collisions, where QGP-induced gluon emission in the final state significantly alters the energy balance between the two highest- p_T jets [28–31], no significant dijet p_T imbalance is observed in pPb data with respect to simulated pp distributions [26]. Moreover, measurements of inclusive jet [32–35] and inclusive charged-particle p_T spectra [36–38] also show no sign of modification at high p_T compared to pp data. The relatively small or negligible final-state effects in pPb collisions support the idea of using jets as probes for the nuclear PDF studies. Recent theoretical calculations suggest that the dijet pseudorapidity ($\eta_{dijet} = (\eta_1 + \eta_2)/2$) distribution in pPb collisions provides strong constraints on the gluon nPDFs [39–42] because of the small experimental and theoretical uncertainties [39]. The measurement of the corresponding pp reference spectra can further

reduce the theoretical uncertainties for the extraction of the nPDFs [41].

In this Letter, measurements of dijet production are performed in pPb and pp collisions at $\sqrt{s_{_{\rm NN}}} = 5.02 \,\text{TeV}$ recorded with the CMS detector and corresponding to integrated luminosities of $35 \pm 1 \,\text{nb}^{-1}$ [43] and $27.4 \pm 0.6 \,\text{pb}^{-1}$ [44], respectively. To test the theoretical foundation of global analysis of nPDFs on collinear factorization, the ratios of the normalized pPb and pp η_{dijet} distributions (Pb/pp) are studied as a function of the dijet average transverse momentum $(p_{\mathrm{T}}^{\text{ave}} = (p_{\mathrm{T},1} + p_{\mathrm{T},2})/2 \sim Q)$ and compared with next-to-leading order (NLO) pQCD calculations involving different Q^2 values.

A detailed description of the CMS experiment can be found in Ref. [45]. The silicon tracker, submerged in the 3.8 T magnetic field of the superconducting solenoid, is used to measure charged particles within the range $|\eta| < 2.5$. Also located inside the solenoid are an electromagnetic calorimeter (ECAL) and a hadron calorimeter (HCAL). The ECAL consists of more than 75,000 lead tungstate crystals, arranged in a quasi-projective geometry, and distributed in the barrel region ($|\eta| < 1.48$) and in the two endcaps that extend up to $|\eta| = 3.0$. The HCAL barrel and endcaps are sampling calorimeters composed of brass and scintillator plates, covering $|\eta| < 3.0$. Iron hadron forward (HF) calorimeters, with quartz fibers read out by photomultipliers, extend the calorimeter coverage up to $|\eta| = 5.2$. A muon system located outside the solenoid and embedded in the steel flux-return yoke is used for the reconstruction and identification of muons up to $|\eta| = 2.4$. The detailed Monte Carlo (MC) simulation of the CMS detector response is based on GEANT4 [46].

The event samples are selected online with dedicated triggers requiring at least one jet with $p_{\rm T} > 40$, 60, or 80 GeV, and are filtered offline to reject the beam-gas interaction induced background events [26]. In addition, pPb collisions are selected by requiring a coincidence of at least one of the HF calorimeter towers, with more than 3 GeV total energy, from the HF detectors on both sides of the interaction point. Events are also required to have at least one reconstructed primary vertex with two or more associated tracks. This vertex is required to have a distance from the nominal interaction point of less than 15 and 0.15 cm in the longitudinal (along the beam axis) direction and in the transverse plane (perpendicular the beam axis), respectively. In the pPb data sample, there is a 3% probability to have at least one additional interaction in the same bunch crossing (pileup). A pileup filter is employed [47], which rejects more than 90% of the pileup events and removes 0.01% of the events without pileup. The filter uses the longitudinal and transverse distance between the leading vertex (the vertex with the highest number of associated tracks) and the vertex with the second largest number of associated tracks as criteria for identifying and removing pileup events. In the pp analysis, the pileup rejection procedure is not applied because of the significantly lower pileup rate (about a factor of three compared to pPb).

Offline, jet reconstruction is performed using the CMS particle-flow (PF) algorithm [48]. By combining information from all subdetector systems, the PF algorithm attempts to identify all stable particles in an event, classifying them as electrons, muons, photons, as well as charged and neutral hadrons. Jets are reconstructed from these PF candidates using the anti- k_T sequential recombination algorithm [49, 50] with a distance parameter R = 0.3, as implemented in the FASTJET package [50]. The reconstructed jets are then calibrated following the steps described in Refs. [51, 52].

Jets with pseudorapidity in the laboratory frame $|\eta_{lab}| < 3.0$ are used in the final pPb analysis. Because of the different energies of the proton (4 TeV) and lead (1.58 TeV per nucleon) beams, the nucleon-nucleon center-of-mass frame is boosted in the detector frame. During part of the data-taking period, the directions of the proton and lead beams were reversed. For the data set taken with the opposite-direction proton beam, the sign of the standard CMS definition of η was flipped so that the proton beam always moves towards positive η . Therefore, a massless particle emitted at $\eta_{cm} = 0$ in the nucleon-nucleon center-of-mass frame will be detected at $\eta_{lab} = +0.465$ in the laboratory frame. As described above, data from pPb collisions are measured and presented in a symmetric region around $\eta = 0$ in the laboratory frame. In order to obtain pp data over the same η range in the nucleon-nucleon center-of-mass frame, jets in the interval $-3.465 < \eta < 2.535$ are used. When studying pp and pPb data together, and also for the purposes of presentation, η_{dijet} for pp data is shifted by +0.465, so that both sets of data span $|\eta_{dijet}| < 3.0$ in the center-of-mass frame.

This analysis is carried out using events required to have a dijet with a leading jet of $p_{T,1} > 90 \text{ GeV}$, a subleading jet of $p_{T,2} > 20 \text{ GeV}$, and $\Delta \phi_{1,2} = |\phi_1 - \phi_2| > 2\pi/3$. The back-to-back azimuthal selection of the jet pairs is meant to enhance the sensitivity to lower-order (2 \rightarrow 2) partonic processes. Further selections are applied to p_T^{ave} to select data that test NLO pQCD calculations with various nPDFs at different Q^2 values. The p_T^{ave} intervals used in the analysis are 55–75, 75–95, 95–115, 115–150, and 150–400 GeV. The last interval is denoted by '>150 GeV' in the figures. The pPb results differ from the ones reported in Ref. [26] in that a lower p_T for the leading and subleading jets was used (90 vs. 120 GeV, and 20 vs. 30 GeV, respectively), and in that the present measurement is differential in p_T^{ave} (5 vs. 1 intervals).

In the following we discuss the relation between the kinematics of a dijet event to parton level quantities. We define x_p as the Bjorken x of the parton from the nucleon going in the +z direction and x_{Pb} as the Bjorken x of the parton from the nucleon going in the -z direction. Different regions of x_p and x_{Pb} can be chosen by selecting ranges of η_{dijet} . In a simple case of two partons colliding without initial-state radiation (ISR) or final-state radiation (FSR), η_{dijet} in the center-of-mass frame would be equal to $\frac{1}{2} \ln(x_p/x_{Pb})$. The effect of ISR and FSR on this correlation was studied using the PYTHIA event generator [53] (version 6.423, tune Z2) [54], and was found to be small, as shown in Fig. 1 (left) for the 75 $< p_T^{ave} < 95$ GeV interval. The Pearson's correlation coefficient between $\ln(x_{Pb}/x_p)$ and η_{dijet} is -0.58 in this p_T^{ave} interval. In the presence of a strong linear correlation, this coefficient would be close to ± 1 , while in the absence of any correlation it would be closer to 0. The correlation between $\langle x_{Pb} \rangle$ and η_{dijet} shown in Fig. 1 (right) allows the identification of η_{dijet} intervals which are sensitive to shadowing ($\eta_{dijet} \gtrsim 1.5$), and EMC effects ($\eta_{dijet} \lesssim -0.5$).

The systematic uncertainty related to the jet energy scale (JES) is important since the width of the η_{dijet} distribution decreases with increasing $p_{\text{T}}^{\text{ave}}$ [26]. Studies with dijet and γ + jet events [51] show that the JES in data can deviate from that in simulated events by up to 2%. To evaluate the corresponding uncertainties, the JES is shifted by $\pm 2\%$ for both pp and pPb data and the deviations of the observed spectra are taken as systematic uncertainties. To account for the uncertainties related to the jet energy (angular) resolution, the differences between the η_{dijet} spectra obtained from detector-level (i.e. reconstructed) jet p_{T} (η) and generator-level (i.e., MC truth) jet p_{T} (η) with PYTHIA for pp and PYTHIA events embedded in simulated pPb underlying events (PYTHIA+HIJING) for pPb collisions are quoted as a systematic uncertainty. To model the pPb UE, minimum bias pPb events are simulated with the HIJING event generator [55], version 1.383 [56]. The parameters used in the HIJING simulation are tuned to reproduce the total particle multiplicities and charged-hadron spectra, and to approximate the UE fluctuations seen in data.

Other sources of uncertainties are the effects of the UE and pileup events in pPb collisions. Combinatorial jets coming from nucleon-nucleon collisions that happen simultaneously with the hard-scattering of interest are studied using PYTHIA+HIJING simulations. The effect of

Figure 1: (left) Correlation between x_{Pb}/x_p and dijet pseudorapidity η_{dijet} . The dashed line corresponds to the expected correlation without ISR or FSR effects. (right) Mean Bjorken x of the parton from the lead ion $\langle x_{Pb} \rangle$ obtained from PYTHIA 6 events as a function of η_{dijet} in different dijet p_T^{ave} intervals.

the remaining pileup events in pPb collisions is evaluated by comparing the results with and without the pileup filter. Those uncertainties are negligible compared to other sources. The total systematic uncertainties in η_{dijet} and in the ratios of the pPb and pp spectra are evaluated by summing in quadrature over the contributions from the above sources. In the pPb/pp η_{dijet} ratio measurements, the uncertainties due to the JES, jet energy resolution, and jet angular resolution are partially canceled and the total systematic uncertainties are between 2 and 20%, increasing from high- to low- $p_{\text{a}}^{\text{ave}}$ values, and towards higher $|\eta_{\text{dijet}}|$ values.

The measured η_{dijet} spectra in pp collisions, shifted to match the range of the pPb data as described previously, and the corresponding pPb results, are available in Appendix A, which includes Refs. [14, 15, 18, 58, 59]. In order to construct an observable that is relatively insensitive to the pp PDF calculation [41], the ratios of the pPb and pp reference distributions, individually normalized to one, are chosen. This assumption was tested by comparing the NLO spectra ratio in pQCD calculations with CT14 and MMHT14 PDFs [60]. The shape of the ratios of the pPb and pp distributions in data are compared with NLO pQCD calculations based on the EPS09 and DSSZ nPDFs in Fig. 2. In addition, in Fig. 3, the ratio of the pPb/pp η_{dijet} distributions in data is compared also to that from calculations based on the nCTEQ15 and EPPS16 nPDFs, for 115 < $p_{\text{T}}^{\text{ave}}$ < 150 GeV. The ratios of pPb and pp data are seen to deviate significantly from unity in the small (EMC) and large (shadowing) η_{dijet} regions. In the interval $\eta_{\text{dijet}} < -1$, which is sensitive to the gluon EMC effect, NLO pQCD calculations with DSSZ nPDF, where no gluon EMC effect is present in the global fit, overpredict the data.

The differences between data and the various NLO pQCD calculations with nPDFs in the interval $\eta_{\text{dijet}} < -1$ are quantified by comparing the two distributions with a χ^2 -test, taking into account the point-to-point correlations from the nPDFs. The uncertainties from data are taken to be uncorrelated point-to-point. For $115 < p_T^{\text{ave}} < 150 \text{ GeV}$, the *p*-values from the test are 0.19, $< 10^{-8}$, and $< 10^{-8}$ for the EPS09, DSSZ, and nCTEQ15 nPDFs, respectively. Across the full p_T^{ave} range, the *p*-values for EPS09 range from 0.19 to 0.95, whereas the *p*-values for the DSSZ and nCTEQ15 nPDFs are never larger than 0.015. This shows that, with a *p*-value cutoff of 0.05, the data are incompatible with the DSSZ and nCTEQ15 nPDFs, but not incompatible

with EPS09. This supports the interpretation of the RHIC pion data by the EPS09 nPDF, in which the modification of the pion spectra gives rise to the gluon EMC effect. The data also show smaller shadowing, antishadowing, and EMC effects than what is implemented in the nCTEQ15 PDF set. The results are consistent with EPPS16 with relaxed constraints (e.g., more free parameters, increased error tolerance) on the nuclear PDF parametrization, which results in larger PDF uncertainties [16]. The conclusions obtained from different p_T^{ave} intervals are similar, which provide important tests of the nuclear PDF at various Q^2 values. The significantly smaller experimental uncertainties, in most of the p_T^{ave} and η_{dijet} intervals probed, as compared to the uncertainties of calculations using NLO PDF, indicate that the present data, when included in the calculations of the next generation nPDFs, will result in an improved description of the gluon nPDF.

Figure 2: Ratio of pPb to pp η_{dijet} spectra compared to NLO pQCD calculations with DSSZ [18] and EPS09 [14] nPDFs, using CT14 [58] as the baseline nucleon PDF. Red boxes indicate systematic uncertainties in data and the height of the NLO pQCD calculation boxes represent the nPDF uncertainties.

In summary, measurements of the dijet pseudorapidity (η_{dijet}) in different average transverse momentum ($p_{\text{T}}^{\text{ave}}$) intervals in pPb and pp collisions at a nucleon-nucleon center-of-mass energy $\sqrt{s_{\text{NN}}} = 5.02$ TeV are reported. Ratios of the pPb and pp η_{dijet} spectra using the pp reference data are also reported. Significant modifications of the η_{dijet} distributions are observed in pPb data compared to the pp reference in all $p_{\text{T}}^{\text{ave}}$ intervals, which show shadowing, antishadowing, and EMC effects in nuclear parton distribution functions. The ratios of the pPb and pp distributions are compared to next-to-leading order calculations with nucleon and nPDFs. Based on these comparisons, the results present the first evidence that the gluon PDF at large Bjorken x in lead ions is strongly suppressed with respect to that in unbound nucleons. The data are incompatible with predictions using nucleon PDFs or using nPDFs without large-x gluon suppression. Based on a statistical analysis, the EPS09 nPDF provides the best overall agreement with the data. This data can be used to place strong constraints on the next-generation of nPDFs, which are crucial for the understanding of high p_{T} and high mass particle production at collider energies.

Figure 3: Ratio of theory to data, for the ratio of the pPb to pp η_{dijet} spectra for 115 $< p_{\text{T}}^{\text{ave}} < 150 \text{ GeV}$. Theory points are from the NLO pQCD calculations of DSSZ [18], EPS09 [14], nCTEQ15 [15], and EPPS16 [16] nPDFs, using CT14 [58] as the baseline PDF. Red boxes indicate the total (statistical and systematic) uncertainties in data, and the error bars on the points represent the nPDF uncertainties.

Acknowledgments

We thank Nestor Armesto, Paukkunen Hannu, Pia Zurita, Petja Paakkinen and Carlos Salgado for the useful discussions and the NLO pQCD calculations with various nPDFs. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

- [1] J. C. Collins and M. J. Perry, "Superdense matter: Neutrons or asymptotically free quarks?", *Phys. Rev. Lett.* **34** (1975) 1353, doi:10.1103/PhysRevLett.34.1353.
- [2] N. Cabibbo and G. Parisi, "Exponential hadronic spectrum and quark liberation", *Phys. Lett. B* 59 (1975) 67, doi:10.1016/0370-2693(75)90158-6.
- [3] B. A. Freedman and L. D. McLerran, "Fermions and gauge vector mesons at finite temperature and density. 1. Formal techniques", *Phys. Rev. D* **16** (1977) 1130, doi:10.1103/PhysRevD.16.1130.
- [4] E. V. Shuryak, "Theory of hadronic plasma", Sov. Phys. JETP 47 (1978) 212. [Zh. Eksp. Teor. Fiz. 74, 408].
- [5] F. Karsch and E. Laermann, "Thermodynamics and in-medium hadron properties from lattice QCD", in *Quark-Gluon Plasma III*, R. C. Hwa and X.-N. Wang, eds. World Scientific Publishing Co. Pte. Ltd., 2004. arXiv:hep-lat/0305025.
- [6] C. A. Salgado et al., "Proton-nucleus collisions at the LHC: Scientific opportunities and requirements", J. Phys. G 39 (2012) 015010, doi:10.1088/0954-3899/39/1/015010, arXiv:1105.3919.
- [7] J. L. Albacete et al., "Predictions for p+Pb collisions at $\sqrt{s_{NN}} = 5$ TeV", Int. J. Mod. Phys. E **22** (2013) 1330007, doi:10.1142/S0218301313300075, arXiv:1301.3395.
- [8] New Muon Collaboration, "The *A* dependence of the nuclear structure function ratios", *Nucl. Phys. B* **481** (1996) 3, doi:10.1016/S0550-3213(96)90117-0.
- [9] H. Paukkunen, "Nuclear PDFs in the beginning of the LHC era", Nucl. Phys. A 926 (2014) 24, doi:10.1016/j.nuclphysa.2014.04.001, arXiv:1401.2345.
- [10] H. Paukkunen, "Status of nuclear PDFs after the first LHC p-Pb run", Nucl. Phys. A 967 (2017) 241, doi:10.1016/j.nuclphysa.2017.05.014, arXiv:1704.04036.
- [11] PHENIX Collaboration, "Centrality dependence of π^0 and η production at large transverse momentum in $\sqrt{s_{_{NN}}} = 200 \text{ GeV d}+\text{Au collisions}$ ", *Phys. Rev. Lett.* **98** (2007) 172302, doi:10.1103/PhysRevLett.98.172302, arXiv:nucl-ex/0610036.
- [12] STAR Collaboration, "Identified hadron spectra at large transverse momentum in p+p and d+Au collisions at \sqrt{s_{NN}} = 200 \ext{ GeV}", Phys. Lett. B 637 (2006) 161, doi:10.1016/j.physletb.2006.04.032, arXiv:nucl-ex/0601033.
- [13] European Muon Collaboration, "The ratio of the nucleon structure functions F₂^N for iron and deuterium", *Phys. Lett. B* **123** (1983) 275, doi:10.1016/0370-2693 (83) 90437-9.
- [14] K. J. Eskola, H. Paukkunen, and C. A. Salgado, "EPS09: A new generation of NLO and LO nuclear parton distribution functions", JHEP 04 (2009) 065, doi:10.1088/1126-6708/2009/04/065, arXiv:0902.4154.
- [15] K. Kovařík et al., "nCTEQ15 global analysis of nuclear parton distributions with uncertainties in the CTEQ framework", *Phys. Rev. D* 93 (2016) 085037, doi:10.1103/PhysRevD.93.085037, arXiv:1509.00792.

- [16] K. J. Eskola, P. Paakkinen, H. Paukkunen, and C. A. Salgado, "EPPS16: Nuclear parton distributions with LHC data", *Eur. Phys. J. C* 77 (2017) 163, doi:10.1140/epjc/s10052-017-4725-9, arXiv:1612.05741.
- [17] R. Sassot, M. Stratmann, and P. Zurita, "Fragmentations functions in nuclear media", *Phys. Rev. D* 81 (2010) 054001, doi:10.1103/PhysRevD.81.054001, arXiv:0912.1311.
- [18] D. de Florian, R. Sassot, P. Zurita, and M. Stratmann, "Global analysis of nuclear parton distributions", *Phys. Rev. D* 85 (2012) 074028, doi:10.1103/PhysRevD.85.074028, arXiv:1112.6324.
- [19] M. Dasgupta, L. Magnea, and G. P. Salam, "Non-perturbative QCD effects in jets at hadron colliders", *JHEP* 02 (2008) 055, doi:10.1088/1126-6708/2008/02/055, arXiv:0712.3014.
- [20] J. C. Collins, D. E. Soper, and G. F. Sterman, "Factorization of hard processes in QCD", *Adv. Ser. Direct. High Energy Phys.* 5 (1989) 1, doi:10.1142/9789814503266_0001, arXiv:hep-ph/0409313.
- [21] ALICE Collaboration, "Coherent J/ ψ (1S) photoproduction in ultra-peripheral Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}} = 2.76 \text{ TeV}$ ", *Phys. Lett. B* **718** (2013) 1273, doi:10.1016/j.physletb.2012.11.059, arXiv:1209.3715.
- [22] CMS Collaboration, "Coherent J/ ψ (1S) photoproduction in ultra-peripheral PbPb collisions at $\sqrt{s_{_{\rm NN}}} = 2.76$ TeV with the CMS experiment", *Phys. Lett. B* 772 (2017) 489, doi:10.1016/j.physletb.2017.07.001, arXiv:1605.06966.
- [23] ALICE Collaboration, "Transverse momentum distribution and nuclear modification factor of charged particles in p-Pb collisions at $\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$ ", *Phys. Rev. Lett.* **110** (2013) 082302, doi:10.1103/PhysRevLett.110.082302, arXiv:1210.4520.
- [24] ATLAS Collaboration, "Transverse momentum, rapidity, and centrality dependence of inclusive charged-particle production in $\sqrt{s_{_{NN}}} = 5.02$ TeV p+Pb collisions measured by the ATLAS experiment", *Phys. Lett. B* **763** (2016) 313, doi:10.1016/j.physletb.2016.10.053, arXiv:1605.06436.
- [25] CMS Collaboration, "Charged-particle nuclear modification factors in PbPb and pPb collisions at $\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$ ", *JHEP* **04** (2017) 039, doi:10.1007/JHEP04(2017)039, arXiv:1611.01664.
- [26] CMS Collaboration, "Studies of dijet transverse momentum balance and pseudorapidity distributions in pPb collisions at $\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$ ", *Eur. Phys. J. C* **74** (2014) 2951, doi:10.1140/epjc/s10052-014-2951-y, arXiv:1401.4433.
- [27] ALICE Collaboration, "Measurement of dijet k_T in p-Pb collisions at $\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$ ", *Phys. Lett. B* 746 (2015) 385, doi:10.1016/j.physletb.2015.05.033, arXiv:1503.03050.
- [28] CMS Collaboration, "Observation and studies of jet quenching in PbPb collisions at nucleon-nucleon center-of-mass energy $\sqrt{s_{_{\rm NN}}} = 2.76 \,\text{TeV}$ ", *Phys. Rev. C* 84 (2011) 024906, doi:10.1103/PhysRevC.84.024906, arXiv:1102.1957.

- [29] ATLAS Collaboration, "Observation of a centrality-dependent dijet asymmetry in lead-lead collisions at \sqrt{s_{NN}} = 2.76 TeV with the ATLAS detector at the LHC", Phys. Rev. Lett. 105 (2010) 252303, doi:10.1103/PhysRevLett.105.252303, arXiv:1011.6182.
- [30] CMS Collaboration, "Jet momentum dependence of jet quenching in PbPb collisions at $\sqrt{s_{_{\rm NN}}} = 2.76 \,\text{TeV}$ ", Phys. Lett. B 712 (2012) 176, doi:10.1016/j.physletb.2012.04.058, arXiv:1202.5022.
- [31] CMS Collaboration, "Measurement of transverse momentum relative to dijet systems in PbPb and pp collisions at $\sqrt{s_{_{NN}}} = 2.76 \text{ TeV}$ ", *JHEP* **01** (2016) 006, doi:10.1007/JHEP01(2016)006, arXiv:1509.09029.
- [32] ATLAS Collaboration, "Centrality and rapidity dependence of inclusive jet production in $\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$ proton-lead collisions with the ATLAS detector", *Phys. Lett. B* 748 (2015) 392, doi:10.1016/j.physletb.2015.07.023, arXiv:1412.4092.
- [33] ALICE Collaboration, "Measurement of charged jet production cross sections and nuclear modification in p-Pb collisions at $\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$ ", *Phys. Lett. B* **749** (2015) 68, doi:10.1016/j.physletb.2015.07.054, arXiv:1503.00681.
- [34] CMS Collaboration, "Transverse momentum spectra of inclusive b jets in pPb collisions at $\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$ ", Phys. Lett. B 754 (2016) 59, doi:10.1016/j.physletb.2016.01.010, arXiv:1510.03373.
- [35] CMS Collaboration, "Measurement of inclusive jet production and nuclear modifications in pPb collisions at $\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$ ", Eur. Phys. J. C **76** (2016) 372, doi:10.1140/epjc/s10052-016-4205-7, arXiv:1601.02001.
- [36] ALICE Collaboration, "Transverse momentum dependence of inclusive primary charged-particle production in p-Pb collisions at $\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$ ", Eur. Phys. J. C 74 (2014) 3054, doi:10.1140/epjc/s10052-014-3054-5, arXiv:1405.2737.
- [37] CMS Collaboration, "Nuclear effects on the transverse momentum spectra of charged particles in pPb collisions at $\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$ ", Eur. Phys. J. C 75 (2015) 237, doi:10.1140/epjc/s10052-015-3435-4, arXiv:1502.05387.
- [38] CMS Collaboration, "Study of B meson production in pPb collisions at $\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$ using exclusive hadronic decays", *Phys. Rev. Lett.* **116** (2016) 032301, doi:10.1103/PhysRevLett.116.032301, arXiv:1508.06678.
- [39] K. J. Eskola, H. Paukkunen, and C. A. Salgado, "A perturbative QCD study of dijets in p+Pb collisions at the LHC", *JHEP* **10** (2013) 213, doi:10.1007/JHEP10(2013)213, arXiv:1308.6733.
- [40] H. Paukkunen, K. J. Eskola, and C. Salgado, "Dijets in p+Pb collisions and their quantitative constraints for nuclear PDFs", *Nucl. Phys. A* 931 (2014) 331, doi:10.1016/j.nuclphysa.2014.07.012, arXiv:1408.4563.
- [41] N. Armesto et al., "An analysis of the impact of LHC Run I proton-lead data on nuclear parton densities", Eur. Phys. J. C 76 (2016) 218, doi:10.1140/epjc/s10052-016-4078-9, arXiv:1512.01528.

- [43] CMS Collaboration, "Luminosity calibration for the 2013 proton-lead and proton-proton data taking", CMS Physics Analysis Summary CMS-PAS-LUM-13-002, 2014.
- [44] CMS Collaboration, "CMS luminosity calibration for the pp reference run at $\sqrt{s} = 5.02$ TeV", CMS Physics Analysis Summary CMS-PAS-LUM-16-001, 2016.
- [45] CMS Collaboration, "The CMS Experiment at the CERN LHC", JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.
- [46] GEANT4 Collaboration, "GEANT4—a simulation toolkit", Nucl. Instrum. Meth. A 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8.
- [47] CMS Collaboration, "Multiplicity and transverse momentum dependence of two- and four-particle correlations in pPb and PbPb collisions", *Phys. Lett. B* **724** (2013) 213, doi:10.1016/j.physletb.2013.06.028, arXiv:1305.0609.
- [48] CMS Collaboration, "Particle-flow reconstruction and global event description with the CMS detector", JINST 12 (2017) P10003, doi:10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.
- [49] M. Cacciari, G. P. Salam, and G. Soyez, "The anti-k_T jet clustering algorithm", JHEP 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.
- [50] M. Cacciari, G. P. Salam, and G. Soyez, "FastJet user manual", Eur. Phys. J. C 72 (2012) 1896, doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.
- [51] CMS Collaboration, "Determination of jet energy calibration and transverse momentum resolution in CMS", JINST 6 (2011) P11002, doi:10.1088/1748-0221/6/11/P11002, arXiv:1107.4277.
- [52] CMS Collaboration, "Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV", JINST 12 (2017) P02014, doi:10.1088/1748-0221/12/02/P02014, arXiv:1607.03663.
- [53] T. Sjöstrand, S. Mrenna, and P. Skands, "PYTHIA 6.4 physics and manual", JHEP 05 (2006) 026, doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.
- [54] R. Field, "Early LHC Underlying Event Data Findings and Surprises", in 22nd Hadron Collider Physics Symposium (HCP 2010), W. Trischuk, ed. Toronto, 2010. arXiv:1010.3558.
- [55] X.-N. Wang and M. Gyulassy, "HIJING: A Monte Carlo model for multiple jet production in pp, pA, and AA collisions", *Phys. Rev. D* 44 (1991) 3501, doi:10.1103/PhysRevD.44.3501.
- [56] M. Gyulassy and X.-N. Wang, "HIJING 1.0: A Monte Carlo program for parton and particle production in high-energy hadronic and nuclear collisions", *Comput. Phys. Commun.* 83 (1994) 307, doi:10.1016/0010-4655(94)90057-4, arXiv:nucl-th/9502021.

- [57] See Supplemental Material at [URL will be inserted by the publisher] for the measured η_{dijet} spectra in pPb collisions.
- [58] S. Dulat et al., "New parton distribution functions from a global analysis of quantum chromodynamics", *Phys. Rev. D* 93 (2016) 033006, doi:10.1103/PhysRevD.93.033006, arXiv:1506.07443.
- [59] L. A. Harland-Lang, A. D. Martin, P. Motylinski, and R. S. Thorne, "Parton distributions in the LHC era: MMHT 2014 PDFs", *Eur. Phys. J. C* **75** (2015) 204, doi:10.1140/epjc/s10052-015-3397-6, arXiv:1412.3989.
- [60] Z. Nagy, "Next-to-leading order calculation of three jet observables in hadron hadron collision", *Phys. Rev. D* 68 (2003) 094002, doi:10.1103/PhysRevD.68.094002, arXiv:hep-ph/0307268.

A Supplemental information: Measured η_{dijet} spectra in pPb collisions

Figure A.1: The measured pp dijet pseudorapidity spectra, shifted to match the η_{dijet} range of the pPb collisions, in bins of $p_{\text{T}}^{\text{ave}}$, overlaid with NLO pQCD calculations with the CT14 [58] and MMHT14 [59] nucleon PDFs. The red boxes indicate systematic uncertainties in data and the height of the NLO pQCD calculation boxes represent the PDF uncertainties.

Figure A.2: The measured pPb dijet pseudorapidity spectra in bins of p_T^{ave} , overlaid with the NLO pQCD calculations of DSSZ [18], EPS09 [14], and nCTEQ15 [15] nPDFs, using the CT14 [58] as the baseline PDF. The red boxes indicate systematic uncertainties in data and the height of the NLO pQCD calculation boxes represent the nPDF uncertainties.

Figure A.3: The measured pPb dijet pseudorapidity spectra in bins of p_T^{ave} , overlaid with the NLO pQCD calculations of DSSZ [18], EPS09 [14], and nCTEQ15 [15] nPDFs, using the MMHT14 [59] as the baseline PDF. The red boxes indicate systematic uncertainties in data and the height of the NLO pQCD calculation boxes represent the nPDF uncertainties.

B The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria

W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, M. Dragicevic, J. Erö, A. Escalante Del Valle, M. Flechl, R. Frühwirth¹, V.M. Ghete, J. Hrubec, M. Jeitler¹, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, N. Rad, H. Rohringer, J. Schieck¹, R. Schöfbeck, M. Spanring, D. Spitzbart, A. Taurok, W. Waltenberger, J. Wittmann, C.-E. Wulz¹, M. Zarucki

Institute for Nuclear Problems, Minsk, Belarus

V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

E.A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Pieters, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium

S. Abu Zeid, F. Blekman, J. D'Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs

Université Libre de Bruxelles, Bruxelles, Belgium

D. Beghin, B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, A.K. Kalsi, T. Lenzi, J. Luetic, N. Postiau, E. Starling, L. Thomas, C. Vander Velde, P. Vanlaer, D. Vannerom, Q. Wang

Ghent University, Ghent, Belgium

T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov², D. Poyraz, C. Roskas, D. Trocino, M. Tytgat, W. Verbeke, B. Vermassen, M. Vit, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, C. Caputo, P. David, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, A. Saggio, M. Vidal Marono, S. Wertz, J. Zobec

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

F.L. Alves, G.A. Alves, M. Correa Martins Junior, G. Correia Silva, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato³, E. Coelho, E.M. Da Costa, G.G. Da Silveira⁴, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, D. Matos Figueiredo, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva, L.J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel, E.J. Tonelli Manganote³, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista^{*a*}, Universidade Federal do ABC^{*b*}, São Paulo, Brazil

S. Ahuja^{*a*}, C.A. Bernardes^{*a*}, L. Calligaris^{*a*}, T.R. Fernandez Perez Tomei^{*a*}, E.M. Gregores^{*b*}, P.G. Mercadante^{*b*}, S.F. Novaes^{*a*}, SandraS. Padula^{*a*}

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia,

Bulgaria

A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, A. Marinov, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

University of Sofia, Sofia, Bulgaria A. Dimitrov, L. Litov, B. Pavlov, P. Petkov

Beihang University, Beijing, China W. Fang⁵, X. Gao⁵, L. Yuan

Institute of High Energy Physics, Beijing, China

M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S.M. Shaheen⁶, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, S. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China Y. Ban, G. Chen, A. Levin, J. Li, L. Li, Q. Li, Y. Mao, S.J. Qian, D. Wang, Z. Xu

Tsinghua University, Beijing, China Y. Wang

Universidad de Los Andes, Bogota, Colombia

C. Avila, A. Cabrera, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández, M.A. Segura Delgado

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia

B. Courbon, N. Godinovic, D. Lelas, I. Puljak, T. Sculac

University of Split, Faculty of Science, Split, Croatia Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov⁷, T. Susa

University of Cyprus, Nicosia, Cyprus

M.W. Ather, A. Attikis, M. Kolosova, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

Charles University, Prague, Czech Republic M. Finger⁸, M. Finger Jr.⁸

Escuela Politecnica Nacional, Quito, Ecuador E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt H. Abdalla⁹, A.A. Abdelalim^{10,11}, M.A. Mahmoud^{12,13}

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehataht, M. Kadastik, M. Raidal, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland

P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

J. Havukainen, J.K. Heikkilä, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, H. Siikonen, E. Tuominen, J. Tuominiemi

Lappeenranta University of Technology, Lappeenranta, Finland T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leloup, E. Locci, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.Ö. Sahin, M. Titov

Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France

A. Abdulsalam¹⁴, C. Amendola, I. Antropov, F. Beaudette, P. Busson, C. Charlot, R. Granier de Cassagnac, I. Kucher, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Pigard, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, A. Zabi, A. Zghiche

Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France

J.-L. Agram¹⁵, J. Andrea, D. Bloch, J.-M. Brom, E.C. Chabert, V. Cherepanov, C. Collard, E. Conte¹⁵, J.-C. Fontaine¹⁵, D. Gelé, U. Goerlach, M. Jansová, A.-C. Le Bihan, N. Tonon, P. Van Hove

Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

S. Beauceron, C. Bernet, G. Boudoul, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, H. Lattaud, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov¹⁶, V. Sordini, M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, Georgia T. Toriashvili¹⁷

Tbilisi State University, Tbilisi, Georgia Z. Tsamalaidze⁸

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

C. Autermann, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, M.P. Rauch, C. Schomakers, J. Schulz, M. Teroerde, B. Wittmer, V. Zhukov¹⁶

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

A. Albert, D. Duchardt, M. Endres, M. Erdmann, T. Esch, R. Fischer, S. Ghosh, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, H. Keller, S. Knutzen, L. Mastrolorenzo, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, A. Schmidt, D. Teyssier

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

G. Flügge, O. Hlushchenko, T. Kress, A. Künsken, T. Müller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, D. Roy, H. Sert, A. Stahl¹⁸

Deutsches Elektronen-Synchrotron, Hamburg, Germany

M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, I. Babounikau, K. Beernaert, O. Behnke, U. Behrens, A. Bermúdez Martínez, D. Bertsche, A.A. Bin Anuar, K. Borras¹⁹, V. Botta, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, V. Danilov, A. De Wit, M.M. Defranchis, C. Diez Pardos, D. Domínguez Damiani, G. Eckerlin, T. Eichhorn, A. Elwood, E. Eren, E. Gallo²⁰, A. Geiser, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, M. Guthoff, M. Haranko, A. Harb, J. Hauk, H. Jung, M. Kasemann, J. Keaveney, C. Kleinwort, J. Knolle, D. Krücker, W. Lange, A. Lelek, T. Lenz, K. Lipka, W. Lohmann²¹, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, M. Meyer, M. Missiroli, G. Mittag, J. Mnich, V. Myronenko, S.K. Pflitsch, D. Pitzl, A. Raspereza, M. Savitskyi, P. Saxena, P. Schütze, C. Schwanenberger, R. Shevchenko, A. Singh, H. Tholen, O. Turkot, A. Vagnerini, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev

University of Hamburg, Hamburg, Germany

R. Aggleton, S. Bein, L. Benato, A. Benecke, V. Blobel, M. Centis Vignali, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, A. Hinzmann, A. Karavdina, G. Kasieczka, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, V. Kutzner, J. Lange, D. Marconi, J. Multhaup, M. Niedziela, D. Nowatschin, A. Perieanu, A. Reimers, O. Rieger, C. Scharf, P. Schleper, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, D. Troendle, A. Vanhoefer, B. Vormwald

Institut für Experimentelle Teilchenphysik, Karlsruhe, Germany

M. Akbiyik, C. Barth, M. Baselga, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, K. El Morabit, N. Faltermann, B. Freund, M. Giffels, M.A. Harrendorf, F. Hartmann¹⁸, S.M. Heindl, U. Husemann, F. Kassel¹⁸, I. Katkov¹⁶, S. Kudella, H. Mildner, S. Mitra, M.U. Mozer, Th. Müller, M. Plagge, G. Quast, K. Rabbertz, M. Schröder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wöhrmann, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

G. Anagnostou, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, G. Paspalaki, I. Topsis-Giotis

National and Kapodistrian University of Athens, Athens, Greece

G. Karathanasis, S. Kesisoglou, P. Kontaxakis, A. Panagiotou, I. Papavergou, N. Saoulidou, E. Tziaferi, K. Vellidis

National Technical University of Athens, Athens, Greece K. Kousouris, I. Papakrivopoulos, G. Tsipolitis

University of Ioánnina, Ioánnina, Greece

I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F.A. Triantis, D. Tsitsonis

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary

M. Bartók²², M. Csanad, N. Filipovic, P. Major, M.I. Nagy, G. Pasztor, O. Surányi, G.I. Veres

Wigner Research Centre for Physics, Budapest, Hungary

G. Bencze, C. Hajdu, D. Horvath²³, Á. Hunyadi, F. Sikler, T.Á. Vámi, V. Veszpremi, G. Vesztergombi[†]

Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Karancsi²⁴, A. Makovec, J. Molnar, Z. Szillasi

Institute of Physics, University of Debrecen, Debrecen, Hungary P. Raics, Z.L. Trocsanyi, B. Ujvari

Indian Institute of Science (IISc), Bangalore, India S. Choudhury, J.R. Komaragiri, P.C. Tiwari

National Institute of Science Education and Research, HBNI, Bhubaneswar, India

S. Bahinipati²⁵, C. Kar, P. Mal, K. Mandal, A. Nayak²⁶, D.K. Sahoo²⁵, S.K. Swain

Panjab University, Chandigarh, India

S. Bansal, S.B. Beri, V. Bhatnagar, S. Chauhan, R. Chawla, N. Dhingra, R. Gupta, A. Kaur, A. Kaur, M. Kaur, S. Kaur, R. Kumar, P. Kumari, M. Lohan, A. Mehta, K. Sandeep, S. Sharma, J.B. Singh, G. Walia

University of Delhi, Delhi, India

A. Bhardwaj, B.C. Choudhary, R.B. Garg, M. Gola, S. Keshri, Ashok Kumar, S. Malhotra, M. Naimuddin, P. Priyanka, K. Ranjan, Aashaq Shah, R. Sharma

Saha Institute of Nuclear Physics, HBNI, Kolkata, India

R. Bhardwaj²⁷, M. Bharti, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep²⁷, D. Bhowmik, S. Dey, S. Dutt²⁷, S. Dutta, S. Ghosh, K. Mondal, S. Nandan, A. Purohit, P.K. Rout, A. Roy, S. Roy Chowdhury, G. Saha, S. Sarkar, M. Sharan, B. Singh, S. Thakur²⁷

Indian Institute of Technology Madras, Madras, India

P.K. Behera

Bhabha Atomic Research Centre, Mumbai, India

R. Chudasama, D. Dutta, V. Jha, V. Kumar, P.K. Netrakanti, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research-A, Mumbai, India

T. Aziz, M.A. Bhat, S. Dugad, G.B. Mohanty, N. Sur, B. Sutar, RavindraKumar Verma

Tata Institute of Fundamental Research-B, Mumbai, India

S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Karmakar, S. Kumar, M. Maity²⁸, G. Majumder, K. Mazumdar, N. Sahoo, T. Sarkar²⁸

Indian Institute of Science Education and Research (IISER), Pune, India

S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

S. Chenarani²⁹, E. Eskandari Tadavani, S.M. Etesami²⁹, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, F. Rezaei Hosseinabadi, B. Safarzadeh³⁰, M. Zeinali

University College Dublin, Dublin, Ireland

M. Felcini, M. Grunewald

INFN Sezione di Bari^{*a*}, Università di Bari^{*b*}, Politecnico di Bari^{*c*}, Bari, Italy

M. Abbrescia^{*a,b*}, C. Calabria^{*a,b*}, A. Colaleo^{*a*}, D. Creanza^{*a,c*}, L. Cristella^{*a,b*}, N. De Filippis^{*a,c*}, M. De Palma^{*a,b*}, A. Di Florio^{*a,b*}, F. Errico^{*a,b*}, L. Fiore^{*a*}, A. Gelmi^{*a,b*}, G. Iaselli^{*a,c*}, M. Ince^{*a,b*}, S. Lezki^{*a,b*}, G. Maggi^{*a,c*}, M. Maggi^{*a*}, G. Miniello^{*a,b*}, S. My^{*a,b*}, S. Nuzzo^{*a,b*}, A. Pompili^{*a,b*},

G. Pugliese^{*a*,*c*}, R. Radogna^{*a*}, A. Ranieri^{*a*}, G. Selvaggi^{*a*,*b*}, A. Sharma^{*a*}, L. Silvestris^{*a*}, R. Venditti^{*a*}, P. Verwilligen^{*a*}, G. Zito^{*a*}

INFN Sezione di Bologna^{*a*}, Università di Bologna^{*b*}, Bologna, Italy

G. Abbiendi^{*a*}, C. Battilana^{*a*,*b*}, D. Bonacorsi^{*a*,*b*}, L. Borgonovi^{*a*,*b*}, S. Braibant-Giacomelli^{*a*,*b*}, R. Campanini^{*a*,*b*}, P. Capiluppi^{*a*,*b*}, A. Castro^{*a*,*b*}, F.R. Cavallo^{*a*}, S.S. Chhibra^{*a*,*b*}, C. Ciocca^{*a*}, G. Codispoti^{*a*,*b*}, M. Cuffiani^{*a*,*b*}, G.M. Dallavalle^{*a*}, F. Fabbri^{*a*}, A. Fanfani^{*a*,*b*}, P. Giacomelli^{*a*}, C. Grandi^{*a*}, L. Guiducci^{*a*,*b*}, F. Iemmi^{*a*,*b*}, S. Marcellini^{*a*}, G. Masetti^{*a*}, A. Montanari^{*a*}, F.L. Navarria^{*a*,*b*}, A. Perrotta^{*a*}, F. Primavera^{*a*,*b*,18}, A.M. Rossi^{*a*,*b*}, T. Rovelli^{*a*,*b*}, G.P. Siroli^{*a*,*b*}, N. Tosi^{*a*}

INFN Sezione di Catania^{*a*}, Università di Catania^{*b*}, Catania, Italy

S. Albergo^{*a,b*}, A. Di Mattia^{*a*}, R. Potenza^{*a,b*}, A. Tricomi^{*a,b*}, C. Tuve^{*a,b*}

INFN Sezione di Firenze^{*a*}, Università di Firenze^{*b*}, Firenze, Italy

G. Barbagli^{*a*}, K. Chatterjee^{*a,b*}, V. Ciulli^{*a,b*}, C. Civinini^{*a*}, R. D'Alessandro^{*a,b*}, E. Focardi^{*a,b*}, G. Latino, P. Lenzi^{*a,b*}, M. Meschini^{*a*}, S. Paoletti^{*a*}, L. Russo^{*a,31*}, G. Sguazzoni^{*a*}, D. Strom^{*a*}, L. Viliani^{*a*}

INFN Laboratori Nazionali di Frascati, Frascati, Italy

L. Benussi, S. Bianco, F. Fabbri, D. Piccolo

INFN Sezione di Genova^{*a*}, Università di Genova^{*b*}, Genova, Italy

F. Ferro^{*a*}, F. Ravera^{*a*,*b*}, E. Robutti^{*a*}, S. Tosi^{*a*,*b*}

INFN Sezione di Milano-Bicocca^{*a*}, Università di Milano-Bicocca^{*b*}, Milano, Italy

A. Benaglia^a, A. Beschi^b, L. Brianza^{a,b}, F. Brivio^{a,b}, V. Ciriolo^{a,b,18}, S. Di Guida^{a,d,18},
M.E. Dinardo^{a,b}, S. Fiorendi^{a,b}, S. Gennai^a, A. Ghezzi^{a,b}, P. Govoni^{a,b}, M. Malberti^{a,b},
S. Malvezzi^a, A. Massironi^{a,b}, D. Menasce^a, L. Moroni^a, M. Paganoni^{a,b}, D. Pedrini^a,
S. Ragazzi^{a,b}, T. Tabarelli de Fatis^{a,b}, D. Zuolo

INFN Sezione di Napoli^{*a*}, Università di Napoli 'Federico II'^{*b*}, Napoli, Italy, Università della Basilicata^{*c*}, Potenza, Italy, Università G. Marconi^{*d*}, Roma, Italy

S. Buontempo^{*a*}, N. Cavallo^{*a,c*}, A. Di Crescenzo^{*a,b*}, F. Fabozzi^{*a,c*}, F. Fienga^{*a*}, G. Galati^{*a*}, A.O.M. Iorio^{*a,b*}, W.A. Khan^{*a*}, L. Lista^{*a*}, S. Meola^{*a,d*,18}, P. Paolucci^{*a*,18}, C. Sciacca^{*a,b*}, E. Voevodina^{*a,b*}

INFN Sezione di Padova ^a, Università di Padova ^b, Padova, Italy, Università di Trento ^c, Trento, Italy

P. Azzi^{*a*}, N. Bacchetta^{*a*}, D. Bisello^{*a*,*b*}, A. Boletti^{*a*,*b*}, A. Bragagnolo, R. Carlin^{*a*,*b*}, P. Checchia^{*a*}, M. Dall'Osso^{*a*,*b*}, P. De Castro Manzano^{*a*}, T. Dorigo^{*a*}, U. Dosselli^{*a*}, F. Gasparini^{*a*,*b*}, U. Gasparini^{*a*,*b*}, A. Gozzelino^{*a*}, S.Y. Hoh, S. Lacaprara^{*a*}, P. Lujan, M. Margoni^{*a*,*b*}, A.T. Meneguzzo^{*a*,*b*}, J. Pazzini^{*a*,*b*}, P. Ronchese^{*a*,*b*}, R. Rossin^{*a*,*b*}, F. Simonetto^{*a*,*b*}, A. Tiko, E. Torassa^{*a*}, M. Zanetti^{*a*,*b*}, P. Zotto^{*a*,*b*}, G. Zumerle^{*a*,*b*}

INFN Sezione di Pavia^{*a*}, Università di Pavia^{*b*}, Pavia, Italy

A. Braghieri^{*a*}, A. Magnani^{*a*}, P. Montagna^{*a*,*b*}, S.P. Ratti^{*a*,*b*}, V. Re^{*a*}, M. Ressegotti^{*a*,*b*}, C. Riccardi^{*a*,*b*}, P. Salvini^{*a*}, I. Vai^{*a*,*b*}, P. Vitulo^{*a*,*b*}

INFN Sezione di Perugia^{*a*}, Università di Perugia^{*b*}, Perugia, Italy

L. Alunni Solestizi^{*a,b*}, M. Biasini^{*a,b*}, G.M. Bilei^{*a*}, C. Cecchi^{*a,b*}, D. Ciangottini^{*a,b*}, L. Fanò^{*a,b*}, P. Lariccia^{*a,b*}, R. Leonardi^{*a,b*}, E. Manoni^{*a*}, G. Mantovani^{*a,b*}, V. Mariani^{*a,b*}, M. Menichelli^{*a*}, A. Rossi^{*a,b*}, A. Santocchia^{*a,b*}, D. Spiga^{*a*}

INFN Sezione di Pisa^{*a*}, **Università di Pisa**^{*b*}, **Scuola Normale Superiore di Pisa**^{*c*}, **Pisa**, **Italy** K. Androsov^{*a*}, P. Azzurri^{*a*}, G. Bagliesi^{*a*}, L. Bianchini^{*a*}, T. Boccali^{*a*}, L. Borrello, R. Castaldi^{*a*}, M.A. Ciocci^{*a*,*b*}, R. Dell'Orso^{*a*}, G. Fedi^{*a*}, F. Fiori^{*a*,*c*}, L. Giannini^{*a*,*c*}, A. Giassi^{*a*}, M.T. Grippo^{*a*}, F. Ligabue^{*a*,*c*}, E. Manca^{*a*,*c*}, G. Mandorli^{*a*,*c*}, A. Messineo^{*a*,*b*}, F. Palla^{*a*}, A. Rizzi^{*a*,*b*}, P. Spagnolo^{*a*}, R. Tenchini^{*a*}, G. Tonelli^{*a*,*b*}, A. Venturi^{*a*}, P.G. Verdini^{*a*}

INFN Sezione di Roma^{*a*}, Sapienza Università di Roma^{*b*}, Rome, Italy

L. Barone^{*a,b*}, F. Cavallari^{*a*}, M. Cipriani^{*a,b*}, N. Daci^{*a*}, D. Del Re^{*a,b*}, E. Di Marco^{*a,b*}, M. Diemoz^{*a*}, S. Gelli^{*a,b*}, E. Longo^{*a,b*}, B. Marzocchi^{*a,b*}, P. Meridiani^{*a*}, G. Organtini^{*a,b*}, F. Pandolfi^{*a*}, R. Paramatti^{*a,b*}, F. Preiato^{*a,b*}, S. Rahatlou^{*a,b*}, C. Rovelli^{*a*}, F. Santanastasio^{*a,b*}

INFN Sezione di Torino ^{*a*}, Università di Torino ^{*b*}, Torino, Italy, Università del Piemonte Orientale ^{*c*}, Novara, Italy

N. Amapane^{*a,b*}, R. Arcidiacono^{*a,c*}, S. Argiro^{*a,b*}, M. Arneodo^{*a,c*}, N. Bartosik^{*a*}, R. Bellan^{*a,b*}, C. Biino^{*a*}, N. Cartiglia^{*a*}, F. Cenna^{*a,b*}, S. Cometti^{*a*}, M. Costa^{*a,b*}, R. Covarelli^{*a,b*}, N. Demaria^{*a*}, B. Kiani^{*a,b*}, C. Mariotti^{*a*}, S. Maselli^{*a*}, E. Migliore^{*a,b*}, V. Monaco^{*a,b*}, E. Monteil^{*a,b*}, M. Monteno^{*a*}, M.M. Obertino^{*a,b*}, L. Pacher^{*a,b*}, N. Pastrone^{*a*}, M. Pelliccioni^{*a*}, G.L. Pinna Angioni^{*a,b*}, A. Romero^{*a,b*}, M. Ruspa^{*a,c*}, R. Sacchi^{*a,b*}, K. Shchelina^{*a,b*}, V. Sola^{*a*}, A. Solano^{*a,b*}, D. Soldi^{*a,b*}, A. Staiano^{*a*}

INFN Sezione di Trieste^{*a*}, Università di Trieste^{*b*}, Trieste, Italy

S. Belforte^{*a*}, V. Candelise^{*a*,*b*}, M. Casarsa^{*a*}, F. Cossutti^{*a*}, G. Della Ricca^{*a*,*b*}, F. Vazzoler^{*a*,*b*}, A. Zanetti^{*a*}

Kyungpook National University

D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

H. Kim, D.H. Moon, G. Oh

Hanyang University, Seoul, Korea J. Goh³², T.J. Kim

Korea University, Seoul, Korea

S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, K. Lee, K.S. Lee, S. Lee, J. Lim, S.K. Park, Y. Roh

Sejong University, Seoul, Korea H.S. Kim

Seoul National University, Seoul, Korea J. Almond, J. Kim, J.S. Kim, H. Lee, K. Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu

University of Seoul, Seoul, Korea D. Jeon, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park

Sungkyunkwan University, Suwon, Korea Y. Choi, C. Hwang, J. Lee, I. Yu

Vilnius University, Vilnius, Lithuania V. Dudenas, A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali³³, F. Mohamad Idris³⁴, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico

A. Castaneda Hernandez, J.A. Murillo Quijada

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

M.C. Duran-Osuna, H. Castilla-Valdez, E. De La Cruz-Burelo, G. Ramirez-Sanchez, I. Heredia-De La Cruz³⁵, R.I. Rabadan-Trejo, R. Lopez-Fernandez, J. Mejia Guisao, R Reyes-Almanza, M. Ramirez-Garcia, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico

S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico A. Morelos Pineda

University of Auckland, Auckland, New Zealand D. Krofcheck

University of Canterbury, Christchurch, New Zealand S. Bheesette, P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

A. Ahmad, M. Ahmad, M.I. Asghar, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas

National Centre for Nuclear Research, Swierk, Poland

H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, M. Szleper, P. Traczyk, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland K. Bunkowski, A. Byszuk³⁶, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

M. Araujo, P. Bargassa, C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, M.V. Nemallapudi, J. Seixas, G. Strong, O. Toldaiev, D. Vadruccio, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia

A. Golunov, I. Golutvin, V. Karjavin, V. Korenkov, G. Kozlov, A. Lanev, A. Malakhov, V. Matveev^{37,38}, V.V. Mitsyn, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, V. Smirnov, V. Trofimov, B.S. Yuldashev³⁹, A. Zarubin, V. Zhiltsov

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

V. Golovtsov, Y. Ivanov, V. Kim⁴⁰, E. Kuznetsova⁴¹, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia

V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, V. Stolin, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia T. Aushev

National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia

M. Chadeeva⁴², P. Parygin, D. Philippov, S. Polikarpov⁴², E. Popova, V. Rusinov

P.N. Lebedev Physical Institute, Moscow, Russia

V. Andreev, M. Azarkin³⁸, I. Dremin³⁸, M. Kirakosyan³⁸, S.V. Rusakov, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

A. Baskakov, A. Belyaev, E. Boos, A. Ershov, A. Gribushin, A. Kaminskiy⁴³, O. Kodolova,
V. Korotkikh, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev,
I. Vardanyan

Novosibirsk State University (NSU), Novosibirsk, Russia

A. Barnyakov⁴⁴, V. Blinov⁴⁴, T. Dimova⁴⁴, L. Kardapoltsev⁴⁴, Y. Skovpen⁴⁴

State Research Center of Russian Federation, Institute for High Energy Physics of NRC 'Kurchatov Institute', Protvino, Russia

I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, A. Godizov, V. Kachanov, A. Kalinin, D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, S. Slabospitskii, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, Russia

A. Babaev, S. Baidali, V. Okhotnikov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

P. Adzic⁴⁵, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

J. Alcaraz Maestre, A. Álvarez Fernández, I. Bachiller, M. Barrio Luna, J.A. Brochero Cifuentes, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, D. Moran, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, M.S. Soares, A. Triossi

Universidad Autónoma de Madrid, Madrid, Spain

C. Albajar, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain

J. Cuevas, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezon, V. Rodríguez Bouza, S. Sanchez Cruz, P. Vischia, J.M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

I.J. Cabrillo, A. Calderon, B. Chazin Quero, J. Duarte Campderros, M. Fernandez, P.J. Fernández Manteca, A. García Alonso, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto,

J. Marco, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, C. Prieels, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland

D. Abbaneo, B. Akgun, E. Auffray, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, M. Bianco, A. Bocci, C. Botta, E. Brondolin, T. Camporesi, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, G. Cucciati, D. d'Enterria, A. Dabrowski, V. Daponte, A. David, A. De Roeck, N. Deelen, M. Dobson, M. Dünser, N. Dupont, A. Elliott-Peisert, P. Everaerts, F. Fallavollita⁴⁶, D. Fasanella, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, A. Gilbert, K. Gill, F. Glege, M. Guilbaud, D. Gulhan, J. Hegeman, V. Innocente, A. Jafari, P. Janot, O. Karacheban²¹, J. Kieseler, A. Kornmayer, M. Krammer¹, C. Lange, P. Lecoq, C. Lourenço, L. Malgeri, M. Mannelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic⁴⁷, F. Moortgat, M. Mulders, J. Ngadiuba, S. Nourbakhsh, S. Orfanelli, L. Orsini, F. Pantaleo¹⁸, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, F.M. Pitters, D. Rabady, A. Racz, T. Reis, G. Rolandi⁴⁸, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, M. Seidel, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas⁴⁹, A. Stakia, J. Steggemann, M. Tosi, D. Treille, A. Tsirou, V. Veckalns⁵⁰, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland

L. Caminada⁵¹, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr

ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland

M. Backhaus, L. Bäni, P. Berger, N. Chernyavskaya, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer, C. Grab, C. Heidegger, D. Hits, J. Hoss, T. Klijnsma, W. Lustermann, R.A. Manzoni, M. Marionneau, M.T. Meinhard, F. Micheli, P. Musella, F. Nessi-Tedaldi, J. Pata, F. Pauss, G. Perrin, L. Perrozzi, S. Pigazzini, M. Quittnat, D. Ruini, D.A. Sanz Becerra, M. Schönenberger, L. Shchutska, V.R. Tavolaro, K. Theofilatos, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu

Universität Zürich, Zurich, Switzerland

T.K. Aarrestad, C. Amsler⁵², D. Brzhechko, M.F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus, B. Kilminster, S. Leontsinis, I. Neutelings, D. Pinna, G. Rauco, P. Robmann, D. Salerno, K. Schweiger, C. Seitz, Y. Takahashi, A. Zucchetta

National Central University, Chung-Li, Taiwan

Y.H. Chang, K.y. Cheng, T.H. Doan, Sh. Jain, R. Khurana, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan

P. Chang, Y. Chao, K.F. Chen, P.H. Chen, W.-S. Hou, Arun Kumar, Y.y. Li, Y.F. Liu, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand B. Asavapibhop, N. Srimanobhas, N. Suwonjandee

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey

A. Bat, F. Boran, S. Cerci⁵³, S. Damarseckin, Z.S. Demiroglu, F. Dolek, C. Dozen, I. Dumanoglu,
S. Girgis, G. Gokbulut, Y. Guler, E. Gurpinar, I. Hos⁵⁴, C. Isik, E.E. Kangal⁵⁵, O. Kara,
A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut, K. Ozdemir⁵⁶, S. Ozturk⁵⁷,
D. Sunar Cerci⁵³, B. Tali⁵³, U.G. Tok, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey B. Isildak⁵⁸, G. Karapinar⁵⁹, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey

I.O. Atakisi, E. Gülmez, M. Kaya⁶⁰, O. Kaya⁶¹, S. Tekten, E.A. Yetkin⁶²

Istanbul Technical University, Istanbul, Turkey

M.N. Agaras, S. Atay, A. Cakir, K. Cankocak, Y. Komurcu, S. Sen⁶³

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine

B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine L. Levchuk

University of Bristol, Bristol, United Kingdom

F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, D.M. Newbold⁶⁴, S. Paramesvaran, B. Penning, T. Sakuma, D. Smith, V.J. Smith, J. Taylor, A. Titterton

Rutherford Appleton Laboratory, Didcot, United Kingdom

A. Belyaev⁶⁵, C. Brew, R.M. Brown, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Linacre, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams, W.J. Womersley

Imperial College, London, United Kingdom

G. Auzinger, R. Bainbridge, P. Bloch, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, S. Casasso, D. Colling, L. Corpe, P. Dauncey, G. Davies, M. Della Negra, R. Di Maria, Y. Haddad, G. Hall, G. Iles, T. James, M. Komm, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, J. Nash⁶⁶, A. Nikitenko⁷, V. Palladino, M. Pesaresi, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, G. Singh, M. Stoye, T. Strebler, S. Summers, A. Tapper, K. Uchida, T. Virdee¹⁸, N. Wardle, D. Winterbottom, J. Wright, S.C. Zenz

Brunel University, Uxbridge, United Kingdom

J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, A. Morton, I.D. Reid, L. Teodorescu, S. Zahid

Baylor University, Waco, USA K. Call, J. Dittmann, K. Hatakeyama, H. Liu, C. Madrid, B. Mcmaster, N. Pastika, C. Smith

Catholic University of America, Washington DC, USA R. Bartek, A. Dominguez

The University of Alabama, Tuscaloosa, USA A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA D. Arcaro, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou

Brown University, Providence, USA

G. Benelli, X. Coubez, D. Cutts, M. Hadley, J. Hakala, U. Heintz, J.M. Hogan⁶⁷, K.H.M. Kwok, E. Laird, G. Landsberg, J. Lee, Z. Mao, M. Narain, S. Piperov, S. Sagir⁶⁸, R. Syarif, E. Usai, D. Yu

University of California, Davis, Davis, USA

R. Band, C. Brainerd, R. Breedon, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, W. Ko, O. Kukral, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, D. Stolp, D. Taylor, K. Tos, M. Tripathi, Z. Wang, F. Zhang

University of California, Los Angeles, USA

M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, S. Regnard, D. Saltzberg, C. Schnaible, V. Valuev

University of California, Riverside, Riverside, USA

E. Bouvier, K. Burt, R. Clare, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, G. Karapostoli, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, W. Si, L. Wang, H. Wei, S. Wimpenny, B.R. Yates

University of California, San Diego, La Jolla, USA

J.G. Branson, S. Cittolin, M. Derdzinski, R. Gerosa, D. Gilbert, B. Hashemi, A. Holzner, D. Klein, G. Kole, V. Krutelyov, J. Letts, M. Masciovecchio, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Wasserbaech⁶⁹, J. Wood, F. Würthwein, A. Yagil, G. Zevi Della Porta

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA

N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, M. Citron, A. Dishaw, V. Dutta, M. Franco Sevilla, L. Gouskos, R. Heller, J. Incandela, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, S. Wang, J. Yoo

California Institute of Technology, Pasadena, USA

D. Anderson, A. Bornheim, J.M. Lawhorn, H.B. Newman, T.Q. Nguyen, M. Spiropulu, J.R. Vlimant, R. Wilkinson, S. Xie, Z. Zhang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA

M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, M. Sun, I. Vorobiev, M. Weinberg

University of Colorado Boulder, Boulder, USA

J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, E. MacDonald, T. Mulholland, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA

J. Alexander, J. Chaves, Y. Cheng, J. Chu, A. Datta, K. Mcdermott, N. Mirman, J.R. Patterson, D. Quach, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek

Fermi National Accelerator Laboratory, Batavia, USA

S. Abdullin, M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla[†], K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, J. Duarte, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, M.J. Kortelainen, B. Kreis, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, J. Lykken, K. Maeshima, J.M. Marraffino, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O'Dell, K. Pedro, C. Pena, O. Prokofyev, G. Rakness, L. Ristori, A. Savoy-Navarro⁷⁰, B. Schneider, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck

University of Florida, Gainesville, USA

D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerhoff, L. Cadamuro, A. Carnes, M. Carver, D. Curry, R.D. Field, S.V. Gleyzer, B.M. Joshi, J. Konigsberg, A. Korytov, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, K. Shi, D. Sperka, J. Wang, S. Wang

Florida International University, Miami, USA

Y.R. Joshi, S. Linn

Florida State University, Tallahassee, USA

A. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, G. Martinez, T. Perry, H. Prosper, A. Saha, C. Schiber, V. Sharma, R. Yohay

Florida Institute of Technology, Melbourne, USA

M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, M. Rahmani, T. Roy, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA

M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, S. Dittmer, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, C. Mills, I.D. Sandoval Gonzalez, M.B. Tonjes, N. Varelas, H. Wang, X. Wang, Z. Wu, J. Zhang

The University of Iowa, Iowa City, USA

M. Alhusseini, B. Bilki⁷¹, W. Clarida, K. Dilsiz⁷², S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul⁷³, Y. Onel, F. Ozok⁷⁴, A. Penzo, C. Snyder, E. Tiras, J. Wetzel

Johns Hopkins University, Baltimore, USA

B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, W.T. Hung, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You

The University of Kansas, Lawrence, USA

A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, A. Bylinkin, J. Castle, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, C. Rogan, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang

Kansas State University, Manhattan, USA

S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, D.R. Mendis, T. Mitchell, A. Modak, A. Mohammadi, L.K. Saini, N. Skhirtladze

Lawrence Livermore National Laboratory, Livermore, USA

F. Rebassoo, D. Wright

University of Maryland, College Park, USA

A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, F. Ricci-Tam, Y.H. Shin, A. Skuja, S.C. Tonwar, K. Wong

Massachusetts Institute of Technology, Cambridge, USA

D. Abercrombie, B. Allen, V. Azzolini, A. Baty, G. Bauer, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D'Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.-J. Lee, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, G.S.F. Stephans, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch, S. Zhaozhong

University of Minnesota, Minneapolis, USA

A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, S. Kalafut, Y. Kubota, Z. Lesko, J. Mans, N. Ruckstuhl, R. Rusack, J. Turkewitz, M.A. Wadud

University of Mississippi, Oxford, USA

J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA

E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, F. Golf, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger

State University of New York at Buffalo, Buffalo, USA

A. Godshalk, C. Harrington, I. Iashvili, A. Kharchilava, C. Mclean, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani

Northeastern University, Boston, USA

E. Barberis, C. Freer, A. Hortiangtham, D.M. Morse, T. Orimoto, R. Teixeira De Lima, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood

Northwestern University, Evanston, USA

S. Bhattacharya, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco

University of Notre Dame, Notre Dame, USA

R. Bucci, N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, W. Li, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko³⁷, M. Planer, A. Reinsvold, R. Ruchti, P. Siddireddy, G. Smith, S. Taroni, M. Wayne, A. Wightman, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA

J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, W. Ji, T.Y. Ling, W. Luo, B.L. Winer, H.W. Wulsin

Princeton University, Princeton, USA

S. Cooperstein, P. Elmer, J. Hardenbrook, S. Higginbotham, A. Kalogeropoulos, D. Lange, M.T. Lucchini, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, J. Salfeld-Nebgen, D. Stickland, C. Tully

University of Puerto Rico, Mayaguez, USA

S. Malik, S. Norberg

Purdue University, West Lafayette, USA

A. Barker, V.E. Barnes, S. Das, L. Gutay, M. Jones, A.W. Jung, A. Khatiwada, B. Mahakud, D.H. Miller, N. Neumeister, C.C. Peng, H. Qiu, J.F. Schulte, J. Sun, F. Wang, R. Xiao, W. Xie

Purdue University Northwest, Hammond, USA

T. Cheng, J. Dolen, N. Parashar

Rice University, Houston, USA

Z. Chen, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Kilpatrick, W. Li, B. Michlin, B.P. Padley, J. Roberts, J. Rorie, W. Shi, Z. Tu, J. Zabel, A. Zhang

University of Rochester, Rochester, USA

A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, R. Taus, M. Verzetti

Rutgers, The State University of New Jersey, Piscataway, USA

A. Agapitos, J.P. Chou, Y. Gershtein, T.A. Gómez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA

A.G. Delannoy, J. Heideman, G. Riley, S. Spanier, K. Thapa

Texas A&M University, College Station, USA

O. Bouhali⁷⁵, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon⁷⁶, S. Luo, R. Mueller, R. Patel, A. Perloff, L. Perniè, D. Rathjens, A. Safonov

Texas Tech University, Lubbock, USA

N. Akchurin, J. Damgov, F. De Guio, P.R. Dudero, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang

Vanderbilt University, Nashville, USA

S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, J.D. Ruiz Alvarez, P. Sheldon, S. Tuo, J. Velkovska, M. Verweij, Q. Xu

University of Virginia, Charlottesville, USA

M.W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA

R. Harr, P.E. Karchin, N. Poudyal, J. Sturdy, P. Thapa, S. Zaleski

University of Wisconsin - Madison, Madison, WI, USA

M. Brodski, J. Buchanan, C. Caillol, D. Carlsmith, S. Dasu, L. Dodd, B. Gomber, M. Grothe, M. Herndon, A. Hervé, U. Hussain, P. Klabbers, A. Lanaro, K. Long, R. Loveless, T. Ruggles, A. Savin, N. Smith, W.H. Smith, N. Woods

†: Deceased

1: Also at Vienna University of Technology, Vienna, Austria

2: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

3: Also at Universidade Estadual de Campinas, Campinas, Brazil

4: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil

5: Also at Université Libre de Bruxelles, Bruxelles, Belgium

6: Also at University of Chinese Academy of Sciences, Beijing, China

7: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia

8: Also at Joint Institute for Nuclear Research, Dubna, Russia

9: Also at Cairo University, Cairo, Egypt

10: Also at Helwan University, Cairo, Egypt

11: Now at Zewail City of Science and Technology, Zewail, Egypt

12: Also at Fayoum University, El-Fayoum, Egypt

13: Now at British University in Egypt, Cairo, Egypt

14: Also at Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia

15: Also at Université de Haute Alsace, Mulhouse, France

16: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

17: Also at Tbilisi State University, Tbilisi, Georgia

18: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland

19: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

20: Also at University of Hamburg, Hamburg, Germany

21: Also at Brandenburg University of Technology, Cottbus, Germany

22: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary

- 23: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
- 24: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
- 25: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
- 26: Also at Institute of Physics, Bhubaneswar, India
- 27: Also at Shoolini University, Solan, India
- 28: Also at University of Visva-Bharati, Santiniketan, India
- 29: Also at Isfahan University of Technology, Isfahan, Iran
- 30: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
- 31: Also at Università degli Studi di Siena, Siena, Italy
- 32: Also at Kyunghee University, Seoul, Korea
- 33: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
- 34: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
- 35: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
- 36: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland 37: Also at Institute for Nuclear Research, Moscow, Russia
- 38: Now at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
- 39: Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
- 40: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
- 41: Also at University of Florida, Gainesville, USA
- 42: Also at P.N. Lebedev Physical Institute, Moscow, Russia
- 43: Also at INFN Sezione di Padova ^{*a*}, Università di Padova ^{*b*}, Università di Trento (Trento) ^{*c*}, Padova, Italy
- 44: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
- 45: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
- 46: Also at INFN Sezione di Pavia^{*a*}, Università di Pavia^{*b*}, Pavia, Italy
- 47: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
- 48: Also at Scuola Normale e Sezione dell'INFN, Pisa, Italy
- 49: Also at National and Kapodistrian University of Athens, Athens, Greece
- 50: Also at Riga Technical University, Riga, Latvia
- 51: Also at Universität Zürich, Zurich, Switzerland
- 52: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria
- 53: Also at Adiyaman University, Adiyaman, Turkey
- 54: Also at Istanbul Aydin University, Istanbul, Turkey
- 55: Also at Mersin University, Mersin, Turkey
- 56: Also at Piri Reis University, Istanbul, Turkey
- 57: Also at Gaziosmanpasa University, Tokat, Turkey
- 58: Also at Ozyegin University, Istanbul, Turkey
- 59: Also at Izmir Institute of Technology, Izmir, Turkey
- 60: Also at Marmara University, Istanbul, Turkey
- 61: Also at Kafkas University, Kars, Turkey
- 62: Also at Istanbul Bilgi University, Istanbul, Turkey
- 63: Also at Hacettepe University, Ankara, Turkey
- 64: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom

65: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom

- 66: Also at Monash University, Faculty of Science, Clayton, Australia
- 67: Also at Bethel University, St. Paul, USA
- 68: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
- 69: Also at Utah Valley University, Orem, USA
- 70: Also at Purdue University, West Lafayette, USA
- 71: Also at Beykent University, Istanbul, Turkey
- 72: Also at Bingol University, Bingol, Turkey
- 73: Also at Sinop University, Sinop, Turkey
- 74: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
- 75: Also at Texas A&M University at Qatar, Doha, Qatar
- 76: Also at Kyungpook National University, Daegu, Korea