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Abstract

We study homogeneous quenches in integrable quantum field theory where the initial state
contains zero-momentum particles. We demonstrate that the two-particle pair amplitude neces-
sarily has a singularity at the two-particle threshold. Albeit the explicit discussion is carried out
for special (integrable) initial states, we argue that the singularity is inevitably present and is
a generic feature of homogeneous quenches involving the creation of zero momentum particles.
We also identify the singularity in quenches in the Ising model across the quantum critical point,
and compute it perturbatively in phase quenches in the quantum sine–Gordon model which are
potentially relevant to experiments. We then construct the explicit time dependence of one-point
functions using a linked cluster expansion regulated by a finite volume parameter. We find that
the secular contribution normally linear in time is modified by a t ln t term. We additionally
encounter a novel type of secular contribution which is shown to be related to parametric res-
onance. It is an interesting open question to resum the new contributions and to establish their
consequences directly observable in experiments or numerical simulations.
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1 Introduction

Understanding the out-of-equilibrium dynamics of isolated quantum many-body systems is one of
the most challenging problems in contemporary physics. Due to the direct insight into quantum
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statistical physics provided by the experimental realisability of closed quantum systems, significant
progress has been made both on the experimental and theoretical side in the study of non-equilibrium
behaviour. Using cold atomic gases it has become possible to engineer and manipulate isolated
quantum systems [1, 2, 3, 4, 5, 6, 7, 8, 9], and recent studies have led to a series of interesting
discoveries such as the experimental observation of the lack of thermalisation in quantum integrable
systems [1, 2, 3, 10].

A paradigmatic framework for studying non-equilibrium dynamics is provided by quantum
quenches [11] which correspond to a sudden change of some parameters of a system prepared in
an equilibrium state, typically in its ground state. For a long time, the focus of the theoretical
investigations was the description of the late time asymptotic steady state. To explain the sta-
tionary state of integrable quantum systems, the concept of the generalised Gibbs ensemble (GGE)
was proposed [12] and later experimentally confirmed [4]. However, specifying the complete set of
conserved charges for the GGE in interacting integrable models proved to be a non-trivial problem
[13, 14, 15, 16, 17, 18, 19] .

Beyond the steady state it is also of interest to describe the actual time evolution and identify
universal features of the non-equilibrium dynamics. Theoretical description of the out-of-equilibrium
time evolution is much more difficult and less understood than the characterisation of the steady
state, and analytical results have mainly been obtained in systems that can be mapped to free
particles [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34] and in conformal field theory [11]
and in a few cases in interacting integrable systems [35, 36, 37, 38, 39, 40, 41].

Quantum field theory (QFT) provides an effective and universal description of quantum systems
near their critical point. Therefore small quenches in the vicinity of the critical point are expected
to be described by a non-equilibrium QFT, capturing universal physics even out of equilibrium.
Quenches in quantum field theories, on the other hand, are interesting also in their own right being
relevant to high energy physics, and for certain experiments as well [42, 43].

In suitably small quantum field theory quenches, the semi-classical approach [44, 45, 46, 47] and
approaches based on form factor expansions [48, 49, 50, 51, 52] lead to analytical predictions for
the time evolution of certain observables. Whereas the perturbative approach in [51, 52] can be
applied to any quench in which the pre-quench Hamiltonian is integrable, analytical results have
only been obtained by perturbation theory up to first order in the quench amplitude. The method
developed in [47, 48, 49, 50] can be applied whenever the post-quench Hamiltonian is integrable and
the post-quench particle density is suitably small. This latter approach also requires to consider
specific, so-called integrable quenches, for which the initial state can be cast in a squeezed coherent
form in the post-quench basis as

|Ω〉 = N exp

(
ˆ

dϑ

4π
Kab(ϑ)Z

†
a(−ϑ)Z†

b (ϑ)

)

|0〉 , (1.1)

written in terms of the post-quench Faddeev-Zamolodchikov creation operators Z†
a(ϑ) for particle

species a, the post-quench vacuum |0〉 and the pair-amplitude Kab, which we will often refer to
simply as the K function. It must be stressed that, for models with one particle species as well as
for the repulsive regime of the sine–Gordon model, the smallness of the quench essentially guarantees
the structure of (1.1), whereas for a generic quench protocol in a generic integrable QFT it is not
known and probably not true [52, 53] that the initial state obeys this particular structure in the
post-quench basis. For interacting integrable field theories, the determination of the K function for
a specific quench protocol assumed to be integrable is a difficult and unsolved problem, with some
progress in the numerical determination [53, 54] and analytic approximations based on form factors
[55, 56].
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Nevertheless, integrable quenches are known to exist for lattice spin systems [57], and are an
ideal starting point for analytic considerations in field theory due to their close resemblance to the
integrable boundary states introduced by Ghoshal and Zamolodchikov [58]. In fact, following the
case of boundary states it is possible to extend (1.1) with zero-momentum particles yielding

|Ω〉 = N exp

(

ga
2
Z†
a(0) +

ˆ

dϑ

4π
Kab(ϑ)Z

†
a(−ϑ)Z†

b (ϑ)

)

|0〉 , (1.2)

where ga is called the one-particle coupling which corresponds to the quench breaking (particle
number) parity. Such an initial state is also motivated by experiments [43] which show the presence
of oscillations with a frequency corresponding to the energy of the zero-momentum particle (i.e. the
particle mass).

For an initial state (1.2), time evolution of the vertex operator eiβφ/2 in the attractive regime of
the sine–Gordon model was studied in [50]. In the homogeneous (translationally invariant) quenches
considered here, the presence of zero-momentum solitons or antisolitons is excluded if the initial
state is annihilated by the topological charge which is a typical situation including e.g quenches
by local operators starting from the ground state of the model with a different coupling. For
stationary breathers Bn, however, the one-particle couplings gBn can appear in (1.2). The conclusion
of [50] was that one-particle oscillations of time dependence e−imt show an exponential decay with
several relaxation rate contributions. In particular, with only one breather species in the model the
contribution of the first breather to the relaxation rate of one-particle oscillations is

τ−1
B1

=
mB1

π

ˆ ∞

0
dϑ (1− SB1B1(ϑ)) |KB1B1(ϑ)|2 sinhϑ . (1.3)

For boundary field theories, however, it is known that the existence of a one-particle coupling
implies a first order pole in the corresponding K function at the origin,

Kaa(ϑ) ∝ −i
g2a
2

1

ϑ
; (1.4)

the correct relation of the residue to the one-particle coupling was first found in [59] and later
proven in [60]. In this paper we show that this relation extends to the case of integrable quenches
corresponding to an initial state of the form (1.2) as well. As an immediate consequence, the integral
in (1.3) becomes divergent since SB1B1(0) = −1 . Even though much of the derivation in [50] remains
valid, the singular expressions clearly need to be corrected.

In this paper we first demonstrate the presence of the singularity (1.4) whenever a zero-momentum
particle is present in the initial state. Starting from this observation, we follow a linked cluster expan-
sion similar to the one performed in [48, 49, 50] but now supported by a finite volume regularisation
to treat the singularities and compute the time dependence of one-point functions 〈O(t)〉 up to terms
containing five particles focusing on the one-particle oscillations e−imt. As a result of these calcula-
tions, we show that the linearly time dependent secular contribution in [50] is modified by a mt lnmt
term and a novel type of secular term is encountered which has analogies with the phenomenon of
parametric resonance.

The detailed structure of our paper is the following. In Section 2, first a general argument is
presented for the existence of the singularity (1.4), and then we consider two particular quench
protocols that illustrate our arguments. In the Ising model, quenches from the ferromagnetic to
the paramagnetic phase are discussed and the singular structure of the K function is explicitly
demonstrated in the continuum limit. Then we consider a quench protocol in the sine–Gordon model
which consists of shifting the field by a constant. Computing the quench overlaps using an expansion
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in the quench magnitude, we demonstrate explicitly that the pair amplitude for the first breather
possesses the anticipated singularity up to leading order. In Section 3 we perform a linked cluster
expansion for the time-dependent one-point function, using a finite volume regularisation which was
first introduced in [61]. This allows us to refine the argument for the existence of the singularity
(1.4), and also the explicit construction of the contributions for 〈O(t)〉 up to four particle terms, from
which the terms corresponding to one-particle oscillations are extracted. We then consider the five-
particle terms, but only present the leading order emergent secular contributions. In Section 4 we
collect and present our formulas describing the time evolution, address the question of resummation
in the linked cluster expansion and generalise our results to cases involving more than one particle
species. Finally we discuss a class of secular terms linked to a mechanism analogous to parametric
resonance, and conclude in Section 5. Due to the large amount of tedious calculations involved, most
of their details are relegated to appendices. In Appendix A, the finite volume formalism is reviewed,
while Appendices B and C are devoted to the quenches in the Ising and sine–Gordon models. The
technical details of the linked cluster expansion and the calculation of the time evolution can be found
in Appendices D, E, G, H and I. To confirm the validity of our calculations they were numerically
cross-checked at several points; details of these checks are presented in Appendix J.

2 Integrable quenches with one-particle coupling and the singular-

ity of K

In this section we show that in integrable quenches with non-zero one-particle coupling g the K
function necessarily possesses a first order pole of the form (1.4) at the origin. For simplicity, we focus
on models with one particle species but the argument carries over to systems with several particle
species. First we present a general argument based on an analogy with the one-point functions of
bulk operators in the presence of boundaries discussed in [62]. The core of the argument is based on
the cancellation of divergent terms in the expectation value which is evaluated using finite volume
regulators. We then proceed to a concrete example of the quench in the Ising field theory crossing
the phase boundary, and discuss an interesting quench in the sine–Gordon model, for which the
one-particle coupling and the singular part of the K function can be calculated to lowest order in
the quench parameter and the presence of the singularity in K and the relation of its residue to g
can be verified explicitly.

2.1 Boundary one-point functions

In the following we briefly review the boundary problem discussed in [62]. Let us consider an
integrable field theory with a single massive particle constrained on a finite line x ∈ [0,R] with
integrable boundary conditions α and β at the two ends; for simplicity we consider the case when
the left/right boundary conditions are identical i.e. α = β = B. The vacuum expectation value

〈O(x)〉B (2.1)

taken with respect to the ground state of the finite volume Hamiltonian HB
R can be rewritten using

an Euclidean rotation

〈O(x)〉B =
〈B| e−HxO(0) e−H(R−x) |B〉

〈B|e−HR|B〉 , (2.2)

where the coordinate x plays the role of the Euclidean time variable, H is the infinite volume
Hamiltonian in the crossed channel and |B〉 is the boundary state corresponding to the boundary
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condition B. When the boundary state contains zero-momentum particles associated with a non-
zero coupling of a single particle state to the boundary in the original channel, |B〉 can be expanded
in the asymptotic multi-particle basis [58] as

|B〉 = N exp

(

ḡBZ
†(0) +

ˆ

dϑ

4π
KB(ϑ)Z

†(−ϑ)Z†(ϑ)

)

|0〉 , (2.3)

where for simplicity we assumed that the model has only one species,

KB(ϑ) = RB(iπ/2 − ϑ)

in terms of the boundary reflection factor RB(ϑ), and Z†(ϑ) are the Faddeev–Zamolodchikov creation
operators satisfying the commutation relations

Z†(ϑ1)Z
†(ϑ2) = S(ϑ1 − ϑ2)Z†(ϑ2)Z

†(ϑ1) .

ḡB is the one-particle coupling to the boundary and the amplitudes KB(ϑ) satisfy the boundary
crossing-unitary equation [58]

KB(ϑ) = S(2ϑ)KB(−ϑ) ,
which serves as a consistency relation of (2.3) and also implies KB(ϑ)

∗ = KB(−ϑ). The single
particle coupling implies a pole for the reflection factor

RB(ϑ) ∼
i

2

g2B
θ − iπ/2 ,

which then yields a pole at the origin

KB(ϑ) ∼ −
i

2

g2B
ϑ
, (2.4)

for the boundary K function. Whereas it was argued that ḡB = gB in [58], it was later demonstrated
in [59, 63] that the proper normalisation is ḡB = gB/2, with a general proof given in [60].

The relation between the residue of K and the boundary one-particle coupling is crucial for
the consistency of a number of theoretical constructs, such as the boundary form factor bootstrap
considered in [64]. For the one-point function, the approach of [62] is to put the theory in a finite
volume L in the crossed channel (with periodic boundary conditions) and consider the limit

〈O(x)〉B = lim
L→∞

〈O(x)〉BL = lim
L→∞

〈BL| e−HLxO(0) e−HL(R−x) |BL〉
〈BL|e−HLR|BL〉

, (2.5)

whereHL is the finite volume Hamiltonian with periodic boundary conditions and |BL〉 represents the
boundary state in finite volume. The finite volume is introduced here as a regulator for disconnected
contributions arising from the matrix elements of the operator O which appear once |BL〉 is expanded
in terms of the corresponding finite volume multi-particle eigenstates of HL. The disconnected terms
lead to positive powers of the dimensionless volume variable mL which only cancel if the singularity
of KB is exactly as in (2.4). Therefore the singularity of KB and the relation of its residue to the
one-particle coupling are consistency criteria for the existence of well-defined one-point functions in
the infinite volume theory.

The time evolution of the expectation value of a local operator O after a quantum quench with
initial state

|Ω〉 = N exp

(

g

2
Z†(0) +

ˆ

dϑ

4π
K(ϑ)Z†(−ϑ)Z†(ϑ)

)

|0〉 ,
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and post-quench Hamiltonian H is given by the expression

〈O(t)〉 = 〈Ω| e
itHO(0) e−itH |Ω〉
〈Ω|Ω〉 ,

which is just a real time analogue of the boundary expectation value. The only difference is that the
K function appearing in |Ω〉 is not related to any reflection factor; in fact, Ghoshal–Zamolodchikov
boundary states are not normalisable, while for quench initial states the factor N is chosen to ensure
〈Ω|Ω〉 = 1. However, it is clear from the calculations performed in [62] that the condition for the
cancellation of singularities in unaffected by these details, therefore a well-defined expectation value
〈O(t)〉 after an integrable quench with one-particle coupling g/2, the K function must have a first
order pole at the origin with a residue equal to −ig2/2.

In the next subsections we discuss two examples where this relation can be verified explicitly,
while in Section 3 we consider the real time evolution and show that this condition must hold for
consistency.

2.2 Quench in the Ising field theory from the ferromagnetic to the paramagnetic

phase

In this subsection we study the Ising field theory and quenches across the two phases of the model, as
in the Ising model only quenches from the ferromagnetic to the paramagnetic (PM) phase can account
for a zero-momentum particle in the initial state. In our approach, we perform the continuum limit
of various quantities obtained in the lattice model and in particular, we show that the pair-amplitude
possesses a pole with the residue expected from the above considerations.

Quenches in the lattice model were discussed in [25, 26, 27] and for particular quenches within the
ferromagnetic phase, calculations also in the continuum model [48] were performed and numerically
checked [65]. Although for the FM → PM quench such calculations in the QFT were not carried
out, the scaling limit of the analogous quantities in the lattice model make perfect sense, which
we regard as the characteristics of the QFT quench problem. Throughout the subsection, we only
discuss the most important features and formulas, and for a more detailed treatment of the topic,
Appendix B is recommended to consult.

We first recall, that the transverse field quantum Ising model (TQIM) is defined by the Hamilto-
nian

H = −J
N
∑

i=1

(

σxi σ
x
i+1 + hσzi

)

, (2.6)

where σαi denotes the Pauli matrices at site i, J > 0, h is the transverse field and the boundary condi-
tions are assumed to be periodic. By applying the Jordan–Wigner transformation, the Hamiltonian
(2.6) can be mapped to spinless Majorana fermions with dispersion relation [66, 67]

εh(k) = 2J
√

1 + h2 − 2h cos k , (2.7)

and with an energy gap ∆ = 2J |1 − h|. The model possesses a quantum critical point at h = 1
separating the paramagnetic or disordered phase for h > 1 and the ferromagnetic, ordered phase
for h < 1. In the disordered phase, the expectation value of σxi , i.e. that of the magnetisation
operator vanishes, while in the ferromagnetic phase its value is non-zero. The Hilbert space of the
model consists of two sectors with respect to fermion number parity. In the Neveu–Schwarz and
Ramond sectors states with even and odd number of fermions are present, respectively, resulting in
the quantisation condition for the wave numbers
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kn =
2π

N

(

n+
1

2

)

Neveu–Schwarz

pn =
2π

N
n Ramond ,

(2.8)

where n is a positive integer.
Performing a quench in the transverse field h, the pre- and post-quench excitations can be related

via a Bogoliubov transformation if the initial state is the pre-quench vacuum. As a consequence, the
squeezed-coherent form of the initial state in the post quench basis (1.1) is guaranteed. Focusing
on quenching from the ground state of the FM phase to the PM phase, ( h0 → h with h0 < 1 and
h > 1), one can write [25, 26, 27]

|0, h0〉FM
NS ± |0, h0〉FM

R√
2

=
1√

2NNS

exp

(

i
∑

k⊂NS

K(k)a†−ka
†
k

)

|0, h〉PM
NS

± 1√
2NR

exp



i
∑

p⊂R\{0}
K(p)a†−pa

†
p



 a†0|0, h〉PM
R ,

(2.9)

where NNS and NR are normalisation constants

N2
R =

∏

n⊂N+

(

1 +

∣

∣

∣

∣

K

(

2π

L
n

)∣

∣

∣

∣

2
)

,

N2
NS =

∏

m⊂N+ 1
2

(

1 +

∣

∣

∣

∣

K

(

2π

L
m

)∣

∣

∣

∣

2
)

,

(2.10)

ak and a†k are fermionic operators and K can be found in Appendix B in (B.8).
In the scaling limit of the TQIM, J is sent to infinity together with h → 1 such that the gap

associated with the fermion mass remains finite

M = 2J |1 − h| . (2.11)

In addition, the lattice spacing is sent to zero as a = 1
2J . In particular, for the FM → PM quench,

we send δh→ 0 in the following way:

h = 1 + δh , h0 = 1− M0

M
δh ,

J =
M

2δh
, a =

δh

M
,

(2.12)

which ensures that the dispersion relation in the post- and pre-quench model is εh(pa)→
√

M2 + p2

and εh0(pa)→
√

M2
0 + p2 respectively, i.e. the mass in the PM and FM phase is M and M0. Upon

the substitution k = pa, the continuum limit of the square of the lattice K function (B.8) in (2.9) is

|K(p)|2 =
√

p2 +M2
√

p2 +M2
0 − p2 +MM0

√

p2 +M2
√

p2 +M2
0 + p2 −MM0

. (2.13)

8



From (2.13) it is easily seen that this function has a 1/p2 singularity at the origin with the
coefficient

4M2
0M

2

(M +M0)2
.

This singularity corresponds to the presence of a zero-momentum particle in the Ramond contribu-
tion to the initial state (2.9). As p = M sinhϑ, the coefficient of the singularity of |K(p)|2 equals
g4

4 M
2 , therefore K(ϑ) can be written in the form (1.4) with

g = 2

√

M0

M +M0
. (2.14)

Now we show that the one-particle coupling expressed with M and M0 in (2.9) equals g. To calculate
the latter, we put the theory into finite volume, where (cf. also Section 3) the finite volume expansion
of the integrable initial state reads

|Ω〉L = G(L)
(

|0〉L +
g

2

√
ML|{0}〉L +

∑

I

K(ϑ)N2(ϑ,L)|{−I, I}〉L.+ ...

)

, (2.15)

where the I denote quantum numbers labelling the finite volume states and N2 can be found in
(A.6). Then from (2.9)

√
ML

g

2
=
NNS

NR
, (2.16)

must hold. It is convenient to calculate the logarithm of their ratio:

ln
N2

NS

N2
R

= ln
∏

n⊂N+

1 +
∣

∣K
(

2π
L (n− 1/2)

)∣

∣

2

1 +
∣

∣K
(

2π
L (n)

)∣

∣

2 , (2.17)

which in Appendix B is shown to be equal to

ln
MM0L

(M +M0)

when L→∞, so (2.14) indeed holds.

2.3 Phase quenches in the sine–Gordon model

Consider the sine–Gordon model defined by the action

A =

ˆ

d2x

(

1

2
∂µΦ∂

µΦ+
µ2

β2
cos βΦ

)

, (2.18)

in a finite volume L with quasi-periodic boundary conditions

Φ(t, x+ L) = Φ(t, x) +
2π

β
n n ∈ Z .

The quench protocol consists of abruptly shifting the sine–Gordon field Φ → Φ + δ/β at t = 0,
i.e. changing the phase of the cosine potential regarding the pre-quench vacuum as initial state for
the post-quench evolution. The peculiarity of this protocol is that, as shown in Appendix C, it is
possible to relate the pre- and post-quench ground states by a unitary transformation
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|Ω〉L = exp

(

i
δ

β
Π0

)

|0〉L , (2.19)

where

Π0 =

ˆ L

0
dxΠ(t, x) = i

ˆ L

0
[H,Φ(t, x)]dx

is the zero mode of the conjugate momentum field Π = Φ̇. This allows one to derive a form factor
expansion for the overlaps with an arbitrary state |χ〉

L〈χ|Ω〉L = L〈χ| exp
(

i
δ

β
Π0

)

|0〉L , (2.20)

by expanding the exponential into power series,

L〈χ|Ω〉L =

∞
∑

l=0

(−1)l
l!

(

δ

β

)l
∑

α1

. . .
∑

αl−1

ˆ

(

∏

i

dxi

)

L〈χ|eiP̂ x1Φ(0)e−iP̂ x1 |α1〉L(Eχ − Eα1)×

L〈α1|eiP̂ x2Φ(0)e−iP̂ x2 |α2〉L(Eα1 − Eα2)...L〈αl−1|eiP̂ xlΦ(0)e−iP̂ xl |0〉L(Eαl−1
− E0),

(2.21)

where P̂ is the momentum operator and the αi index l − 1 complete sets of asymptotic multi-
particle eigenstates. As the initial state is the ground state of a translational invariant Hamiltonian,
the overlaps are non-zero only for states |χ〉 of total spatial momentum zero. Due to the integrals
over xi, this also restricts the intermediate states |αi〉L to have zero total momentum so we can write

L〈χ|Ω〉L =
∞
∑

l=0

(−1)l
(

δ

β

)lLl

l!

˜∑

α1

. . .
˜∑

αl−1

L〈χ|Φ(0)|α1〉L(Eχ − Eα1)× (2.22)

L〈α1|Φ(0)|α2〉L(Eα1 − Eα2)...L〈αl−1|Φ(0)|0〉L(Eαl−1
− E0) , (2.23)

where the tildes over the sums mean that only zero momentum states are included.
We now compute the overlap for the first breather to first order in δ/β. Matching the finite

volume expression of the initial state (2.19) with the general case (2.15), and using (A.6) and the
finite volume form factors (A.14), we obtain

√

m1L
g

2
=L〈{0}|Ω〉L

=−m1L
δ

β
L〈{0}|Φ(0)|0〉L

=−
(

δ

β

)

m1L
F ∗
B1√
m1L

,

(2.24)

from which
g

2
= − δ

β
F ∗
B1
, (2.25)

where FB1 is the infinite volume one-breather form factor of Φ (C.11).
Since the form factors of Φ with even number of breathers B1 vanishes, the lowest non-trivial

order for the pair amplitude K is (δ/β)2 :

N2(ϑ,L)K(ϑ) =L〈{I,−I}|Ω〉L

=

(

δ

β

)2L2

2

˜∑

α1

L〈{I,−I}|Φ(0)|α1〉L(2m1 coshϑ− Eα1)L〈α1|Φ(0)|0〉LEα1 ,
(2.26)
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where ϑ is related to the quantum number I via the Bethe quantisation condition

m1L sinhϑ+ δB1B1(2ϑ) = 2πI , (2.27)

N2(θ, L) is a finite volume normalisation factor (A.6) δB1B1 and its derivative ϕB1B1(ϑ) is defined
by SB1B1(ϑ) = −eiδB1B1

(ϑ), and θ1, ..., θn are the particle rapidities in the state |α1〉L determined by
finite volume quantisation relations analogous to (2.27). Using the expression for finite volume form
factors (A.14) it can be written as

(

δ

β

)2L2

2

∞
∑

n=1

∑

{β}n

FB1B1Bi1
...Bin

(iπ + ϑ, iπ − ϑ, θ1, ...θn)
√

(m1L coshϑ)2 + (m1L cosh ϑ) ϕB1B1(ϑ)ρn(θ1, ...θn)
×

(

2m1 coshϑ−
n
∑

i=1

mi cosh θi

)

F ∗
Bi1

...Bin
(θ1, ...θn)

(

n
∑

i=1

mi cosh θi

)

.

(2.28)

In Appendix C it is shown that in the limits L→∞ and ϑ→ 0 only the n = 1 term survives where
the single particle in the intermediate state is also a B1, from which

K(ϑ) ∼
(

δ

β

)2FB1B1B1(iπ + ϑ, iπ − ϑ, 0)(2 cosh ϑ− 1)F *
B1

2 cosh ϑ
. (2.29)

Using the form factor kinematical singularity equation (A.12) one can extract that for small ϑ

FB1B1B1(iπ + ϑ, iπ − ϑ, 0) ∼ −4i

ϑ
FB1 , (2.30)

so

K(ϑ) ∼− 2i

(

δ

β
FB1

)2 1

ϑ
+O(ϑ0)

=− ig
2

2

1

ϑ
+O(ϑ0) ,

(2.31)

where we used (2.25) which establishes the relation (2.4) between the one-particle coupling of the
first breather and the singularity of its pair amplitude for this particular quench in the sine–Gordon
model.

We remark that for this particular quench protocol we do not know whether it leads to an
integrable initial state of the generalised squeezed form (1.2). However, we recall that the proof
of the analogous relation in boundary quantum field theory presented in [60] does not depend on
integrability either (in fact, it works in general D + 1 space-time dimensions).

Note also that the above argument straightforwardly generalises to a much larger class of quench
protocols, the “exponential quenches” when the initial state is related to the post-quench ground
state via

|Ω〉L = exp

(

iλ

ˆ

dxΨ(x)

)

|0〉L , (2.32)

where Ψ(x) is a local field which breaks particle number parity.
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3 Linked cluster expansion in finite volume

To describe the time evolution of expectation values of local operator, we follow the approach
developed in [48, 49, 50] and apply a linked cluster expansion, combined with the finite volume
regularisation scheme used in [62, 68]. The latter is based on the finite volume form factor formalism
developed in [61]; the ingredients necessary for our calculations are described in Appendix A.

For a quench starting from an initial state written in terms of post-quench multi-particle states as
in (1.2), a natural approach to compute the one-point function of a local operator O is to decompose
into contributions from states with different number of particles, which results in an expansion in
terms of form factors of the local operator. However, in infinite volume form factors possess pole
singularities due to (A.12), and for quenches with one-particle coupling the K functions also possess
singularities. As a result, the contributions are ill-defined and need to be regularised which can be
done by putting the theory in finite volume, where due to the quantisation of the particle momenta
neither the kinematic singularities of the form factors nor the singularities of the pair-amplitude
contribute. The finite volume L can be considered as a physical regulator and the expectation value
is then written as

〈O(t)〉 =〈Ω| e
itHO(0) e−itH |Ω〉
〈Ω|Ω〉

= lim
L→∞

L〈Ω| eitHO(0) e−itH |Ω〉L
L〈Ω|Ω〉L

,

(3.1)

which is first evaluated for finite L where one can verify the cancellation of singular terms explicitly
and then take the limit L→∞.

To perform the calculation, one needs an expression for the initial state in finite volume which
was derived in [62]:

|Ω〉L = G(L)
(

|0〉L +
g

2

√
mL|{0}〉L +

∑

I

K(ϑ)N2(ϑ,L)|{−I, I}〉L

+
∑

I

g

2
K(ϑ)N3(ϑ,L)|{−I, I, 0}〉L +

1

2

∑

I 6=J

K(ϑ1)K(ϑ2)N4(ϑ1, ϑ2, L)|{−I, I,−J, J}〉L
)

+ . . . ,

(3.2)

where I, J are Bethe quantum numbers and we used the notations introduced in Appendix A. To
simplify notations, one can write the following shorthand for

|Ω〉L = G(L)
∞
∑

n=0

|Ω〉(n) ,

where |Ω〉(0) = |0〉L , |Ω〉(1) = g
2N1(L)|{0}〉L , etc. denote the contributions with a fixed number of

particles.
To ensure the convergence of the expansion for high energies one can introduce a regulator

parameter R and consider

〈O(t, R)〉 = 〈Ω| e
(−R

2
+it)HO(0) e(−R

2
−it)H |Ω〉

〈Ω|e−RH |Ω〉 , (3.3)

where R > 0. When recasting the quantum number sums in terms of contour integrals, R ensures
that the integrals themselves are convergent and therefore allows appropriate manipulations of the
contours. At the end of the calculation the parameter R is sent to zero.
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Following the procedure introduced in [69], one can separate contributions indexed by particle
number as follows

Ckl = (k)〈Ω|e(−R
2
+it)HO(0) e(−R

2
−it)H |Ω〉(l) ,

and for a proper normalisation of the state one must also divide by the “partition function”

Z =
∑

n

Zn =
∑

n

(n)
L 〈Ω|e−RH |Ω〉(n)L .

In particular for Z, the first few terms are

Z0 = 1 , Z1 =
g2

4
mLe−mR , (3.4)

and
Z2 =

∑

I

K∗(ϑ)K(ϑ)N2(ϑ,L)
2e−2mR coshϑ . (3.5)

Let us turn to the issue of the expansion parameter. Whereas in our calculations R is eventually
sent to zero at the end, for 〈O(t, R)〉 is expected to be well-defined for any finite R. Therefore
let us first treat R as a large positive quantity, and introduce the parameters z = e−m(R/2+it) and
z̄ = e−m(R/2−it). Then the order of Ckl is z̄kzl , and that of Zn is (zz̄)n. The inverse of the partition
function, thus can be expanded in powers of zz̄ as

Z−1 =
∑

n

Z̄n ,

where the first few terms read

Z̄0 = 1 , Z̄1 = −Z1 , Z̄2 = Z2
1 − Z2 .

Putting these ingredients together, in a finite volume L we obtain

〈O(t, R)〉L =
1

Z

∑

Ckl =
∑

D̃kl , (3.6)

where analogously to to [62] and [69], D̃nm is introduced as

D̃kl =
∑

j

Ck−j,l−jZ̄j , (3.7)

with the first few terms having the form

D̃1l = C1l − Z1C0,l−1 , l = 1, 2, . . . ,

D̃2l = C2l − Z1C1,l−1 + (Z2
1 − Z2)C0,l−2 , l = 2, 3, . . . .

Since the D̃kl are of order zkz̄l, they must separately be well-defined as L→∞:

Dkl = lim
L→∞

D̃kl , (3.8)

and so the infinite volume limit can be written as

〈O(t, R)〉 =
∑

k,l

Dkl .
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For convenience and later use, we also introduce the quantities

G̃n =
n
∑

l=0

D̃n−l,l , (3.9)

whose infinite volume limit is denoted by Gn.
The expressions individual Ckl contain finite volume form factors, which in general are given by

[61]

L〈{I1, . . . , Ik|O|{J1, . . . , Jl}〉L =
FO
k+l(ϑ1 + iπ, . . . , ϑk + iπ, ϑ′1, . . . , ϑ

′
l)

√

ρk(ϑ1, . . . , ϑk)ρl(ϑ
′
1, . . . , ϑ

′
l)

+O(e−µL) , (3.10)

where it is understood that the rapidities {ϑ1, . . . , ϑk} and {ϑ′1, . . . , ϑ′l} are solutions to the corres-
ponding Bethe–Yang equations with quantum numbers {In}, {Jn}. Formula (3.10) is valid whenever
there are no coinciding rapidities; otherwise a more complicated formula taking into account discon-
nected contributions is necessary. In this paper we are interested in contributions to one-particle
oscillations, for which coinciding rapidities cannot occur, the numbers of particles in the two multi-
particle states differ by an odd number which excludes the two possible cases with disconnected
terms (cf. [61]).

Note that the equality (3.10) is valid up to a suitably chosen phase factor which can be changed
by redefining the phases of the finite volume eigenstates |{I1, . . . , In}〉L. This includes also the fact
that the ordering of the particles is not determined by first principles and any exchange leads to an S-
matrix factor according to (A.10). It is clear that all such ambiguities cancel in the expectation value
(3.3); however, for a practical calculation one must fix the phases of the multi-particle contributions
to the matrix elements consistently. Here we make use of the consistent prescription introduced
in [62]: any time the amplitudes K(ϑi) and K∗(ϑi) appear with some ϑi, the explicit order of
the rapidities substituted into the relevant form factor is given by (−ϑi, ϑi) and (ϑi + iπ,−ϑi + iπ),
respectively. Exchanging any two pairs of rapidities does not make any difference, therefore the phase
of the form factors is completely fixed by the above rule. Note that the presence of zero-momentum
particles does not produce any additional ambiguities.

3.1 The singularity of K revisited

Now we are ready to complete our arguments why the pair-amplitude must be singular in integrable
quenches with one-particle coupling. Recall that in the boundary problem [62] the ordering of
the terms was performed according to powers of e−m(R−x) and e−mx, which resulted in the same
expressions for the boundary version of D̃kl that we obtained in (3.7) with the expansion parameters
z = e−m(R/2+it) and z̄ = e−m(R/2−it). In the boundary problem, the existence of the infinite volume
limit (3.8) and eventually 〈O(x)〉B requires the presence of the singularity

KB(ϑ) ∼ −
i

2

g2B
ϑ
,

therefore

K(ϑ) ∼ − i
2

g2

ϑ

must hold for the quench problem as well. The easiest way to see that is to consider the one-particle
contribution −Z1 which behaves as mL. To make C12 − Z1C01 finite in the infinite volume limit,
C12 must have a similar volume-dependence, which is ensured by the singularity of K involved in
C12.
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At the end of the calculations the regulator R is sent to zero. The contribution Gn (3.9) is of
order |z|n = (e−mR/2)n and just as in [62] it turns out that the coefficient of the largest power of
the mL term is always of order gn . Focussing on the behaviour of the singular term, the small
parameter of the linked-cluster calculation can be identified with g. As the singularity of the K is
of order g2 one can formally treat K as a term of order g2. This way of counting the orders results
in the same classification of contributions D̃kl (3.9) that we obtained by considering z and z̄ as the
expansion parameters.

This counting of orders is clearest for a perturbative quench corresponding to changing the
Hamiltonian as

δH = λ

ˆ

dxΨ(x) ,

where Ψ is a purely odd operator (i.e. whose form factors with an even number of particles in the
pre-quench system is zero). Using perturbation theory to compute the overlaps following [51, 52]
one obtains that the one-particle coupling is of order λ, while the pair amplitude K is always of
order λ2.

When the perturbing operator has even matrix elements as well, the pair-amplitude can also
possess a λ order term. Whereas this term is not singular due to the regular behaviour of F (iπ +
ϑ, iπ − ϑ) at ϑ = 0, at order λ2 a singular term similar to the one found in Section 2 is always
present. Therefore the presence of the zero-rapidity pole singularity of K is generic.

3.2 Contributions up to 4th order: analytic continuation of the boundary result

In this section we present all the terms up to fourth order using the Euclidean quantities computed
in [62] and continuing them to real time. The Euclidean one-point function

〈O(x)〉B =
〈B| e−HxO(0) e−H(R−x) |B〉

〈B|e−HR|B〉 =
∑

k,l

Dkl (3.11)

was computed up to contributions Dkl with k + l ≤ 4 which are collected in Appendix E.
For the analytic continuation, we apply the R → 0 and x → −it substitutions together with

KB → K and gB → g which give

G0 : 〈0|O|0〉 ,

G1 : gℜeFO
1 e

−imt,

G2 :
g2

4
FO
2 (iπ, 0) + ℜe

ˆ ∞

−∞

dθ

2π
K(θ)FO

2 (−ϑ, ϑ)e−imt2 coshϑ ,

G3 :
g

2
ℜe
ˆ ∞

−∞

dϑ

2π
K(ϑ)FO

3 (−ϑ, ϑ, 0)e−imt(2 coshϑ+1) ,

+
g

2
ℜe
ˆ ∞

−∞

dϑ

2π

{

K(ϑ)FO
3 (iπ,−ϑ, ϑ)e−imt(2 cosh ϑ−1) − 2g2

coshϑ

sinh2 ϑ
FO
1 e

−imt

}

+ 2g3ϕ(0)ℜeFO
1 e

−imt ,

(3.12a)

15



G4 :
1

4
ℜe
ˆ ∞

−∞

dϑ1
2π

dϑ2
2π

K(ϑ1)K(ϑ2)F
O
4 (−ϑ1, ϑ1,−ϑ2, ϑ2)e−imt(2 cosh ϑ1+2 cosh ϑ2)

+
g2

4
ℜe
ˆ ∞

−∞

dϑ

2π
K(ϑ)FO

4 (−ϑ+ iπ, ϑ + iπ, iπ, 0)e−imt2 cosh ϑ

+
1

4

ˆ ∞

−∞

dϑ1
2π

dϑ2
2π

K(ϑ1)K(ϑ2)F
O
4 (iπ − ϑ1iπ + ϑ1,−ϑ2, ϑ2)eimt2(coshϑ1−coshϑ2)

+ FO
2 (iπ, 0)

ˆ ∞

−∞

dϑ

2π

{

|K(ϑ)|2 − g4 coshϑ

4 sinh2 ϑ

}

+
g4

8
FO
2 (iπ, 0)ϕ(0) ,

(3.12b)

where FO
2,s = FO

2 (iπ, 0) and

ϕ(ϑ) = −i∂ logS(ϑ)
∂ϑ

. (3.12c)

Note that these integrals remain well-defined even when there is a pole in the amplitude K(ϑ) at
ϑ = 0 because the form factors possess a zero ϑi = 0 as a consequence of the exchange axiom (A.10)
and the general property S(0) = −1. Concerning the large rapidity behaviour, normalisability of
the initial state requires that K tends to zero fast enough for large ϑ, again ensuring the existence
of the integrals.

We now turn to analysing the time dependence originating from (3.12). Due to the oscillatory
integrands it is convenient to apply the stationary phase approximation (SPA) briefly discussed in
Appendix D.4. Both SPA and direct analysis leads to the following type of terms expected from
(3.12):

e−inmttα , (3.13)

where α is either integer or half integer and n is an integer. For terms Dkl the lower bound of the
oscillation frequency is always nm = (k − l)m.

As the main objective of this paper is to study the time dependence of one-particle oscillations,
we concentrate here on terms with n = 1 but we will also briefly comment on the time dependence
of the non-oscillatory part of 〈O〉. The non-oscillatory parts include the static contributions

G0 : 〈0|O|0〉 ,

G2 :
g2

4
FO
2 (iπ, 0) ,

G4 : FO
2 (iπ, 0)

ˆ ∞

−∞

dϑ

2π

{

|K(ϑ)|2 − g4 coshϑ

4 sinh2 ϑ

}

+
g4

8
FO
2 (iπ, 0)ϕ(0) ,

(3.14)

whereas for the only time dependent integral,

1

4

ˆ ∞

−∞

dϑ1
2π

dϑ2
2π

K(ϑ1)K(ϑ2)F
O
4 (iπ − ϑ1iπ + ϑ1,−ϑ2, ϑ2)eimt2(coshϑ1−coshϑ2) , (3.15)

the SPA (D.16) can be applied, yielding

C
16πmt

, 1≪ mt , (3.16)

where
C = lim

ϑ2→0
lim
ϑ1→0

K(ϑ1)K(ϑ2)F
O
4 (iπ − ϑ1iπ + ϑ1,−ϑ2, ϑ2) (3.17)
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which is finite.
For terms with one-particle oscillation, one finds

G1 : gℜeFO
1 e

−imt ,

G3 : 2g3ϕ(0)ℜeFO
1 e

−imt

+
g

2
ℜe
ˆ ∞

−∞

dϑ

2π

{

K(ϑ)FO
3 (iπ,−ϑ, ϑ)e−imt(2 coshϑ−1) − 2g2

cosh ϑ

sinh2 ϑ
FO
1 e

−imt

}

.

(3.18)

For the last term, SPA cannot be applied directly, therefore we shift the contour off the real axis
where (as shown in [62]) the contribution from the term

cosh ϑ

sinh2 ϑ

vanishes and reintroduce the regulator R . We rewrite the resulting expression using (D.14) after
which the SPA (D.16) can be applied, and finally perform the R→ 0 limit. The result is

g3FO
1

(

ϕ2(0)− 2/3
)

2
√
4πmt

ℜe e−imte−iπ/4 + g3
√

mt

π
ℜeFO

1 e
−imt−

√
2−
√
2i

2
, mt≫ 1 . (3.19)

For a more detailed derivation, the interested reader is referred to in Appendix F. While the first
term has the standard ∼ 1/

√
t time dependence, the second one behaves as ∼

√
t for large time. We

return to this peculiar finding in Sec. 4.3.

3.3 Leading order time dependence from G5

The contributions involving five particles are D05, D14, D23 and their complex conjugates D50,D41,
D32 . Based on (3.7), the expressions to evaluate are

D05 = lim
L→∞

C05

D14 = lim
L→∞

C14 − Z1C03

D23 = lim
L→∞

C23 − Z1C12 − (Z2 − Z2
1 )C01 .

(3.20)

The calculation of these expressions is very tedious; even in Appendices G, H and I where the details
of the calculations are presented, we focused only on leading secular contributions to the one-particle
oscillations, i.e. terms of the form e−imttα with the highest power α. As one-particle oscillations
originate exclusively from Dkl with |k − l| = 1, we can focus on D23 and its conjugate D32.

The leading order secular terms have two origins: a residue contribution from encircling the poles
of the form factors F5(iπ+ϑ1, iπ−ϑ1,−ϑ2, ϑ2, 0) when ϑ1 ≈ ϑ2 and a contribution from these poles
when a contour integral is performed with an integration contour just above the real axis.

Concerning the former term, the explicit expression reads

DRes
23 (t) =

g

2
FO
1 e

−imt (imt)

ˆ ∞

−∞

dϑ

2π
|K(ϑ)|2ℑmS(ϑ) sinhϑ , (3.21)

whose derivation can be found in Appendix G. Unlike time dependent terms discussed so far, deriving
(3.21) involves no SPA, hence it is valid also for small times. Note that the coefficient of the oscillatory
factor e−imt is purely imaginary and linear in time.

For the other term denoted by DCInt
23 (t), the explicit formula reads
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DCInt
23 (t) =

g

2
FO
1 e

−imt (−imt)
ˆ ∞

−∞

dϑ

2π
|K(ϑ)|2 tanh(ϑ1) (Kera(ϑ, t))

′

+
g

2
FO
1 e

−imt (−imt)
ˆ ∞

−∞

dϑ

2π
|K(ϑ)|2Ker(ϑ, t)

+
g

2
F1e

−imt

ˆ ∞

−∞

dϑ

2π

1

4 sinhϑ

d

dϑ

{

|K(ϑ)|2ℜeKer(ϑ, t, 0)×

×ℜe
(

F ε
5 (ϑ)

F1Ω(ϑ)
+
K ′(ϑ)
K(ϑ)

− F ε
5 (−ϑ)
F1Ω(ϑ)

− K ′(−ϑ)
K(−ϑ)

)

tanhϑ

}

+O(
√
t) ,

(3.22)

where

Kera(ϑ1, t) = lim
R→0

eimtΩ(ϑ1)

ˆ ∞

−∞

dϑ2
2π

[

h(ϑ1|ϑ2, {0})R
(

sinhϑ2 − sinhϑ1
coshϑ2−ϑ1

)]

sinhϑ2 − ϑ1
, (3.23)

and

Ker(ϑ1, t) = eimtΩ(ϑ1)

ˆ ∞

−∞

dϑ2
2π

[h(ϑ1|ϑ2, {0}) − h(ϑ1|ϑ1, {0})] sinhϑ1
sinh(ϑ2 − ϑ1) cosh(ϑ2 − ϑ1)

(3.24)

with

Ω(ϑ) = (1− S(−ϑ)) (1− S(ϑ)) , (3.25)

h(ϑ1|ϑ2, {0})R = eimt(2 cosh ϑ1−2 cosh ϑ2−1)e−mR/2(2 cosh ϑ1+2 cosh ϑ2+1) , (3.26)

h(ϑ1|ϑ2, {0}) = h(ϑ1|ϑ2, {0})R=0 . (3.27)

Their derivation can be found in Appendices H and I. It is shown in Appendix I that in the large
time limit mt≫ 1 the integral kernels behave as

Kerastac(ϑ, t) =e
imtΩ(ϑ)

1√
4πmt

e2imt(cosh ϑ−1)e−iπ/4

coshϑ
, 1≪ mt , (3.28)

and

Kerstac(ϑ, t) =

√

2(cosh ϑ− 1)

cosh ϑ
Ω(ϑ)

×
{

1

2

(

FS

(
√

4mt(cosh(ϑ)− 1)

π

)

− FC

(
√

4mt(cosh(ϑ)− 1)

π

))

− 1

2
i

(

FC

(
√

4mt(cosh(ϑ)− 1)

π

)

+ FS

(
√

4mt(cosh(ϑ)− 1)

π

))

+ i

(

1

2
− coshϑ

√
sinh2 ϑ

2
√

2(cosh(ϑ)− 1)

)}

, 1≪ mt ,

(3.29)
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where FS and FC are the Fresnel sine and cosine functions, respectively. This leads to the final
result

D23(t) =
g

2
FO
1 e

−imtmt

(

g4

4

(

− log(mt)

π

)

+ γ1 + iγ2

)

+O(e−imt
√
t) (3.30)

with

γ1 =K +
g4

4

3

π
,

γ2 =
g4

8
+

ˆ ∞

−∞

dϑ

2π
|K(ϑ)|2ℑmS(ϑ) sinhϑ ,

(3.31)

where

K = lim
t→∞

{

−1

2

ˆ ∞

−∞

dϑ

2π
Ω(ϑ)|K(ϑ)|2

[

√

2(cosh ϑ− 1)

cosh ϑ
×

(

FC

(
√

4mt(cosh(ϑ)− 1)

π

)

+ FS

(
√

4mt(cosh(ϑ)− 1)

π

)

− 1

)

+
√

sinh2 ϑ

]

+
g4

4

(

log(mt)

π

)}

.

(3.32)

4 Discussion of the results

Before discussing the time evolution of the one-point function, we collect the leading order time-
dependent contributions for the non-oscillatory and one-particle-oscillatory part of 〈O〉 from each
term Dkl we considered in the previous section. In the long-time limit 1≪ mt, these are

G0 : 〈0|O|0〉 ,

G2 :
g2

4
FO
2 (iπ, 0) ,

G4 : FO
2 (iπ, 0)

ˆ ∞

−∞

dϑ

2π

{

|K(ϑ)|2 − g4 cosh ϑ

4 sinh2 ϑ

}

+
g4

8
FO
2 (iπ, 0)ϕ(0)

+
C

16πmt
,

(4.1)

and

G1 : gℜeFO
1 e

−imt ,

G3 : 2g3ϕ(0)ℜeFO
1 e

−imt

+g3
√

mt

π
ℜeFO

1 e
−imt−

√
2−
√
2i

2

+O(1/
√
t) ,

G5 : gℜeFO
1 e

−imtmt

(

g4

4

(

− log(mt)

π

)

+ γ1 + iγ2

)

+O(
√
t) ,

(4.2)
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where C is given in (3.17) and γ1,2 in (3.31).
In the preceding subsections we found that the long time asymptotics of the leading order con-

tributions to the one-particle oscillations contain, besides the original oscillation e−imt from G1, two
new types of terms: one with time dependence

√
te−imt from G3 and terms of time dependence

te−imt and t ln te−imt from G5.
Since these are secular terms growing for large t, it is necessary to sum up higher order contri-

butions coming from G2n+1. Computing terms G7 and higher is extremely tedious and has not yet
been performed, therefore in this work we can only present a limited discussion of their resummation
based on insights gained from earlier works [48, 49, 50].

In addition to these works, one could also try to compare with the FM → PM quench in the
Ising model considered in Subsection (2.2); however, we show that this is unfortunately not possible.
In Appendix B it is shown that in the continuum limit the time evolution of the magnetisation is

〈σx(x, t)〉 = σ̄

(

1

2

)
1
4
(

M0

M

)
1
8 [

cos
(

√

M2 +MM0t+ α′
)

+ ...
]

e−t/τ , (4.3)

where the relaxation time is given by

τ−1 =
1

π

{

√

M2 +MM0 ln

(
√
M2 +MM0 +M√
M2 +MM0 −M

)

− 1

2

√

M2 −M2
0 ln

(

M +
√

M2 −M2
0

M −
√

M2 −M2
0

)}

(4.4)
for M > M0 and

τ−1 =
1

π

{

√

M2 +MM0 ln

(
√
M2 +MM0 +M√
M2 +MM0 −M

)

−
√

M2
0 −M2

[

tan−1

(

M
√

M2
0 −M2

)

− π

2

]}

(4.5)

for M <M0. At first sight, since the K function is known for this particular quench, the expansion
of (4.3) can be matched with the form factor expansion evaluated in our work. However, note that
(4.3) and (4.4) are non-analytic functions of the pre-quench mass M0 around the origin, and therefore
are also non-analytic in g around g = 0 due to the relation (2.14). This is not surprising since a
quench across a quantum critical point is expected to be a large quench with possibly non-analytic
behaviour, and therefore the form factor expansion is not expected to be valid at all. This situation
is in marked contrast with the phase quenches in the sine–Gordon model considered in Subsection
(2.3) where the shift δ/β can play the role of a small parameter.

4.1 Connection with previous results and discussion of possible resummation of

G4n+1

First we consider terms G4n+1. Contributions to one-particle oscillations originate from the pieces
D2n,2n+1. In [50] these terms served as the sole source of secular terms which were shown to sum
up to an exponential function to order t2, i.e. the result including the two leading order corrections
had the form

ℜe g
2
F1e

−imt

(

1− t

τ
+

1

2

t2

τ2
+ . . .

)
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which is the expansion of
ℜe g

2
F1e

−imte−t/τ ,

where

τ−1 =
m

π

ˆ ∞

0
dϑ (1− S(ϑ)) |K(ϑ)|2 sinhϑ . (4.6)

The real part of the above integral is the relaxation time, while the imaginary part is a frequency
shift. It is easy to see that sending g → 0 in our expressions (3.30), which is equivalent to removing
the singularity of K, reproduces the result for τ above as the integrand is non-singular and

lim
x→∞

FC(x) = lim
x→∞

FS =
1

2
. (4.7)

The origin of (4.6) is essentially the kinematic singularity of the form factors. In our calculation
we have an additional ingredient, namely the singularity of K which gives some new contributions
according to (3.30). Assuming an exponentiation similar to that observed in [48, 49, 50], the leading
order time dependence from G4n+1 is

D2n,2n+1(t) =
g

2
F1e

−imt (mt)
n

n!

(

−g
4

4

log(mt)

π
+ γ1 + iγ2

)n

+ ... , (4.8)

which can be resummed into

g

2
F1e

−imt exp

[

mt

(

−g
4

4

log(mt)

π
+ γ1 + iγ2

)]

. (4.9)

Therefore, besides the frequency shift, the relaxation for late time is naively expected to be super-
exponential with a dependence of the form e−t ln t. This also means, that under the assumption of

exponentialisation, τ−1 in (4.6) is to be replaced with m
(

g4

4
log(mt)

π − γ1 − iγ2
)

in the exponential

function. However, this cannot be concluded safely without computing at least D45(t) and checking
whether one obtains the correct combinatorial coefficients for the terms involving higher powers of
− g4

4
log(mt)

π mt which is the condition for exponentialisation as established in [48, 49, 50]. Based on
analogy with [50], one can argue that terms containing γ1,2 exponentialise and their resummation
leads to a relaxation rate and a frequency shift; however, the fate of the logarithmic term cannot be
decided without examining higher order contributions, whose straightforward evaluation is extremely
complicated. Assuming that the relaxation is of the usual exponentially decaying form (i.e. the
logarithmic part does not exponentialise) also means that it is not clear at the moment what part
of the real terms (involving γ1) exponentialises and determines the relaxation rate.

4.2 Multiple species

It is easy to generalise our results to the case of multiple species following the reasoning in [50]
which studied relaxation in the attractive regime of the sine–Gordon model for operators semi-local
to soliton excitations (and consequently local with respect to the soliton-antisoliton bound states,
i.e. the breathers Bn ). In the following we write down the result for semi-local operators
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〈O(t)〉 =



〈0|O|0〉 +
∑

j

g2j
4
FO
jj (iπ, 0)





[

1− t

τs
+ ...

]

+
∑

j

gjℜe
{

FO
j e

−imjt

[

1− t

τsj
−
∑

k

t

τjk
+ ...

]}

+
∑

j 6=k

gjgk
2
ℜe
{

FO
jk(iπ, 0)e

i(mj−mk)t

[

1− t

τjks
−
∑

l

t

τjkl
+ ...

]}

,

(4.10)

where

τ−1
s =

2ms

π

ˆ ∞

0
dϑ|Kss̄(ϑ)|2 sinhϑ ,

τ−1
sj =

ms

π

ˆ ∞

0
dϑ (1 + Ssj(ϑ)) |Kss̄(ϑ)|2 sinhϑ ,

τ−1
jk =

mj

π

ˆ ∞

0
dϑ (1− Sjk(ϑ)) |Kj(ϑ)|2 sinhϑ , j 6= k ,

τ−1
jks =

ms

π

ˆ ∞

0
dϑ (1 + Ssj(ϑ)Ssk(−ϑ)) |Kss̄(ϑ)|2 sinhϑ ,

τ−1
jkl =

ml

π

ˆ ∞

0
dϑ (1− Skl(ϑ)Sjl(−ϑ)) |Kl(ϑ)|2 sinhϑ , j 6= l, k 6= l ,

(4.11)

and

τ−1
jj (t) =−mj

(

−
g4j
4

log(mjt)

π
+ γ

(j)
1 + iγ

(j)
2

)

,

τ−1
lkl (t) = τ−1

kll (t) =−ml

(

−g
4
l

4

log(mlt)

π
+ γ

(llk)
1 + iγ

(llk)
2

)

,

(4.12)

where j, k, l, o index breather excitations, and γ(n)1,2 are obtained by substituting S in (3.31) with the
Bn −Bn scattering amplitude Snn and g with the Bn one-particle coupling gn. The expressions for
γ
(llk)
1 and γ(llk)2 are obtained from (3.31), by replacing g with gj and also

Ω(ϑ) = (1− S(ϑ)) (1− S(−ϑ))→ (1− Slk(ϑ)Sll(−ϑ)) (1− Sll(ϑ)Slk(−ϑ)) (4.13)

in (3.23) and (3.24); in addition, in the residue term DRes
23 (3.21) it is necessary to replace

ℑmS(ϑ)→ 1

2i
(Sll(ϑ)Slk(−ϑ)− Sll(−ϑ)Slk(ϑ)) . (4.14)

Since solitons can have no one-particle coupling in the quench due to topological charge conservation,
the amplitude Kss̄ is regular at the origin.

Note that (4.11) are identical to the results in [50]. It is easy to understand this from the fact
the expressions given in [50] for τ−1

jk with j 6= k and for τ−1
jkl with j 6= l, k 6= l, are regular even if
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the Kj are singular. The only terms to be revisited are τ−1
jj and τ−1

lkl where the naive application
of (4.11) results in divergent contributions and must be modified using our calculations performed
above.

Results for theories with multiple species with fully diagonal scattering can be obtained by
omitting the solitonic contributions from the above results and replacing the breathers with the
actual particle spectrum.

4.3 Parametric resonance

Finally, we turn to contribution (3.19) from G3

g3
√

mt

π
ℜeFO

1 e
−imt−

√
2−
√
2i

2
mt≫ 1 . (4.15)

The origin of this term is the integral

g

2
ℜe
ˆ ∞

−∞

dϑ

2π

{

K(ϑ)FO
3 (iπ,−ϑ, ϑ)e−imt(2 coshϑ−1) − 2g2

cosh ϑ

sinh2 ϑ
FO
1 e

−imt

}

, (4.16)

which is derived from a finite volume contribution of the form

∑

I>0

〈{0}|O|{−I, I}〉LN2(ϑ,L)K(ϑ)e−imt(2 cosh ϑ−1) , (4.17)

where ϑ is determined by the quantisation rule

mL sinhϑ+ δ(2ϑ) = 2πI .

Let us recall the phenomenon of parametric resonance, for which the simplest example is the Mathieu
equation describing a system with only one degree of freedom,

d2x

dt2
+
[

ω2
0 − 2q cosωpt

]

x = 0 . (4.18)

This equation has a region of instability in which the solution of the equation oscillates with an
exponentially growing amplitude. This region is when the ratio ωp/ω0 is sufficiently close to 2,
where the width of the region of proportional to q.

It is clear that the term (4.17) couples the one-particle mode with the two-particle modes and
satisfies the condition for resonance on the threshold; however, the interplay between the integration
over rapidity and the singularity of the form factor FO

3 (iπ,−ϑ, ϑ) results in a growth of
√
t instead

of being exponential. This cannot be the final story: since a quench pumps a finite energy density
in the system, the oscillations cannot grow without bound and therefore higher terms G4n+1 must
modify this behaviour to keep the amplitude bounded. Since at present we do not have control over
these higher order terms, we cannot predict the eventual fate of this class of contributions.

A heuristic analogy can be drawn by noting that in the Mathieu equation the driving oscillator
is external, while in the quench the two-particle modes are also dynamical and the total energy
stored in the system is conserved. A closer analogy for this dynamics is provided by the differential
equation describing coupled modes

d2x

dt2
+
[

ω2
1 + qy

]

x = 0
d2y

dt2
+ ω2

2y +
q

2
x2 = 0 .

The mode x is parity odd and is the analogue of the one-particle mode, while the mode y is parity
even and is the analogue of the two-particle mode. Depending on the choice of the parameters, this
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Figure 1: An example of a parametric resonance in a closed system with two modes. The frequencies
are chosen ω1 = 1 and ω2 = 2, corresponding to parametric resonance, while the mode coupling is
q = 0.5. Initial conditions for the particular motion shown are x(0) = 0.1, y(0) = 1 and ẋ(0) =
ẏ(0) = 0.

system has solutions in which the energy stored in the modes shows an oscillatory behaviour in time.
With the choice ω2 = 2ω1 the condition of parametric resonance is satisfied, but in contrast to the
Mathieu equation, the system has a total energy

H =
1

2

(

ẋ2 + ω2
1x

2
)

+
1

2

(

ẏ2 + ω2
2y

2
)

+
q

2
yx2

which is conserved since the driving and driven modes now form a closed system. An example of a
resonance solution is shown in Fig. 1; notice the long plateau in the amplitude of the driving mode
y showing the non-linearity of this system. This is in contrast to linearly coupled oscillators where
the energy transfer would itself have a harmonic dependence on time.

It is an interesting question whether in the full quench situation such a non-trivial behaviour
can be observed in the time evolution for some choice of the parameters. Since the

√
t term is of

order g2 and the next secular contribution is of order g4, it is quite possible that for small enough
quenches there is some intermediate time window in which the parametric resonance dominates. To
study this requires the detailed analysis and resummation of higher order terms which is left for
further investigation.

5 Conclusions

In this work we studied integrable quenches with zero-momentum one-particle states in the initial
state and the subsequent time evolution of one-point functions. We found that (similarly to the
case of integrable boundary conditions) in the presence of a non-vanishing one-particle coupling the
two-particle amplitude K must have a singularity at the origin ϑ = 0,

K(ϑ) ∝ −ig
2

2

1

ϑ
, (5.1)

where g is the one-particle coupling determining the overlap of the post-quench zero-momentum
one-particle state with the initial state. We gave a general argument based on the relation of the
quench time evolution to a boundary field theory problem discussed in [62]. In addition, we presented
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two explicit examples, the quenches from the paramagnetic to the ferromagnetic phase in the Ising
QFT and phase quenches in the sine–Gordon model, in which the relation between the one-particle
coupling and the residue of K at zero rapidity could be established using explicit calculations and
perturbation theory. We also pointed out that the sine–Gordon phase quench is a particular member
of a more general class of “exponential quenches”, where the same argument applies.

A general proof establishing the relation (5.1) also follows from our explicit computation of
the time evolution using finite volume as a regulator, which shows that the infinite volume limit
only exists when (5.1) holds. We stress that for the results in [50] the presence of a pole in K is
problematic as the expressions for the relaxation times are not well-defined due to divergence of the
integrals involved in the formulas.

We then proceeded with the explicit computation of the time evolution of one-point functions
focusing on the one-particle oscillations with time dependence e−imt . We used a modification of the
linked cluster expansion introduced in [48, 49, 50], where instead of rapidity space point splitting,
we applied a finite volume regulator first proposed in [61]. The advantage of this regulator is that
it uses a physical parameter, i.e. the system size L, and since the thermodynamic limit must be
well-defined, the computed one-point function must have a finite limit as L→∞. The cancellation
of terms containing positive powers of the volume (resulting from kinematical singularities) provides
an important consistency check for the computation.

We found two important secular contributions to the one-particle oscillations. The first one takes
the following form at leading order

ℜe gFO
1 e

−imtmt

(

−g
4

4

log(mt)

π
+ γ1 + iγ2

)

. (5.2)

The terms γ1 and γ2 are directly analogous to the contributions found in [50], with two essential
differences. First, the integrals expressing the coefficients γ1,2 are now entirely well-defined. If there
was no pole in K(ϑ) (which we argued to be impossible for g 6= 0), these terms would reduce
to the expressions given in [50]. The second difference is the presence of the logarithmic time-
dependence for g 6= 0. In analogy to [50] it is expected that either higher order terms G4n+1 get

resummed to an exponential function e−t/τ with τ−1 → m
(

g4

4
log(mt)

π − γ1 − iγ2
)

, or alternatively,

only terms containing γ1,2 are resummed into a relaxation rate and a frequency shift of the one-
particle oscillations. We stress that the fate of the logarithmic term is unclear at present, which also
implies that the part of γ1 entering the resummation is not defined until this issue is dealt with,
which requires further investigation.

Our results can be easily extended to local operators in theories with more than one species with
diagonal scattering, and also to operators semi-local with respect to solitons in the sine–Gordon
model.

The other class of secular contributions to one-particle oscillations is a novel one having the form

ℜe gFO
1 e

−imtg2
√

mt

π

−
√
2−
√
2i

2
, (5.3)

and its leading order is g3. The origin of this secular term is a physical effect analogous to parametric
resonance, and is caused by the effective coupling between one- and two-particle modes. This
coupling is established by the corresponding form factor of the operator and the K function resulting
in a singularity at the threshold of the two-particle continuum. At this point the ratio between the
frequencies is exactly two satisfying the condition of parametric resonance. Note that the singularity
of the K function is an essential ingredient as it is the origin of enhancement in the effective coupling
between the modes.
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Unfortunately, it is rather difficult to calculate the next secular contribution from G7 and even
having an expression for the next term, it is not guaranteed that they can be resummed in an
effective manner to extract the long time behaviour. Therefore it is presently unclear how this
phenomenon influences the fate of the one-particle oscillations. However, it is clear that despite the
initial growth indicated by the presence of

√
t , the amplitude must eventually saturate as only finite

energy density is injected in the system during the quench.
In most of our discussions we tacitly assumed that the quenches are integrable, so that the initial

state has the generalised squeezed state form (3.21). However, we wish to note that the arguments
establishing the singularity of the pair amplitude are valid even for non-integrable quenches whenever
a one-particle coupling is present. A generic initial state can always be written as [56]

|Ω〉 = exp

{ ∞
∑

n=1

1

n!

ˆ

dθ1
2π

. . .

ˆ

dθn
2π

Kn(θ1 . . . θn)Z
†(θ1) . . . Z

†(θn)

}

|0〉.

Integrable initial states of the form (5.1) satisfy Kn = 0 for n > 2, but the main conclusions of this
paper are unaffected by the presence of the higher Kn, which would only result in additional higher
order corrections to the frequency shift and relaxation terms.

Finally, we wish to comment on the relevance of the phase quenches in the sine–Gordon model
introduced in Subsection 2.3. Being both experimentally realisable and analytically tractable, the
sine–Gordon theory has attracted a lot of attention. The sine–Gordon model emerges as an effective
description in cold atom experiments involving tunnel coupled quasi-one-dimensional condensates,
where the sine–Gordon field corresponds to the relative phase of the condensate [42, 43]. Therefore,
phase quenches can be an ideal protocol to compare experimental and theoretical results. This
is especially true for moderate sized quenches, where the small post-quench density of excitations
makes the form factor series valid and it is possible to extract analytic results about the post-quench
time evolution.
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A Finite volume formalism

A.1 Multi-particle states in finite volume

Excited states of a massive integrable quantum field theory with one particle species in a large, but
finite volume can be described as scattering states consisting of n particles with rapidities ϑn given
by the solution of the Bethe–Yang equations

Qk = mL sinhϑk +
∑

j 6=k

δ(ϑk − ϑj) = 2πIk , k = 1, . . . , n . (A.1)
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Using the fact that the effective statistics is fermionic, i.e. S(0) = −1, the two-particle phase shift
function is defined as

S(ϑ) = −eiδ(ϑ) , δ(−ϑ) = −δ(ϑ) ,
and the following prescription is obtained for the quantum numbers of the particles:

Ik ∈ Z for odd n , Ik ∈ Z+
1

2
for even n .

The state corresponding to quantum numbers {I1, . . . , In} is denoted as

|{I1 . . . In}〉L ,

and it is independent (up to a possible phase ambiguity) of the ordering of the Ik. They are
normalised so that their scalar products are

L〈{I1 . . . In}|{I ′1 . . . I ′m}〉L = δnmδI1,I′1 . . . δIn,I′n ,

with the quantum numbers ordered by convention as I1 < · · · < In and I ′1 < · · · < I ′m . The total
energy and momentum can be expressed as

E =

n
∑

i=1

m cosh ϑi +O(e−µL) , P =

n
∑

i=1

m sinhϑi +O(e−µL)

up to exponential corrections governed by some mass scale µ. For a systematic treatment of expo-
nential corrections to excitation energies see [70, 71] and also [72, 73].

The rapidity space density of states in the n-particle sector of the theory is given by the Jacobian

ρn(ϑ1, . . . , ϑn) = det Jkl , Jkl =
∂Qk

∂ϑl
. (A.2)

A.2 The initial state in finite volume

The integrable initial state (1.1) can be written in finite volume as [62]

|Ω〉L = G(L)
(

|0〉L +
g

2

√
mL|{0}〉L +

∑

I>0

K(ϑ)N2(ϑ,L)|{−I, I}〉L

+
∑

I

g

2
K(ϑ)N3(ϑ,L)|{−I, I, 0}〉L +

1

2

∑

I 6=J

K(ϑ1)K(ϑ2)N4(ϑ1, ϑ2, L)|{−I, I,−J, J, 0}〉L
)

, (A.3)

where the rapidities ϑ are the solutions of the appropriate Bethe–Yang equations with a constraint
of zero overall momentum. For the two-particle states the constrained Bethe-Yang equation is

Q̄2(ϑ) = mL sinhϑ+ δ(2ϑ) = 2πI , (A.4)

and the sum in (A.3) only runs over I > 0 because the states | − I, I〉L and | − I, I〉L are identical.
The three-particle sector consists of states with rapidities {−ϑ, 0, ϑ} where ϑ is determined by the
corresponding quantisation condition

Q̄3(ϑ) = mL sinhϑ+ δ(ϑ) + δ(2ϑ) = 2πJ , (A.5)
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whereas for the four-particle case the quantisation condition for the rapidities {−ϑ1, ϑ1,−ϑ2, ϑ2} is
given by the system of equations

Q̄4,1 = mL sinhϑ1 + δ(ϑ1 − ϑ2) + δ(ϑ1 + ϑ2) + δ(2ϑ1) = 2πI1 ,

Q̄4,2 = mL sinhϑ2 + δ(ϑ2 − ϑ1) + δ(ϑ1 + ϑ2) + δ(2ϑ2) = 2πI2 .

The normalisation factors N1(L), N2(θ, L), N3(ϑ,L) and N4(ϑ1, ϑ2, L) in (A.3) are not determined
by first principles and were calculated in [62] up to finite size effects exponential decaying with the
volume. For the one and two-particle states one finds

N1(L) =
√
mL+O(e−µL) , N2(ϑ,L) =

√

ρ2(ϑ,−ϑ)
ρ̄2(ϑ)

+O(e−µL) , (A.6)

where

ρ̄2(ϑ) =
dQ̄2

dϑ
= mL coshϑ+ 2ϕ(2ϑ) .

Note that the total two-particle density ρ2 satisfies

ρ2(ϑ,−ϑ) = ρ1(ϑ)ρ̄2(ϑ) ,

and so

N2(ϑ,L) =

√

ρ1(ϑ)

ρ̄2(ϑ)
= 1− ϕ(2ϑ)

mL coshϑ
+O(1/L2) . (A.7)

For the three-particle state the normalisation of the three-particle states is given by

N3(ϑ,L) =

√

ρ3(ϑ, 0,−ϑ)
ρ̄3(ϑ)

,

where

ρ̄3(ϑ) =
dQ̄3

dϑ
, (A.8)

and in the four-particle case the normalisation reads

N4(ϑ1, ϑ2, L) =

√

ρ4(ϑ1,−ϑ1, ϑ2,−ϑ2)
ρ̄4(ϑ1, ϑ2)

,

with

ρ̄4(ϑ1, ϑ2) = detJ with Jik =
∂Q̄4,i

∂ϑk
, i, k = 1, 2 .

A.3 Form factors and their properties

Form factors are matrix elements of (semi-)local operators with the asymptotic states of the theory.
We start with the infinite volume case where they can be determined in terms of the so-called
elementary form factors

FO
m (ϑ1, . . . , ϑm) = 〈0|O(0)|ϑ1, . . . , ϑm〉 .

All other form factors

FO
mn(ϑ

′

1, . . . , ϑ
′

m|ϑ1, . . . , ϑn) = 〈ϑ
′

1, . . . , ϑ
′

m|O(0)|ϑ1, . . . , ϑn〉
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can be expressed in terms of the elementary form factors with the help of the crossing relation

FO
mn(ϑ

′

1, . . . , ϑ
′

m|ϑ1, . . . , ϑn) = FO
m−1,n+1(ϑ

′

1, . . . , ϑ
′

m−1|ϑ
′

m + iπ, ϑ1, . . . , ϑn)

+

n
∑

k=1

(

2πδ(ϑ
′

m − ϑk)
k−1
∏

l=1

S(ϑl − ϑk)× FO
m−1,n−1(ϑ

′

1, . . . , ϑ
′

m−1|ϑ1, . . . , ϑk−1, ϑk+1 . . . , ϑn)
)

.

In integrable models, the elementary form factors are meromorphic functions of the rapidities and
satisfy a series of form factor bootstrap equations (for a review we refer to [74, 75]). In a theory
with only one particle species and in the absence of bound states the form factor equations are:

I. Lorentz invariance:

FO
n (ϑ1 + Λ, . . . , ϑn + Λ) = esΛFO

n (ϑ1, . . . , ϑn) , (A.9)

where s is the Lorentz spin of the operator O. In this work we only consider scalar operators
corresponding to s = 0.

II. Exchange:

FO
n (ϑ1, . . . , ϑk, ϑk+1, . . . , ϑn) = S(ϑk − ϑk+1)F

O
n (ϑ1, . . . , ϑk+1, ϑk, . . . , ϑn) . (A.10)

III. Cyclic permutation:

FO
n (ϑ1 + 2iπ, ϑ2, . . . , ϑn) = eiσFO

n (ϑ2, . . . , ϑn, ϑ1) . (A.11)

IV. Kinematical singularity

− iRes
θ=θ′

FO
n+2(ϑ + iπ, ϑ

′

, ϑ1, . . . , ϑn) =

(

1− eiσ
n
∏

k=1

S(ϑ − ϑk)
)

FO
n (ϑ1, . . . , ϑn) , (A.12)

where σ is the mutual locality index of the operator O with respect to the interpolating field φ that
creates the particle excitation and is defined via the condition

O(x, t)φ(y, t) = e2πiσφ(y, t)O(x, t) .
Based on (A.9), (A.10), (A.11) and (A.12) form factors of operators can be determined by the form
factor bootstrap program. Form factors involving n particles of a single species with a diagonal
scattering (such as e.g. multi-B1 form factors in sine–Gordon theory) can be written as

FO
n (ϑ1, . . . , ϑn) = 〈0| O(0)|ϑ1, . . . , ϑn〉 = Nn

QO
n (x1, . . . , xn)
∏

i<j (xi + xj)

∏

i<j

fmin (ϑi − ϑj) , (A.13)

where xi = eϑi . The minimal form factors fmin satisfying

fmin(−ϑ) = S(ϑ)fmin(ϑ) and fmin(iπ − ϑ) = fmin(iπ + ϑ)

enforces (A.10), the xi-dependence of the rest satisfies (A.11), the product in the denominators
ensures the presence of poles prescribed by (A.12), and the operator content is encoded in QO

n ,
which is a symmetric polynomial of the variables and for a nontrivial locality index σ 6= 0 it contains
an overall factor (

∏

xi)
min(σ,1−σ).

In finite volume and when the sets of rapidities in the bra and ket states are disjoint, the finite
and infinite volume form factors can be related [61] as

L〈{I ′1 . . . I ′k}|O|{I1 . . . I l}〉L =
FO
k+l

(

ϑ
′

1 + iπ, ...ϑ
′

k,+iπ, ϑ1...ϑl

)

√

ρk(ϑ
′
1, . . . , ϑ

′
k)ρl(ϑ1, . . . , ϑl)

+O(e−µL) . (A.14)

For the case of coinciding rapidities this relation must be modified to account for disconnected
contributions [61], but we do not need the corresponding expressions here.
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B The transverse field quantum Ising chain and its scaling limit

B.1 Definition of the model

The transverse field quantum Ising model (TQIM) is defined by the Hamiltonian

H = −J
N
∑

i=1

(

σxi σ
x
i+1 + hσzi

)

, (B.1)

where σαi denotes the Pauli matrices at site i, J > 0, h is the transverse field and the boundary con-
ditions are assumed to be periodic. By applying the Jordan-Wigner transformation, the Hamiltonian
(B.1) can be mapped to spinless Majorana fermions with dispersion relation [66, 67]

εh(k) = 2J
√

1 + h2 − 2h cos k (B.2)

having an energy gap ∆ = 2J |1 − h|. The model possesses a quantum critical point at h = 1
separating the disordered or paramagnetic phase (PM) for h > 1 and the ordered, ferromagnetic
phase (FM) for h < 1. In the disordered phase, the expectation value of the magnetisation operator
vanishes, while in the ferromagnetic phase its value is given by

〈σxi 〉 =
(

1− h2
)1/8

. (B.3)

The Hilbert space of the model consists of two sectors with respect to fermion number parity. In
the Neveu–Schwarz and Ramond sectors states with even and odd number of fermions are present,
respectively, resulting in the quantisation condition for the wave numbers

kn =
2π

N

(

n+
1

2

)

Neveu-Schwarz

pn =
2π

N
n Ramond ,

(B.4)

where n is a positive integer. In particular, the Fock space of the model in the paramagnetic phase
can be written as

|p1, ..., p2m+1〉 =
2m+1
∏

i=1

a†pi |0〉PM
R pi ⊂ R ,

|k1, ..., k2n〉 =
2n
∏

i=1

a†ki |0〉
PM
NS ki ⊂ NS ,

(B.5)

and the ground state is the Neveu–Schwarz vacuum, |0〉PM
NS . In the ferromagnetic phase, the zero

momentum excitation has negative energy, therefore the Ramond vacuum is redefined as |0〉R →
a†0|0〉R after which a particle-hole transformation is implemented on the zero-mode a†0 → a0. The
Fock space of the model in the FM regime is hence

|p1, ..., p2m〉 =
2m
∏

i=1

a†pi |0〉FM
R pi ⊂ R ,

|k1, ..., k2n〉 =
2n
∏

i=1

a†ki |0〉
FM
NS ki ⊂ NS ,

(B.6)
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where the ground state becomes degenerate in the thermodynamic limit and the finite volume states
corresponding to macroscopic magnetisation are 1√

2
(|0〉FM

NS ± |0〉FM
R ).

B.2 FM → PM quench and 〈σx
i (t)〉

Performing a quench in the transverse field h, the pre- and post-quench excitations can be related
via a Bogoliubov transformation if the initial state is the pre-quench vacuum. As a consequence, the
squeezed-coherent form of the initial state in the post quench basis (1.1) is guaranteed. Focusing
on quenching from the ground state of the FM phase to the PM phase, ( h0 → h with h0 < 1 and
h > 1), one can write [25, 26, 27]

|0, h0〉FM
NS ± |0, h0〉FM

R√
2

=
1√

2NNS

exp

(

i
∑

k∈NS

K(k)a†−ka
†
k

)

|0, h〉PM
NS

± 1√
2NR

exp



i
∑

p∈R\{0}
K(p)a†−pa

†
p



 a†0|0, h〉PM
R ,

(B.7)

where NNS and NR are normalisation constants and

|K(k)|2 =
1− cos∆k

1 + cos∆k
, (B.8)

with

cos∆k = (2J)2
h0h− (h+ h0) cos k + 1

εh(k)εh0(k)
. (B.9)

The late time evolution of the magnetisation operator is given by the expression [26]:

|〈σxi (t)〉| = (CxFP )
1
2 [1 + cos (2εh(k0)t+ α) + ...]

1
2 exp



t

π̂

0

dk

π
ε′h(k) ln | cos∆k|



 , (B.10)

where k0 is a solution of the equation cos∆k = 0, α(h, h0) is an unknown constant and

CxFP =

[

h
√

1− h20
h+ h0

]
1
2

. (B.11)

B.3 Continuum limit of the model and the FM → PM quench

In the scaling limit of the TQIM, J is sent to infinity together with h → 1 such that the gap
associated with the fermion mass remains finite

M = 2J |1 − h| . (B.12)

In addition, the lattice spacing is sent to zero as a = c
2J , where c is the speed of light that we set to

1. It is easy to see that the dispersion relation (B.2) under scaling limit transforms as

εh(ka)→ E(p) =
√

M2 + p2 , (B.13)
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and the Hamiltonian (B.1) scales to the Hamiltonian of a massive Majorana fermion field theory

H =
1

2π

ˆ

dx
i

2

(

ψ(x)∂xψ(x) − ψ̄(x)∂xψ̄(x)
)

− iMψ̄(x)ψ(x) , (B.14)

with {ψ(x, t), ψ̄(y, t)} = 2πδ(x − y). The lattice magnetisation operator σxi is related to the con-
tinuum field σ with the conformal normalisation via

σ(na) = s̄J
1
8σxn , (B.15)

with

s̄ = 2
1
12 e−

1
8A 3

2 , (B.16)

where A=1.282427129... is Glaisher’s constant.
In the following we perform the continuum limit for quantities relevant for the FM → PM

quench. It is important to note, however, that unlike for quenches within the ferromagnetic phase,
where explicit calculations in the field theory framework [48] and numerical studies [65] were carried
out, for the FM → PM quench no such investigations have been done. On the other hand,
performing the naive scaling limit, the resulted QFT quantities make perfect sense, hence expected
to be the results for the field theory quench problem. In the scaling limit sending δh→ 0, we write

h = 1 + δh , h0 = 1− M0

M
δh ,

J =
M

2δh
, a =

δh

M
,

(B.17)

which ensures that the dispersion relation in the post- and pre-quench model is
√

M2 + p2 and
√

M2
0 + p2 respectively, i.e. the mass in the PM and FM phase is M and M0 . Upon the substitution

k = pa, the continuum limit of (B.8) and (B.9) are

|K(p)|2 =
√

p2 +M2
√

p2 +M2
0 − p2 +MM0

√

p2 +M2
√

p2 +M2
0 + p2 −MM0

, (B.18)

and

cos∆(p) =
p2 −MM0

√

p2 +M2
√

p2 +M2
0

. (B.19)

Introducing σ̄ = s̄M
1
8
0 , which is just the pre-quench spontaneous magnetisation in the continuum

theory obtained from (B.3), the scaling limit of (B.10) reads

|〈σ(t)〉| = σ̄
1

21/4

[

1 + cos
(

2
√

M2 +MM0t+ α
)

+ ...
] 1

2
exp [−M tζ] , (B.20)

where

−M ζ =
1

π

{

1

2

√

M2 −M2
0 ln

(

M +
√

M2 −M2
0

M −
√

M2 −M2
0

)

−
√

M2 +MM0 ln

(
√
M2 +MM0 +M√
M2 +MM0 −M

)

}

(B.21)
for M > M0 and
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−M ζ =
1

π

{

√

M2
0 −M2

(

tan−1

(

M
√

M2
0 −M2

)

− π

2

)

−
√

M2 +MM0 ln

(
√
M2 +MM0 +M√
M2 +MM0 −M

)

}

(B.22)
for M < M0.

Note that ζ has a finite limit − ln 2 when M0 = 0, but its derivative is infinite at the origin as
M0 → 0, hence ζ is not an analytic expression for small values of M0 .

B.4 The singularity of the Ising K function

From (B.18) it is easily seen that this function has a 1/p2 singularity at the origin with the coefficient

4M2
0M

2

(M +M0)2
.

The appearance of this singularity is consistent with our consideration presented in paper, as from
the expansion of the initial state (B.7) it is seen that there is a zero-momentum particle in the
Ramond sector. In the following, we show that the pole strength in the K or more precisely in |K|2
is g4/4, if the one particle coupling is g. For this goal, we first determine g from the pole as

M2 g
4

4
=

4M2
0M

2

(M +M0)2

yielding

g = 2

√

M0

M +M0

as p =M sinhϑ and then show that the actual one-particle coupling in (B.7) equals g. To calculate
the latter, we put the theory into finite volume, where from (3.2) and (B.7)

√
ML

g

2
=
NNS

NR
(B.23)

must hold, where

N2
R =

∏

n⊂N+

(

1 +

∣

∣

∣

∣

K

(

2π

L
n

)∣

∣

∣

∣

2
)

N2
NS =

∏

m⊂N+ 1
2

(

1 +

∣

∣

∣

∣

K

(

2π

L
m

)∣

∣

∣

∣

2
)

.

(B.24)

It is convenient to calculate the logarithm of the ratio, which we write as
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ln
N2

NS

N2
R

=ln
∏

n⊂N+

1 +
∣

∣K
(

2π
L (n− 1/2)

)∣

∣

2

1 +
∣

∣K
(

2π
L (n)

)∣

∣

2

=A+B ,

A =ln
∏

n⊂N+

1 + x
(n− 1

2
)2

1 + x
i2

,

B =ln
∏

n⊂N+

1 + x
n2

1 + |K
(

2π
L n
)

|2

− ln
∏

n⊂N+

1 + x
(n− 1

2
)2

1 + |K
(

2π
L (n− 1

2 )
)

|2 ,

(B.25)

where

x =
4M2M2

0L
2

(M +M0)2(2π)2
.

WhenML→ 0, the expression denoted by B in (B.25) is zero, which can be easily seen by considering
the Euler-Maclaurin formula: for the two terms in B the difference between the lower endpoints for
the integration and for the boundary terms consisting of the functions and their derivatives goes
as 1/L and the expressions in the logarithms are smooth, well-behaved functions. The term A in
(B.25) can explicitly be computed, therefore when L→∞,

ln
N2

NS

N2
R

= ln
∏

i⊂N+

1 + x
(i− 1

2
)2

1 + x
i2

=− 1

2

[

−2 ln Γ
(

1−
√
−x
)

+ 2 ln Γ

(

1

2
−
√
−x
)

− 2 ln Γ
(√
−x+ 1

)

+ 2 ln Γ

(√
−x+

1

2

)]

+ lnπ ,

(B.26)

and consequently, leading order behaviour of ln N2
NS

N2
R
− lnL from (B.26) is ln(π

√
x). Then, one finds

that

NNS

NR
=
√
ML

√

M0

M0 +M
, (B.27)

and that g = 2
√

M0
M0+M indeed holds.

C Phase quenches in the sine–Gordon model and exponential quenches

In this appendix we give more details of the calculation presented in Section 2.3. Recall that the phase
quenches in the sine–Gordon model consist of abruptly shifting the sine–Gordon field φ→ φ+ δ/β,
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i.e. changing the phase in the model and regarding the pre-quench vacuum as the initial state for
the post-quench evolution. To obtain the relation between the pre-quench and post-quench ground
states, consider the sine–Gordon model as the perturbation of the compactified free massless bosonic
conformal field theory in finite volume with the Hamiltonian

H(Φ) =

ˆ

dx
1

2
: (∂tΦ)

2 + (∂xΦ)
2 : −λ

2

ˆ

dx (V1 + V−1) (C.1)

Va =: eiaβΦ : ,

where the Va are the so-called vertex operators (normal ordered exponentials of the boson field).
Note that the free bosonic part of (C.1) commutes with the zero mode of the conjugate momentum
field Π0 = ∂tΦ, whereas due to the canonical commutation relations

[Φ(x, t),Π(y, t)] = iδ(x − y) ,

one finds that the zero-mode

Π0 =

ˆ

dyΠ(y, t)

of the canonical momentum field satisfies

exp

(

i
δ

β
Π0

)

: eiaβΦ : = : eia(βΦ+δ) : exp

(

i
δ

β
Π0

)

. (C.2)

Hence for the ground state H(Φ)|0〉Φ = E0|0〉Φ, we have

exp

(

i
δ

β
Π0

)

H(Φ)|0〉Φ = E0 exp

(

i
δ

β
Π0

)

|0〉Φ ,

H(Φ + δ/β) exp

(

i
δ

β
π0

)

|0〉Φ = E0 exp

(

i
δ

β
π0

)

|0〉Φ ,
(C.3)

from which

exp

(

i
δ

β
Π0

)

|0〉Φ = |0〉Φ+ δ
β
. (C.4)

Therefore the initial state in the finite volume theory with PBC reads

|Ω〉L = exp

(

i
δ

β
Π0

)

|0〉L . (C.5)

For a form factor expansion for the overlaps in finite volume,

L〈χ| exp
(

i
δ

β
Π0

)

|0〉L , (C.6)

one can use the expression

Π0 =

ˆ L

0
∂tΦ(x)dx = i

ˆ L

0
[H,Φ(x)]dx ,

Expanding the exponential into a Taylor series, the general term is
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i2l

l!

(

δ

β

)l
∑

α1

. . .
∑

αl−1

ˆ

(

∏

i

dxi

)

L〈χ|eiP̂ x1Φ(0)e−iP̂ x1 |α1〉L(Eχ − Eα1)×

L〈α1|eiP̂ x2Φ(0)e−iP̂ x2 |α2〉L(Eα1 − Eα2)...L〈αl−1|eiP̂ xlΦ(0)e−iP̂ xl |0〉L(Eαl−1
− E0) ,

(C.7)

in which P̂ is the momentum operator and αi indexes a complete set of asymptotic eigenstates. Due
to translation invariance, the overlaps are only non-zero when the total momentum p of the state |χ〉
is zero, and so only intermediate states with zero total momentum contribute. We can then write

(−1)lLl

l!

(

δ

β

)l
˜∑

α1

. . .
˜∑

αl−1

L〈χ|Φ(0)|α1〉L(Eχ − Eα1)×

L〈α1|Φ(0)|α2〉L(Eα1 − Eα2)...L〈αl−1|Φ(0)|0〉L(Eαl−1
− E0) ,

(C.8)

where the tildes over the sums signal that only zero momentum states are included.
Now for a state containing a zero-momentum first breather and to first order in δ, we can use

(C.8), (A.6) and (A.14) to obtain

√

m1L
g

2
=L〈{0}|Ω〉L

=(−1)L
(

δ
β

)

L〈{0}|Φ(0)|0〉Lm1 ,

(C.9)

with

L〈{0}|Φ(0)|0〉L =
F ∗
B1√
m1L

,

which gives

g

2
= − δ

β
F ∗
B1
, (C.10)

where F denotes the form factor of the field Φ in the sine–Gordon theory which has only has non-
vanishing matrix elements with states composed first breathers when their total number is odd. In
particular [76],

FB1 = F *
B1

=
λ̄(ξ)πξ

β sinπξ
, (C.11)

with

ξ =
β2

β2 − 8π
,

λ̄(ξ) =2 cos
πξ

2

√

2 sin
πξ

2
exp

(

−
ˆ πξ

0

dt

2π

t

sin t

)

,

(C.12)

and we remark that the form factors of the sine–Gordon field φ can be obtained from that of the
vertex operators : eiαφ : by differentiating with respect to α. For the pair overlap the lowest non-
trivial order is δ2 and one obtains
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N2(ϑ,L)K(ϑ) =L〈I,−I|Ω〉L

=

(

δ

β

)2L2

2

˜∑

α1

L〈I,−I|Φ(0)|α1〉L(2m1 coshϑ− Eα1)L〈α1|Φ(0)|0〉LEα1

=

(

δ

β

)2L2

2

∞
∑

n=1

∑

{θk}

FB1,B1,A1...An(iπ + ϑ, iπ − ϑ, θ1, ...θn)
√

(m1L cosh ϑ)2 + (m1L cosh ϑ) ϕB1B1(ϑ)ρn(θ1, ...θn)
×

(

2m1 cosh ϑ−
n
∑

i=1

mi cosh θi

)

F ∗
A1...An

(θ1, ...θn)

(

n
∑

i=1

mi cosh θi

)

,

(C.13)

where the particles Ak are either breathers or solitons and their is an implicit summation over all
possible choice of their species.

Now we are interested in the singular behaviour of K which can only originate from those of
the form factors. The infinite volume limit itself is finite, since the numerator contains an explicit
L2, and in the n-particle term the denomination contributes 1/L and also 1/Ln from the density
factor, while rewriting the discrete summation in terms of integrals results in a state density factor
of behaviour Ln−1, so the leading term is independent of L.

First let us focus on terms where all particles A1 . . . An are first breathers. We now proceed to
analyse the singularity of these terms by setting ϑ to a value ǫ and to consider the limit of small ǫ.
The form factor has a kinematical singularity when some subset of m particles among the A1 . . . An

has similarly small rapidities, which we take to be a multiple of ǫ. The dependence of the most
singular term can be obtained from the kinematical residue equation (A.12) but also taking into
account that the form factor having a first order zero when two rapidities coincide due to (A.10)
and S(0) = −1. There are three cases:

• m < n− 1: The behaviour of F (iπ+ϑ, iπ−ϑ, θ1, ...θn) is ǫ1+(m−1)m/2−2m , where the 1 comes
from the coincidence of iπ− ϑ and iπ+ϑ , the m(m− 1)/2 comes from the coincidence of the
m rapidities in the set θ1, ...θn, and the −2m are from the kinematical singularities “activated”
in the limit. For F ∗(θ1, ...θn) one obtains a factor ǫ(m−1)m/2, therefore the overall behaviour
is ǫ1+(m−1)m−2m which is only singular for m = 1 or 2.

• m = n − 1: one must be aware that the condition of zero total momentum, that sending
m = n−1 rapidities to zero results in all the n of them going to zero, leading to the behaviour
ǫ1+(n−1)n−2n which is singular for n = 2.

• m = n: same behaviour ǫ1+(n−1)n−2n as for the case m = n− 1, resulting in n = 1 or n = 2.

Note that whenever there is a singularity it is always of order one. For the case when all the A1 . . . An

are first breathers, n must also be odd for the form factor not to vanish due to parity invariance.
The n = 1 contribution is

(

δ

β

)2L2

2

FB1B1B1(iπ + ϑ, iπ − ϑ, 0)(2m1 cosh ϑ−m1)F
*
1m1

√

(m1L cosh ϑ)2 + (m1L coshϑ) ϕB1B1(ϑ)m1L
. (C.14)

Using the form factor equations

FB1B1B1(iπ + ϑ, iπ − ϑ, 0) ≈ −4i

ϑ
FB1 , (C.15)
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this contribution alone gives the expected pole contribution

K(ϑ) = −
(

δ

β

)2 2i |FB1 |2
2

1

ϑ
+O(ϑ0)

= −ig
2

2

1

ϑ
.

(C.16)

Now we demonstrate that contributions with n ≥ 3 are regular at the origin ϑ = 0. Observe that in
finite volume the rapidity ϑ in finite volume is eventually quantised according to

mL sinhϑ+ δ(2ϑ) = 2πI

with some half-integer quantum number I, so it is always displaced by an amount of order 1/L from
the origin. Fixing I results in the parameter ǫ being essentially 1/L, therefore the singularity 1/ǫ
manifests itself as a divergence of (C.13) proportional to L when L goes to infinity with I fixed. A
simple power counting then gives that the contribution is

L2

Ln+1
× L× Lr = Lr+2−n ,

where Lr is the state density factor resulting for the r particle rapidities among the θ1, ...θn whose
summation is left free once fixing the positions of those needed for the singularity and also taking
into account the zero-momentum constraint. Clearly one obtains r ≤ n−2 resulting in a cancellation
of any divergence for L→∞.

To finish this discussion, let us consider the case when the set of particles A1 . . . An contains
other species (higher breathers or solitons) as well. Let us suppose that the total number of first
breathers among A1 . . . An is k with k < n. The counting of the degree of singularity only involves
first breathers, so we obtain that the only possible cases are again k = 1 or 2. However, in the
denominator of (C.13) now one has a density ρn with a behaviour Ln with n > k, which leads to a
regular limit for L→∞.

D Some useful relations

Here we collect some useful formulae regarding the K function and form factors, identities from the
theory of distributions and relations for the stationary phase approximation (SPA) that are useful
in the text.

D.1 The K function

The K function possesses a singularity at the origin, if the one particle coupling to the boundary
denoted by g is non-zero. In this case, the singular term in K is

K(ϑ) ∝ −ig
2

2

1

ϑ
. (D.1)

Due to the relationK(−ϑ) = S(−2ϑ)K(ϑ) the constant term in the expansion ofK is also expressible
with g. Writing K as

K(ϑ) = −ig
2

2

1

ϑ
+K0 +K1ϑ+ . . . , (D.2)
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and expanding

S(ϑ) = −1− iϕ(0)ϑ +
1

2
ϕ2(0)ϑ2 + . . . , (D.3)

one obtains

K0 =
ϕ(0)g2

2
, (D.4)

hence

K(ϑ) = −ig
2

2

1

ϑ
+
ϕ(0)g2

2
+K1ϑ+ . . . . (D.5)

Also note that due to real analyticity K(−ϑ) = K∗(ϑ), all even/odd coefficients in the expansion of
K around ϑ = 0 are purely real/imaginary, respectively.

D.2 Form factor singularities and expansions

Consider form factors for a single species, such as the the multi-B1 form factors of the sine–Gordon
model. Using the form factor equations (A.10) and (A.12) one can derive the universal expression

F3(iπ,−ε, ε) =
4i

ε
F1 − 4iF1

f ′′min(0)

f ′min(0)
+O(ε) , (D.6)

where

f ′′min(0)

f ′min(0)
= iϕ(0) , (D.7)

i.e. the first derivative of the S-matrix at the origin. Another form factor we need is F5(iπ,−ε, ε,−ϑ, ϑ),
where ϑ is non-zero. Using (A.13), one can explicitly compute

F5(iπ,−ε, ε,−ϑ, ϑ) =
4i

ε
F3(−ϑ, ϑ, 0) + 4F3(−ϑ, ϑ, 0)ϕ(0) +O(ε) (D.8)

which is universal as well.
For F5(iπ + ϑ+ ε, iπ − ϑ− ε,−ϑ, ϑ, 0) the most singular term is O(ǫ−2), however, we also need

the ε−1 terms. Denoting the coefficient of the sub-leading singularity by F ε
5 (ϑ), it can be shown

based on (A.13) that

F5(iπ + ϑ, iπ − ϑ,−ϑ− ε, ϑ + ε, 0) =
1

ε2
(1− S(ϑ)) (1− S(−ϑ))F1

+
1

ε
F ε
5 (ϑ) + regular ,

F5(iπ + ϑ, iπ − ϑ, ϑ− ε,−ϑ+ ε, 0) =
1

ε2
S(2ϑ) (1− S(ϑ)) (1− S(−ϑ))F1

+
1

ε
S(2ϑ)F ε

5 (−ϑ) + regular ,

(D.9)

where

F ε
5 (ϑ) ≈

8F1

ϑ
, ϑ→ 0 . (D.10)
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D.3 Some distribution identities

Suppose that f(x) is a well behaved function with vanishing at infinity. Then it is well-known that

ˆ ∞

−∞
dx

f(x)

x− x0 + iǫ
= P

ˆ ∞

−∞
dx

f(x)

x− x0
− iπf(x0) , (D.11)

where P
´

denotes the principal value. This identity has the following counterpart for second order
singularity

ˆ ∞

−∞
dx

f(x)

(x− x0 + iǫ)2
= P

ˆ ∞

−∞
dx

f ′(x)
x− x0

− iπf ′(x0) . (D.12)

One can also write

ˆ ∞

−∞
dx

f(x)

sinh (x− x0 + iǫ)
= P

ˆ ∞

−∞
dx

f(x)

sinh (x− x0)
− iπf(x0) , (D.13)

and

ˆ ∞

−∞
dxf(x)

cosh (x− x0 + iǫ)

sinh2 (x− x0 + iǫ)
= P

ˆ ∞

−∞
dx

f ′(x)
sinh (x− x0)

− iπf ′(x0) . (D.14)

hold as well. A useful way of evaluating the principal value integral is

P

ˆ ∞

−∞
dx

f(x)

x− x0
=

ˆ ∞

−∞
dx
f(x)− f(x0)/g(x − x0)

x− x0
, (D.15)

where g(x) is an appropriate mask function that is even, grows at the infinity and satisfies g(0) = 1,
a convenient choice being g(x) = coshx.

D.4 Stationary phase approximation

Consider the following integral with oscillatory argument:

1

2π

ˆ

dxf(x)eitg(x) ,

in which g(x) has one global extremum at x0, and f(x) is regular and decays fast enough for large
|x|. The asymptotic behaviour of this integral for large t can then be evaluated as

1

2π

ˆ ∞

−∞
dxf(x)eitg(x) =

f(x0)e
itg(x0)eiπ/4sign(g”(x0))

√

2πt|g”(x0)|
+O(t−3/2) . (D.16)

E The finite volume 1-point function in the presence of boundaries

The expectation value of a local operator in a finite volume with boundaries

〈O(x)〉B =
〈B| e−HxO(0) e−H(R−x) |B〉

〈B|e−HR|B〉 =
∑

k,l

Dkl (E.1)

was calculated in [62] up to contributions Dkl with k + l ≤ 4. We quote here the result:
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D10 =
gB
2
FO
1 e

−mx ,

D20 =
1

2

ˆ

dϑ

2π
KB(ϑ)F

O
2 (−ϑ, ϑ)e−2m coshϑ x ,

D30 =
1

2

ˆ

dϑ

2π
KB(ϑ)

gB
2
FO
3 (−ϑ, ϑ, 0)e−m(2 cosh ϑ+1) x ,

D40 =
1

8

ˆ

dϑ1
2π

dϑ2
2π

KB(ϑ1)KB(ϑ2)F
O
4 (−ϑ1, ϑ1,−ϑ2, ϑ2)e−2m(cosh ϑ1+cosh ϑ2) x ,

D01 =
gB
2
FO
1 e

−m(R−x) ,

D02 =
1

2

ˆ

dϑ

2π
KB(ϑ)F

O
2 (−ϑ, ϑ)e−2m coshϑ (R−x) ,

D03 =
1

2

ˆ

dϑ

2π
KB(ϑ)

gB
2
FO
3 (−ϑ, ϑ, 0)e−m(2 cosh ϑ+1) (R−x) ,

D04 =
1

8

ˆ

dϑ1
2π

dϑ2
2π

KB(ϑ1)KB(ϑ2)F
O
4 (−ϑ1, ϑ1,−ϑ2, ϑ2)e−2m(cosh ϑ1+cosh ϑ2) (R−x) ,

(E.2)

and

D11 =
g2B
4
FO
2,se

−mR ,

D21 =
gB
4

ˆ

dϑ

2π

(

FO
3 (−ϑ+ iπ, ϑ + iπ, 0)KB(ϑ)e

−2m coshϑx−m(R−x) − 2g2BF
O
1 coshϑ

sinh2 ϑ
e−m(R+x)

)

+ e−m(x+R)g3BF
O
1

ϕ(0)

4
,

D12 =
gB
4

ˆ

dϑ

2π

(

FO
3 (iπ,−ϑ, ϑ)KB(ϑ)e

−2m cosh ϑ(R−x)−mx − 2g2BF
O
1 coshϑ

sinh2 ϑ
e−m(2R−x)

)

+ e−m(2R−x)g3BF
O
1

ϕ(0)

4
,

D31 =
g2B
8
e−mR

ˆ

dϑ

2π
KB(ϑ)F

O
4 (−ϑ+ iπ, ϑ+ iπ, iπ, 0)e−2m cosh ϑ x ,

D13 =
g2B
8
e−mR

ˆ

dθ

2π
KB(ϑ)F

O
4 (−ϑ+ iπ, ϑ + iπ, iπ, 0)e−2m coshϑ (R−x) ,

D22 =
1

4

ˆ

dϑ1
2π

dϑ2
2π

KB(ϑ1)KB(ϑ2)F
O
4 (−ϑ1 + iπ, ϑ1 + iπ,−ϑ2, ϑ2)e−2m coshϑ1x−2m cosh ϑ2(R−x)

(E.3)

+FO
2,s

ˆ

dϑ

2π

(

KB(−ϑ)KB(ϑ)e
−2m cosh ϑR − g4B coshϑ

4 sinh2 ϑ
e−2mR

)

+ FO
2,s

g4B
8
e−2mRϕ(0) ,

where FO
2,s = FO

2 (iπ, 0) and

ϕ(ϑ) = −i∂ logS(ϑ)
∂ϑ

.
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F Evaluating D12

In order to analyse the time dependence of the term

g

2
ℜe
ˆ ∞

−∞

dϑ

2π

{

K(ϑ)FO
3 (iπ,−ϑ, ϑ)e−imt(2 coshϑ−1) − 2g2

coshϑ

sinh2 ϑ
FO
1 e

−imt

}

, (F.1)

we reintroduce the regulator R enabling us to shift the contour off the real axis where (as shown in
[62]), the contribution from the term

cosh ϑ

sinh2 ϑ

vanishes, i.e., we end up with

g

2
ℜe
ˆ ∞+iε

−∞+iε

dϑ

2π

{

K(ϑ)FO
3 (iπ,−ϑ, ϑ)e−imt(2 cosh ϑ−1)e−mR/2(2 coshϑ+1)

}

. (F.2)

Using now (D.14), we find

D12(R) =
g

2
ℜe
ˆ ∞+iε

−∞+iε

dϑ

2π

(

sinh2 ϑK(ϑ)FO
3 (iπ,−ϑ, ϑ)e−imt(2 cosh ϑ−1)e−mR/2(2 coshϑ+1)/ cosh ϑ

)′

sinhϑ

D12 =
g

2
ℜe
ˆ ∞

−∞

dϑ

2π

(

sinh2 ϑK(ϑ)FO
3 (iπ,−ϑ, ϑ)/ cosh ϑ

)

e−imt(2 cosh ϑ−1) (−2imt sinhϑ)
sinhϑ

+
g

2
ℜe
ˆ ∞

−∞

dϑ

2π

(

sinh2 ϑK(ϑ)FO
3 (iπ,−ϑ, ϑ)e−imt(2 coshϑ−1)/ cosh ϑ

)′
e−imt(2 coshϑ−1)

sinhϑ
,

(F.3)

where we placed the integration contour back to the real axis as the integrands are now free of poles
for real rapidities and also got rid off the regulator by setting its value to zero. Performing the SPA
(D.16) results in

g3FO
1

(

ϕ2(0) − 2/3
)

2
√
4πmt

ℜe e−imte−iπ/4 + g3
√

mt

π
ℜeFO

1 e
−imt−

√
2−
√
2i

2
, mt≫ 1 . (F.4)

While the first term has the standard ∼ 1/
√
t time dependence, the second one behaves as ∼

√
t for

large time. This peculiar finding is discussed in Sec. 4.3.

G Evaluating G5, part I. Notations, D05, D14 and residue terms from

D23

In this and the following appendix we describe how to compute the five-particle contribution G5.
According to the discussion in Section 3 it can be obtained as (the real part of) the infinite volume
limit of

D̃05 + D̃14 + D̃23 , (G.1)

D̃05 = C05 ,

D̃14 = C14 − Z1C03 ,

D̃23 = C23 − Z1C12 − (Z2 − Z2
1 )C01 .
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The calculation of D̃05 and D̃14 is easy; we show explicitly the cancellation of terms with positive
powers of mL and extract the time dependence based on stationary phase approximation (SPA). It
turns out that this time-dependence is only of sub-leading order.

The calculation of D̃23 is, however, so long and tedious that we only extract terms accounting
for the leading time-dependence and then carefully argue why other terms produce only sub-leading
effects. In particular, in this Appendix we only focus on residue terms and leave contributions
resulting from a contour integration for Appendix H. Finally, we provide numerical evidence for the
existence of the infinite volume limit demonstrating the cancellation of terms behaving as mL and
(mL)2 in Appendix J.

We use the following notation to abbreviate formulas involving form form factors: whenever a
vertical line is seen in the argument of the form factors, rapidities in the argument refer to rapidity
pairs, and a single rapidity is indicated by putting it into brackets {}. Rapidities to the right of the
line are understood to be shifted by iπ. For example,

F5(ϑ1|ϑ2, {0}) = F5(iπ + ϑ1, iπ − ϑ1,−ϑ2, ϑ2, 0) ,
and

F5(|ϑ1, ϑ2, {0}) = F5(−ϑ1, ϑ1,−ϑ2, ϑ2, 0) .
In a similar spirit, we introduce

h(ϑ1|ϑ2, {0})R = eimt(2 cosh ϑ1−2 cosh ϑ2−1)e−mR/2(2 cosh ϑ1+2 cosh ϑ2+1) ,

and

h(ϑ1, ϑ2, {0}|)R = eimt(2 coshϑ1+2 coshϑ2+1)e−mR/2(2 coshϑ1+2 coshϑ2+1) , (G.2)

and

h(ϑ1|ϑ2, {0}) = h(ϑ1|ϑ2, {0})R=0 . (G.3)

G.1 Evaluation of D̃05 = C05 and D̃14 = C14 − Z1C03

Let us start with

D̃05 =
1

2

∑

I 6=J

g

2
K(ϑ1)K(ϑ2)N5(ϑ1, ϑ2, L)L〈0|O(0)|{I,−I, J,−J, 0}〉L×

e−imt(2 coshϑ1+2 coshϑ2+1)e−Rm/2(2 coshϑ1+2 coshϑ2+1)

(G.4)

which is free of divergences, therefore its infinite volume and R→ 0 limit is simply

D05 =
g

8

ˆ ∞

−∞

dϑ1
2π

ˆ ∞

−∞

dϑ2
2π

K(ϑ1)K(ϑ2)F5(0,−ϑ1, ϑ1,−ϑ2, ϑ2)e−imt(2 coshϑ1+2 coshϑ2+1) . (G.5)

Concerning the long time asymptotics of this term, the stationary points are ϑ1 = ϑ2 = 0 where
the product of the form factor and the K factors can be expanded in non-negative powers ϑn1ϑ

m
2 .

Applying a Gaussian approximation
´

dϑ1
2π

´

dϑ2
2π ϑ

n
1ϑ

m
2 e

−itm(1+2ϑ2
1+2ϑ2

2) yields time dependence of the
form t−1−m−n which we neglect.
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Turning now to

C14 =
1

2

∑

I 6=J

g

2
K(ϑ1)K(ϑ2)N1N4(ϑ1, ϑ2, L)L〈{0}|O(0)|{−I, I, J,−J}〉L×

e−imt(2 cosh ϑ1+2 cosh ϑ2−1)e−Rm/2(2 cosh ϑ1+2 cosh ϑ2+1) ,

(G.6)

the corresponding form factor F5(iπ,−ϑ1, ϑ1,−ϑ2, ϑ2) has a ϑ2 behaviour around the origin when
ϑ1 = ϑ2 = ϑ, therefore it remains regular even when multiplied with the two K functions. However
when only one of the rapidities is close to zero then it has a first order pole F5 ∝ 1

ϑ , hence taking
into account the singularity of the appropriate K function leads to a second order pole. Following
the formalism introduced in [68], one can write the sum using contour integrals

C14 =
g

4

(

−1

2

)

∑

I 6=0

˛

CI

dϑ1
2π

(

−1

2

)

∑

J 6=0

˛

CJ

dϑ2
2π

K(ϑ1)K(ϑ2)
F5(iπ,−ϑ1, ϑ1,−ϑ2, ϑ2)
(

eiQ̄4,1 + 1
)(

eiQ̄4,2 + 1
)×

e−imt(2 coshϑ1+2 coshϑ2−1)e−Rm/2(2 coshϑ1+2 coshϑ2+1) ,

(G.7)

where the two-dimensional product contour CI×CJ encircles the solution of the Bethe-Yang equation
determining ϑ1 and ϑ2 with quantum numbers I and J . To open the contours it is necessary to
subtract the residue terms when ϑ1 = 0 or ϑ2 = 0. Hence

C14 =
g

16

ˆ ∞+iε

−∞+iε

dϑ1
2π

ˆ ∞+iε

−∞+iε

dϑ2
2π

K(ϑ1)K(ϑ2)
F5({0}|ϑ1, ϑ2)

(

eiQ̄4,1 + 1
)(

eiQ̄4,2 + 1
)h({0}|ϑ1, ϑ2)R

+
g

4

(

−1

2

)

∑

I 6=0

˛

CI

dϑ1
2π

(

1

2

)
˛

C0

dϑ2
2π

K(ϑ1)K(ϑ2)
F5({0}|ϑ1, ϑ2)

(

eiQ̄4,1 + 1
)(

eiQ̄4,2 + 1
)h({0}|ϑ1, ϑ2)R

+
g

4

(

−1

2

)

∑

J 6=0

˛

CJ

dϑ2
2π

(

1

2

)
˛

C0

dϑ1
2π

K(ϑ1)K(ϑ2)
F5({0}|ϑ1, ϑ2)

(

eiQ̄4,1 + 1
)(

eiQ̄4,2 + 1
)h({0}|ϑ1, ϑ2)R ,

(G.8)

where we used that on the contours with imaginary parts −iε eiQ̄4,k → ∞ in the infinite volume
limit. Now we split C14 according to the lines in (G.8) as C14 = Cint

14 + Cres1
14 + Cres2

14 . Clearly,
Cres1
14 = Cres2

14 =: Cres
14 and the infinite volume limit of Cint

14 is regular:

lim
L→∞

Cint
14 =

g

16

ˆ ∞+iε

−∞+iε

dϑ1
2π

ˆ ∞+iε

−∞+iε

dϑ2
2π

K(ϑ1)K(ϑ2)F5({0}|ϑ1, ϑ2)h({0}|ϑ1, ϑ2)R ,

since eiQ̄4,k → 0 in the infinite volume limit on the contours with imaginary parts +iε. The residue
contribution is

2Cres
14 =

ig

4

(

−1

2

)

∑

I 6=0

˛

CI

dϑ1
2π

˛

C0

dϑ2
2πi

K(ϑ1)K(ϑ2)
F5({0}|ϑ1, ϑ2)

(

eiQ̄4,1 + 1
)(

eiQ̄4,2 + 1
)h({0}|ϑ1, ϑ2)R .

(G.9)

For ϑ2 ≈ 0 based on (D.8)
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F5({0}|ϑ1, ϑ2)K(ϑ2) = 4iF3(−ϑ1, ϑ, 0)
(

1

ϑ2
− iϕ(0)

)(−ig2
2ϑ2

+
g2

2
ϕ(0)

)

+ regular

= F3(−ϑ1, ϑ, 0)
(

2g2

ϑ22

)

+ regular ,

(G.10)

in the contour integral around the ϑ2 = 0 point the 1/ϑ22 term acts as a differentiation on the other
regular ϑ2 dependent factor, leading to

Cres
14 =

g3

16

ˆ ∞

−∞

dϑ

2π
F3(|{0}, ϑ1)K(ϑ1)h({0}|ϑ1, 0)R (mL+ 2ϕ(0) + 2ϕ(ϑ1)) +O

(

L−1
)

. (G.11)

Turning to −Z1C03 we have

Z1 =
g2

4
mLe−mR

and

C03 =
1

2

g

2

ˆ

dϑ

2π
F3(0,−ϑ1, ϑ1)K(ϑ1)h({0}|ϑ1, 0)R .

Therefore the O(L) term in (G.11) is cancelled, resulting in

D14 = lim
L→∞

C14 − Z1C03

=
g

16

ˆ ∞+iε

−∞+iε

dϑ1
2π

ˆ ∞+iε

−∞+iε

dϑ2
2π

K(ϑ1)K(ϑ2)F5({0}|ϑ1, ϑ2)h({0}|ϑ1, ϑ2)R

+
g3

16

ˆ ∞

−∞

dϑ

2π
F3(|{0}, ϑ1)K(ϑ1)h({0}|ϑ1, 0)R (2ϕ(0) + 2ϕ(ϑ1)) .

(G.12)

Pulling the contours back to the real axis by sending ε to zero, one can then send R to zero as well
with the final result

D14 =
g

16

ˆ ∞

−∞

dϑ1
2π

ˆ ∞

−∞

dϑ2
2π

{

K(ϑ1)K(ϑ2)F5(iπ,−ϑ1, ϑ1,−ϑ2, ϑ2)e−itm(2 coshϑ1+2 coshϑ2−1)

− 2g2F3(0,−ϑ2, ϑ2)
coshϑ1

sinh2 ϑ1
K(ϑ2)e

−itm(2 cosh ϑ2+1)

−2g2F3(0,−ϑ1, ϑ1)
coshϑ2

sinh2 ϑ2
K(ϑ1)e

−itm(2 cosh ϑ1+1)

}

+
g3

16

ˆ ∞

−∞

dϑ

2π
F3(0,−ϑ1, ϑ1)K(ϑ1)e

−itm(2 cosh ϑ1+1) (2ϕ(0) + 2ϕ(ϑ1)) .

(G.13)

Addressing the time dependence of this term, note that the structure of D14 is reminiscent of D12

discussed in Section 3.2 resulting in a
√
t type behaviour again due to a mechanism analogous to

parametric resonance. The difference from the case of D12 is that the oscillations are of the form
cos 3mt instead of cosmt. Since our primary focus is on one-particle oscillations, we do not discuss
this term further here.
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G.2 Evaluation of D23 = C23 − Z1C12 − (Z2 − Z2
1 )C01

Consider

C23 =
g

2

∑

I≥0

∑

J≥0

N2N3K(−ϑ1)K(ϑ2)L〈{I,−I}|O(0)|{J,−J, 0}〉L×

eimt(2 coshϑ1−2 coshϑ2−1)e−Rm/2(2 coshϑ1+2 coshϑ2+1)

=
g

2

∑

I≥0

∑

J≥0

K(−ϑ1)K(ϑ2)
F5(iπ + ϑ1, iπ − ϑ1,−ϑ2, ϑ2, 0)

ρ̄2(ϑ1)ρ̄3(ϑ2)
×

eimt(2 coshϑ1−2 coshϑ2−1)e−Rm/2(2 coshϑ1+2 coshϑ2+1) +O(e−µL) ,

(G.14)

where I and J are the quantum numbers specifying ϑ1 and ϑ2, i.e.

Q̄2(ϑ1) = 2πI , Q̄3(ϑ2) = 2πJ ,

where Q̄2 and Q̄3 are defined in (A.4) and (A.5), respectively. The density factors are given by

ρ̄2(ϑ1) =
∂Q̄2(ϑ1)

∂ϑ1
, ρ̄3(ϑ1) =

∂Q̄3(ϑ2)

∂ϑ2
.

Note that I takes half-integer, while J takes integer values, according to the discussion in Appendix
A.1. The expression

F5(iπ + ϑ1, iπ − ϑ1,−ϑ2, ϑ2, 0)K∗(ϑ1)K(ϑ2)

is singular when ϑ1 = ϑ2 or when ϑ1 = 0 and ϑ2 is finite, and these singularities are of second order.
One can first write the sum over J as a contour integral:

C23 =
g

2

(

1

2

)2
∑

J 6=0

∑

I 6=0

˛

CJ

dϑ2
2π

h(ϑ1|ϑ2, {0})RK∗(ϑ1)K(ϑ2)
F5(ϑ1|ϑ2, {0})

ρ̄2(ϑ1)
(

eiQ̄3(ϑ2) − 1
) , (G.15)

where CJ surrounds the positions ϑ2 corresponding to J . Opening the contour leads to

C23 =
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞+iε

−∞+iε

dϑ2
2π

h(ϑ1|ϑ2, {0})RK(−ϑ1)K(ϑ2)
F5(ϑ1|ϑ2, {0})

ρ̄2(ϑ1)
(

eiQ̄3(ϑ2) − 1
)

+
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞−iε

−∞−iε

dϑ2
2π

h(ϑ1|ϑ2, {0})RK(−ϑ1)K(ϑ2)
F5(ϑ1|ϑ2, {0})

ρ̄2(ϑ1)
(

eiQ̄3(ϑ2) − 1
)

− ig
2

(

1

2

)2
∑

I 6=0

˛

Cϑ1

dϑ2
2πi

h(ϑ1|ϑ2, {0})RK(−ϑ1)K(ϑ2)
F5(ϑ1|ϑ2, {0})

ρ̄2(ϑ1)
(

eiQ̄3(ϑ2) − 1
)

− ig
2

(

1

2

)2
∑

I 6=0

˛

C−ϑ1

dϑ2
2πi

h(ϑ1|ϑ2, {0})RK(−ϑ1)K(ϑ2)
F5(ϑ1|ϑ2, {0})

ρ̄2(ϑ1)
(

eiQ̄3(ϑ2) − 1
) ,

(G.16)

where in the first two terms we perform the mL → ∞ only for the rapidities ϑ2, from which only
the integration along the contour above the real axis survives. We thus have
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C23 =
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞+iε

−∞+iε

dϑ2
2π

h(ϑ1|ϑ2, {0})RK(−ϑ1)K(ϑ2)
F5(ϑ1|ϑ2, {0})

ρ̄2(ϑ1)

− ig
2

(

1

2

)2
∑

I 6=0

˛

Cϑ1

dϑ2
2πi

h(ϑ1|ϑ2, {0})RK(−ϑ1)K(ϑ2)
F5(ϑ1|ϑ2, {0})

ρ̄2(ϑ1)
(

eiQ̄3(ϑ2) − 1
)

− ig
2

(

1

2

)2
∑

I 6=0

˛

C−ϑ1

dϑ2
2πi

h(ϑ1|ϑ2, {0})RK(−ϑ1)K(ϑ2)
F5(ϑ1|ϑ2, {0})

ρ̄2(ϑ1)
(

eiQ̄3(ϑ2) − 1
) .

(G.17)

This contour manipulation was checked numerically using known form factor solutions and compar-
ing (G.15) and (G.17) for finite R. The terms in the three lines in eqn. (G.17) are written in short
as

C23 = Cint
23 +Cres1A

23 + Cres1B
23 .

G.2.1 Time dependence from residue term Cres1A
23 and Cres1B

23

Consider the residue terms

Cres1A
23 =− ig

2

(

1

2

)2
∑

I 6=0

˛

Cϑ1

dϑ2
2πi

h(ϑ1|ϑ2, {0})RK(−ϑ1)K(ϑ2)
F5(ϑ1|ϑ2, {0})

ρ̄2(ϑ1)
(

eiQ̄3(ϑ2) − 1
)

=− ig
2

(

1

2

)2

F1

∑

I 6=0

K(−ϑ1) (1− S(ϑ1)) (1− S(−ϑ1)) h(ϑ1|ϑ1, {0})R
ρ̄2(ϑ1)

×
{

K(ϑ1)
(−2imt−Rm) sinhϑ1

(S(ϑ1)− 1)
+

K ′(ϑ1)
(S(ϑ1)− 1)

−K(ϑ1)S(ϑ1)i (mL coshϑ1 + 2ϕ(2ϑ1) + ϕ(ϑ1))

(S(ϑ1)− 1)2

}

−ig
2

(

1

2

)2

F1

∑

I 6=0

K(−ϑ1)K(ϑ1)F
ε
5 (ϑ1)h(ϑ1|ϑ1, {0})R

(S(ϑ1)− 1) ρ̄2(ϑ1)
,

(G.18)

and
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Cres1B
23 =− ig

2

(

1

2

)2
∑

I 6=0

˛

C−ϑ1

dϑ2
2πi

h(ϑ1|ϑ2, {0})RK(−ϑ1)K(ϑ2)
F5(ϑ1|ϑ2, {0})

ρ̄2(ϑ1)
(

eiQ̄3(ϑ2) − 1
)

=− ig
2

(

1

2

)2

F1

∑

I 6=0

K(−ϑ1)S(2ϑ1) (1− S(ϑ1)) (1− S(−ϑ1)) h(ϑ1|ϑ1, {0})R
ρ̄2(ϑ1)

×
{

K(−ϑ1)
(−1) (−2imt−Rm) sinhϑ1

(S(−ϑ1)− 1)
+

K ′(−ϑ1)
(S(−ϑ1)− 1)

−K(−ϑ1)S(−ϑ1)i (mL coshϑ1 + 2ϕ(2ϑ1) + ϕ(ϑ1))

(S(−ϑ1)− 1)2

}

− ig
2

(

1

2

)2

F1

∑

I 6=0

K(−ϑ1)K(−ϑ1)F ε
5 (−ϑ1)S(2ϑ1)h(ϑ1|ϑ1, {0})R

(S(−ϑ1)− 1) ρ̄2(ϑ1)
,

(G.19)

where (D.9) was made use of. Note, that both the second and first order singularities are to be
taken into account. Adding Cres1A

23 and Cres1B
23 , one has

Cres1
23 =− ig

2

(

1

2

)2

F1

∑

I 6=0

|K(ϑ1)|2
(−2iℑmS(ϑ1)) (−2imt−Rm) sinhϑ1

ρ̄2(ϑ1)
h(ϑ1|ϑ1, {0})R

− ig
2

(

1

2

)2

F1

∑

I 6=0

2
|K(ϑ1)|2i (mL coshϑ1 + 2ϕ(2ϑ1) + ϕ(ϑ1)) h(ϑ1|ϑ1, {0})R

ρ̄2(ϑ1)

+ i
g

2

(

1

2

)2

F1

∑

I 6=0

K(ϑ1)K
′(−ϑ1) (1− S(ϑ1)) +K(−ϑ1)K ′(ϑ1) (1− S(−ϑ1))

ρ̄2(ϑ1)
h(ϑ1|ϑ1, {0})R

− ig
2

(

1

2

)2
∑

I 6=0

|K(ϑ1)|2h(ϑ1|ϑ1, {0})R
ρ̄2(ϑ1)

(

F ε
5 (ϑ1)

(S(ϑ1)− 1)
+

F ε
5 (−ϑ1)

(S(−ϑ1)− 1)

)

,

(G.20)

or after some manipulations

Cres1
23 =− g

2

(

1

2

)2

F1

∑

I 6=0

|K(ϑ1)|2
(2ℑmS(ϑ1)) (−2imt−Rm) sinhϑ1

ρ̄2(ϑ1)
h(ϑ1|ϑ1, {0})R

+
g

2

(

1

2

)2

F1

∑

I 6=0

2
|K(ϑ1)|2 (mL coshϑ1 + 2ϕ(2ϑ1) + ϕ(ϑ1)) h(ϑ1|ϑ1, {0})R

ρ̄2(ϑ1)

− g

2

(

1

2

)2

F1

∑

I 6=0

ℑmS(ϑ1)
(

|K(ϑ1)|2
)′
+ 2ϕ(2ϑ1)|K(ϑ1)|2Re (1− S(ϑ1))
ρ̄2(ϑ1)

h(ϑ1|ϑ1, {0})R

− ig
2

(

1

2

)2
∑

I 6=0

|K(ϑ1)|2h(ϑ1|ϑ1, {0})R
ρ̄2(ϑ1)

(

F ε
5 (ϑ1)

(S(ϑ1)− 1)
+

F ε
5 (−ϑ1)

(S(−ϑ1)− 1)

)

,

(G.21)
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The four terms of Cres1
23 have singularities at ϑ1 = 0. However, these singularities can only produce

terms with positive powers in mL but no non-trivial time dependence since h(ϑ1|ϑ1, {0})R contains
no ϑ1 dependent function multiplied by t. We therefore have a single secular term, namely

C
res/sec
23 =

g

2
F1e

−imt (imt)

ˆ ∞

−∞

dϑ

2π
|K(ϑ)|2ℑmS(ϑ) sinhϑe−Rm/2(4 coshϑ+1)

+
g

2
F1e

−imt (Rm/2)

ˆ ∞

−∞

dϑ

2π
|K(ϑ)|2ℑmS(ϑ) sinhϑe−Rm/2(4 cosh ϑ+1) ,

(G.22)

and taking the limit R→ 0 results in

C
res/sec
23 =

g

2
F1e

−imt (imt)

ˆ ∞

−∞

dϑ

2π
|K(ϑ)|2ℑmS(ϑ) sinhϑ . (G.23)

H Evaluating G5, part II. Contour integral terms from D23

In this appendix we evaluate the contour integral from (G.16) which reads

Cint
23 =

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞+iε

−∞+iε

dϑ2
2π

h(ϑ1|ϑ2, {0})RK(−ϑ1)K(ϑ2)
F5(ϑ1|ϑ2, {0})

ρ̄2(ϑ1)
. (H.1)

Let us start with a summary of our method first. Manipulating (H.1) leads to various terms of which
only (H.10) and (H.31) give rise to interesting time dependence. The origin of these terms was made
clear at the beginning of this Appendix, but their actual evaluation needs further non trivial integral
manipulations discussed in Appendix I. The largest part of this Appendix is dedicated to showing
that apart from (H.10) and (H.31) no other term yields any interesting time dependence.

Starting from (H.1) we can subtract and add back the singularities of the five particle form
factors. Using (D.9), this leads to

Cint
23 =

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞+iε

−∞+iε

dϑ2
2π

{

h(ϑ1|ϑ2, {0})RK(−ϑ1)K(ϑ2)

ρ̄2(ϑ1)

[

F5(ϑ1|ϑ2, {0})

−Ω(ϑ1)F1

(

cosh(ϑ2 − ϑ1)
sinh2(ϑ2 − ϑ1)

+
S(2ϑ1) cosh(ϑ2 + ϑ1)

sinh2(ϑ2 + ϑ1)

)

− F ε
5 (ϑ1)

sinh(ϑ2 − ϑ1)
− S(2ϑ1)F

ε
5 (−ϑ1)

sinh(ϑ2 + ϑ1)

]}

+
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞+iε

−∞+iε

dϑ2
2π

{

h(ϑ1|ϑ2, {0})RK(−ϑ1)K(ϑ2)

ρ̄2(ϑ1)
×

Ω(ϑ1)F1

(

cosh(ϑ2 − ϑ1)
sinh2(ϑ2 − ϑ1)

+
S(2ϑ1) cosh(ϑ2 + ϑ1)

sinh2(ϑ2 + ϑ1)

)}

+
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞+iε

−∞+iε

dϑ2
2π

{

h(ϑ1|ϑ2, {0})RK(−ϑ1)K(ϑ2)

ρ̄2(ϑ1)

(

F ε
5 (ϑ1)

sinh(ϑ2 − ϑ1)
+
S(2ϑ1)F

ε
5 (−ϑ1)

sinh(ϑ2 + ϑ1)

)}

=CintA
23 + CintBI

23 + CintBII
23 ,

(H.2)

where Ω(ϑ) = (1− S(ϑ)) (1− S(−ϑ)).
To make the rather technical evaluation more transparent, we introduce an additional simplific-

ation which does not affect the end result. Apart from (H.10) and (H.31), many other terms also
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possess singularities that in principle could lead to non-trivial time-dependence, but cancel each
other in the end. These singularities emerge from the region where ϑ1 is around zero. But at zero
rapidity S(0) = −1, and all other quantities behave similar to the Ising model which has a constant
S = −1 everywhere, resulting in K(ϑ) being an odd function of ϑ. A good example is the sub-leading
singularity of the form factor F ε

5 (ϑ1) defined in (D.9), which for small ϑ1 behaves as

8F1

ϑ1
,

whereas its Ising counterpart is exactly

F ε
5 (ϑ1) =

8F1

sinhϑ1
. (H.3)

Therefore to keep the reasoning as simple as possible, from now on we perform our calculations for
the Ising scattering matrix S = −1 and show the cancellation of certain singularities. It turns out
that in the only nontrivial time dependent terms (H.28) and (H.31) the original S matrix can be
easily restored.

H.1 Term C
intBI
23 and its descendants

CintBI
23 reads

CintBI
23 =

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞+iε

−∞+iε

dϑ2
2π







h(ϑ1|ϑ2, {0})RK(−ϑ1)K(ϑ2)×

4F1

(

cosh(ϑ2−ϑ1)

sinh2(ϑ2−ϑ1)
− cosh(ϑ2+ϑ1)

sinh2(ϑ2+ϑ1)

)

ρ̄2(ϑ1)







.

(H.4)

To proceed we focus on the integral with respect to ϑ2 and separate the singularities in

K(ϑ2)
cosh(ϑ2 − ϑ1)
sinh2(ϑ2 − ϑ1)

to prepare for application of the identities of distribution theory. Using the shorthand s(ϑ2) = K(ϑ2)
and

c(ϑ2) =
cosh(ϑ2 − ϑ1)
sinh2(ϑ2 − ϑ1)

,

where s(ϑ2) is singular in 0 and c(ϑ2) at ϑ2 = ϑ1 one can write the singular terms as

s(ϑ2)c(ϑ2) = ((s(ϑ2)− s(ϑ1)) + s(ϑ1)) ((c(ϑ2)− c(0)) + c(0))

(s(ϑ2)− s(ϑ1)) (c(ϑ2)− c(0)) + s(ϑ1)c(ϑ2) + c(0)s(ϑ2)− c(0)s(ϑ1) ,
(H.5)

from which for fixed, non zero ϑ1, the first term (s(ϑ2)− s(ϑ1)) (c(ϑ2)− c(0)) is singular only in
ϑ2 = ϑ1 and this singularity is milder than 1/x2, the second term s(ϑ1)c(ϑ2) is singular only in
ϑ2 = ϑ1 which is of type 1/x2, whereas the third term c(0)s(ϑ2) is singular at the origin with 1/x
behaviour and the last term c(0)s(ϑ1) is regular. The terms corresponding to this separation are
denoted by CintBI1

23 , CintBI2
23 , CintBI3

23 and CintBI4
23 .
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Considering the first term and using (D.13), we have

CintBI1
23 =

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞+iε

−∞+iε

dϑ2
2π

{

h(ϑ1|ϑ2, {0})RK(−ϑ1) (K(ϑ2)−K(ϑ1))

ρ̄2(ϑ1)
4F1×

×
(

cosh(ϑ2 − ϑ1)
sinh2(ϑ2 − ϑ1)

− cosh ϑ1

sinh2 ϑ1

)}

−g
2

(

1

2

)2
∑

I 6=0

ˆ ∞+iε

−∞+iε

dϑ2
2π

{

h(ϑ1|ϑ2, {0})RK(−ϑ1) (K(ϑ2)−K(−ϑ1))
ρ̄2(ϑ1)

4F1×

×
(

cosh(ϑ2 + ϑ1)

sinh2(ϑ2 + ϑ1)
− cosh ϑ1

sinh2 ϑ1

)}

=− i π
2π

g

2

(

1

2

)2
∑

I 6=0

h(ϑ1|ϑ1, {0})RK(−ϑ1)K
′ |ϑ1

4F1

ρ̄2(ϑ1)

+
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

4F1

ρ̄2

K(−ϑ1)
sinh(ϑ2 − ϑ1)

{

h(ϑ1|ϑ2, {0})R (K(ϑ2)−K(ϑ1))×

×
(

cosh(ϑ2 − ϑ1)
sinh2(ϑ2 − ϑ1)

− cosh ϑ1

sinh2 ϑ1

)

sinh(ϑ2 − ϑ1)−
h(ϑ1|ϑ1, {0})RK

′ |ϑ1

cosh(ϑ2 − ϑ1)

}

+ϑ1 ←→−ϑ1 ,

(H.6)

which equals

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

4F1

ρ̄2(ϑ1)

K(−ϑ1)
sinhϑ2 − ϑ1

{

h(ϑ1|ϑ2, {0})R (K(ϑ2)−K(ϑ1))×

×
(

cosh(ϑ2 − ϑ1)
sinh2(ϑ2 − ϑ1)

− cosh ϑ1

sinh2 ϑ1

)

sinh(ϑ2 − ϑ1)−
h(ϑ1|ϑ1, {0})RK

′ |ϑ1

cosh(ϑ2 − ϑ1)

}

,

+ ϑ1 ←→ −ϑ1 .

(H.7)

One can split it further as
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CintBI1
23 =CintBI1a

23 +CintBI1b
23

CintBI1a
23 =

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

4F1
K(−ϑ1)
ρ̄2(ϑ1)

h(ϑ1|ϑ2, {0})R
sinhϑ2 − ϑ1

×

×
[

(K(ϑ2)−K(ϑ1))

(

cosh(ϑ2 − ϑ1)
sinh2(ϑ2 − ϑ1)

− coshϑ1

sinh2 ϑ1

)

sinh(ϑ2 − ϑ1)−
K ′(ϑ1)

cosh(ϑ2 − ϑ1)

]

+
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

4F1
K(ϑ1)

ρ̄2(ϑ1)

h(ϑ1|ϑ2, {0})R
sinhϑ2 + ϑ1

×

×
[

(K(ϑ2)−K(−ϑ1))
(

cosh(ϑ2 + ϑ1)

sinh2(ϑ2 + ϑ1)
− coshϑ1

sinh2 ϑ1

)

sinh(ϑ2 − ϑ1)−
K ′(−ϑ1)

cosh(ϑ2 + ϑ1)

]

CintBI1b
23 =

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

4F1
K(−ϑ1)
ρ̄2(ϑ1)

[h(ϑ1|ϑ2, {0})R − h(ϑ1|ϑ1, {0})R]K ′(ϑ1)
cosh(ϑ2 − ϑ1) sinh(ϑ2 − ϑ1)

+
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

4F1
K(ϑ1)

ρ̄2(ϑ1)

[h(ϑ1|ϑ2, {0})R − h(ϑ1|ϑ1, {0})R]K ′(−ϑ1)
cosh(ϑ2 + ϑ1) sinh(ϑ2 + ϑ1)

.

(H.8)

The second term CintBI2
23 reads as follows:

CintBI2
23 =

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞+iε

−∞+iε

dϑ2
2π

h(ϑ1|ϑ2, {0})R
|K(ϑ1)|2
ρ̄2(ϑ1)

4F1

(

cosh(ϑ2 − ϑ1)
sinh2(ϑ2 − ϑ1)

)

+
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞+iε

−∞+iε

dϑ2
2π

h(ϑ1|ϑ2, {0})R
|K(ϑ1)|2
ρ̄2(ϑ1)

4F1

(

cosh(ϑ2 + ϑ1)

sinh2(ϑ2 + ϑ1)

)

=
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞+iε

−∞+iε

dϑ2
2π

h(ϑ1|ϑ2, {0})R
|K(ϑ1)|2
ρ̄2(ϑ1)

4F1

(

cosh(ϑ2 − ϑ1)
sinh2(ϑ2 − ϑ1)

+
cosh(ϑ2 + ϑ1)

sinh2(ϑ2 + ϑ1)

)

=− i π
2π

g

2

(

1

2

)2
∑

I 6=0

h(ϑ1|ϑ1, {0})R
|K(ϑ1)|2
ρ̄2(ϑ1)

4F1 (−2imt−Rm) (sinhϑ1 + sinh(−ϑ1))

+ (−2imt−Rm)
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

|K(ϑ1)|2
ρ̄2(ϑ1)

4F1

sinh(ϑ2 − ϑ1)
×

×
[

h(ϑ1|ϑ2, {0})R sinhϑ2 −
h(ϑ1|ϑ1, {0})R sinhϑ1

cosh(ϑ2 − ϑ1)

]

+(−2imt−Rm)
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

|K(ϑ1)|2
ρ̄2(ϑ1)

4F1

sinh(ϑ2 + ϑ1)
×

×
[

h(ϑ1|ϑ2, {0})R sinhϑ2 −
h(ϑ1|ϑ1, {0})R sinh(−ϑ1)

cosh(ϑ2 + ϑ1)

]

,

(H.9)

where (D.14) was used. Thus,
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CintBI2
23 =(−2imt−Rm)

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

|K(ϑ1)|2
ρ̄2(ϑ1)

4F1

sinh(ϑ2 − ϑ1)
×

×
[

h(ϑ1|ϑ2, {0})R sinhϑ2 −
h(ϑ1|ϑ1, {0})R sinhϑ1

cosh(ϑ2 − ϑ1)

]

+(−2imt−Rm)
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

|K(ϑ1)|2
ρ̄2(ϑ1)

4F1

sinh(ϑ2 + ϑ1)
×

×
[

h(ϑ1|ϑ2, {0})R sinhϑ2 −
h(ϑ1|ϑ1, {0})R sinh(−ϑ1)

cosh(ϑ2 + ϑ1)

]

.

(H.10)

Turning to the third contribution and using (D.14), we have

CintBI3
23 =

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞+iε

−∞+iε

dϑ2
2π

h(ϑ1|ϑ2, {0})RK(−ϑ1)K(ϑ2)
4F1

cosh ϑ1

sinh2 ϑ1

ρ̄2(ϑ1)

−g
2

(

1

2

)2
∑

I 6=0

ˆ ∞+iε

−∞+iε

dϑ2
2π

h(ϑ1|ϑ2, {0})RK(−ϑ1)K(ϑ2)
4F1

cosh ϑ1

sinh2 ϑ1

ρ̄2(ϑ1)

=0 .

(H.11)

The 4th term reads

CintBI4
23 =− 2

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

h(ϑ1|ϑ2, {0})R |K(ϑ1)|2
ρ̄2(ϑ1)

4F1
cosh ϑ1

sinh2 ϑ1
. (H.12)

H.2 Term C intBII
23 and its descendants

Consider now

CintBII
23 =

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞+iε

−∞+iε

dϑ2
2π







h(ϑ1|ϑ2, {0})RK(−ϑ1)K(ϑ2)

[

F ε
5 (ϑ1)

sinh(ϑ2−ϑ1)
− F ε

5 (−ϑ1)
sinh(ϑ2+ϑ1)

]

ρ̄2(ϑ1)







.

(H.13)

Similarly to CintBI
23 , we first separate the singularities using the shorthand s(ϑ2) = K(ϑ2) and

c(ϑ2) =
1

sinh(ϑ2 − ϑ1)
,

where s(ϑ2) is singular at ϑ2 = 0 and c(ϑ2) at ϑ2 = ϑ1, to write

s(ϑ2)c(ϑ2) = ((s(ϑ2)− s(ϑ1)) + s(ϑ1)) ((c(ϑ2)− c(0)) + c(0))

(s(ϑ2)− s(ϑ1)) (c(ϑ2)− c(0)) + s(ϑ1)c(ϑ2) + c(0)s(ϑ2)− c(0)s(ϑ1) ,
(H.14)

from which for fixed, non zero ϑ1, the first term (s(ϑ2)− s(ϑ1)) (c(ϑ2)− c(0)) is regular in ϑ2, the
second term s(ϑ1)c(ϑ2) is singular only in ϑ2 = ϑ1 which is of type 1/x, whereas the third term
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c(0)s(ϑ2) is singular at the origin with 1/x behaviour and the last term c(0)s(ϑ1) is regular. The
terms corresponding to this separation are denoted by CintBII1

23 , CintBII2
23 , CintBII3

23 and CintBII4
23 from

which we have the first term

CintBII1
23 =

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

h(ϑ1|ϑ2, {0})RK(−ϑ1) (K(ϑ2)−K(ϑ1))

ρ̄2(ϑ1)
×

(

1

sinhϑ2 − ϑ1
+

1

sinhϑ1

)

F ε
5 (ϑ1)

−g
2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

h(ϑ1|ϑ2, {0})RK(−ϑ1) (K(ϑ2)−K(−ϑ1))
ρ̄2(ϑ1)

×
(

1

sinhϑ2 + ϑ1
− 1

sinhϑ1

)

F ε
5 (−ϑ1)

(H.15)

which is regular, and the second term

CintBII2
23 =

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞+iε

−∞+iε

dϑ2
2π

h(ϑ1|ϑ2, {0})RK(−ϑ1)K(ϑ1)

ρ̄2(ϑ1)

F ε
5 (ϑ1)

sinh (ϑ2 − ϑ1)

−g
2

(

1

2

)2
∑

I 6=0

ˆ ∞+iε

−∞+iε

dϑ2
2π

h(ϑ1|ϑ2, {0})RK(−ϑ1)K(−ϑ1)
ρ̄2(ϑ1)

F ε
5 (−ϑ1)

sinh (ϑ2 + ϑ1)

=− i π
2π

g

2

(

1

2

)2
∑

I 6=0

h(ϑ1|ϑ1, {0})R |K(ϑ1)|2
ρ̄2(ϑ1)

(8/ sinhϑ1 + 8/ sinh(−ϑ1))F1

+
g

2

(

1

2

)2
∑

I 6=0

|K(ϑ1)|2
ρ̄2(ϑ1)

8F1

sinhϑ1
×

×
ˆ ∞

−∞

dϑ2
2π

(

h(ϑ1|ϑ2, {0})R − h(ϑ1|ϑ1, {0})R/ cosh(ϑ2 − ϑ1)
sinh(ϑ2 − ϑ1)

)

+
g

2

(

1

2

)2
∑

I 6=0

|K(ϑ1)|2
ρ̄2(ϑ1)

8F1

sinh (−ϑ1)
×

×
ˆ ∞

−∞

dϑ2
2π

(

h(ϑ1|ϑ2, {0})R − h(ϑ1|ϑ1, {0})R/ cosh(ϑ2 + ϑ1)

sinh(ϑ2 + ϑ1)

)

,

(H.16)

where we used (H.3) and (D.13). This can be further simplified to
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CintBII2
23 =CintBII2a

23 + CintBII2b
23 ,

CintBII2a
23 =

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

|K(ϑ1)|2
ρ̄2(ϑ1)

(

h(ϑ1|ϑ2, {0})R (1− 1/ cosh(ϑ2 − ϑ1))
sinh(ϑ2 − ϑ1)

)

8F1/ sinhϑ1

+
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

|K(ϑ1)|2
ρ̄2(ϑ1)

(

h(ϑ1|ϑ2, {0})R (1− 1/ cosh(ϑ2 + ϑ1))

sinh(ϑ2 + ϑ1)

)

8F1/ sinh(−ϑ1) ,

CintBII2b
23 =

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

|K(ϑ1)|2
ρ̄2(ϑ1)

(

h(ϑ1|ϑ2, {0})R − h(ϑ1|ϑ1, {0})R
sinh(ϑ2 − ϑ1) cosh ϑ2 − ϑ1

)

8F1/ sinhϑ1

+
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

|K(ϑ1)|2
ρ̄2(ϑ1)

(

h(ϑ1|ϑ2, {0})R − h(ϑ1|ϑ1, {0})R
sinh(ϑ2 + ϑ1) cosh(ϑ2 + ϑ1)

)

8F1/ sinh(−ϑ1) .

(H.17)

Now consider

CintBII3
23 =

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞+iε

−∞+iε

dϑ2
2π

h(ϑ1|ϑ2, {0})RK(−ϑ1)K(ϑ2)

ρ̄2(ϑ1)

F ε
5 (ϑ1)

sinh(−ϑ1)

−g
2

(

1

2

)2
∑

I 6=0

ˆ ∞+iε

−∞+iε

dϑ2
2π

h(ϑ1|ϑ2, {0})RK(−ϑ1)K(ϑ2)

ρ̄2(ϑ1)

F ε
5 (−ϑ1)
sinhϑ1

=0 .

(H.18)

Finally,

CintBII4
23 =− g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

h(ϑ1|ϑ2, {0})R |K(ϑ1)|2
ρ̄2(ϑ1)

F ε
5 (ϑ1)

sinh(−ϑ1)

−g
2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

h(ϑ1|ϑ2, {0})R |K(ϑ1)|2
ρ̄2(ϑ1)

F ε
5 (−ϑ1)
sinhϑ1

=
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

h(ϑ1|ϑ2, {0})R |K(ϑ1)|2
ρ̄2(ϑ1)

16F1

sinh2 ϑ1
.

(H.19)

H.3 The term C intA

As a function of ϑ2 this term has no singularity at the origin so we can pull the contour back to the
real axis at once:
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CintA
23 =

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞+iε

−∞+iε

dϑ2
2π

{

h(ϑ1|ϑ2, {0})RK(−ϑ1)K(ϑ2)

ρ̄2(ϑ1)

[

F5(ϑ1|ϑ2, {0})

−4F1

(

cosh(ϑ2 − ϑ1)
sinh2(ϑ2 − ϑ1)

− cosh(ϑ2 + ϑ1)

sinh2(ϑ2 + ϑ1)

)

− F ε
5 (ϑ1)

sinh(ϑ2 − ϑ1)
+

F ε
5 (−ϑ1)

sinh(ϑ2 + ϑ1)

]}

=
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

{

h(ϑ1|ϑ2, {0})RK(−ϑ1)K(ϑ2)

ρ̄2(ϑ1)

[

F5(ϑ1|ϑ2, {0})

−4F1

(

cosh(ϑ2 − ϑ1)
sinh2(ϑ2 − ϑ1)

− cosh(ϑ2 + ϑ1)

sinh2(ϑ2 + ϑ1)

)

− F ε
5 (ϑ1)

sinh(ϑ2 − ϑ1)
+

F ε
5 (−ϑ1)

sinh(ϑ2 + ϑ1)

]}

,

(H.20)

thus a stationary phase evaluation using (D.16) yields a 1/
√
t behaviour multiplied by the function

value in ϑ2 = 0. This expression as a function of ϑ1 has singularities of 4th and 2nd order, but the
4th order ones just cancel due to

lim
ϑ1→0

K(−ϑ1)4 lim
ϑ2→0

F1K(ϑ2) sinhϑ2
sinhϑ2

(

cosh(ϑ2 − ϑ1)
sinh2(ϑ2 − ϑ1)

− cosh(ϑ2 + ϑ1)

sinh2(ϑ2 + ϑ1)

)

= lim
ϑ1→0

g42
cosh2 ϑ1 + 1

sinh4 ϑ1
F1 ,

lim
ϑ1→0

K(−ϑ1) lim
ϑ2→0

K(ϑ2) sinhϑ2
sinhϑ2

(

− F ε
5 (ϑ1)

sinh(ϑ2 − ϑ1)
+

F ε
5 (ϑ1)

sinh(ϑ2 + ϑ1)

)

= lim
ϑ1→0

−2g42 coshϑ1

sinh4 ϑ1
F1

as F ε
5 (ϑ1) ∝ 8F1

ϑ1
around the origin. Hence in ϑ1 no 4th order singularity is present and when the

sum over I is converted to an integral the remaining 2nd order singularity can only produce terms
of the type mL but no higher power of L. These are expected to be cancelled by terms from Z1D12.

H.4 Singularities and their cancellation from C intBI
23 and C intBII

23

There are some terms that have an integral regular at ϑ2 = 0 hence the SPA (D.16) can be directly
applied yielding a 1/

√
t factor. But the resulting ϑ1 dependent prefactor has a dangerous 1/ϑ41

singularity which must cancel for the volume dependence to be regular when combined with Z1D12.

H.4.1 4th order singularities from CintBII1
23 , CintBII4

23 and their cancellation

Now we turn to CintBII1
23 and CintBII4

23
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CintBII1
23 =

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

h(ϑ1|ϑ2, {0})RK(−ϑ1) (K(ϑ2)−K(ϑ1))F
ε
5 (ϑ1)

ρ̄2(ϑ1)
×

×
(

1

sinh(ϑ2 − ϑ1)
+

1

sinhϑ1

)

−g
2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

h(ϑ1|ϑ2, {0})RK(−ϑ1) (K(ϑ2)−K(−ϑ1))F ε
5 (−ϑ1)

ρ̄2(ϑ1)
×

×
(

1

sinh(ϑ2 + ϑ1)
− 1

sinhϑ1

)

,

CintBII4
23 =

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

h(ϑ1|ϑ2, {0})R |K(ϑ1)|2
ρ̄2(ϑ1)

F ε
5 (ϑ1)− F ε

5 (−ϑ1)
sinhϑ1

,

(H.21)

from which we have after the ϑ2 integration applying the SPA, (D.16)

CintBII1
23 ≈ g

8

∑

I 6=0

h(ϑ1|0, {0})R
(

ig2/2

sinh2 ϑ1
coshϑ1

)

8F1
K(−ϑ1)−K(ϑ1)

ρ̄2 sinhϑ1
/
√
4πmt

≈ −g
8
ϑ−4
1 h(ϑ1|0, {0})R (g4/4)16F1/

√
4πmt ,

CintBII4
23 ≈ g

8

∑

I 6=0

h(ϑ1|0, {0})RK(−ϑ1)K(ϑ1)
1

ρ̄2

F ε
5 (ϑ1)− F ε

5 (−ϑ1)
sinhϑ1

/
√
4πmt

≈ g

8
ϑ−4
1 (g4/4)16F1h(ϑ1|0, {0})R /

√
4πmt ,

(H.22)

hence the 4th order singularity vanishes.

H.4.2 4th order singularities from CintBI4
23 , CintBI1a

23 and their cancellation

We begin by CintBI4
23 and its integration with respect to ϑ2 using the SPA, (D.16):

CintBI4
23 =− 2

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

h(ϑ1|ϑ2, {0})R |K(ϑ1)|2
ρ̄2(ϑ1)

4F1
coshϑ1

sinh2 ϑ1
, (H.23)

from which, neglecting the sum, the following behaviour is obtained for ϑ1 ≈ 0

CintBI4
23 ≈ −2g

8
ϑ−4
1 h(ϑ1|0, {0})R g4

F1

ρ̄2(ϑ1)
/
√
4πmt , (H.24)

whereas for CintBI1a
23 , which reads
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CintBI1a
23 =

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

4F1
K(−ϑ1)
ρ̄2(ϑ1)

h(ϑ1|ϑ2, {0})R
sinhϑ2 − ϑ1

×

×
[

(K(ϑ2)−K(ϑ1))

(

cosh(ϑ2 − ϑ1)
sinh2(ϑ2 − ϑ1)

− cosh ϑ1

sinh2 ϑ1

)

sinh(ϑ2 − ϑ1)−
K ′(ϑ1)

cosh(ϑ2 − ϑ1)

]

+
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

4F1
K(ϑ1)

ρ̄2(ϑ1)

h(ϑ1|ϑ2, {0})R
sinhϑ2 + ϑ1

×

×
[

(K(ϑ2)−K(−ϑ1))
(

cosh(ϑ2 + ϑ1)

sinh2(ϑ2 + ϑ1)
− coshϑ1

sinh2 ϑ1

)

sinh(ϑ2 + ϑ1)−
K ′(−ϑ1)

cosh(ϑ2 + ϑ1)

]

,

(H.25)

we have after integration on ϑ2 applying the SPA, (D.16)

CintBI1a
23 ≈g

8

{

4F1
K(−ϑ1)
ρ̄2(ϑ1)

h(ϑ1|0, {0})R
(

(

−ig2/2
)

(−1)cosh
2 ϑ1 + 1

sinh3 (−ϑ1)
+

K ′(ϑ1)
sinhϑ1 coshϑ1

)

+

+4F1
K(ϑ1)

ρ̄2(ϑ1)
h(ϑ1|0, {0})R

(

(

−ig2/2
)

(−1)cosh
2 ϑ1 + 1

sinh3 ϑ1
− K ′(−ϑ1)

sinhϑ1 coshϑ1

)}

/
√
4πmt

=
g

8

{

4F1
K(−ϑ1)
ρ̄2(ϑ1)

h(ϑ1|0, {0})R
(

−ig2/2
)

(

cosh2 ϑ1 + 1

sinh3 ϑ1
+

−1
sinh3 ϑ1 cosh ϑ1

)

+

+4F1
K(ϑ1)

ρ̄2(ϑ1)
h(ϑ1|0, {0})R

(

−ig2/2
)

(

−cosh2 ϑ1 + 1

sinh3 ϑ1
+

1

sinh3 ϑ1 coshϑ1

)}

/
√
4πmt

≈2g
8
ϑ−4
1 F1

1

ρ̄2(ϑ1)
h(ϑ1|0, {0})R g4/

√
4πmt

(H.26)

that cancels the 4th order singularity from CintBI4
23 .

H.4.3 Singularities from CintBII2a
23

We start with CintBII2a
23 and show that after the ϑ2 integration with SPA (D.16), no 4th order

singularity remains. CintBII2a
23 reads

CintBII2a
23 =+

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

|K(ϑ1)|2
ρ̄2(ϑ1)

(

h(ϑ1|ϑ2, {0})R (1− 1/ cosh(ϑ2 − ϑ1))
sinh(ϑ2 − ϑ1)

)

8F1/ sinhϑ1

+
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

|K(ϑ1)|2
ρ̄2(ϑ1)

(

h(ϑ1|ϑ2, {0})R (1− 1/ cosh(ϑ2 + ϑ1))

sinh(ϑ2 + ϑ1)

)

8F1/ sinh(−ϑ1)

(H.27)

and is regular in ϑ2 = 0. Hence performing the SPA (D.16) for CintBII2a
23 , it is seen that the ϑ1

dependence is 1/ϑ21.
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H.5 Terms with non trivial time dependence

As seen in (H.4), a large number of terms originating from (H.1) involving integration with respect
to ϑ2 can be evaluated directly using the SPA (D.16). Once the SPA is performed, these terms have
singularities in ϑ1, which are of either 4th or second order, and those of 4th order behaviour cancel
each other, whereas the second order singularities cannot produce time dependence stronger than
O(t0).

For some terms, however, the ϑ2 integration cannot be easily performed. The first example is
provided by (H.10) which we write again as

CintBI2
23 =(−2imt−Rm)

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

|K(ϑ1)|2
ρ̄2(ϑ1)

4F1

sinh(ϑ2 − ϑ1)
×

×
[

h(ϑ1|ϑ2, {0})R sinhϑ2 −
h(ϑ1|ϑ1, {0})R sinhϑ1

cosh(ϑ2 − ϑ1)

]

+(−2imt−Rm)
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

|K(ϑ1)|2
ρ̄2(ϑ1)

4F1

sinh(ϑ2 + ϑ1)
×

×
[

h(ϑ1|ϑ2, {0})R sinhϑ2 −
h(ϑ1|ϑ1, {0})R sinh(−ϑ1)

cosh(ϑ2 + ϑ1)

]

,

(H.28)

and split into CintBI2a
23 + CintBI2b

23 as

CintBI2a
23 =(−2imt−Rm)

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

|K(ϑ1)|2
ρ̄2(ϑ1)

4F1h(ϑ1|ϑ2, {0})R
(

sinhϑ2 − sinhϑ1
cosh(ϑ2−ϑ1)

)

sinh(ϑ2 − ϑ1)

+ (−2imt−Rm)
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

|K(ϑ1)|2
ρ̄2(ϑ1)

4F1h(ϑ1|ϑ2, {0})R
(

sinhϑ2 − sinh−ϑ1
cosh(ϑ2+ϑ1)

)

sinh(ϑ2 + ϑ1)
,

CintBI2b
23 =(−2imt−Rm)

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

|K(ϑ1)|2
ρ̄2(ϑ1)

4F1 sinhϑ1
sinh(ϑ2 − ϑ1) cosh(ϑ2 − ϑ1)

×

× [h(ϑ1|ϑ2, {0})R − h(ϑ1|ϑ1, {0})R]

+ (−2imt−Rm)
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

|K(ϑ1)|2
ρ̄2(ϑ1)

4F1 sinh(−ϑ1)
sinh(ϑ2 + ϑ1) cosh(ϑ2 + ϑ1)

×

× [h(ϑ1|ϑ2, {0})R − h(ϑ1|ϑ1, {0})R] .

(H.29)

CintBI1b
23 and CintBII2b

23 provide the second example, which is written again for better transparency
as
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CintBI1b
23 =

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

4F1
K(−ϑ1)
ρ̄2(ϑ1)

[h(ϑ1|ϑ2, {0})R − h(ϑ1|ϑ1, {0})R]K ′(ϑ1)
cosh(ϑ2 − ϑ1) sinh(ϑ2 − ϑ1)

+
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

4F1
K(ϑ1)

ρ̄2(ϑ1)

[h(ϑ1|ϑ2, {0})R − h(ϑ1|ϑ1, {0})R]K ′(−ϑ1)
cosh(ϑ2 + ϑ1) sinh(ϑ2 + ϑ1)

,

CintBII2b
23 =

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

|K(ϑ1)|2
ρ̄2(ϑ1)

(

h(ϑ1|ϑ2, {0})R − h(ϑ1|ϑ1, {0})R
sinh(ϑ2 − ϑ1) cosh(ϑ2 − ϑ1)

)

8F1/ sinhϑ1

+
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

|K(ϑ1)|2
ρ̄2(ϑ1)

(

h(ϑ1|ϑ2, {0})R − h(ϑ1|ϑ1, {0})R
sinh(ϑ2 + ϑ1) cosh(ϑ2 + ϑ1)

)

8F1/ sinh(−ϑ1) ,

(H.30)

which we add and denote by CintBI−II
23 . Therefore,

CintBI−II
23 =CintBI1b

23 + CintBII2b
23

=
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

4F1
K(−ϑ1)
ρ̄2(ϑ1)

[h(ϑ1|ϑ2, {0})R − h(ϑ1|ϑ1, {0})R]
(

2K(ϑ1)
sinhϑ1

+K ′(ϑ1)
)

cosh(ϑ2 − ϑ1) sinh(ϑ2 − ϑ1)

+
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

4F1
K(ϑ1)

ρ̄2(ϑ1)

[h(ϑ1|ϑ2, {0})R − h(ϑ1|ϑ1, {0})R]
(

2K(−ϑ1)
sinh(−ϑ1)

+K ′(−ϑ1)
)

cosh(ϑ2 + ϑ1) sinh(ϑ2 + ϑ1)
.

(H.31)

Both CintBI2b
23 and CintBI−II

23 defined in (H.31) involve the same integral kernel

ˆ ∞

−∞

dϑ2
2π

h(ϑ1|ϑ2, {0})R − h(ϑ1|ϑ1, {0})R
cosh(ϑ2 − ϑ1) sinh(ϑ2 − ϑ1)

(H.32)

which is a function of t, ϑ1 and is evaluated in the next Appendix.

H.6 Summary

We have shown that from Cint
23 , i.e. the contour integral, apart from CintBI2

23 defined in (H.10),
(H.28) and CintBI−II

23 defined in (H.31), only terms with dependence mL contribute to one-particle
oscillations. The

√
tmL term resulting from (H.10) (cf. eqn. (I.11)) is expected to be cancelled

by the denominator of (3.1) through Z1D12, and the only surviving time dependence comes from
CintBI2
23 and CintBI−II

23 which are analysed in the next section.

I Evaluation of the integral kernel and time dependence

In this section we evaluate
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CintBI2a
23 =(−2imt−Rm)

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

|K(ϑ1)|2
ρ̄2(ϑ1)

Ω(ϑ1)F1h(ϑ1|ϑ2, {0})R
sinh(ϑ2 − ϑ1)

×

×
(

sinhϑ2 −
sinhϑ1

cosh(ϑ2 − ϑ1)

)

+(−2imt−Rm)
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

|K(ϑ1)|2
ρ̄2(ϑ1)

Ω(ϑ1)F1h(ϑ1|ϑ2, {0})R
sinh(ϑ2 + ϑ1)

×
(

sinhϑ2 −
sinh−ϑ1

cosh(ϑ2 + ϑ1)

)

,

CintBI2b
23 =(−2imt−Rm)

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

|K(ϑ1)|2
ρ̄2(ϑ1)

Ω(ϑ1)F1 sinhϑ1
sinh(ϑ2 − ϑ1) cosh(ϑ2 − ϑ1)

×

× [h(ϑ1|ϑ2, {0})R − h(ϑ1|ϑ1, {0})R]

+ (−2imt−Rm)
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

|K(ϑ1)|2
ρ̄2(ϑ1)

Ω(ϑ1)F1 sinh(−ϑ1)
sinh(ϑ2 + ϑ1) cosh(ϑ2 + ϑ1)

×

× [h(ϑ1|ϑ2, {0})R − h(ϑ1|ϑ1, {0})R] ,

(I.1)

and

CintBI−II
23 =

g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

K(−ϑ1)
ρ̄2(ϑ1)

(K(ϑ1)F
ε
5 (ϑ1) + Ω(ϑ1)F1K

′(ϑ1))
cosh(ϑ2 − ϑ1) sinh(ϑ2 − ϑ1)

×

× [h(ϑ1|ϑ2, {0})R − h(ϑ1|ϑ1, {0})R]

+
g

2

(

1

2

)2
∑

I 6=0

ˆ ∞

−∞

dϑ2
2π

K(ϑ1)

ρ̄2(ϑ1)

(K(−ϑ1)F ε
5 (−ϑ1) + Ω(ϑ1)F1K

′(−ϑ1))
cosh(ϑ2 + ϑ1) sinh(ϑ2 + ϑ1)

×

× [h(ϑ1|ϑ2, {0})R − h(ϑ1|ϑ1, {0})R] .

(I.2)

Here we restored the S matrix dependence and Ω(ϑ1) = (1− S(ϑ1)) (1− S(−ϑ1)) compared to
(H.10). For the integration over ϑ2 the SPA (D.16) cannot be directly applied to the second term
in (I.1) and to (I.2).

CintBI2a
23 , CintBI2b

23 and CintBI−II
23 are even functions of ϑ2, therefore we can define the following

integral kernels

Kera(ϑ1, t, R) =e
imtΩ(ϑ1)

ˆ ∞

−∞

dϑ2
2π

[

h(ϑ1|ϑ2, {0})R
(

sinhϑ2 − sinhϑ1
cosh(ϑ2−ϑ1)

)]

sinh(ϑ2 − ϑ1)
(I.3)

and

Ker(ϑ1, t, R) =e
imtΩ(ϑ1)

ˆ ∞

−∞

dϑ2
2π

[h(ϑ1|ϑ2, {0})R − h(ϑ1|ϑ1, {0})R] sinhϑ1
sinh(ϑ2 − ϑ1) cosh(ϑ2 − ϑ1)

, (I.4)

which are even functions of ϑ1. Then Kera appears in CintBI2a
23 in (I.1), while Ker in CintBI2b

23 in
(I.1) and in CintBI−II

23 , (I.2). For Kera, the long time limit can be calculated by applying the SPA
(D.16) resulting in
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Kerastac(ϑ1, t, R) =e
imtΩ(ϑ1)

1√
2π2mt

h(ϑ1, 0, {0})R e−iπ/4

cosh ϑ1

=
Ω(ϑ1)√
πmt

e2imt(cosh ϑ1−1)e−iπ/4

2 cosh ϑ1
e−mR(coshϑ1+3/2) .

(I.5)

As for Ker the SPA, (D.16) cannot be directly applied, we proceed as follows: we first differentiate
the integrand with respect to t and apply the SPA which becomes now possible:

Ω(ϑ1)
d

dt

ˆ ∞

−∞

dϑ2
2π

eimt [h(ϑ1|ϑ2, {0})R − h(ϑ1|ϑ1, {0})R] sinhϑ1
sinh(ϑ2 − ϑ1) cosh(ϑ2 − ϑ1)

=Ω(ϑ1)

ˆ ∞

−∞

dϑ2
2π

eimth(ϑ1, ϑ2, {0})R 2im (cosh ϑ2 − cosh ϑ1) sinhϑ1
sinh(ϑ2 − ϑ1) cosh(ϑ2 − ϑ1)

=Ω(ϑ1)
e2imt(cosh ϑ1−1)e−iπ/4

√
πmt cosh ϑ1

2im (cosh ϑ1 − 1) e−mR(coshϑ1+3/2) .

(I.6)

Now integrating with respected to t one ends up with the Fresnel sine and cosine functions, denoted
here by FS and FC respectively:

Kerstac(ϑ1, t, R) =Ω(ϑ1)

√

cosh ϑ1 − 1)

coshϑ1
e−mR(coshϑ1+3/2)

×
{√

2

2

(

FS

(
√

4mt(cosh(ϑ1)− 1)

π

)

− FC

(
√

4mt(cosh(ϑ1)− 1)

π

))

−
√
2

2
i

(

FC

(
√

4mt(cosh(ϑ1)− 1)

π

)

+ FS

(
√

4mt(cosh(ϑ1)− 1)

π

))

+if(ϑ1, R)

}

,

(I.7)

where f is an integration constant that is independent of time, but is a function of ϑ1 and R. We
do not determine the precise form of f(ϑ1, R), only quote its R = 0 limit:

2

√

(coshϑ1 − 1)

coshϑ1
f(ϑ1, 0) =

(

√

2(cosh ϑ1 − 1)

cosh ϑ1
−
√

sinh2 ϑ1

)

(I.8)

which is determined by noticing that the t→∞ limit for Ker(ϑ1, t, R) is proportional to | sinhϑ1|.
Note that

√
coshϑ1−1)

coshϑ1
f(ϑ1, R) ≈ ϑ21 around the origin, i.e. its second derivative is continuous at

the origin. Hence integrating it with |K|2 gives a finite and well-defined result. In (I.2), however,
Ker(ϑ1, t, R) is integrated with a 1/ sinh4(ϑ1) type of function due to K(ϑ1)F

ε
5 (ϑ1)+F1Ω(ϑ1)K

′(ϑ1),
where the non-analytic behaviour of f(ϑ1) must be carefully handled. The origin of the non-analytic
term can be summarised as follows: using the SPA, (D.16), a term proportional to 1/

√
t is obtained,

but in the asymptotic expansion of the oscillatory integral, terms proportional to t−1/2+n are also
present. For any finite t, these lead to analytic behaviour as expected from (I.4), but in the t→∞
limit keeping only the leading terms, non-analyticity can emerge.
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I.1 Time dependence from Kera and C intBI2a
23 .

Substituting Kerastac into (I.1), the discrete sum to evaluate reads

g

2
F1e

−imt(−imt−Rm/2)
∑

I 6=0

|K(ϑ1)|2Kerastac(ϑ1, t, R)
ρ̄2(ϑ1)

(I.9)

that has a 1/ϑ21 singularity at the origin which we treat with a contour integral representation:

g

2
F1e

−imt(−imt−Rm/2)
∑

I 6=0

|K(ϑ1)|2Kerastac(ϑ1, t, R)
ρ̄2(ϑ1)

=− g

2
F1e

−imt(−imt−Rm/2)
∑

I 6=0

˛

CI

dϑ1
2π

|K(ϑ1)|2Kerastac(ϑ1, t, R)
eiQ̄2(ϑ1) + 1

=
g

2
F1e

−imt(−imt−Rm/2)
ˆ ∞+iε

−∞+iε

dϑ1
2π
|K(ϑ1)|2Kerastac(ϑ1, t, R)

+i
g

2
F1e

−imt(−imt−Rm/2)
˛

0

dϑ1
2πi

|K(ϑ1)|2Kerastac(ϑ1, t, R)
eiQ̄2(ϑ1) + 1

.

(I.10)

As Kera(ϑ1, t, R) is even in ϑ1, its derivative vanishes at the origin, and so only the derivative of
eiQ̄2(ϑ1) + 1 gives a pole contribution resulting in

i
g

2
F1e

−imt(−imt−Rm/2)
˛

0

dϑ1
2πi

|K(ϑ1)|2Kerastac(ϑ1, t, R)
eiQ̄2 + 1

=
g

2
F1e

−imt(−imt−Rm/2)g
4Kerastac(0, t, 0)

16
mL

∝
√
tmL ,

(I.11)

and hence expected to be cancelled by the appropriate counter-term from Z1D12. The contour
integral in the L→∞ limit reduces to the upper contour and can be rewritten using (D.14) as

g

2
F1e

−imt(−imt−Rm/2)
ˆ ∞+iε

−∞+iε

dϑ1
2π
|K(ϑ1)|2Kerastac(ϑ1, t, R)

=
g

2
F1e

−imt(−imt−Rm/2)
ˆ ∞+iε

−∞+iε

dϑ1
2π

(

|K(ϑ1)|2
sinh2ϑ1
coshϑ1

Kerastac(ϑ1, t, R)

)

cosh ϑ1

sinh2 ϑ1

=
g

2
F1e

−imt(−imt−Rm/2)
ˆ ∞

−∞

dϑ1
2π

(

|K(ϑ1)|2
sinh2ϑ1
cosh ϑ1

Kerastac(ϑ1, t, R)

)
′

1

sinhϑ1
,

(I.12)

which is integrable since Kerastac(ϑ1, t, R) is an even and regular function with respect to ϑ1 . Then
the derivative of |K(ϑ1)|2 sinh2ϑ1

cosh ϑ1
gives a

√
t contribution which we are not interested in at the

moment. The contribution linear in t comes from

67



g

2
F1e

−imt(−imt)
ˆ ∞

−∞

dϑ1
2π
|K(ϑ1)|2 tanh(ϑ1) (Kerastac(ϑ1, t, 0))

′

=
g

2
F1e

−imt

ˆ ∞

−∞

dϑ1
2π
|K(ϑ1)|2 tanh2(ϑ1)

Ω(ϑ1) (−imt) e−iπ/4e2imt(cosh(ϑ1)−1) (2imt− sech(ϑ1))

2
√
πmt

+
g

2
F1e

−imt

ˆ ∞

−∞

dϑ1
2π
|K(ϑ1)|2 tanh(ϑ1)

(−imt)√
πmt

e2imt(cosh ϑ1−1)e−iπ/4

coshϑ1
Ω′(ϑ1)

=
g

2
F1e

−imt g
4

4

(−2imt)√
πmt4mtπ

(

2imt− 1 + ϕ2(0)
)

=
g

2
F1e

−imt g
4

4

(

2mt+ i(1− ϕ2(0))
)

π
.

(I.13)

I.2 Time dependence from C intBI2b
23 via Ker: imaginary part

As Ker ≈ ϑ21 around the origin, one can naively try to evaluate the integral

g

2
F1e

−imt

ˆ ∞

−∞

dϑ1
2π
|K(ϑ1)|2ℑm (−imt−Rm/2)Kerstac(ϑ1, t, R) , (I.14)

However, as time t grows, due to the asymptotics of the Fresnel function (FS → 1
2 and FC → 1

2), the
interval in which Kerb ≈ ϑ21 holds shrinks as [− 1√

t
, 1√

t
], outside of which Kerb ≈ 0 since ℑmKerb

includes the difference of FC and FS . On the other hand, at the endpoints of the intervals the
integrand behaves as t/ϑ1 → t

√
t, so one expects that the integral is linear in t and its coefficient is

determined by the small ϑ behaviour of the K function. One can check this assumption numerically
and conclude that in the long time limit

g

2
F1e

−imti

ˆ ∞

−∞

dϑ1
2π
|K(ϑ1)|2ℑm (−imt−Rm/2)Kerstac(ϑ1, t, R)

=
g

2
F1e

−imt g
4

4

1

2
imt ,

(I.15)

I.3 Time dependence from C intBI2b
23 via Ker: real part and logarithmic anomaly

Similarly to the imaginary part, ℜeKer ≈ ϑ21 around the origin, hence one can once again try to
evaluate the integral directly

g

2
F1e

−imt

ˆ ∞

−∞

dϑ1
2π
|K(ϑ1)|2ℜe (−imt−Rm/2)Kerstac(ϑ1, t, R) , (I.16)

Again, as the time t grows, Ker ≈ ϑ21 holds in the interval [− 1√
t
, 1√

t
] , while at the endpoints of the

intervals the integrand behaves as t/ϑ1 → t
√
t, so one expects a term linearly dependent on t whose

coefficient is given by the small ϑ behaviour of the K function. However, outside this interval the
overall behaviour of the integrand is now of the type 1/ϑ1 accounting for a logarithmic dependence
and a t ln t type behaviour with a coefficient related to the the small ϑ behaviour of the K again.
Differentiating Kerstac with respect to t and neglecting (−imt − Rm/2) in (I.16), the SPA (D.16)
can be directly applied resulting in a 1/t term whose coefficient can be identified with that of the
logarithmic term. Explicit calculation shows that
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g

2
F1e

−imtmt

(

g4

4

(

− log(mt)

π

)

+K
)

, (I.17)

where

K = lim
t→∞

{

−1

2

ˆ ∞

−∞

dϑ

2π
Ω(ϑ)|K(ϑ)|2

[

√

2(cosh ϑ− 1)

coshϑ
×

(

FC

(
√

4mt(cosh(ϑ)− 1)

π

)

+ FS

(
√

4mt(cosh(ϑ)− 1)

π

)

− 1

)

+
√

sinh2 ϑ

]

+
g4

4

(

log(mt)

π

)}

.

(I.18)

I.4 Time dependence from C
intBI−II
23

To calculate the time-dependence from CintBI−II
23 we cannot use Kerstac directly, i.e. the long-time

approximation (I.7) of (I.4) in the sum

g

2
F1e

−imt
∑

I 6=0

|K(ϑ1)|2Ker(ϑ1, t, R)
ρ̄2(ϑ1)

F ε
5 (ϑ1)

F1Ω(ϑ) +
K ′(ϑ1)
K(ϑ1)

− F ε
5 (−ϑ1)
F1Ω(ϑ) −

K ′(−ϑ1)
K(−ϑ1)

4 sinhϑ1
. (I.19)

The reason is that the singularity of |K(ϑ1)|2
Fε
5 (ϑ1)

Ω(ϑ)
+F1

K′(ϑ1)
K(ϑ1)

−Fε
5 (−ϑ1)

Ω(ϑ)
−F1

K′(−ϑ1)
K(−ϑ1)

4 sinhϑ1
is of order four,

whereas for any finite t, Kerstac (and also Ker) behave as ϑ21 around the origin and the resulting
2nd order singularity is sensitive to the non-analyticity of f in the long-time approximation of
Kerstac(ϑ1, t, R) in (I.7).

With Ker(ϑ1, t, R), which is an analytic function for any finite t without such a singular beha-
viour, one can formally express the time dependence using the contour manipulations and eventually
(D.14), yielding

g

2
F1e

−imt

ˆ ∞

−∞

dϑ

2π

(

|K(ϑ)|2Ker(ϑ, t, 0)
(

F ε
5 (ϑ)

F1Ω(ϑ) +
K ′(ϑ)
K(ϑ1)

− F ε
5 (−ϑ)

F1Ω(ϑ) −
K ′(−ϑ)
K(−ϑ)

)

tanhϑ
)′

4 sinhϑ

+
g

2
F1e

−imt g
4

4

mLKer(ϑ, t, 0)′′

8
+ .... ,

(I.20)

where Ker(ϑ, t, 0)′′ is the second derivative with respect to ϑ1 and ... refers (mL)0 terms with no
time dependence. Ker(ϑ, t, 0)′′ can be approximated using the SPA, (D.16) giving π

2 (−1− i)
√
mt,

hence the pole term yields an allowed mL
√
mt factor. The way to actually evaluate CintBI−II

23 is
done by performing numerically the integration in (I.4) and its derivative needed for (I.20) or to
calculate only (I.4) and perform the sum in (I.19).

After performing the numerical integral, we evaluated the sum for the Ising case and came to
the conclusion that the leading order time dependence has the form

g

2
F1e

−imt (Υ1mt+ iΥ2 logmt) , (I.21)
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for large mt. It turns out, however, that for the linear term one can even keep the real part from
Kerstac in (I.7) which has a milder behaviour than f in (I.8) and the contour integral manipulations
can formally be performed. The end of the analysis by generalising the Ising result is

Υ1mt =

ˆ ∞

−∞

dϑ

2π

(

|K(ϑ)|2ℜeKerstac(ϑ, t,R)ℜe
(

F ε
5 (ϑ)

F1Ω(ϑ) +
K ′(ϑ)
K(ϑ1)

− F ε
5 (−ϑ)

F1Ω(ϑ) −
K ′(−ϑ)
K(−ϑ)

)

tanhϑ
)′

4 sinhϑ
.

(I.22)

Note, that for the Ising model F ε
5 (ϑ)
Ω(ϑ) + F1

K ′(ϑ)
K(ϑ1)

− F ε
5 (−ϑ)
Ω(ϑ) − F1

K ′(−ϑ)
K(−ϑ) is a real function, whereas for

an arbitrary interacting IQFT it has an imaginary part as well.
As argued at the beginning of Appendix (H), the singular structure at the origin of F ε

5 (ϑ)
Ω(ϑ) +

F1
K ′(ϑ)
K(ϑ1)

− F ε
5 (−ϑ)
Ω(ϑ) − F1

K ′(−ϑ)
K(−ϑ) is the same for the Ising an for any interacting theory, and since the

source of time dependence is attributed to the singularity, we can keep the real, i.e. singular part in
(I.22). As a consequence, it is possible to extract the linear time dependence from (I.22), and one is
allowed to use again the Ising model, where

F ε
5 (ϑ)

Ω(ϑ)
+ F1

K ′(ϑ)
K(ϑ1)

− F ε
5 (−ϑ)
Ω(ϑ)

− F1
K ′(−ϑ)
K(−ϑ) =

4F1

sinhϑ1
− 2F1

cosh ϑ1
sinhϑ1

. (I.23)

For Υ1 it is useful to differentiate (I.22) with respect to t because for the resulting function the SPA
(D.16) can be applied yielding a constant and a 1/t type term. Elementary calculation shows that
the former term is

Υ1 =
g4

4

1

π
. (I.24)

The details of the numerical study can be found in the next Appendix.

J Numerical checks for the calculations

Our quite lengthy and tedious analytic calculations were extensively cross-checked using numerics
out of which we discuss and present here three important parts: the cancellation of mL terms in
D̃23, the time dependence from the term CintBI−II (H.31), and match between the time dependence
of D23 and our analytic predictions (3.30). Beyond these, we also numerically verified other parts
of the calculations, such as: numerically monitoring the validity of our manipulations performed
in Appendix G (using sine–Gordon first breather form factors) and in Appendix I. From Appendix
H, the calculations in (H.2) and (H.3) were also cross-checked, whereas the validity of the rest of
the Appendix (i.e. cancellation of the 4th order singularities) is verified by the match between the
predicted time evolution of D23 and our analytical considerations, discussed below.

J.1 Cancellation of mL terms in D̃23

During the evaluation of D̃23 in Appendix G and H we ignored discussing and showing the cancella-
tion of O(mL) type terms. Here we verify their cancellation by considering the numerical values for
D̃23 for various time instants and mL system sizes. For simplicity, we use the Ising case S = −1 for
our checks with analytic expression for the form factors from [77] and with a singular K function

KIsing(ϑ) =
−ig2
sinh 2ϑ

. (J.1)
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Note that the only way to obtain a quench with a zero momentum particle in the Ising model is
when quenching from the ferromagnetic to the paramagnetic phase [25, 26, 27]. For such a quench
calculations based on a form factor expansion presupposing a small post-quench density are not
expected to give accurate results. Nevertheless, the cancellation of volume dependent terms is
related to the order-by-order structure of the expansion independent of the eventual behaviour of
the expansion itself. We evaluated

D̃23 = C23 − Z1C12 − (Z2 − Z2
1 )C01 (J.2)

numerically for time instants mt = 0, 2.5, 5, 10, 20 and volume sizes mL = 30, 40, 50, 60 performing
discrete summation on the quantised rapidities. To make the summation finite we introduced a
rapidity cut-off ϑc = 4.834 for the particles involved. In Fig. (2) we show the numerical values for

eimt D̃23
g/2 with g = 1.
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Figure 2: Real and imaginary parts of eimt D̃23
g/2 for time instants mt = 0, 2.5, 5, 10 and 20 for a quench

in the Ising model. Results for system sizes mL = 30, 40, 50 and 60 are shown with blue, purple,
orange and red symbols, but with a single exception these cannot really be distinguished due to
their almost perfect overlap.

The source of the only observable deviation (for the case mL = 30 and mt = 20 ) is numerical
inaccuracy resulting from the oscillatory nature of the terms of the sum. In Fig. (3) we plot the
difference between the numerical values obtained for various system sizes at fixed times.
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Figure 3: Modulus of differences between real and imaginary parts of eimt D̃23
g/2 for different system

sizes at time instants mt = 0, 2.5, 5, 10 and 20 for a quench in the Ising model. The purple, orange,
and red dots correspond to the difference of the value obtained for 30− 40, 40− 50 and 50− 60 in
units of mL.

These results demonstrate that terms growing with mL indeed cancel.

J.2 Time dependence from C intBI−II

In this subsection we present numerical results to confirm that the time dependence of

g

2
F1e

−imt
∑

I 6=0

|K(ϑ1)|2Ker(ϑ1, t, R)
ρ̄2(ϑ1)

F ε
5 (ϑ1)

F1Ω(ϑ) +
K ′(ϑ1)
K(ϑ1)

− F ε
5 (−ϑ1)
F1Ω(ϑ) −

K ′(−ϑ1)
K(−ϑ1)

4 sinhϑ1
(J.3)

in the term CintBI−II defined in (H.31), (I.2) is of the form

g

2
F1e

−imt (Υ1mt+ iΥ2 logmt) , (J.4)

and that

Υ1mt =

ˆ ∞

−∞

dϑ

2π

(

|K(ϑ)|2ℜeKerstac(ϑ, t,R)ℜe
(

F ε
5 (ϑ)

F1Ω(ϑ) +
K ′(ϑ)
K(ϑ1)

− F ε
5 (−ϑ)

F1Ω(ϑ) −
K ′(−ϑ)
K(−ϑ)

)

tanhϑ
)′

4 sinhϑ
.

(J.5)
For the numerical analysis we used the Ising model to demonstrate these statements with

K(ϑ) = −i g2

2 sinhϑ
, (J.6)

where F ε
5 (ϑ) =

8F1
sinhϑ , yielding

g

2
F1e

−imt
∑

I 6=0

|K(ϑ1)|2 (2− coshϑ1)Ker(ϑ1, t, R)

ρ̄2(ϑ1)2 sinh
2 ϑ1

(J.7)

and
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Υ1mt =

ˆ ∞

−∞

dϑ

2π

(

|K(ϑ)|2 (2− coshϑ1) / cosh ϑℜeKerstac(ϑ, t,R)
)′

2 sinhϑ
. (J.8)

Figure 4 shows the numerical results for (J.7) for system sizes mL = 50, 60 and for various time
instants. The kernel Ker was determined by numerical integration and we subtracted themL residue
term

g

2
F1e

−imt g
4

4

mLKer(ϑ, t, 0)′′

8
, (J.9)

from (I.20) to check the resulted mL independence.
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Figure 4: Real and imaginary parts of eimt CintBI−II

F1g/2
−mLKer′′g4

32 calculated with a discrete sum for
time instants mt = 0.1, 1, 2.5, 5, 7.5, 10, 15, 20, 25, 30, 35 and 40 for a quench in the Ising model. The
orange and red symbols correspond to system sizes mL = 50 and 60. g = 1.

Figure 5 shows the real and imaginary factor multiplying the term g
2F1e

−imt in CintBI−II calcu-
lated by a discrete summation (J.7) and by the integration (J.8). For the imaginary parts, we also
keep the FS + FC part from Kerstac (I.7) but drop the

√
sinh2 ϑ type function, f .
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Figure 5: Real and imaginary parts of eimt CintBI−II

F1g/2
−mLKer′′g4

32 calculated by a discrete sum and
a continuous integral using Kerstac for time instants mt = 0.1, 1, 2.5, 5, 7.5, 10, 15, 20, 25, 30, 35 and
40 for a quench in the Ising model. The red dots correspond to system sizes mL = 60 and the blue
dots to the analytic results. g = 1.
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We can conclude that for the real part multiplying g
2F1e

−imt using the real part of Kerstac
in (J.8) gives a correct result. For the imaginary part, however, the imaginary part without the
singular f from Kerstac alone is not able to reproduce the result of the discrete summation. On the
other hand, the time dependence of the imaginary coefficient is only logarithmic, and therefore the
calculation of this sub-leading time dependence is not addressed in this work. We also checked if
the linear time dependence can be described by

g4

4

1

π
mt ,

as predicted in Appendix I and if the logarithmic time dependence for the imaginary part is a correct
assumption. In Fig. 6 we therefore fit the functions a+bmt and a+b lnmt to the real and imaginary
parts of

eimtC
intBI−II

F1g/2
−mLKer

′′g4

32

calculated by the discrete summation with mL = 60 omitting the first 3 data points corresponding
to the shortest times mt = 0.01, 1, 2.5.
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Figure 6: Real and imaginary parts of eimt CintBI−II

F1g/2
−mLKer′′g4

32 calculated by a discrete sum using
Kerstac for various time instants for a quench in the Ising model. The red dots correspond to system
sizes mL = 60 and the blue line to the fitted curves of type a+ bmt and a+ b lnmt.

From the linear regression, the coefficient of the linearly time-dependent term is 0.0799167 which
is to be compared with 1

4π = 0.0795775 as g = 1. The agreement is excellent, and although the error
of the fitted parameter is 7× 10−5, the match is convincing.

J.3 Comparing the time dependence of D̃23 with the analytic results

In this subsection we study the time dependence of

eimt D̃23

g/2

for the Ising model with K = −i g2

sinh 2ϑ for mL = 70. We compute this quantity using discrete
finite volume summation for various time instants, and fit its real and imaginary parts with the
appropriate function dependences a+ b

√
mt+ cmt+ dmt lnmt and a+ b

√
mt+ cmt dictated by

our analysis done in Appendix I, omitting the first 7 data points corresponding to short times.
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Figure 7: Real and imaginary parts of eimt D̃23
g/2 for time instants mt = 0, 1, 2..., 35 for a quench in

the Ising model. The red dots correspond to system sizes mL = 70 and the blue curve to to the
fitted curves of type a+ b

√
mt+ cmt+ dmt lnmt and a+ b

√
mt+ cmt. g = 1.

Concerning the real parts, the values obtained from the fit are d = −0.0825821 and c = 0.149943,
which must be compared with − 1

4π = −0.0795775 and K + 3
4π = 0.131292 resulting from (3.30)

and (3.31) with g = 1 and S = −1. The accuracy of the fit itself is around 10−3 − 10−4. The
difference between the fitted parameters and the analytic predictions is now a bit larger compared
to the previous subsection. However, neglecting more data points for short times the fitted values
move towards the analytic predictions. We note however, that omitting too many points leads
to a deterioration of the fit quality, as for an accurate determination of a logarithmic term data
points over several orders of magnitude should be used, which is not possible to extract due to the
inaccuracy of the discrete sum for large times. As an additional test we also tried the fitting function
a+ b

√
mt+ cmt and noted that the fit residuals were two orders of magnitude larger than for the

case including the term mt lnmt, which is a confirmation of the presence of the term mt lnmt in the
time dependence.

For the imaginary part the parameter c was found to be c = 0.114809 which must be compared
with 1

8 = 0.125 for g = 1 according to (3.30) and (3.31). The total estimated error of the fitted
value is of the order 10−3. In principle we should have either included lnmt in the fitting function
or subtracted the contribution of ℑmeimt CintBI−II

F1g/2
−mLKer′′g4

32 discussed in the previous subsection
from the data points, but since this correction is rather small it was simply discarded.
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