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Monolayer Transition Metal Dichalcogenides (TMDCs) are promising candidates for quantum
technologies, such as quantum dots, because they are truly two-dimensional semiconductors with
a direct band gap. In this work, we analyse theoretically the behaviour of a double quantum dot
(DQD) system created in the conduction band of these materials, with two electrons in the (1,1)
charge configuration. Motivated by recent experimental progress, we consider several scenarios,
including different spin-orbit splittings in the two dots and including the case when the valley
degeneracy is lifted due to an insulating ferromagnetic substrate. Finally, we discuss in which cases
it is possible to reduce the low energy subspace to the lowest Kramers pairs. We find that in this
case the low energy model is formally identical to the Heisenberg exchange Hamiltonian.

I. INTRODUCTION

Monolayers of transition metal dichalcogenides
(TMDCs) are a class of 2D materials with very inter-
esting electronic and optical properties [1, 2]. They
are atomically thin semiconductors with a direct band
gap and two-fold degenerate valleys in the Brillouin
zone [3, 4]. Early studies discovered that their intrinsic
spin-orbit interaction splits the spin states in the valence
band and that it is possible to optically manipulate the
spin and valley degrees of freedom (DOF) [5, 6]. Further
theoretical works suggested the idea that the conduction
band should be spin-split as well [7, 8] which found
recent experimental confirmation [9].

The possibility to construct purely two-dimensional,
electrostatically defined quantum dots (QDs) is one of the
reasons that makes monolayer TMDCs so attractive, at
least from a fundamental point of view. Compared to III-
V semiconductors, such as GaAs [10, 11], TMDCs have
several isotopes with vanishing nuclear spin, thus lacking
hyperfine interactions with the electronic spin. Moreover,
TMDCs comprise an additional valley pseudospin. Al-
though these two features are common to several other
systems used for QDs, such as Si/SiGe quantum wells
[12–15], graphene [16–20] and carbon nanotubes (CNTs)
[21–24], TMDCs are special because they exhibit very
strong spin-orbit coupling (SOC). Theoretical investiga-
tion of QDs in TMDCs started with the magnetic field
dependence of the single-electron spectrum [7] and it now
includes studies of valley hybridisation [25], flake QDs of
triangular and hexagonal shape [26], the valley Zeeman
effect [27], optical control of a spin-valley qubit in nanos-
tructures [28], spin-degenerate regimes for small QD ra-
dius in an external magnetic field [29], a model of spin
relaxation [30], electric control of a spin-valley qubit [31]
and a model of valley qubit [32]. On the experimen-
tal side, gating monolayer TMDCs is not straightforward
[34, 36] and low material quality has hindered for a long
time the experimental study of the intrinsic properties
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of these materials. However, recently there has been a
significant progress in the fabrication process of nanos-
tructures in TMDCs. This has enabled the creation of
single QDs on monolayer [33, 37] or trilayer TMDCs [36],
double QD experiments with tunable coupling strength
between the dots [35, 37] and the observation of gate-
controlled Coulomb blockade effect [33–37].

In this paper we study double quantum dots (DQDs)
taking into account the spin-orbit coupling and both spin
and valley DOF. We note that, although single [23] and
double [38–40] quantum dots in CNTs have been stud-
ied, where the low energy theory shares some similarities
with TMDCs, little is known about TMDC DQDs and
the role of the exchange interaction. For simplicity we re-
strict each dot to the lowest orbital and we consider the
system filled with two electrons. Starting from the model
introduced in Ref. [41], we add the spin-orbit interaction
and we find a low energy effective Hamiltonian for the
case where each dot is occupied by one electron. We also
investigate the situations where the spin-orbit splitting
is different for each dot and where we include the effects
of a magnetic field. Furthermore, for large spin-orbit
splittings it is convenient to focus on a smaller subset
of states formed by the two lowest Kramers pairs of the
system. In this smaller subspace we find that in most
cases the interaction is formally identical to the Heisen-
berg exchange interaction used to perform a CNOT gate
between spin qubits [42]. This supports the idea that the
lowest Kramers pair can serve as a qubit for TMDC, as
was suggested in Ref. [7].

This paper is organised as follows. In Sec. II we in-
troduce the basic terms appearing in our Hamiltonian,
we present a naming conventions for certain useful pro-
jection operators and we briefly evoke the results for the
null spin-orbit coupling case. Then, in Sec. III we present
the effective Hamiltonians for the case where each QD is
occupied by one electron, for three different situations:
when the spin-splitting is equal in both dots, when the
spin-orbit splitting is different and when the TMDC is
deposited on an insulating ferromagnetic substrate or
placed in an external magnetic field. Afterwards, we ex-
plore in Sec. IV under which conditions it is possible to
focus on smaller effective Hamiltonians for these three
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situations. Finally, in Sec. V we present our conclusions.

II. MODEL

A. Basic definitions

We give here the definitions for the different terms
of the Hamiltonians that describe the various scenarios
studied in this work. The operators c(†)jτσ annihilate (cre-
ate) an electron in QD j with valley τ and spin σ. Here
j = L (R) refers to the left (right) QD, τ = K (K) indi-
cates the positive (negative) valley and σ =↑ (↓) specifies
spin up (spin down).

The on-site Coulomb repulsion between electrons in
the same QD is captured by the Hubbard Hamiltonian,

HU =
U

2

∑
j=L,R

nj(nj − 1), (1)

where U > 0 is the positive charging energy of the dot
and the number operator is defined as

nj =
∑

τ=K,K′

∑
σ=↑,↓

c†jτσcjτσ. (2)

A detuning term specifies the energy difference ε be-
tween the dots,

Hε =
ε

2
(nL − nR). (3)

Electron-hopping from one dot to the other is ac-
counted for by a tunneling term that preserves spin and
valley,

Ht =
∑
τ,σ

(
t c†Rστ cLστ + h.c.

)
, (4)

where the tunneling coefficient t is generally a complex
number.

The intrinsic spin-orbit coupling is modeled by a simple
time-reversal symmetric (T -symmetric) spin-splitting:
∆τzσz [7]. Here, τi (σi) is the i-th Pauli matrix acting
on the valley (spin) DOF (i = x, y, z), while ∆ is a real,
positive or negative, coupling constant. This implies that
the Kramers pair of states in the set P =

{
|K ↑〉 , |K ↓〉

}
is shifted by the energy +∆, while the Kramers pair of
states in the set N =

{
|K ↓〉 , |K ↑〉

}
is shifted by the

energy −∆. We call P the positive Kramers pair and N
the negative Kramers pair. For the double dot system,

H∆ = ∆
∑
j,τ,σ

c†jτσ(τz)ττ (σz)σσcjτσ. (5)

Eq. (5) assumes that the spin-orbit splitting is the same
for every dot, which is usually the case for dots created
on the same material. In case the spin-orbit splitting is
different we use the following generalisation,

H∆L,∆R
=
∑
j

∆j

∑
τ,σ

c†jτσ(τz)ττ (σz)σσcjτσ, (6)

V (x)

K K

K K

t

L R

E

x

ε

2(∆ + hSLz)

2(∆ + hV Rz)

FIG. 1. Diagram of the energy E as a function of the position
x along the axis of the DQD. V (x) (dark red line) represents
the double-well potential that defines the left (L) and right
(R) QDs. The energy levels of the valley and spin states
inside the dots are shown here with a positive detuning ε.
Spin states with valley K (K) are coloured in red (blue). The
energy levels are shifted by a symmetric spin-orbit splitting
(∆) and by inhomogeneous spin and valley Zeeman terms
along the z-direction, with coupling constants hSLz/hSRz and
hV Lz/hV Rz respectively. Electrons are allowed to tunnel from
one dot to the other with tunneling coefficient t.

where ∆L and ∆R are the spin-orbit splittings in the left
and right QD respectively.

We also consider the coupling of spin and valley to an
external magnetic field. The corresponding spin Zeeman
term is given by

HS =
∑
j

hSj ·
∑

τ,σ1,σ2

c†jτσ1
(σ)σ1σ2cjτσ2

, (7)

where hSL and hSR are two vectors of coupling constants
for left and right QD respectively and σ is the vector of
Pauli matrices acting on spin.

The valley Zeeman term is the valley counterpart of
the spin Zeeman but considering only the z-Pauli matrix
acting on the valley. This is motivated by Ref. [7] and
recent experiments [43, 44],

HV =
∑
j

hV jz
∑
τ,σ

c†jτσ(τz)ττ cjτσ (8)

where hV Lz and hV Rz describe the valley splittings in the
left and right dot. A concise outline of the interactions
and the DOF of our DQD model is shown in Fig. 1.

We consider the case where there are two electrons in
the system. The possible charge configurations are (2, 0),
(1, 1) and (0, 2), where (nL, nR) means that there are nL
electrons in the left QD and nR electrons in the right QD.
Because of the spin and valley degrees of freedom and due
to the Pauli exclusion principle, there is a total number of
28 linearly independent states: 6 (2, 0)-states, 16 (1, 1)-
states and 6 (0, 2)-states. Throughout this paper, we
always assume a small detuning and weak tunneling, i.e.

|t| � |U ± ε|. (9)
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|S〉 |T−〉 |T0〉 |T+〉

Spin |↑↓〉−|↓↑〉√
2

|↓↓〉 |↑↓〉+|↓↑〉√
2

|↑↑〉

Valley |KK〉−|KK〉√
2

|KK〉 |KK〉+|KK〉√
2

|KK〉

TABLE I. Definitions of singlet and triplet states for the spin
and valley DOF.

B. Naming basis states and projection operators

It is natural to refer to certain operators that will ap-
pear as projectors on specific states. We present a con-
vention to name all 28 states of the total Hilbert space
and we give the projection operators that will be useful
later.

Not all the states in the (1, 1)-subspace are allowed to
tunnel to (0, 2) or (2, 0)-states, but only those which are
antisymmetric in spin and valley, because of the Pauli
exclusion principle [40, 45]. Following the antisymmetric
nature of the tunneling states, we begin by introducing
a basis consisting of states that are symmetric or anti-
symmetric in both spin and valley: |sV sS〉(nL,nR), where
(nL, nR) is the charge configuration and sV (sS) indicates
the exchange symmetry of valley (spin) DOF, which can
be either a singlet (S) or a triplet (T−, T0, T+). See Ta-
ble I for the definitions of singlet and triplet states for
spin and valley. When (nL, nR) = (1, 1) we omit the
indication of the charge configuration in the subscript.
The equal spin-orbit coupling term H∆ (Eq. (5)) is not
diagonal in this basis. In order to work with a basis that
makes H∆ diagonal, in the (1, 1)-subspace we substitute
|ST0〉, |T0S〉, |SS〉 and |T0T0〉 with the following states,

|n±〉 = (|ST0〉 ± |T0S〉)/
√

2, (10a)

|n±〉 = (|T0T0〉 ± |SS〉)/
√

2, (10b)

where |n±〉 (|n±〉) are antisymmetric (symmetric) spin-
valley states consisting of only positive (subscript +) or
negative (subscript −) Kramers pairs. Note that |n±〉
(|n±〉) are odd (even) under the time-reversal operator T .
For these states there is no defined exchange symmetry
for spin or valley alone. States analogous to |n±〉 are
defined in the (2, 0) and (0, 2)-subspaces. In Table II, we
list all these states grouped by charge configuration and
by symmetry under exchange.

Projection operators on each one of the antisymmetric
(1, 1)-states are easy to obtain (see Appendix A),

P|T±S〉 =
1

16
(1± τLz) (1± τRz) (1− σL · σR) , (11a)

P|ST±〉 =
1

16
(1± σLz) (1± σRz) (1− τL · τR) , (11b)

P|n±〉 =
1

16
(1− τLzτRz) (1− σLzσRz)
× (1± τLzσLz) (1− τLxσLxτRxσRx) ,

(11c)

where τji (σji) is the i-th Pauli matrix acting on valley
(spin) in QD j = L,R and σj , τ j are vectors of Pauli
matrices acting on spin or valley respectively. We note
that the projection operator over the whole antisymmet-
ric subspace of the (1, 1)-sector can be written as [41] (see
Appendix A),

Pas = (3−σL ·σR−τL ·τR−(σL ·σR)(τL ·τR))/8. (12)

C. Zero spin-orbit splitting (∆ = 0)

We finish this section by briefly considering the case
where there is no spin-orbit splitting (∆L = ∆R = 0).
The total Hamiltonian is, then,

Htot = HU +Hε +Ht, (13)

where HU , Hε and Ht are defined in equations (1), (3)
and (4) respectively. This model describes DQD systems
with fourfold degenerate spin and valley states in each
dot (and no spin-orbit interaction). This case has been
extensively treated in Ref. [41]. For later reference and
readability we report the resulting effective Hamiltonian,

Heff = −JPas, (14)

the exchange energy J in this case has the usual form,

J =
4|t|2U
U2 − ε2

, (15)

and the definition of Pas is given in Eq. (12). This Hamil-
tonian shifts down the energy of all the (1,1) states in
the antisymmetric subspace by −J . It means that the
ground state is any state in this 6-dimensional subspace
and it has energy −J . The first excited states are those in
the orthogonal 10-dimensional symmetric subspace, with
energy 0. This is represented in Fig. 2(a).

III. RESULTS FOR (1,1)-SUBSPACE

A. Symmetric spin-orbit splitting (∆L = ∆R = ∆)

We first consider the case where the spin-orbit coupling
is equal for both QDs: ∆L = ∆R = ∆. We call this
symmetric spin-orbit splitting. The total Hamiltonian is

Htot = HU +Hε +Ht +H∆, (16)

where H∆ is defined in Eq. (5). This Hamiltonian de-
scribes DQDs created in TMDCs [3–7, 9], but it may
also be used to study DQDs in CNTs [23, 38–40, 46, 47].

Symmetric spin-orbit coupling H∆ shifts those states
formed by two elements of the negative (positive)
Kramers pair by −2∆ (+2∆), while it leaves unchanged
those states formed by one element of the negative
Kramers pair and one element of the positive Kramers
pair (see Table II). In order to identify the (1, 1)-sector
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as our low energy subspace (LES) we have to guarantee
first of all that no (2, 0) or (0, 2)-state is lower in energy
than any (1, 1)-state. Looking at Table II we see that
this condition is met when

4|∆| < U − |ε|. (17)

When both (9) and (17) are satisfied, it follows that (2, 0)
and (0, 2)-states are energetically unfavored and tun-
neling out from the (1, 1)-sector is strongly suppressed.
However, virtual tunneling processes must be taken into
account. It is important to notice that antisymmetric
(1, 1)-states can tunnel only to their (0, 2) and (2, 0) coun-
terpart states that have the same spin and valley config-
uration. This is due to the spin- and valley-preserving
nature of the tunneling term of Eq. (4): there is no tran-
sition from a negative Kramers pair to a positive Kramers
pair and viceversa. Therefore, all the energy differences
between initial and final states in a virtual tunneling pro-
cess do not depend on ∆ and the exchange interaction
that emerges does not change from the case of zero spin-
orbit splitting reported in Sec. II C. Exchange interaction
and symmetric spin-orbit coupling act independently of
each other. We obtain the effective Hamiltonian:

Heff = −JPas + ∆Σ, (18)

where J is the same constant defined in (15), Pas is given
in (12), ∆Σ = H∆|(1,1) = ∆ (τLzσLz + τRzσRz) and
H∆|(1,1) is the restriction of H∆ to the (1, 1)-subspace.
It is simple to evaluate the consequences of Eq. (18)

since it is diagonal in the states of Table II. Assuming
now that ∆ > 0, the ground state is |n−〉 because it
is the only state that is shifted down by both −J and
−2∆, thus the ground state space is one dimensional,
see Fig. 2(b),(c). The dimensionality of the ground state
space changes from one to six only when ∆ is exactly
equal to zero (see Fig. 2(a)) and this degeneracy is lifted
linearly in ∆. As shown in Fig. 2(b),(c), there are five
groups of excited states with various degrees of degen-
eracy and whose relative distances in energy depend on
the sizes of ∆ and J . For later comparison, we observe
that in this case each antisymmetric state is separated
from its symmetric counterpart by the same amount, the
exchange energy J . In the case ∆ < 0, the results are
analogous, but the ground state is |n+〉.

Regarding the experimental situation, the few avail-
able experiments indicate U ≈ 2 meV for QDs created
in WSe2 [33] and MoS2 [35–37] with QD radii around
100 nm. On the other hand, the theory predicts 2∆ to
be about 3 meV for MoS2 and larger for other compounds
[7, 48]. Therefore, at the moment, condition (17) seems
not to be satisfied for TMDCs, but further experiments
with smaller QD sizes may lead to higher charging ener-
gies. However, when Eq. (17) is not satisfied, it is possible
to focus on a smaller subspace inside the (1, 1)-sector, as
explained in Sec. IV.

HU + Hε −2∆ 0 +2∆
(1, 1)-subspace, antisymmetric

0

|n−〉 |T+S〉 |n+〉
|T−S〉
|ST+〉
|ST−〉

(1, 1)-subspace, symmetric

0

|n−〉 |T+T0〉 |n+〉
|T+T−〉 |T−T0〉 |T+T+〉
|T−T+〉 |T0T+〉 |T−T−〉

|T0T−〉
(2, 0)-subspace

U + ε

|n−〉(2,0) |T+S〉(2,0) |n+〉(2,0)

|T−S〉(2,0)

|ST+〉(2,0)

|ST−〉(2,0)

(0, 2)-subspace

U − ε

|n−〉(0,2) |T+S〉(0,2) |n+〉(0,2)

|T−S〉(0,2)

|ST+〉(0,2)

|ST−〉(0,2)

TABLE II. The first column on the left hand side reports the
value of Coulomb repulsion (Eq. (1)) and detuning (Eq. (3))
for the different charge configurations. The three columns on
the right hand side show which states are shifted by −2∆, 0
and +2∆ by the action of the symmetric spin-orbit coupling
H∆ defined in Eq. (5). The states are grouped as (1, 1)-states
(antisymmetric and symmetric), (2, 0)-states and (0, 2)-states
(only antisymmetric).

B. Asymmetric spin-orbit splitting (∆L 6= ∆R)

Suppose now that the spin-orbit strength is different
in the two dots, ∆L 6= ∆R, this is the case of asymmetric
spin-orbit splitting. The total Hamiltonian is

Htot = HU +Hε +Ht +H∆L,∆R
, (19)

where H∆ has been substituted by H∆L,∆R
defined in

Eq. (6).
There is theoretical evidence that for (rather small)

QDs on TMDCs the spin-orbit strength ∆ depends on
the radius of the QD [29]. Therefore, the Hamiltonian in
Eq. (19) can reflect a situation where the two dots have
different sizes. Changing the size of the QD would allow
for a smooth and tunable adjustment of ∆. Another sit-
uation where ∆L 6= ∆R can be relevant is when the dots
would be created in lateral heterojunctions such that each
dot is created in different types of TMDC, which intrin-
sically possess different spin-orbit splittings [48]. Lateral
heterojunctions of different TMDCs have already been
demonstrated by several groups [49–51]. To our knowl-
edge no experiment has been reported yet involving such
a DQD. We notice that for heterojunctions the situation
might be further complicated by mismatch in the energy
band gap, acting as a detuning away from the interface,
and by likely non-negligible differences in the Coulomb
charging energy U of the two compounds.
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2∆ > J

(c)

2∆ < J

(b)

∆ = 0

(a)

J

J

J

J

J

J

2∆

2∆

2∆

2∆
2∆

2∆

E

FIG. 2. Level structure of (1, 1)-states for the symmetric spin-
orbit splitting case at fixed (small) detuning. We show three
relevant cases with increasing spin-orbit splitting (∆) from
left to right. Thick horizontal lines illustrate the energy lev-
els. Degenerate levels are shown as a group of thick lines close
together with a number indicating the degree of degeneracy.
The coloured energy levels display states inside the N × N -
sector. The red energy levels indicate the antisymmetric state
|n−〉, while the blue energy levels are the symmetric states
|n−〉, |T+T−〉, |T−T+〉. In (a) the spin-orbit splitting is zero
and there are only two degenerate energy levels, separated
by the exchange energy J . The higher (lower) energy corre-
sponding to the symmetric (asymmetric) states. In (b) both
symmetric and antisymmetric energy levels are separated in
three groups, |n−〉 becomes the ground state and the first ex-
cited states are antisymmetric. In (c), when 2∆ is greater
than the exchange energy J , the N × N -sector becomes the
LES and the first excited states are symmetric.

We point out that H∆L,∆R
is not diagonal in the basis

of the states listed in Table II. Each of the antisymmet-
ric states |T+S〉, |T−S〉, |ST+〉, |ST−〉 is mixed with its
symmetric counterpart and the off-diagonal elements are
±(∆L − ∆R). This is relevant to determine the ground
state, but not for the form of the effective Hamiltonian,
because the mixing happens inside the (1, 1)-subspace.
Another difference is that, in contrast to Table II, the
±2∆ on the diagonal of the Hamiltonian are replaced by
±(∆L + ∆R) in the (1, 1)-subspace, by ±2∆L in (2, 0)
and by ±2∆R in (0, 2). When condition (9) is also valid,
we can ensure that (1, 1)-states are lower in energy than
(2, 0) and (0, 2) states by requiring that

max{|∆L + ∆R|, |∆L −∆R|}+
+ 2 max{|∆L|, |∆R|} < U − |ε|. (20)

In this case we can use the Schrieffer-Wolff transforma-
tion [52–54] to obtain the effective Hamiltonian. The
term H∆L,∆R

has three significant consequences. Firstly,
the following matrix element differences now depend on

E E

−2∆

−J

0

2∆

−∆L −∆R

−J2 − Φ
2

−J2 + Φ
2

∆L + ∆R

1

3

4

4

1

3

1

3

4

4

1

3

J

J

J

J|n−〉

Φ

J|n+〉

∆L = ∆R ∆L 6= ∆R

FIG. 3. Comparison of the energy levels for symmetric (left)
and asymmetric (right) spin-orbit splitting cases. The energy
levels from left to right are aligned in a way to preserve the
sum ∆L + ∆R between the two cases (equal to 2∆ for the
symmetric spin-orbit splitting case). The left hand side is
equivalent to the case of 2∆ > J depicted in Fig. 2(c). The
exchange energies J and J|n±〉 are defined in Eq. (15) and
Eq. (22), while Φ =

√
J2 + 4(∆L −∆R)2, see Eq. (24).

±(∆L −∆R),

E|n±〉 − E|n±〉(0,2) = ±(∆L −∆R)− U + ε, (21a)

E|n±〉 − E|n±〉(2,0) = ∓(∆L −∆R)− U − ε, (21b)

where E|ψ〉 = 〈ψ|Htot |ψ〉. Secondly, in order to ap-
ply perturbation theory to the (1, 1)-subspace, the cou-
pling constants must satisfy the conditions |t| � |U ± ε|,
|t| � |U±(ε+∆L−∆R)| and |t| � |U±(ε−∆L+∆R)| si-
multaneously. In turn, these imply that |∆L−∆R| � U .
Lastly, the exchange energies relative to |n±〉 acquire a
dependence on the asymmetry of the spin-orbit splittings,

J|n±〉 =
4|t|2U

(U + ε±∆L ∓∆R)(U − ε∓∆L ±∆R)
, (22)

c.f. Eq. (15). The exchange energies for states |T+S〉,
|T−S〉, |ST+〉 and |ST−〉 are not affected.

An effective Hamiltonian can be written in a compact
form in the following way,

Heff = −JPas + ∆LΣL + ∆RΣR+

− (J|n−〉 − J)P|n−〉 − (J|n+〉 − J)P|n+〉, (23)

where P|n−〉 and P|n+〉 are the projectors on |n−〉 and
|n+〉 defined in equation (11c) and in this case we write
the restriction H∆L,∆R

|(1,1) = ∆LΣL+∆RΣR, with Σj =

τjzσjz. By diagonalizing the Hamiltonian (23), we obtain
the energy levels shown in Fig. 3. Interestingly, the two
levels that appear at energy 0 and energy −J for the
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symmetric spin-orbit splitting case move to the energies,

− J

2
± 1

2

√
J2 + 4(∆L −∆R)2 = −J

2
± Φ

2
. (24)

This is a consequence of the level repulsion due to the
off-diagonal ±(∆L − ∆R) matrix elements coming from
H∆L,∆R

. However, the degrees of degeneracy remain the
same. Looking at Eq. (24) and at Fig. 3, we realise that,
for positive ∆L + ∆R, the ground state is |n−〉, unless
|∆L−∆R| is larger than ∆L+∆R, in which case the states
|T+S〉, |T−S〉, |ST+〉, |ST−〉 (or their symmetric counter-
parts) span a 4-fold degenerate ground state space.

We want to briefly mention here that a generalisation
of the asymmetric spin-orbit coupling which preserves the
T -symmetry, including couplings to the in-plane compo-
nents of the spins, does not affect the exchange interac-
tion. Consider

H∆L,∆R,xyz =
∑
j

∆j ·
∑

τ,σ1,σ2

c†jτσ1
(τz)ττ (σ)σ1σ2

cjτσ2

(25)
where ∆j is the vector of the three coupling constants
∆jx, ∆jy, ∆jz for QD j, multiplied by the vector of spin
Pauli matrices σ. Eq. (25) resembles the spin Zeeman
term (cf. Eq. (7)), but it also preserves T -symmetry be-
cause of the τz that multiplies the spin Pauli matrices.
Qualitatively, a term like this should appear in the Hamil-
tonian of TMDC DQD systems for which it is possible to
define an average local tilt and an average local curvature
of the TMDC sheet for each dot [55]. However, tilt and
curvature add couplings between conduction and valence
band as well and one would need to check whether these
couplings are small enough to be neglected. This is not
the focus of this work and we only want to stress that
substituting H∆L,∆R

with H∆L,∆R,xyz in Eq. (19) does
not modify the exchange interaction given in Eq. (23).

C. Spin and valley Zeeman and symmetric
spin-orbit coupling

In this section we investigate the influence of spin and
valley Zeeman terms on the symmetric spin-orbit split-
ting case. The total Hamiltonian for this scenario reads

Htot = HU +Hε +Ht +H∆ +HS +HV , (26)

where HS and HV are defined by equations (7) and (8)
respectively. This is the case depicted in Fig. 1.

This model approximates at least two similar but dis-
tinct situations. First, when a monolayer TMDC is
placed in a non-uniform and weak magnetic field, the
spin of the electron in each dot couples to the local field
in all three spacial directions through the spin Zeeman
interaction HS . On the other hand, we assume that the
valley only couples along z, the orthogonal direction to
the plane [7]. In contrast to Ref. [7] here we only consider
the lowest orbital state in each of the dots but we also
take into account the Coulomb charging energy U . The

other possible situation that came to our attention is that
of monolayer TMDC deposited on a ferromagnetic insu-
lator, e.g. europium oxide (EuO). Such a situation was
considered in Ref. [56], where Eq. (7) was used to model
the giant and tunable valley splitting. A Rashba term is
also included, mixing conduction and valence band, that
we do not consider here. Although Ref. [56] does not con-
sider the valley Zeeman term, we note that it is allowed in
the effective Hamiltonian of the TMDC because the ferro-
magnetic substrate breaks time-reversal symmetry. The
presence of such magnetic exchange field in TMDC and
ferromagnetic semiconductor heterostructures has been
recently demonstrated [43, 44].

Now both HS and HV are non-diagonal in the basis of
states presented in Table II and they mix a large num-
ber of states. We do not list all the newly introduced
matrix elements but we observe that they are confined
inside the charge sectors (0, 2), (1, 1) and (2, 0), as HS

and HV do not contain terms of the form c†LτσcRτ ′σ′ (or
h.c.). The only coupling between (1, 1)-states and (2, 0)
or (0, 2)-states remains tunneling. Nevertheless, we have
to ensure that (1, 1)-states are lower in energy than other
states. In Appendix B we report the discussion of which
conditions must be fulfilled in order for this to be the
case. In addition, to apply the Schrieffer-Wolff transfor-
mation, Eq. (9) and the conditions

|t| � U ± (ε+ (h`Lz − h`Rz)), (27a)
|t| � U ± (ε− (h`Lz − h`Rz)), (27b)

where ` = V, S, must also be satisfied. The matrix el-
ement differences of states |T−S〉, |T+S〉, |ST−〉, |ST+〉
with their (2, 0) and (0, 2) counterparts acquire a depen-
dence on hV Lz − hV Rz or hSLz − hSRz. Defining the
exchange energies

J|T±S〉 =
4|t|2U

(U + ε± hV Lz ∓ hV Rz)(U − ε∓ hV Lz ± hV Rz)
,

(28a)

J|ST±〉 =
4|t|2U

(U + ε± hSLz ∓ hSRz)(U − ε∓ hSLz ± hSRz)
,

(28b)

the effective Hamiltonian can be written as

Heff = −J(P|n−〉+P|n+〉)−J|T−S〉P|T−S〉−J|T+S〉P|T+S〉+

− J|ST−〉P|ST−〉 − J|ST+〉P|ST+〉 + ∆Σ+

+ hSL · σL + hSR · σR + hV LzτLz + hV RzτRz, (29)

where J is the standard exchange energy defined in
Eq. (15) and hSL · σL + hSR · σR ≡ HS |(1,1) while
hV LzτLz + hV RzτRz ≡ HV |(1,1).

IV. RESULTS FOR NEGATIVE KRAMERS
PAIRS SUBSPACE

In this section we explain in which cases it is possi-
ble to restrict the LES to the tensor product of the two
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lowest Kramers pairs in energy and we present the effec-
tive Hamiltonians in this smaller subspace. In general,
this happens when the spin-orbit strength is quite large,
thus the results of this section are relevant for TMDCs.
From now on we assume ∆L,R > 0, so that for each
dot the lowest Kramers pair is N , the negative one (see
Sec. II A). Similar results can be obtained in case the
spin-orbit splittings are negative and the lowest Kramers
pair is P, the positive one.

A. Symmetric spin-orbit splitting (∆L = ∆R = ∆)

In the case of symmetric spin-orbit splitting (∆L =
∆R = ∆, see Htot in Eq. (16)) there is no matrix element
that allows a transition between N and P. Assuming
Eq. (9) and 2∆ > J (which is usually the case for TMDCs
at low detuning) we see from Fig. 2(c) that the subspace
spanned by the states ofN×N (also calledN×N -sector)
is the LES, where,

N ×N =
{
|K ↓;K ↓〉 , |K ↓;K ↑〉 ,

|K ↑;K ↓〉 , |K ↑;K ↑〉
}
, (30)

with |τ1σ1; τ2σ2〉 = c†Lτ1σ1
c†Rτ2σ2

|0〉. Now we present the
effective Hamiltonian when the system is restricted to
this LES.

We can easily identify the negative Kramers pair N as
a spin-1/2 DOF with

|↑̃〉 ≡ |K ↑〉 , |↓̃〉 ≡ |K ↓〉 , (31)

so that the effective basis N ×N can be seen as the basis
of all the states of two spins,

N ×N =
{
|↑̃; ↑̃〉 , |↑̃; ↓̃〉 , |↓̃; ↑̃〉 , |↓̃; ↓̃〉

}
. (32)

In this basis, the spin-orbit coupling always assumes the
value of −2∆, which we ignore in the following since it
is just an energy shift. It is well known that the effective
Hamiltonian for two electrons with only the spin DOF
in two QDs with only tunneling, detuning and Hubbard
potential is given by [11] Heff = −JSL · SR, with the
usual exchange energy J multiplied by the projector on
the singlet state |S〉, the only antisymmetric state for two
spins (Sj is the vector of spin operators acting on QD j).
Analogously, using the following operators,

σ̃z = σz, σ̃x = τxσx, σ̃y = τxσy, (33)

the Hamiltonian of the system restricted to basis N ×N
is

Heff, N×N = −JS̃L · S̃R, (34)

where S̃ji = 1
2 σ̃ji is the spin operator proportional to the

new Pauli operator σ̃i, i = x, y, z, acting on QD j = L,R.
The ground state space is one-dimensional as for the full
(1, 1)-subspace. Indeed, the ground state is the same,

|S̃〉 =
(
|↑̃; ↓̃〉 − |↓̃; ↑̃〉

)
/
√

2 =(
|K ↓;K ↑〉 − |K ↑;K ↓〉

)
/
√

2 = |n−〉 . (35)

B. Almost symmetric spin-orbit splitting
(|∆L −∆R| � ∆L + ∆R)

Very similar considerations are valid when we relax
the constraint of equal spin-orbit splittings in the dots
(∆L 6= ∆R, see Htot in (19)). To reduce the LES to the
subspace spanned by N ×N we need

∆L + ∆R > (J +
√
J2 + 4(∆L −∆R)2)/2, (36)

see Fig. 3 and Eq. (24). Of course, to apply perturbation
theory, the conditions |t| � |U ± (ε + ∆L − ∆R)| and
|t| � |U ± (ε−∆L + ∆R)| must be valid here too.

Following the same steps that led to Eq. (34), we arrive
to the effective Hamiltonian,

Heff, N×N = −J|n−〉S̃L · S̃R. (37)

where J|n−〉 is given in Eq. (22). Indeed, from Fig. 3 we
see that the energy levels for the N×N -sector are similar
between symmetric and asymmetric spin-orbit splitting,
only the exchange energy J is altered.

To better understand what is the effect of ∆L−∆R in
J|n−〉 with respect to J , we may write

J|n−〉 =
J(

1 + ∆R−∆L

U+ε

)(
1 + ∆L−∆R

U−ε

) . (38)

Since (∆L −∆R)/(U ± ε)� 1, we can write

J|n−〉 ' J
(

1− 2ε
∆L −∆R

U2 − ε2

)
. (39)

The effect of an almost symmetric spin-orbit coupling on
the exchange energy is that of fine tuning around the
value of J by a small positive or negative quantity, de-
pending on the sign of ε and ∆L − ∆R. Moreover, as
ε → 0, J|n−〉 → J . The above results remain valid for
the generalisation to H∆L,∆R,xyz (Eq. (25)).

C. Spin and valley Zeeman and symmetric
spin-orbit coupling

We now consider the total Hamiltonian of Eq. (26)
restricted to the N × N -sector. The results in this sec-
tion are valid when the spin and valley Zeeman coupling
constants are weak compared to the spin-orbit strength:
|hSji|, |hV jz| � 2∆, j = L,R, i = x, y, z. We show di-
rectly and discuss the effective Hamiltonian for the sub-
space spanned by N ×N as a 4×4 matrix. The columns
are associated, from left to right, to the rotated basis
states |n−〉, |n−〉, |T+T−〉 and |T−T+〉,
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Heff, N×N =

 −J −A δhzS − δhzV 0 0
δhzS − δhzV −A 0 0

0 0 −Hz
S +Hz

V −A+ 0
0 0 0 Hz

S −Hz
V −A−

 , (40)

where J is the standard exchange energy as in Eq. (15).
We use the notation

Hz
` = h`Lz + h`Rz, (41a)

δhz` = h`Lz − h`Rz, (41b)

h±Sj = hSjx ± ihSjy, (41c)

with ` = S, V , j = L,R and A± and A are given by

A± =
h+
SLh

−
SL + h+

SRh
−
SR

2∆±Hz
S

, (42a)

A =
A− +A+

2
= 2∆

h+
SLh

−
SL + h+

SRh
−
SR

4∆2 − (Hz
S)

2 . (42b)

Since |hSjz| � 2∆, we can use the approximation A+ ≈
A− ≈ A, thus the contribution of A to Eq. (40) is an
energy shift that can be ignored. Therefore, in this case
we can also write

Heff, N×N = −JS̃L · S̃R + HS |N×N + HV |N×N , (43)

where HS |N×N and HV |N×N are the restrictions of HS

and HV to the N ×N -sector.
Given the generality of H∆L,∆R,xyz (Eq. (25)) as a T -

symmetric term and the fact that H∆L,∆R,xyz and HS

only differ in the presence of τz that multiplies the spin
Pauli matrices, we can assert that the new matrix ele-
ments (Hz

S , H
z
V , δh

z
S , δh

z
V , A± and A) that appear in

Eq. (40) as compared to Eq. (34), are allowed only by
breaking the time-reversal symmetry.

V. CONCLUSIONS

In this work we have studied and presented the influ-
ence of a spin-orbit coupling on the low energy properties
of a DQD system with spin and valley DOF in the (1, 1)
charge configuration. In our analysis we have also ex-
plored the possibility of a different spin-orbit splitting
in each dot and we have included a T -symmetry break-
ing magnetic field. In addition, we have discussed un-
der which conditions the LES corresponding to the (1, 1)
charge configuration, which is 16-dimensional, can be fur-
ther restricted to a 4-dimensional subspace (the N ×N -
sector). We found that an equal spin-orbit splitting in
each dot has no effects on the induced exchange interac-
tion with respect to the case without spin-orbit coupling.
On the other hand, asymmetric spin-orbit splitting, spin
Zeeman and valley Zeeman modify the exchange coupling
constants of three different pairs of antisymmetric states
respectively. The modification of the exchange energies

is similar for all these three pairs of states and it de-
pends on the asymmetry of the interaction between left
and right QD.

We also found that TMDCs satisfy the conditions to
restrict the LES to the N ×N -sector, where the effective
Hamiltonian for the symmetric spin-orbit splitting case is
formally identical to the Heisenberg exchange interaction
between two spin-only qubits in valley non-degenerate
materials. This renders the Kramers pair an ideal im-
plementation of a qubit in TMDC, as was suggested in
Ref. [7]. If the τx operation can be effectively imple-
mented (theoretical proposals to achieve this include the
use of impurities [31, 57] or the use of oscillating con-
finement potentials [32]), a recipe for a CNOT gate with
these states is readily available from the original Loss and
DiVincenzo proposal for spin-only qubits [42]. Moving to
the asymmetric spin-orbit splitting we found that only
the exchange energy is affected, while the form of the ex-
change Hamiltonian remains unchanged. The spin-orbit
coupling asymmetry offers a way to tune the exchange en-
ergy other than the detuning of the dots. Finally, for the
spin and valley Zeeman case, new couplings appeared in
the reduced effective Hamiltonian, which originate from
the breaking of the time-reversal symmetry.
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Appendix A: Projectors

Here we explain how to find a compact form for pro-
jection operators on spin-valley states which have a par-
ticular structure, such as the (1, 1) antisymmetric states
described in this paper. For the sake of clarity we list
them here explicitly:

|T+S〉 = (|K ↑;K ↓〉 − |K ↓;K ↑〉)/
√

2, (A1a)

|T−S〉 = (|K ↑;K ↓〉 − |K ↓;K ↑〉)/
√

2, (A1b)

|ST+〉 = (|K ↑;K ↑〉 − |K ↑;K ↑〉)/
√

2, (A1c)

|ST−〉 = (|K ↓;K ↓〉 − |K ↓;K ↓〉)/
√

2, (A1d)

|n+〉 = (|K ↑;K ↓〉 − |K ↓;K ↑〉)/
√

2, (A1e)

|n−〉 = (|K ↓;K ↑〉 − |K ↑;K ↓〉)/
√

2, (A1f)
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with |τ1σ1; τ2σ2〉 = c†Lτ1σ1
c†Rτ2σ2

|0〉. The operators that
project on these states are shown in Eq. (11). We can
follow two approaches to obtain them, one is more intu-
itive and gives compact results, assembling projectors on
larger parts of the Hilbert space, but in practice it works
only when the states we are considering have a structure
for which we already know the correct basic projectors.
The other one is rather formal but general, however it
does not give the projectors in a compact form.

In order to show that equations (11) are really the pro-
jectors we are looking for, we will present here the intu-
itive way to derive them, using symmetries in the struc-
ture of states (A1). Take τz, this operator has eigenvalue
+1 when the state is in valley |K〉 and eigenvalue −1
when the state is in valley |K〉. Thus, (1 + τjz)/2 is the
projector on all those states which have an electron in the
j-th QD in valley |K〉 and (1− τjz)/2 projects on states
where the electron in QD j has valley |K〉. Analogous
considerations hold for the spin operator σz and the spin
states |↑〉, |↓〉. In other words, we wrote down projectors
on states which have a certain valley or possess a certain
spin in a specific dot. Now focus on τLzτRz, this string of
operators has eigenvalue +1 when both electrons are in
the same valley (|KK〉 or |KK〉) and eigenvalue −1 when
the valleys are different (|KK〉 or |KK〉). Then, opera-
tors (1 ± τLzτRz)/2 project on states whose valleys are
the same (+) or are opposite (−). Similar considerations
are valid for their spin counterparts.

The states with the simpler structure are |T+S〉, |T−S〉,
|ST+〉 and |ST−〉. They all have one of the properties
fixed for both dots (either positive valley, negative val-
ley, spin up or spin down, respectively). Consider |T+S〉
(Eq. (A1a)), for both dots the valley is |K〉, but the spins
are in a singlet state. The combination

1

4
(1 + τLz)(1 + τRz) (A2)

projects on all the states with positive valley in both dots.
To complete the expression we multiply by the projector
on the spin singlet, given by (1−σL ·σR)/4. Finally, the
complete projector is

P|T+S〉 =
1

16
(1 + τLz) (1 + τRz) (1− σL · σR) , (A3)

as in (11a). The other very similar expressions in (11a)
and (11b) follow the same derivation with the appropriate
changes of signs and spin/valley operators.

States |n±〉 of equations (A1e) and (A1f) have a more
complicated structure. First of all, they are both com-
posed of states with opposite valley and opposite spin in
the dots. The operator

1

4
(1− τLzτRz)(1− σLzσRz) (A4)

projects on the subspace spanned by
{|K ↑;K ↓〉 , |K ↓;K ↑〉 , |K ↓;K ↑〉 , |K ↑;K ↓〉}. To
distinguish between |n+〉 and |n−〉, we note that for |n+〉

the product of the eigenvalues of spin and valley inside
each dot is positive, while for |n−〉 it is negative (this is
why they get an energy shift of ±2∆ by the spin-orbit
coupling H∆). We use τLzσLz to distinguish them and
the projectors become

1

8
(1− τLzτRz)(1− σLzσRz)(1± τLzσLz), (A5)

positive sign for the subspace spanned by
{|K ↑;K ↓〉 , |K ↓;K ↑〉} and negative sign for the
subspace spanned by {|K ↓;K ↑〉 , |K ↑;K ↓〉}. Finally,
the operator that identifies the correct superposition
is τLxσLxτRxσRx, the same for both states. The total
projectors for |n±〉 are

P|n±〉 =
1

16
(1− τLzτRz) (1− σLzσRz)
× (1± τLzσLz) (1− τLxσLxτRxσRx) ,

(A6)

as in Eq. (11c).
Formally, the above results can also be obtained by

noticing that the projectors we are looking for are spin-
and-valley operators (i.e. acting on the (1, 1)-subspace)
and every spin-and-valley operator P can be expanded
in a linear combination of Pauli operator strings,

P =
∑

i,j,k,l=0,x,y,z

Pijkl τLiσLjτRkσRl, (A7)

where Pijkl are complex coefficients. If |ψ〉 is the state we
want to project on, the projector is P = |ψ〉 〈ψ| and we
can use the inner product provided by the trace operation
to obtain the expansion coefficients,

Pijkl = Tr [|ψ〉 〈ψ| τLiσLjτRkσRl] . (A8)

Again, recollecting a compact expression from this set of
coefficients requires some work (even when most of them
are zeros) and does not give any physical insight.

For completeness, we briefly discuss Pas, the projector
on the whole antisymmetric subspace of (1, 1)-states of
Eq. (12). Although this operator could be obtained as the
sum of the 6 projectors of Eq. (11) on the single, linearly
independent antisymmetric states, we can write it down
following another procedure, derived in Ref. [41]. It can
be expressed as a combination of projectors on the singlet
(S, antisymmetric) and on the triplet (T , symmetric)
subspaces for spin and valley,

Pas = PSspinP
T
valley + PTspinP

S
valley. (A9)

Here we defined the spin projectors as

PSspin =
1− σL · σR

4
, PTspin =

3 + σL · σR
4

. (A10)

The valley projectors have the same form, only substi-
tuting τ ’s for σ’s. Eq. (A9) yields, then,

Pas = (3−σL·σR−τL·τR−(σL·σR)(τL·τR))/8. (A11)
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Appendix B: Conditions on spin and valley Zeeman
coupling constants for (1,1)-subspace

In Sec. III C we discussed the effects of the spin and
valley Zeeman term on the exchange interaction in the
case when the (1, 1)-subspace is our LES. There we omit-
ted to show the conditions to ensure that (1, 1)-states are
lower in energy than (2, 0) and (0, 2) states. We report
them here. To simplify the discussion we assume that
the spin Zeeman coupling constants associated with x-
and y-Pauli matrices are small: |hSji| � U , j = L,R,

i = x, y. Then, choosing an appropriate basis where σjz
and τjz are diagonal, it is easy to see that (1, 1)-states
are lower under the condition,

max{−2∆ + |Hz
S −Hz

V |,−2∆ + |δhzS − δhzV |,
+ 2∆ + |Hz

S +Hz
V |,+2∆ + |δhzS + δhzV |,

|δhzS +Hz
V |, |δhzS −Hz

V |,
|Hz

S + δhzV |, |Hz
S − δhzV |}+

+ 2 max{|∆|, |hV Lz|, |hV Rz|, |hSLz|, |hSRz|} < U − |ε|,
(B1)

where we used the same notation described in Eq. (41).
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