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Abstract

Subgraph densities have been defined, and served as basic tools, both in
the case of graphons (limits of dense graph sequences) and graphings (limits
of bounded-degree graph sequences). While limit objects have been described
for the ”middle ranges”, the notion of subgraph densities in these limit objects
remains elusive. We define subgraph densities in the orthogonality graphs on
the unit spheres in dimension d, under appropriate sparsity condition on the
subgraphs. These orthogonality graphs exhibit the main difficulties of defining
subgraphs the “middle” range, and so we expect their study to serve as a key
example to defining subgraph densities in more general Markov spaces.

The problem can also be formulated as defining and computing random or-
thogonal representations of graphs. Orthogonal representations have played a
role in information theory, optimization, rigidity theory and quantum physics,
so to study random ones may be of interest from the point of view of these
applications as well.

1 Introduction

Let Hd denote the orthogonality graph on Sd−1, i.e., the infinite graph whose node
set is the unit sphere Sd−1, and two nodes are adjacent if they are orthogonal (as
vectors in Rd). For a finite graph G, we call a homomorphism of G into H an
ortho-homomorphism of G (in dimension d).

Our motivation for studying ortho-homomorphisms comes from graph limit the-
ory. This theory is rather well worked out for dense graphs on one end of scale (where
the limit objects are graphons), and bounded degree graphs on the other (where the
limit objects are graphings). In spite of several efforts to extend the theory to the
intermediate cases, no complete theory has been developed.

One basic question is: what structures can serve as limit objects for “convergent”
graph sequences? Here at least we seem to have a common ground: symmetric
probability measures on the unit square (or on any other standard probability space;
these measures are essentially equivalent to time-reversible Markov chains with a
stationary distribution). These structures, which we call Markov spaces, capture
most special cases of interest, including limit objects for Lp-convergence [3], shape
convergence [9] and action convergence [2].

However, all these limit notions are defined through a global (right) convergence.
To characterize them by local (left) convergence, we need to define the density of
subgraphs in Markov spaces. At this time, we have a definition beyond the the two
extreme cases in rather special cases only.

Our main goal in this paper is to define subgraph densities in the orthogonality
graphs Hd (which have a natural Markov space associated with them). These spaces
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exhibit the main difficulties of the “middle” range, and so we expect their study to
serve as a key example to defining subgraph densities in more general Markov spaces.

To justify this special choice, let us describe a somewhat unexpected further
connection. An ortho-homomorphism of G in dimension d is the same thing as an
orthonormal representation of the complementary graph G (see [12]). Such represen-
tations have played a role in information theory [10], graph algorithms [7, 8], rigidity
of frameworks [1], and quantum physics [4]. Our results in this paper could be thought
of as establishing further connections with probability and measure theory.

A related question is to define a random homomorphism of G into Hd. The notion
of a random edge (the uniform distribution on orthogonal pairs of vectors) is trivial,
but for more complicated graphs, it is not obvious what “random” should mean.
Ortho-homomorphisms from a given graph form a real algebraic variety Hom(G, d),
which can have a very complicated topology; but ortho-homomorphisms in general
position (see below) form a smooth semialgebraic variety ΣG,d. We could consider
the surface measure inherited from the ambient space (Rd)V ; however, this does not
seem to have really useful properties. Natural conditions to impose are invariance
under orthogonal transformations of Rd and the Markov property (see Section 2.3).

The example of the 4-cycle in dimension 3 should be a warning. Obviously, for
every homomorphism C4 → H3, one pair of nonadjacent nodes will be mapped onto
parallel vectors (the other pair can form an arbitrary angle). But which one? The
variety Hom(G, d) splits into two, and ΣC4,3 = ∅.

In this paper we show that for several classes of graphs satisfying appropriate
sparsity conditions, a measure on their ortho-homomorphisms in a given dimension
d can be defined, with good properties. The measure we define is always a Radon
measure, but finiteness is not guaranteed. Indeed, we’ll give examples where this
measure is finite, and so it can be scaled to a probability measure (defining a “random
ortho-homomorphism”); unfortunately, we also have examples where the measure
is infinite. The combinatorial significance of this finiteness (depending on G and
d) remains an interesting unsolved problem. When this measure is finite, then its
value on the set of all ortho-homomorphisms appears to be good substitute for the
homomorphism density.

We describe three methods for defining subgraph densities in Hd.

Sequential mapping. One of our constructions works for graphs not containing a
complete bipartite graph Ka,b with a+ b > d. This condition is equivalent to saying
that G is (n−d)-connected. We’ll call such graphs d-sparse. It implies, in particular,
that every node has degree at most d − 1. We say that a mapping x : V → Rd

is in general position, if any d elements of V are mapped onto linearly independent
vectors. The following fact was proved in [13] (Theorem 2.1).

Proposition 1 A graph G has an ortho-homomorphism in Rd in general position if
and only if it is d-sparse.

The main tool in the proof of Proposition 1 was the following. Let us order the
nodes of G in some way, and choose the images of the nodes one-by-one. At every
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step, the new node is restricted to unit vectors orthogonal to those neighbors that
are already mapped. By the degree condition, the available vectors form a nonempty
sphere of some dimension, and we choose a next vector on this sphere randomly
and uniformly. Repeating this for all nodes, we get an ortho-homomorphism, which
we call a random sequential ortho-homomorphism of G. The fact that this ortho-
homomorphism is in general position almost surely is the main result in [13].

The distribution of the random sequential ortho-homomorphism may depend on
the ordering of the nodes. If G is a tree, then we get the same distribution for every
search order (1, . . . , n) of the nodes, but not for other orders. However, we can define
a density function for which the modified distribution will be independent of the
ordering. One of our main results can be stated as follows:

Theorem 2 For every simple d-sparse graph G, there exists a nonzero Radon mea-
sure on ortho-homomorphisms in dimension d with a Markovian conditioning.

The measure of all homomorphisms is a good generalization of the notion of
homomorphism density, a basic tool in the theory of dense graph limits. The Markov
property is usually defined for probability measures, and we cannot always normalize
our measure on ortho-homomorphisms to a probability measure. We’ll describe the
formal definition later.

Spectral methods. Our other construction is based on functional analysis. The orthog-
onality graph Hd defines a compact linear operator Ad : L2(Sd−1, π) → L2(Sd−1, π),
where π is the uniform probability measure on Sd−1, and (Adf)(x) is the average
of f on the (d − 2)-dimensional sphere orthogonal to x. Taking the k-th power of
this operator corresponds to subdividing each edge of G by k − 1 nodes. It turns
out that the square of this operator is smooth enough so that random subgraphs and
subgraph densities can be defined by “classical” formulas. Also, the trace of Ak

d gives
the density of k-cycles (at least for sufficiently large k).

Using the spectral decomposition of Ad, we derive explicit formulas for the den-
sities of cycles in Hd. As an interesting fact, cycle densities in H4 can be expressed
by the zeta-function.

Approximation by graphs and graphons. The third method of defining and calculating
subgraph densities inHd is based on approximatingHd by graphons and finite graphs,
and calculating the density in Hd as the limit of densities in these approximations.

A consequence of our results is that Hd is the limit of finite graphs in the left-
convergence sense. While this property is easy for graphons, it is not known in the
bounded-degree case whether all graphings can be approximated by finite graphs
(this is equivalent for the famous soficity problem for finitely generated groups). So
the fact that Hd is “sofic” in this sense has some independent interest.

Finally, it should be noted that a good part of the results of this paper extend
to more general Markov spaces. In particular, a general version of the operator Ad

is called a graphop and it arises in the theory of action convergence [2] and, in an
equivalent form, in the theory of shape convergence [9].
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2 Preliminaries

2.1 Notation

We consider the unit sphere Sd−1 in Rd. (The cases d ≤ 2 are very simple, so to
avoid trivial complications, we assume throughout that d ≥ 3.) For two real quantities
(depending on a choice of points in Sd−1), let A . B denote that there is a constant
c > 0 such that A ≤ cB. Here the constant may depend on the dimension and on
the graph denoted by G, but not on other variables. Let Ak denote the surface area
of Sk. It is well known that

Ak =





2(2π)k/2

(k − 1)!!
if k is even,

(2π)(k+1)/2

(k − 1)!!
if k is odd,

(1)

and for a, b ∈ Z+,

π/2∫

0

(sin θ)a(cos θ)b dθ =
(π
2

)e(a,b) (a− 1)!!(b − 1)!!

(a+ b)!!
=

Aa+b+1

AaAb
, (2)

where e(a, b) = (a− 1)(b − 1) mod 2, and (−1)!! = 0!! = 1!! = 1.
When we talk about a “random” point of a sphere, we mean a random point from

the uniform distribution on the sphere.

2.2 Generalized determinants

For a finite set X = {x1, . . . , xm} ⊆ Rd, we define the quantity

Det(X) = Det(x1, . . . , xm) = |x1 ∧ · · · ∧ xm| =
√

det
(
(xTi xj)

m
i,j=1

)
.

We define Det(∅) = 1. For m = 1, Det(X) = Det(x1) = |x1|. Note that Det(X) ≥ 0,
and Det(X) > 0 if and only if X consists of linearly independent vectors.

Lemma 3 Let n, d ∈ N and p ∈ R such that 1 ≤ n < d, and let x1, . . . , xn be
independent random points on Sd−1. Then

E

( Det(x1, . . . , xn)
p

Det(x1, . . . , xn−1)p

)
and E

(
Det(x1, . . . , xn)

p
)

are finite if and only if p > n − d − 1. If p is an integer, then we have the explicit
formulas

E

( Det(x1, . . . , xn)
p

Det(x1, . . . , xn−1)p

)
=

Ad+p−1Ad−n

Ad−1Ad−n+p
.
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and

E
(
Det(x1, . . . , xn)

p
)
=
(Ad+p−1

Ad−1

)n−1 Ad−2 · · ·Ad−n

Ad+p−2 · · ·Ad+p−n
.

In these expectations, we could condition on (say) a fixed x1, by the symmetry of
the sphere. Note that p may be negative, but if p ≤ n− d− 1, then the expectations
are infinite.

Proof. For n = 1 the identities are trivial, so we assume that n ≥ 2. The
ratio Det(x1, . . . , xn)/Det(x1, . . . , xn−1) is the (unsigned) distance of xn from the
subspace L = lin(x1, . . . , xn−1), which has dimension n − 1 with probability 1. The
distribution of this distance is independent of x1, . . . , xn−1, so we may fix L and just
take expectation in xn.

Let θ be the angle between xn and L (0 ≤ θ ≤ π/2), then

Det(x1, . . . , xn)

Det(x1, . . . , xn−1)
= sin θ.

For a fixed θ, points at this distance from L form the direct product of the two
spheres L ∩ (cos θ)Sd−1 and L⊥ ∩ (sin θ)Sd−1, and so their density is proportional to
(cos θ)n−2(sin θ)d−n. Hence

E

( Det(x1, . . . , xn)
p

Det(x1, . . . , xn−1)p

)
=

π/2∫
0

(sin θ)d−n+p(cos θ)n−2 dθ

π/2∫
0

(sin θ)d−n(cos θ)n−2 dθ

.

Using that 2θ/π ≤ sin θ ≤ θ, it follows that the numerator is finite if and only if
dn + p > −1, proving the first assertion. Substituting from (2) for integral p, we get
the first formula in the lemma.

To prove the second identity, we use the telescopic product decomposition

Det(x1, . . . , xn)
p =

n∏

r=2

Det(x1, . . . , xr)
p

Det(x1, . . . , xr−1)p
.

As remarked above, the factors are independent random variables, and hence

E(Det(x1, . . . , xn)
p) =

n∏

r=2

E

( Det(x1, . . . , xr)
p

Det(x1, . . . , xr−1)p

)
=

n∏

r=2

Ad+p−1Ad−r

Ad−1Ad−r+p

=
(Ad+p−1

Ad−1

)n−1 Ad−2 · · ·Ad−n

Ad+p−2 · · ·Ad+p−n
.

�

6



For small values of |p|, we can cancel most of the terms on the right hand side of
the second equality. The most important special case for us will be p = −1:

E

( 1

Det(x1, . . . , xn)

)
=

An
d−2

An−1
d−1Ad−n−1

.

This identity makes sense for n = 0 as well, and it is trivially valid. In particular
1/Det is integrable provided n ≤ d− 1. We shall make use of the following one-sided
bound on averages of such inverses of determinants.

Lemma 4 Let x1, . . . , xn ∈ Sd−1, and let Br(x) denote the r-neighborhood of x on
Sd−1. Let Dr(x1, . . . , xn) denote the average of 1/Det(x1, . . . , xn) over Br(x1)×· · ·×
Br(xn). Then

Dr(x1, . . . , xn)Det(x1, . . . , xn) < Cn,d, (3)

where Cn,d > 0 may depend on d and n, but not on r and (x1, . . . , xn).

Proof. We shall fix d, and proceed by induction on n. The case n = 1 is trivial,
as the determinant is constant 1. So let us now assume Cn−1,d exists, and show that
Cn,d exists as well (1 < n < d). Since 1/Det(x1, . . . , xn) is positive, integrable and
continuous outside of the null-set of its singularities, the map

(x1, . . . , xn) 7→ Dr(x1, . . . , xn)Det(x1, . . . , xn)

is continuous, with a maximum Mr, and also r 7→ Mr is continuous on (0,∞). To
show that Mr is bounded above note that it is constant once r ≥ π, and so we only
need to show that it remains bounded above on some finite interval (0, ε], where ε
may be chosen arbitrarily small. Let q := 1/( n

√
1, 5− 1), and set ε := 1/(10q).

We distinguish two cases based on the relative positions of the points. We may
assume without loss of generality that the minimal distance R from an xj to the
subspace generated by the other n− 1 points is realized for j = n.

Case 1: R ≥ qr.

Note that R is also a lower bound on any distance from one of the xj’s to any
subspace generated by some selection of the other points. In particular, we have that

for any J ⊆ [n],
∣∣∣
∧

j∈J xj

∣∣∣ ≤ Det(x1, . . . , xn)/R
n−|J |. Therefore for any ρ ∈ (Rd)n

7



with |ρk| < r for all 1 ≤ k ≤ n,

Det(x1 + ρ1, . . . , xn + ρn) ≥ Det(x1, . . . , xn)−
∑

J([n]

∣∣∣∣∣∣

∧

j∈J

xj
∧

i∈[n]\J

ρi

∣∣∣∣∣∣

≥ Det(x1, . . . , xn)−
∑

J([n]

Det(x1, . . . , xn)
rn−|J |

Rn−|J |

≥ Det(x1, . . . , xn)


1−

n∑

j=1

1

qj

(
n

j

)


= Det(x1, . . . , xn)

(
2−

(
1 +

1

q

)n)
=

Det(x1, . . . , xn)

2
.

Consequently Dr(x1, . . . , xn)Det(x1, . . . , xn) ≤ 2.

Case 2: R < qr.

In this case Det(x1, . . . , xn−1, xn) ≤ qrDet(x1, . . . , xn−1). Fix any choice of lin-
early independent points yi ∈ Sd−1 (1 ≤ i ≤ n − 1). Then the set of points z
such that Det(y1, . . . , yn−1, z) = tDet(y1, . . . , yn−1) form a (d − n + 1)-dimensional
sphere of radius t around the (n − 2)-dimensional subspace lin(y1, . . . , yn−1). After
intersecting with Sd−1, the dimension of suitable z’s is reduced to d − n > 0. Now∫ r
0 (t

d−n)/t dt = rd−n/(d− n), and so for any y ∈ Sd−1 ∩ lin(x1, . . . , xn−1) we obtain
that

∫

Br(y)

1

Det(y1, . . . , yn−1, z)
dπ(z) ≤

C ′
d,nr

d−nrn−2

Det(y1, . . . , yn−1)
=

C ′
d,nr

d−2

Det(y1, . . . , yn−1)
,

where C ′
d,n does not depend on r or y (recall that r ∈ (0, 1/(10q)]). Consequently,

Ez∈Br(y)

(
1

Det(y1, . . . , yn−1, z)

)
≤ 1

π(Br(y))

C ′
d,nr

d−2

rd−1Det(y1, . . . , yn−1)

=
C ′′
d,n

rDet(y1, . . . , yn−1)
. (4)

Also note that replacing y by any point not on lin(y1, . . . , yn−1) will actually increase
the expectation (the distribution of the values of t within the r-neighborhood gets
shifted away from 0). Since the set of points (y1, . . . , yn−1) ∈

∏n−1
j=1 B(xj , r) that are

8



not a linearly independent (n− 1)-tuple is of measure zero, we have the following.

Dr(x1, . . . , xn) ≤ qrDr(x1, . . . , xn−1)

= qrEyj∈Br(xj)Ez∈Br(xn)

(
1

Det(y1, . . . , yn−1, z)

)

≤ qrEyj∈Br(xj)Ez∈Br(yn−1)

(
1

Det(y1, . . . , yn−1, z)

)

≤ qrEyj∈Br(xj)

(
C ′′
d,n

rDet(y1, . . . , yn−1)

)

= q Eyj∈Br(xj)

(
C ′′
d,n

Det(y1, . . . , yn−1)

)

≤ q
Cn−1,dC

′′
d,n

Det(x1, . . . , xn−1)

(we have used (4) in the fourth step and the induction hypothesis in the last). This
implies the inequality in the lemma. �

The following lemma connects these reciprocals of determinants to the orthogo-
nality graph.

Lemma 5 Let 0 ≤ n < d, and let (x1, . . . , xn) be obtained by selecting a random
point y on Sd−1, then selecting n independent random points x1, . . . , xn from the
“equator” y⊥ ∩ Sd−1, then forgetting y. Then the density function of (x1, . . . , xn) is

sd,n(x1, . . . , xn) =
An−1

d−1Ad−n−1

An
d−2

1

Det(x1, . . . , xn)
(5)

As remarked above in a different language (cf. Lemma 3), sd,n ∈ Lp(S
d−1, π)

(p ≥ 1) if and only if p < d− n+ 1.

Proof. Similarly as in the proof of Lemma 3, we use induction on n. For n ≤ 1
the assertion is trivial. Let n ≥ 2, and let L denote the linear space spanned by
x1, . . . , xn−1. With probability 1, dim(L) = n− 1. Clearly L is uniformly distributed
among all (n − 1)-dimensional subspaces of y⊥, and so y⊥ is uniformly distributed
among all linear hyperplanes containing L. So we construct xn by (a) choosing
a random (n − 1)-dimensional subspace L, (b) choosing a random hyperplane H
containing L, and (c) choosing a random point from H ∩ Sd−1. Let us fix L, and
let θ be the angle between xn and L. It is clear by symmetry that the density of xn
depends only on θ.

For every choice of H, the distribution of θ is the same, and the density of this
distribution (in [0, π] is proportional to (cos θ)n−2(sin θ)d−n−1, as we have seen in the
proof of Lemma 3. By the same argument, for a uniform random point x′n ∈ Sd−1, the
angle θ′ between x′n and L has density proportional to (cos θ)n−2(sin θ)d−n. It follows

9



that the density of xn, relative to the uniform distribution on Sd−1, is proportional
to

(cos θ)n−2(sin θ)d−n−1

(cos θ)n−2(sin θ)d−n
=

1

sin θ
=

Det(x1, . . . , xn−1)

Det(x1, . . . , xn)
.

Since the density of (x1, . . . , xn−1) is proportional to 1/Det(x1, . . . , xn−1) by the
induction hypothesis, it follows that the density of (x1, . . . , xn) is proportional to

1

Det(x1, . . . , xn−1)

Det(x1, . . . , xn−1)

Det(x1, . . . , xn)
=

1

Det(x1, . . . , xn)
.

The coefficient of proportionality can be computed by Lemma 3. �

2.3 Conditioning and Markov property

Let V be a finite set, and let (Ω,A) be a measurable space (for most of the paper,
Ω = Sd−1, and A is the sigma-algebra of Borel sets). Let Ω∗V denote the set of
partial mappings z : S → J , S ⊆ V . Let ϕ be a measure on (ΩV ,AV ), and let ϕS

denote the marginal of ϕ on (ΩS ,AS).
A family (ϕz : z ∈ Ω∗V ) is a conditioning of ϕ, if

(C1) for every S ⊆ V and z ∈ JS, ϕz is a measure on (ΩV \S ,AV \S);

(C2) for every S ⊆ V and B ∈ AV \S , the value ϕz(B) is a measurable function
of z ∈ ΩS;

(C3) for every T ⊆ S ⊆ V , for every z ∈ ΩT , B ∈ AS\T and C ∈ AV \S ,

ϕz(B × C) =

∫

B

ϕzy(C) dϕS\T
z (y).

As extreme cases, ϕ∅ = ϕ, and ϕz = δz (the Dirac measure) for z ∈ ΩV .
For a fixed set S ⊆ V , the family {ϕz : z ∈ ΩS} is a disintegration of the measure

ϕ according to the marginal ϕS . The conditioning as defined above means a bit more:
first, it is well-defined for all z ∈ ΩS , not just almost everywhere; second, it is defined
simultaneously for all marginals ϕS , with compatibility condition (C3).

If V is the set of nodes of a graph G, we can define an important probabilistic
property of conditionings. A conditioning (ϕz) is Markovian, if for every S ⊆ V and
z ∈ ΩS , the measure ϕz is multiplicative over the connected components of G \S. If,
in particular, ϕ is a probability distribution, and G \ S has connected components
G1, . . . , Gr, then ϕz|G1

, . . . , ϕz |G1
are independent.
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2.4 Graphons

We conclude this section with a brief survey of related constructions for graphons,
partly as analogues for the orthogonality graph (which is not a graphon), but also for
later reference. A graphon is a symmetric integrable function W : Ω2 → R+, where
(Ω,A, π) is a standard Borel probability space. In the theory of dense graph limits,
graphons are bounded by 1, but since then much of the theory has been extended to
the unbounded case.

Given a graphon W and a finite simple graph G = (V,E), we define a function
WG : ΩV → R+ for x = (xi : i ∈ V ) by

WG(x) =
∏

ij∈E

W (xi, xj). (6)

Sometimes it will be convenient to use this notation for a single edge e = ij ∈ E:
W e(x) = W (xi, xj). The function WG defines a measure ηGW as its density function:

ηGW (A) =

∫

A

WG(x) dπV (x) (A ∈ AV ),

and the subgraph density

t(G,W ) = ηGW (ΩV ) =

∫

ΩV

WG(x) dπV (x). (7)

For bounded graphons this is always finite, but in general, it may be infinite.
We call a graphon 1-regular, if

∫
Ω W (x, y) dπ(y) = 1 for every x. For a 1-regular

graphon, the function W (x, .) can be considered as the density function of a proba-
bility distribution νx on (Ω,A), which defines a step from x ∈ Ω of a time-reversible
Markov chain. Let us make n independent steps, each from the same point x,
to points x1, . . . , xn. The joint distribution of (x, x1, . . . , xn) has density function
W (x, x1) . . .W (x, xn), and if x is chosen randomly from π, then the analogue of
Lemma 5 says that the joint distribution of (x1, . . . , xn) has density function

s(x1, . . . , xn) =

∫

Ω

W (x, x1) . . . W (x, xn) dπ(x). (8)

A Markovian conditioning of ηGW can be constructed as the family of measures
{ηz : z ∈ ΩS , S ⊆ V }, with density functions

tz(G,W ) =

∫

ΩV \S

WG(y, z) dπV \S(y).

11



3 The main construction

3.1 Swapping lemmas

For the next (main) lemma, we need some geometric preparation. We fix the di-
mension d. Let Li (i = 1, 2) be linear subspaces of Rd of dimension di ≥ 2. Let
xi ∈ Li ∩Sd−1, and let x̂1 and x̂2 be the orthogonal projections of x1 onto L2 and of
x2 onto L1, respectively. Define

Ω = {(x1, x2) ∈ L1 × L2 : x1 ⊥ x2, , x̂1, x̂2 6= 0}.

Lemma 6 Let Xi be a random vector from Li∩Sd−1, and let X ′
1 and X ′

2 be random
vectors from the spheres L1 ∩ Sd−1 ∩X⊥

2 and L2 ∩ Sd−1 ∩X⊥
1 , respectively. Let ρ1

and ρ2 be the distributions of (X1,X
′
2) and (X ′

1,X2), respectively. Then ρ1 and ρ2
are mutually absolutely continuous on Ω, and

dρ2
dρ1

(x1, x2) =
Ad1−1Ad2−2

Ad2−1Ad1−2

|x̂2|
|x̂1|

=
Ad1−2

Ad2−2

|x̂2|
|x̂1|

.

Proof. The first assertion follows by the considerations in [13, 12], and also from
the computations below.

For a nonzero vector u ∈ Rd, we set u0 = u/|u|. Let (x1, x2) ∈ Ω, let u1 =
x1, u2 = x̂02, u3, . . . , ud1 be an orthonormal basis in L1, and select an orthonormal
basis v1, . . . , vd2 in L2 analogously. Let ‖.‖∞ denote the ℓ∞ norm on each of L1

and L2 in these bases. Let Ti be the tangent space of the unit sphere Ui of Li at
xi (as an affine subspace of Li containing xi). Fix an ε > 0. Let Bi be the cube
x ∈ Ti : ‖x − xi‖∞ ≤ ε, and let B′

i denote the projection of Bi onto the sphere Ui

from the origin.
For y1 ∈ B1, consider the linear subspace H = H(y1) = {y2 ∈ L2 : yT1 y2 = 0}

and the affine subspace H ′ = H ′(y1) = {y2 ∈ L2 : xT1 y2 + xT2 y1 = 0}. Note that the
equation defining H ′(y1) can be written as H ′(y1) = {y ∈ L2 : x̂T1 y + x̂T2 y1 = 0},
since x1 − x̂1 ⊥ y and x2 − x̂2 ⊥ y1. Furthermore, x2 − x̂2 ⊥ x1 by the orthogonality
of the projection, so x̂2 = x2 − (x2 − x̂2) ⊥ x1. We claim that these two subspaces
are almost the same:

Claim 1 There is a constant C > 0 independent of ε such that d(y2,H
′) < Cε2 for

every y2 ∈ H ∩B2, and d(y1,H
′) < Cε2 for every y1 ∈ H ∩B2.

We use the identity

yT1 y2 − (xT1 y2 + xT2 y1) = (y1 − x1)
T(y2 − x2)

(all asymptotic statements concern ε → 0). Here ‖yi − xi‖ = O(ε), so the right hand
side is O(ε2). Up to sign, the first term on the left is ‖y1‖ d(y2,H), while the second
term is ‖x̂1‖d(y2,H ′). If either one of these is 0, the other one is O(ε2).

12



Let Xi and X ′
i be generated as in the statement of the Lemma. Then

P
(
(X1,X

′
2) ∈ B′

1 ×B′
2

)
= P(X ′

2 ∈ B′
2 | X1 ∈ B′

1)P(X1 ∈ B′
1).

Here

P(X1 ∈ B′
1) =

λd1−1(B
′
1)

Ad1−1
∼ λd1−1(B1)

Ad1−1
=

(2ε)d1−1

Ad1−1
.

(where λk denotes the k-dimensional volume in Rd). The first factor is more compli-
cated. For a fixed y1 ∈ B1, we have

P(X ′
2 ∈ B′

2 | X1 = y01) =
λd2−2(B

′
2 ∩H(y1))

Ad2−2
∼ λd2−2(B2 ∩H(y1))

Ad2−2
.

We want to compare B2 ∩H(y1) and B2 ∩H ′(y1). The hyperplane H ′(y1) in L2 is
orthogonal to the edge v2 of the cube B2, and hence it either avoids B2 or intersects
it in a set isometric with a facet. Using the fact that H(y1) and H ′(y1) are very close,
we get that there is a C > 0, independent of ε, such that

if d(x2,H
′(y1)) < ε− Cε2, then λd2−2(B2 ∩H(y1)) ∼ (2ε)d2−2, (9)

and

if d(x2,H
′(y1)) > ε+ Cε2, then λd2−2(B2 ∩H(y1)) = 0. (10)

In the modified equation defining H ′, the coefficient vector x̂1 ∈ L2, and hence

d(x2,H
′(y1)) =

1

|x̂1|
∣∣∣x̂T1 x2 + x̂T2 y1

∣∣∣ = |x̂2|
|x̂1|

|uT1 y1|.

Hence

P(X ′
2 ∈ B′

2 | X1 = y01) ∼





(2ε)d2−2

Ad2−2
, if |uT1 y1| < (ε− Cε2)|x̂1|/|x̂2|,

0, if |uT1 y1| > (ε+ Cε2)|x̂1|/|x̂2|,
O(εd2−2), otherwise.

The first option applies for a fraction of min{1, (1 − Cε)|x̂2|/|x̂1|} of points of B1.
The third possibility occurs for a negligible fraction of the points of B1. Since the
distribution of X1 in B1 is almost uniform, we get

P
(
(X1,X

′
2) ∈ B1 ×B2

)
∼ (2ε)d1−1

Ad1−1

(2ε)d2−2

Ad2−2

min(|x̂1|, |x̂2|)
|x̂2|

.

Similarly,

P
(
(X ′

1,X2) ∈ B1 ×B2

)
∼ (2ε)d2−1

Ad2−1

(2ε)d1−2

Ad1−2

min(|x̂1|, |x̂2|)
|x̂1|

.
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and so

dρ2
dρ1

(x1, x2) ∼
P
(
(X ′

1,X2) ∈ B1 ×B2

)

P
(
(X1,X ′

2) ∈ B1 ×B2

) ∼ Ad1−1Ad2−2

Ad2−1Ad1−2

|x̂2|
|x̂1|

.

Letting ε → 0, the lemma follows. �

Let p : V → [n] be a bijection, defining an ordering of the nodes of a graph
G = (V,E), let Np(u) = {w : p(w) < p(u), uw ∈ E}, and let dp(u) = |Np(u)|. To
simplify notation, for a map x : V → Rd, we write xp(u) = x|Np(u).

We recall more formally the construction of an ortho-homomorphism from the
Introduction. Let v ∈ V , S = {u ∈ V : p(u) < p(v)}, and suppose that we already
have an ortho-homomorphism (xu : u ∈ S) in general position for the subgraph G[S].
The vectors in Sd−1 orthogonal to every xi with i ∈ Np(v) form a sphere of dimension
at least (d−1)−dp(v) ≥ 0; we choose a vector xv on this sphere randomly. Repeating
this until xv is defined for every v ∈ V , we get an ortho-homomorphism, which we
call a random sequential ortho-homomorphism of G. Let ρp be the distribution of
this ortho-homomorphism. By [13], this ortho-homomorphism is in general position
almost surely. The main step in the proof was that flipping two consecutive nodes in
the ordering, we may get a possibly different distribution on ortho-homomorphisms,
but this new new distribution is absolutely continuous with respect to the previous
one. In the next lemma, we give an explicit formula showing this.

Lemma 7 Let r be obtained from the ordering p by flipping two consecutive adjacent
nodes u and v, where p(v) = p(u) + 1. Then

dρr
dρp

(x) =
Ad−dp(u)−1Ad−dp(v)−1

Ad−dr(u)−1Ad−dr(v)−1

Det(xr(u))Det(xr(v))

Det(xp(u))Det(xp(v))
.

Proof. We apply Lemma 6 with L1 = Np(u)
⊥ and L2 = Nr(v)

⊥. Then dim(L1) =
d − dp(u) ≥ d − deg(u) + 1 ≥ 2 (since v is not counted in dp(u)), and similarly
dim(L2) = d − dr(v) ≥ 2. Also note that dr(u) = dp(u) + 1, dr(v) = dp(v) − 1, and
dr(w) = dp(w) for every w 6= u, v. Since xp(u) is a basis in L⊥

1 and xr(v) = xp(v)\{u}
is a basis in L⊥

2 , the length of the orthogonal projection of xu onto L2 is

Det(xr(v) ∪ {u})
Det(xr(v))

=
Det(xp(v))

Det(xr(v))

and the length of orthogonal projection of xv onto L1 is

Det(xp(u) ∪ {v})
Det(xp(u))

=
Det(xr(u))

Det(xp(u))
.

This implies, in particular, that these projections are nonzero, and so we can apply
Lemma 6. Since the order in which xu and xv are chosen does not influence the
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distribution of (xw : p(w) < p(u)) and the distribution of (xw : p(w) > p(v))
conditional on (xw : p(w) ≤ p(v)), we get that

dρp
dρr

(x) =
Ad−dp(u)−1Ad−dp(v)−1

Ad−dr(v)−1Ad−dr(u)−1

(
Det(xr(u))

Det(xp(u))

/
Det(xp(v))

Det(xr(v))

)
,

proving the lemma. �

3.2 Order-independent measure

Let p : V → [n] be an ordering of the nodes of a graph G, and let x : V → Rd be an
orthogonal representation in general position. Using the functions defined in (5), let

fp(x) =
∏

v∈V

sd,n(xp(v)) =
∏

v∈V

A
dp(v)−1
d−1 Ad−dp(v)−1

A
dp(v)
d−2

1

Det(xp(v))

=
A

|E|−|V |
d−1

A
|E|
d−2

∏

v∈V

Ad−dp(v)−1

Det(xp(v))
. (11)

We define a measure ϕp = fp · ρp on Σ; more explicitly,

ϕp(A) =

∫

A

fp dρp. (12)

The following lemma is the main property of this construction.

Lemma 8 The measure ϕp is independent of the ordering p.

By this lemma, we can denote ϕp simply by ϕ or ϕG. We can think of ϕ either
as a measure on ΣG, or as a measure on (Rd)V concentrated on ΣG.

Proof. It suffices to check that if r is the permutation obtained from p by swapping
two consecutive nodes u and v, then ϕp = ϕr. If u and v are nonadjacent, then this
is trivial: ρp = ρr and Np(w) = Nr(w) for every node w, and hence fp = fr. So
suppose that uv ∈ E, and (say) p(v) = p(u) + 1. Then

dϕp

dϕr
(x) =

fp(x)

fr(x)
· dρp
dρr

(x).

Here

fp(x)

fr(x)
=

Ad−dp(u)−1Ad−dp(v)−1

Ad−dr(v)−1Ad−dr(u)−1

Det(xr(u))Det(xr(v))

Det(xp(u))Det(xp(v))

by definition (11). Substituting for the second factor from Lemma 7, we get

dϕp

dϕr
(x) = 1.
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Since this holds for all x ∈ Σ, this proves that ϕr = ϕp. �

The measure ϕ is not always finite: in Section 3.4 we show that it is finite for
every even cycle longer than 4 in dimension 3, but infinite for the 3-cube in dimension
4. The measure is, however, finite on compact subsets of ΣG: the denominator in
(11) remains bounded away from zero. It is easy to see that ϕ is a Radon measure.

We will also be interested in the ortho-homomorphism number (of graph G in
dimension d)

t(G, d) = ϕ(ΣG) =
A

|E|−|V |
d−1

A
|E|
d−2

∫

(Sd−1)V

∏

v∈V

Ad−dp(v)−1

Det(xp(v))
dπV . (13)

Let us note that t(G, d) is positive for every d-sparse graph G; but it may be infi-
nite. If t(G, d) is finite, then we can scale ϕ to get a probability measure on ortho-
homomorphisms of G into Sd−1.

The measure ϕ has a natural conditioning. We can think of the construction of
the measure ϕ as follows: Choose the vectors xi in any given order according to the
random sequential rule; whenever xi is chosen, we multiply the density function by
sd,n(xp(v)) (which is determined by the previous nodes). An important consequence
of this fact is that if we stop when a subset S of nodes has been processed, the
vectors selected and the density function computed up to this point define an ortho-
homomorphism from the measure ϕG[S].

For z ∈ ΣG[S], we construct a measure ϕz on ΣG[V \S] by continuing the random
sequential choice. Formally, let p be any ordering of the nodes of G starting with S;
extend z to an ortho-homomorphism x of G in Rd by random sequential choice; let
ρz,p be the distribution of this extension. Define the density function the measure ϕz

on ΣG[V \S] by

ϕz(A) =

∫

A

∏

u∈V \S

sd,n(xp(u)) dρz,p. (14)

Lemma 9 The family (ϕz : z ∈ ΣG[S], S ⊆ V ) is a Markovian conditioning of ϕ.

Proof. The fact that the family (ϕz) is a conditioning follows from the construction
of ϕ as described above.

The Markov property is easy as well. Let S ⊆ V , and let G1, . . . , Gr be the
connected components of G \ S. Let z ∈ ΣG[S]. Constructing the random extension
of z sequentially, we see ϕz|Gi

is independent of the vectors and density function
values of the other components Gj . �

Lemmas 8 and 9 imply Theorem 2.
The following related fact was observed and used (implicitly) in [13].

16



Proposition 10 Let S ⊆ V (G), let G′ = G[S], and let p be an ordering of the nodes
of G starting with S. Then ρSp = ρG′,p, and ϕS

G is absolutely continuous with respect
to ϕG′ , and vice versa.

Proof. The first assertion is obvious from the sequential construction of ρp. By
construction, ϕG′ and ρG′,p are mutually absolutely continuous, and so are ϕG and
ρp. The second assertion implies that their marginals ρSp = ρG′,p and ϕS

G are mutually

absolutely continuous, and hence so are ϕS
G and ϕG′ . �

3.3 Explicitly computable examples

Example 1 (Trees) A simple example is a tree F . Let p be a search order from
a root u. Then dp(v) = 1 for every v 6= u, and Det(xp(u)) = 1 for every u. Hence
fp(x) ≡ 1, ρp is the same distribution for every search order, and ϕ = ρp. Thus the
measure ϕ(F, d) is a well defined probability distribution, and t(G, d) = 1. The more
general example of bipartite graphs will be discussed in Section 3.4.

Example 2 (Triangles) Let d = 3 and G = K3, with the nodes labeled
1, 2, 3. Then (x1, x2) is uniformly distributed on orthogonal pairs. It follows that
Det(x1, x2) = 1, and so all the Det’s in the denominator of (13) are 1. Hence

t(K3, d) =
Ad−1Ad−3

A2
d−2

=
(π/2)(−1)d

(
(d− 3)!!

)2

(d− 2)!!(d − 4)!!
. (15)

In particular, t(K3, 3) = 2/π and t(K3, 4) = π/4. Other cycles will be discussed in
Sections 3.4 and 5.2.

Example 3 (Rigid Circuit Graphs) We can get rid of the integration for all rigid
circuit graphs, which contain no induced cycles other than triangles. A well-known
characterization of these graphs is that their nodes can be ordered so that the neigh-
bors of any node v preceding it spans a complete subgraph. Using this ordering p to
compute t(G, d) (where d is large enough so that G is d-sparse), we see that the vec-
tors in every x(Np(v)) are mutually orthogonal, and so the Det’s in the denominator
are 1. Hence we get

t(G, d) =
A

|E|−|V |
d−1

A
|E|
d−2

∏

v∈V

Ad−dp(v)−1. (16)

In particular, we get a formula for complete graphs:

t(Kr, d) =
A

r(r−3)/2
d−1

A
r(r−1)/2
d−2

r∏

i=1

Ad−i. (17)
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We could use (1) to express (16) as aπb, where a is rational and b is an integer.
Let q denote the number of odd “backward” degrees dp(v). Then straightforward
computation gives that

b =





|E| − q

2
, if d is even,

q − |E|
2

, if d is odd.

Surprisingly, this exponent does not depend on d except for its sign. The combina-
torial significance of the rational coefficient a would be interesting to determine.

Example 4 (Complete bipartite graphs) Let G = Ka,b, where a+ b ≤ d. Then,
using (13) and Lemma 3,

t(G, d) =
Aab−b

d−1 Ab
d−a−1

Aab
d−2

∫

(Sd−1)a

1

Det(x)b
dπa(x)

=
Aab−b−a

d−1 Aa
d−b−1A

b
d−a−1Ad−1 · · ·Ad−a

Aab
d−2Ad−b−1 · · ·Ad−b−a

. (18)

This implies that t(G, d) can again be expressed as a rational multiple of an integer
power of π, where the exponent of π depends on the parity of d only.

3.4 Bipartite graphs

Let G be a bipartite graph with bipartition V = U∪W . The construction of the mea-
sure ϕ can be carried out by ordering the nodes starting with U , to get the reference
ordering p of V . If x is a random point from ρp, then xu (u ∈ U) are independent
random vectors in Sd, and fp depends only on these variables xu. Furthermore,

sd,n(xp(u)) = Ad−1 for u ∈ U . Hence (canceling A
|U |
d−1)

fp(x) =
A

|E|−|W |
d−1

A
|E|
d−2

∏

v∈W

Ad−d(v)−1

Det(x(N(v)))
,

and

t(G, d) =

∫

(Sd−1)V

fp dρp =

∫

(Sd−1)U

∏

v∈W

sd,dp(v)(x) dπ
U

=
A

|E|−|W |
d−1

A
|E|
d−2

∫

(Sd−1)U

∏

v∈W

Ad−d(v)−1

Det(x(N(v)))
dπU (19)

We’ll see examples where this number is finite and also where this number is infinite.

18



Remark 11 An ortho-homomorphism of a bipartite graph has the following geo-
metric interpretation. Consider the points of U as vectors in Rd (as before), but the
points of W as normal vectors of hyperplanes. Orthogonality translates to incidence.
For example, a representation of C6 in R3 is a simplicial cone, with three rays (the
vectors in their direction having unit length), and the normals of the three faces
(again, of unit length).

Remark 12 We’ll see (Corollary 27) that Sidorenko’s conjecture would imply the
inequality

t(G, d) ≥ 1 (20)

for every d-sparse bipartite graph G. It would be interesting to prove this inequality
at least in this special case.

As a simple but important special class of bipartite graphs, the subdivision G =
H ′ of a simple graph H by one node on each edge is a bipartite graph. Then

t(H ′, d) =
A

|E|
d−1A

|E|
d−3

A
2|E|
d−2

∫

(Sd−1)U

∏

ij∈E

1

Det(xi, xj)
dπV . (21)

We can use this special case to justify considering t(G, d) as the density of G in
the orthogonality graph. The function

sd,2(x, y) =
Ad−1Ad−3

A2
d−2

1

Det(x, y)
(22)

defines a graphon (Sd−1, π, sd,2). Let n = |V (H)|, m = |E(H)|, and assume that all
degrees of H are bounded by d − 1. Then the ortho-homomorphism number can be
expressed as follows.

t(H ′, d) =

∫

(Sd−1)V

∏

ij∈E(H)

sd,2(x(N(v))) dπV (x) = t(H, sd,2). (23)

Since t(H ′,W ) = t(H,W ◦W ) for any graphon W , this justifies to consider t(G, d) as
the homomorphism density of G in the orthogonality graph (with the edge measure
scaled to a probability measure).

Example 5 Let d = 3 and G = C6 = K ′
3. Then the conditions above are satisfied,

and (19) gives that

t(C6, 3) =
8

π3

∫

(S2)3

1

Det(x1, x2)Det(x2, x3)Det(x3, x1))
dπ3(x).
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Let ∡(x1, x3) = α, ∡(x2, x3) = β, and ∡(x1, x2) = γ. Let θ denote the (unsigned)
angle between the planes lin(x1, x3) and lin(x2, x3). By the spherical cosine theorem,
γ = γ(α, β, θ) is given by

cos γ = cosα cos β − sinα sinβ cos θ. (24)

Fixing x3, it is easy to see that the angles α, β and θ are independent random
variables with values in [0, π]; their density functions are 1

2 sinα,
1
2 sin β and 1/π,

respectively. Hence

t(C6, 3) =
8

π3

∫

[0,π]3

1
2 sinα

1
2 sinβ

1
π

sinα sin β sin γ
dαdβ dθ =

2

π4

∫

[0,π]3

1

sin γ
dα dβ dθ.

Substituting from (24),

t(C6, 3) =
2

π4

∫

[0,π]3

dα dβ dθ√
1−

(
cosα cos β − sinα sin β cos θ

)2 . (25)

4 Finiteness

The value t(G, d), as defined by the integral in (13), may be finite or infinite even
for d-sparse graphs, as we will show below. In this section, we study the issue of
finiteness. We only address this issue for bipartite graphs. Further exact formulas,
based on spectral methods, will be given in the next section.

4.1 A general bound

A general upper bound on t(G, d) can be obtained by applying the following gener-
alized Hölder inequality [5].

Lemma 13 Let f1, . . . , fm : Ωn → R be measurable n-variable functions on some
probability space (Ω,A, π), such that fi depends only on a subset Bi ⊆ [n] of the
variables. Let p1, . . . , pm ≥ 1 such that

∑

i:Bi∋j

1

pi
≤ 1 (j = 1, . . . , n).

Then
∫

Ωn

f1 . . . fm dπn ≤ ‖f1‖p1 . . . ‖fm‖pm .
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Of course, the lemma is only interesting if the right hand side is finite, i.e., if
fi ∈ Lpi(Ω

m) for every i. Applying it to the expression (19), we get

t(G, d) ≤
∏

v∈W

‖sd,deg(v)‖pv , (26)

where the numbers pv must satisfy

∑

v∈N(u)

1

pv
≤ 1 (27)

for all (u ∈ U). The bound is finite when sd,deg(v) ∈ Lpv for all v ∈ W ; as noted in
Section 2.2, this happens if and only if

pv ≤ d− deg(v) (v ∈ W ). (28)

The upper bound in (26) can be expressed explicitly using Lemma 3, but it is not
really appealing. However, the finiteness result is worth stating:

Theorem 14 Let G be a bipartite graph with bipartition (U,W ), and suppose that

∑

v∈N(u)

1

d− deg(v)
≤ 1 (29)

for all u ∈ U . Then t(G, d) is finite.

Proof. The condition implies that G is d-sparse, and so t(G, d) is well defined.
Choosing pv = d− deg(v), (27) and (28) are satisfied. �

A special case when this condition is satisfied and that is easier to handle is the
following.

Corollary 15 Let G be a bipartite graph with bipartition (U,W ), and suppose that
all degrees in U are bounded by a (1 ≤ a ≤ d− 2), and all degrees is W are bounded
by d− a. Then t(G, d) is finite.

4.2 Subdivisions

In this section we show:

Theorem 16 If G is the subdivision (with one node on each edge) of a simple graph
H with maximum degree d− 1, then t(G, d) is finite.

A notable special case for d = 3 is the cycle C2k, as the subdivision of Ck (k ≥ 3).
Note that this Proposition does not follow from Corollary 15 (only if the degrees are
strictly smaller than d− 1).

We need a simple lemma in elementary graph theory.
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Lemma 17 Let G = (V,E) be a simple connected graph on n ≥ 2 nodes, with all
degrees at most D, let e1 ∈ E and w : E → R+. Then there is a spanning tree F
of G, and integers (ke : e ∈ E(F ) such that ke1 = 1, ke ≤ D for all e ∈ E(F ),∑

e ke = |E(G)|, and
∑

e∈E

w(e) ≤
∑

e∈E(F )

kew(e).

Proof. Let F be a maximum weight spanning tree. It suffices to define a map
φ : E(G) → E(F ) such w(φ(e)) ≥ w(e), ke = |φ−1(e)| ≤ D, and |φ−1(e1)| = 1.
For any search order (v1, . . . , vn) of F starting with e1 = v1v2, we map each edge
vivj (i < j) to the (unique) edge vjvj′ of F with j′ < j. It is easy to see that this
map satisfies our requirements: at most D edges are mapped onto any edge of F ,
no edge other than itself is mapped onto e1, and if vivj is mapped onto vj′vj, then
w(vivj) ≤ w(vj′vj), because otherwise replacing the edge vj′vj by vivj , we would get
a tree with larger weight than F . �

Proof of Theorem 16. By identity (23), we have

t(G, d) = t(H,W ),

where W = sd,2 defines a graphon on Sd−1. Lemma 17, applied to the logarithm of
W , gives that for every x ∈ (Sd−1)V there is a spanning tree F of G and integers
(ke : e ∈ E(F )) such that ke ≤ d− 1, ke1 = 1,

∑
e ke = |E(G)|, and

WG(x) ≤
∏

e∈E(F )

(W e(x))ke .

Since W is bounded from below, this implies that

WG(x) ≤ C0W
e1(x)WF\e(x)d−1 (30)

for some constant C0 independent of x. For a spanning tree F of G with an ordered
edge set E(F ) = {e1, e2, . . . , en−1}, let YF denote the set of points x ∈ (Sd−1)V for
which W e1(x) ≥ W e2(x) ≥ . . . and (30) is satisfied. By the above, ∪FYF = (Sd−1)V ,
and so

t(G,W ) =

∫

(Sd−1)V

WG dπV ≤
∑

F

∫

YF

WG dπV

.
∑

F

∫

YF

W e1(x)WF\e1(x)d−1 dπV (x)

. max
F

∫

YF

W e1(x)WF\e1(x)d−1 dπV (x)
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So it suffices to prove that

∫

YF

W e1(x)WF\e1(x)d−1 dπV (x) =

∫

YF

W e1(x)W e2(x)d−1 . . .W en−1(x)d−1 dπV (x) (31)

is finite for every edge-ordered spanning tree F .
Disregarding the condition on the ordering of the edges, the random variables

W ei(x) are independent. Indeed, selecting the images of the nodes in a search order
of the tree, each W ei(x) will have the same distribution even with one endpoint of
ei already fixed, by symmetry. Let ϑi(x) be the angle between xu and xv, where
ei = uv. Then

W ei(x) .
1

sinϑi
,

and the density function of each ϑi(x) is

f(ϑ) . (sinϑ)d−2

Let T (F ) denote the set of vectors (ϑ1, . . . , ϑn−1) with 0 ≤ ϑi ≤ π and sinϑ1 ≤ · · · ≤
sinϑn−1. Then

∫

YF

W e1(x)W e2(x)d−1 . . .W en−1(x)d−1 dπV (x)

.

∫

T (F )

(sinϑ1)
d−2 . . . (sinϑn−1)

d−2

sinϑ1(sinϑ2)d−1 . . . (sinϑn−1)d−1
dϑ1 . . . dϑn−1

=

∫

T (F )

(sinϑ1)
d−3

sinϑ2 . . . sinϑn−1
dϑ1 . . . dϑn−1

≤
∫

T (F )

1

sinϑ2 . . . sinϑn−1
dϑ1 . . . dϑn−1

Introducing the variables φi = min(ϑi, π − ϑi) and the set

T ′(F ) = {(φ1, . . . , φn−1) : 0 ≤ φi ≤ π/2, φ1 ≤ · · · ≤ φn−1},
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we can go on as follows:

∫

T ′(F )

1

sinφ2 · · · sinφn−1
dφ1 . . . dφn−1 .

∫

T ′(F )

1

φ2 · · · φn−1
dφ1 . . . dφn−1

=

π/2∫

0

φn−2∫

0

. . .

φ2∫

0

1

φ2 · · ·φn−1
dφ1 . . . dφn−1

=

π/2∫

0

φn−2∫

0

. . .

φ3∫

0

1

φ3 · · ·φn−1
dφ2 . . . dφn−1

= · · · =
π/2∫

0

1 dφn−1 = π/2.

This proves the theorem. �

Remark 18 Theorem 16 asserts that the subdivision of any simple graph with all
degrees at most d − 1 has a finite Markovian probability distribution on its ortho-
homomorphisms. (This does not remain true for multigraphs, as shown by the multi-
graph on two nodes connected by d− 1 edges.)

As remarked after Lemma 5, sd,2 ∈ Lp(S
d−1, π) if and only if p < d − 1, so

W = sd,2 is an Lp-graphon for every p < d − 1, as defined by Borgs et al. in [3].
By one of the results of that paper, all simple graphs with all degrees at most d− 2
have a finite density in W ; our analysis shows that this remains valid for graphs with
degrees bounded by d− 1 in the special case of sd,2.

4.3 Paths and cycles

Theorem 16 implies that every even cycle C2k of length at least 6 has finite density
in every dimension d ≥ 3. We are going to show that this holds for odd cycles
without exception. But for later reference, we start with discussing properties of
ortho-homomorphisms of paths.

Let Pk denote the path of length k. As we have seen (Example 1), the ortho-
homomorphism measure of paths is a probability distribution. Let ηkd denote the
marginal of this distribution on the pair of endpoints (k ≥ 1). In particular, η1d = ηd.
Easy properties of ηkd are summarized in the next lemma.

Lemma 19 The distribution ηkd is absolutely continuous with respect to π2 for all
d ≥ 3 and k ≥ 2. The density function ud,k(x, y) = (dηkd )/dπ

2(x, y) is continuous for
k ≤ 5 if d = 3 and for k ≥ 3 if d ≥ 4. For k = 2, it has a singularity when x‖y;
for d = 3 and k = 3, it has a singularity when x ⊥ y; for d = 3 and k = 4, it has a
singularity when x‖y.
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Proof. By Lemma 5,

ud,2(x, y) = sd,2(x, y) =
Ad−1Ad−3

A2
d−2

1

sin(∡(x, y))
,

from which statements for k = 2 are easily verified. It is easy to check that

ud,k+m(x, y) =

∫

Sd−1

ud,k(x, z)ud,m(z, y) dπ(z) (32)

for k,m ≥ 2, and

ud,k+1(x, y) =

∫

Sd−1∩x⊥

sd,k(z, y) dπ0(z), (33)

where π0 is the uniform distribution on the (d − 2)-dimensional sphere x⊥ ∩ Sd−1.
Using this formula, we see that ud,3 is a continuous function for non-orthogonal pairs
of points (x, y), and it is not hard to check that if ε = ∡(x, y)− π/2 → 0, then

ud,3(x, y) =

{
O(log ε) if d = 3,

O(1), if d > 3.

From this it follows that ud,k is bounded (even continuous) for all k ≥ 3 if d ≥ 4. If
d = 3, then (32) implies that ud,4 still has singularity if x = y; for ε = ∡(x, y) → 0,
we have ud,4(x, y) = O(log ε). Using (32) again, we see that ud,k is bounded and
continuous on Sd−1 × Sd−1 for all k ≥ 5. �

Theorem 20 The ortho-homomorphism density t(Ck, d) is finite except if d = 3 and
k = 4.

Proof. For even cycles longer than 4 we already know this by Theorem 16; also for
k = 3, by the computations of Example 2. Let k = 2r + 1, r ≥ 2. Then, using any
ordering of the nodes, we get that

t(C2r+1, d) =

∫

Sd−1

ud,2ud,2r−1 dπ
2.

Here ud,2 < C1 on S1 = {(x, y) : π/4 ≤ ∡(x, y) ≤ 3π/4} and ud,2r−1 < C2 on
S2 = (Sd−1)2 \ S1, by Lemma 19, for some constants Ci. Thus

t(C2r+1, d) =

∫

Sd−1

ud,2ud,2r−1 dπ
2 ≤ C1

∫

S1

ud,2r−1 dπ
2 + C2

∫

S2

ud,2 dπ
2

≤ C1t(P2, d) + C2t(P1, d),
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which is finite.
For d = 3 and k = 4, the graph C4 does not satisfy the 3-sparsity condition, and

indeed, as we have seen, the ortho-homomorphism measure has no natural definition.
Formula (19) applies but the integral is infinite. �

These computations imply that for k ≥ 5, ud,k is a continuous function on Sd−1×
Sd−1, so ud,k(x, x) is well defined, and

t(Ck, d) =

∫

Sd−1

ud,k(x, x) dπ(x). (34)

More explicit formulas for these densities will be given in Section 5 based on the
spectrum of the graphop A.

4.4 Crowns

For n ≥ 4, we define the n-crown Crn as the bipartite graph with bipartition U ∪W ,
where U = {u1, . . . , un}, W = {w1, . . . , wn}, and wi is connected to ui−1, ui, and
ui+1 (subscripts modulo n). The 4-crown is the skeleton of the 3-dimensional cube.
For odd n, the n-crown is also known as the “Möbius ladder”, for even n, as the
“prism”. The n-crown is 4-sparse if n ≥ 4.

Proposition 21 (a) If d ≥ 4, n ≥ 4 and (d, n) /∈ {(4, 4), (4, 5), (4, 6), (5, 4)}, then
t(Crn, d) is finite. (b) t(Cr4, 4) is infinite.

Proof. (a) Let xi = xui
be independent random points of Sd−1. Let αi be the angle

between xi and xi+1, and let ϑi be the angle between the planes lin(xi−1, xi) and
lin(xi, xi+1). Let Yi = sinαi = Det(xi, xi+1), Zi = sinϑi, Di = Det(xi−1, xi, xi+1) =
Yi−1YiZi and W = Y 2

1 . . . Y 2
nZ1 . . . Zn. Then

t(G, d) = CE(W−1),

where the constant C is computable by (19), but we don’t need this here. Let Bi

denote the event that DiDi+1 ≥ DjDj+1 for all j = 1, . . . , n. Clearly P(Bi) = 1/n
and E(W−1 | Bi) is independent of i, which implies that E(W−1 | Bi) = E(W−1).

Assume that Bn occurs, and let W0 = D2 · · ·Dn−1. Then DnD1 ≥ W 2/n, and

hence W0 = W/(D1D2) ≤ W (n−2)/n. Thus W ≥ W
n/(n−2)
0 . Hence

E(W−1) = E(W−1 | Bn) ≤ E

(
W

−n/(n−2)
0 | Bn

)
=

E

(
W

−n/(n−2)
0 1Bn

)

P(Bn)

= nE
(
W

−n/(n−2)
0 1Bn

)
≤ nE

(
W

−n/(n−2)
0

)
.

The advantage of considering W0 is that we can write it as

W0 = Y1Y
2
2 · · ·Y 2

n−2Yn−1Z2 · · ·Zn−1,
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and here all of the factors are independent random variables. So the expectation of

W
−n/(n−2)
0 is finite if and only if E(Y

−n/(n−2)
1 ), E(Y

−2n/(n−2)
i ) and E(Z

−n/(n−2)
i ) are

finite. Clearly, finiteness of the second expectation implies finiteness of the first one.
The expectations of powers of Y1 and Z1 are easy to compute: the density function

of (say) α1 is proportional to (sinα1)
d−2, and so

E(Y
−2n/(n−2)
1 ) =

π∫
0

(sinα)d−2−2n/(n−2) dα

π∫
0

(sinα)d−2 dα

.

The integral in the numerator is finite if the exponent of sinα is larger than −1; this
means that

d− 2− 2n/(n − 2) > −1. (35)

Similarly, the density function of Z1 is proportional to (sinϑ1)
d−3 (the density of the

angle between two random points on the equator), and hence

E(Z
−n/(n−2)
1 ) =

π∫
0

(sinα)d−3−n/(n−2) dα

π∫
0

(sinα)d−2 dα

.

As before, this is finite if and only if d − 3 − n/(n − 2) > −1. It is not hard to see
that (35) is stronger. Rewriting (35) as (d− 3)(n− 2) > 4, we see that this holds for
d = 4 and n ≥ 7, d = 5 and n ≥ 5 and d ≥ 6, n ≥ 4.

(b) For any three unit vectors y1, y2, y3, we have

|y1 ∧ y3|+ |y2 ∧ y3| ≥ |y1 ∧ y2|.

For vectors of arbitrary length, this gives

|z1 ∧ z3| |z2|+ |z2 ∧ z3| |z1| ≥ |z1 ∧ z2| |z3|.

Applying this to the vectors zi = xi/x4, we get

|x1 ∧ x3 ∧ x4| |x2 ∧ x4|+ |x2 ∧ x3 ∧ x4| |x1 ∧ x4| ≥ |x1 ∧ x2 ∧ x4| |x3 ∧ x4|.

Setting Yi = |xi∧x3∧x4|/|x3∧x4| (this is the distance of xi from the plane lin(x3, x4),
we get from this

|x1 ∧ x2 ∧ x4| ≤ Y1|x2 ∧ x4|+ Y2 |x1 ∧ x4| ≤ Y1 + Y2.

The same upper bound can be given on |x1 ∧ x2 ∧ x3|, and trivially

|xi ∧ x3 ∧ x4| = Yi|x3 ∧ x4| ≤ Yi.
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The denominator in (19) can be estimated as

|x1∧x2∧x3| |x1∧x2∧x4| |x1∧x3∧x4| |x2∧x3∧x4| ≤ (Y1+Y2)
2Y1Y2 ≤ 4max(Y1, Y2)

4.

Note that the distributions of Y1 and Y2 do not depend on x3 and x4, and so we can
fix L = lin(x3, x4). Similarly as in the proof of Lemma 3, let ϑi be the angle between
xi and L (0 ≤ ϑ ≤ π/2), then Yi = sinϑi. For a fixed ϑ, points at this distance sinϑ
from L form the direct product of two circles L∩(cos ϑ)S1 and L⊥∩(sinϑ)S1, and so
their density is proportional to cos ϑ sinϑ. Hence E

(
max(Y1, Y2)

−4
)
is proportional

to
∫

[0,π/2]2

sinϑ1 cos ϑ1 sinϑ2 cos ϑ2

max(sinϑ1, sinϑ2)4
dϑ2 dϑ1 = 2

∫

ϑ2≤ϑ1

cosϑ1 sinϑ2 cos ϑ2

(sinϑ1)3
dϑ2 dϑ1

=

∫

[0,π/2]

cos ϑ1(sinϑ1)
2

(sinϑ1)3
dϑ1 =

∫

[0,π/2]

cos ϑ1

sinϑ1
dϑ1,

which is infinite. �

5 Spectral formulas

5.1 Powers of the graphop

Let Hd denote the function space L2(Sd−1, π) where π is the uniform measure on
Sd−1. If Q is an element in the orthogonal group O(d), then it also acts naturally
on Hd by (fQ)(x) = f(Q(x)) where f ∈ Hd and x ∈ Sd−1. We say that a linear
operator T on Hd is rotation invariant, if QTQ−1 = T holds for every Q ∈ O(d).

Under the general correspondence between measures and linear operators, we can
define a bounded linear operator A = Ad : Hd → Hd by letting (Adf)(x) be the
average of f on the (d − 2)-subsphere x⊥ ∩ Sd−1. (It is not hard to see that this is
well-defined for almost all x; see [2].)

This operator satisfies

〈Af, g〉 =
∫

Sd−1×Sd−1

f(x)g(y) dη(x, y). (36)

for every f ∈ Lp(S
d−1, π) and g ∈ Lq(S

d−1, π) (see [2]). This implies that it is self-
adjoint. It is trivial that A is monotone: if f ≥ 0 then Af ≥ 0. We also note that
A is 1-regular: A1Sd−1 = 1Sd−1 . This operator also has the geometric property that
it is rotation invariant, i.e.,

We say that an operator T : L2(S
d−1) → L2(S

d−1) is represented by a measurable
function u : Sd−1 → R if

(Tf)(x) =

∫

Sd−1

u(x, y)f(y) dπ(y).
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Then T is a Hilbert–Schmidt integral operator. The operator A cannot be repre-
sented by any function, but its higher powers can: the operator Ak is represented by
the function ud,k for all k ≥ 2.

5.2 Spherical harmonics

In this section we study the spectrum of the orthogonality operator A = Ad for a
fixed d ≥ 3. As an application, we obtain formulas for the ortho-homomorphism
densities t(Ck, d) in the next section.

The fact that Ak is a Hilbert–Schmidt operator for k ≥ 2 implies that A is a
compact operator. Let λn (n = 0, 1, 2, . . . ) be the distinct nonzero eigenvalues of A,
and let Tn denote the orthogonal projection onto the eigensubspace Wn belonging
to λn. Then the expansion

Ak =
∞∑

n=0

λk
nTn (37)

is convergent in operator norm for d = 3 and k ≥ 5. Our goal is to give more explicit
formulas for λn and Wn.

It is well-known that the action of the orthogonal group O(d) on the Hilbert space
Hd = L2(Sd−1) has a unique decomposition into distinct irreducible representations.
These representations are carried by subspaces W0,W1,W2, . . . of L2(Sd−1), where
Wn consists of polynomials of degree n and has dimension

dim(Wn) =

(
d+ n− 1

d− 1

)
−
(
d+ n− 3

d− 1

)
. (38)

Since the operator A is rotation invariant, standard arguments show that each
eigenspace of A is invariant under O(d). Hence each Wn is contained in one of
the eigenspaces of A and thus elements in Wn are eigenvectors of A with identical
eigenvalue λn.

The Gegenbauer polynomials C
(α)
n (x) (also called ultraspherical polynomials) are

orthogonal polynomials on [−1, 1] with respect to the weight function (1− x2)α−1/2.

(In particular, C
(1/2)
n (x) is the n-th Legendre polynomial.) The significance of these

polynomials for us is that if α = d/2−1, n ∈ N and y ∈ Rd is a fixed unit vector, then

the function x 7→ C
(α)
n (x · y) defined for x ∈ Sd−1 is an eigenfunction of the operator

A (called a zonal spherical harmonic function). Furthermore, the corresponding
eigenvalues (with appropriate multiplicities) describe all the eigenvalues of A.

It is not hard to calculate the eigenvalues corresponding to these functions. It

is clear that fn(y) = C
(α)
n (1) and that (Afn)(y) = C

(α)
n (0), and so the eigenvalue

is C
(α)
n (0)/C

(α)
n (1). Fortunately, these special values of the Gegenbauer polynomials

are easily derived from the classical series expansion [6]

∞∑

n=0

C(α)
n (x)yn =

1

(1− 2xy + y2)α
. (39)
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Substituting x = 0 and x = 1, we get

C(α)
n (0) =




(−1)r

(
r + α− 1

r

)
, if n = 2r is even,

0, if n is odd,
(40)

and

C(α)
n (1) =

(
n+ 2α− 1

n

)
. (41)

In our case when α = d/2− 1, both quantities are rational numbers. From these
formulas we obtain that the eigenvalue λn of A corresponding to n-th zonal harmonic
function is

λn =
C

(d/2−1)
n (0)

C
(d/2−1)
n (1)

=




(−1)r

(d− 3)!! (2r − 1)!!

(2r + d− 3)!!
, if n = 2r is even,

0, if n is odd.
(42)

For even d, the formula for λn can be simplified:

λn =




(−1)n/2

(d− 3)!!

(n+ 1)(n + 3) . . . (n+ d− 3)
, if n is even,

0, if n is odd.
(43)

Note that in this case the numerator is a constant (we consider d fixed), and the
denominator is a polynomial in n. If d = 4, then λn = (−1)n/2/(n + 1) for even n
and λn = 0 for odd n.

The projections Tn to these subspaces can be described as well. The fact that
Wn is finite dimensional implies that Tn is an integral kernel operator representable
by some measurable function Qn : Sd−1 × Sd−1 → R. Furthermore, since Wn is an
eigenspace ofA, each Qn is invariant under the natural action of the orthogonal group
O(d). This implies Qn(x, y) depends on the scalar product of x and y only. In other
words, there is a measurable function fn : [−1, 1] → R such that Qn(x, y) = fn(x ·y).
This also means the for every fixed y ∈ Sd−1, the map x 7→ fn(x · y) is in Wn and
thus these functions are the zonal spherical harmonic functions. We obtain that

fn(x) = C
(α)
n (x)cn for some constant cn where α = (d − 2)/2. The fact that Qn

represents a projection onto Wn implies that dim(Wn) = ExQn(x, x) = C
(α)
n (1)cn

and thus cn = dim(Wn)/C
(α)
n (1). So

fn(x) = dim(Wn)C
(α)
n (x)/C(α)

n (1),

and for x ∈ Sd−1 and f ∈ Hd,

(Tnf)(x) =

∫

Sd−1

fn(x · y)f(y) dπ(y). (44)
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We can apply (37) (formally) for k = 1:

Af(x) =

∞∑

n=0

λn(Tnf)(x) =

∞∑

n=0

λn

∫

Sd−1

fn(x · y)f(y) dπ(y). (45)

It is not clear when this infinite sum converges.

5.3 Cycle densities

We start with the expansion

t(Ck, d) = tr(Ak
d) =

∞∑

n=0

λk
n dim(Wn), (46)

convergent for d = 3 and k ≥ 5, and for d ≥ 4 and k ≥ 4. Substituting values
computed above, we get the formula

t(Ck, d) =
∞∑

r=0

((
d+ 2r − 1

d− 1

)
−
(
d+ 2r − 3

d− 1

))(
(−1)r

(d− 3)!!(2r − 1)!!

(2r + d− 3)!!

)k

.

(47)

If d = 4, we obtain much nicer formulas:

t(Ck, 4) =

∞∑

r=0

(2r + 1)2−k = ζ(k − 2)(1 − 22−k)

if k is even and

t(Ck, 4) =

∞∑

r=0

(2r + 1)2−k(−1)r

if k is odd. In particular, t(C4, 4) = π2/8. The case of a triangle is interesting: the
formula specializes to

t(C3, 4) = 1− 1

3
+

1

5
− · · · = π

4
.

The series is not absolute convergent, and we have no good argument to justify the
order in which it is summed; but the computations in Example 2 show that this is
the “right” order.

If d = 3, then the eigenvalues of A are (−1/4)r
(
2r
r

)
with multiplicity 4r + 1 for

r = 0, 1, 2, . . . . This leads to

t(Ck, 3) =

∞∑

r=0

(4r + 1)(−1/4)rk
(
2r

r

)k

.

Comparing with (25), we get the identity
∫

[0,π]3

dα dβ dθ√
1−

(
cosα cos β − sinα sin β cos θ

)2 =
π4

2

∞∑

r=0

(4r + 1)4−6r

(
2r

r

)6

. (48)
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6 Approximations by graphons and graphs

In this chapter we explain how the orthogonality graphsHd and ortho-homomorphism
densities fit into graph limit theory. Our goal is to find sequences of graphons and
finite graphs which approximate Hd (or more precisely the operator Ad) in the sense
that ortho-homomorphism densities become limits of classical subgraph densities.
As a consequence we obtain that ortho-homomorphism densities behave a lot like
subgraph densities. They satisfy a variety of inequalities that are known in the graph
theoretic framework. A very interesting example is Sidorenko’s conjecture, which has
been proved for quite a few classes of graphs. The ortho-homomorphism version of
this conjecture is especially nice: It says that the ortho-homomorphism density of
any bipartite graph in Hd (for d ≥ 3) is at least 1. Our results in this chapter will
imply this for every bipartite graph that satisfies the finite version of the conjecture.

For x ∈ Sd−1 and 0 < r < π, let Br(x) be the set of points y ∈ Sd−1 such
that d(x, y) < r (where d is the spherical distance), and let Vr = π(Br(x)). Let
fx,r = 1Bx,r be the indicator function of Br,x.

Lemma 22 If A is a rotation invariant bounded operator on H, then A is self-
adjoint, i.e., A∗ = A. Any two rotation invariant bounded operators commute.

Proof. For any two points x, y ∈ Sd−1 and 0 < r < π, there is a reflection R ∈ O(d)
in a hyperplane such that R(x) = y and R(y) = x. For this reflection we have
fx,r = fy,rR and fy,r = fx,rR for every r > 0. It follows that

〈fx,rA, fy,r〉 = 〈fx,rRAR, fy,r〉 = 〈fx,rRA, fy,rR〉 = 〈fy,rA, fx,r〉. (49)

For r > 0 let Kr := {fx,r : x ∈ Sd−1} and let Wr denote the space of finite linear
combinations of elements in Kr. From equation (49) and the bilinearity of the scalar
product, we obtain that 〈fA, g〉 = 〈f, gA〉 holds for any two functions f, g ∈ Wr.

Now let f, g be arbitrary functions in Hd. It is easy to see that for every ǫ > 0
there is an r > 0 and two functions f ′, g′ ∈ Wr such that ‖f − f ′‖2 < ǫ, ‖g− g′‖2 < ǫ.
Then

|〈f, gA〉−〈f ′, g′A〉 ≤ |〈f−f ′, gA〉|+ |〈f ′, (g−g′)A〉| < ǫ‖g‖2‖A‖2+(‖f‖2+ǫ)ǫ‖A‖2

and similarly |〈fA, g〉−〈f ′A, g′〉| < ǫ‖A‖2(‖f‖2+‖g‖2+ǫ). From 〈f ′, g′A〉 = 〈f ′A, g′〉
and with ǫ → 0 we obtain that 〈f, gA〉 = 〈fA, g〉, showing that A∗ = A.

To show the second claim, let A,B be bounded rotation invariant operators.
Then AB is also rotation invariant and so AB = (AB)∗ = B∗A∗ = BA using the
first statement. �

Next we introduce a set of operators Mr on Hd defined by

(Mrf)(x) =
1

Vr

∫

Br(x)

f(y) dπ(y).
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It is clear that Mr is rotation invariant, so by Lemma 22 Mr and Ad commute and
the product Cr := AdMr is a self-adjoint operator on Hd.

The operator Cr is a Hilbert–Schmidt operator with a nonnegative, symmetric,
bounded, measurable kernel Wr : Sd−1 × Sd−1 → R:

(Crf)(x) =

∫

Sd−1

Wr(x, y)f(y) dπ(y).

It is easy to see that for a fixed x, Wr(x, y) is the density function of the random
point y obtained by moving from x in a random direction by π/2 to a point x′, and
then moving to a uniform random point of Br(x

′).
Clearly

∫
Sd−1 Wr(x, y) dπ(y) = 1 for every x, so Wr is a 1-regular graphon, and

t(H,Wr) is well-defined by (7). Our main goal in this chapter is to prove that for a
class of bipartite graphs H we have

t(H, d) = lim
r→0

t(H,Wr) (50)

Our main tool is a rather explicit formula for the value of t(H,Wr).

Lemma 23 For every d ≥ 3 and n ∈ N,

∫

Sd−1

n∏

i=1

Wr(z, xi) dπ(z) =
An−1

d−1Ad−n−1

An
d−2

Dr(x1, x2, . . . , xn). (51)

Proof. Let z be a uniform random point on Sd−1 and let z1, z2, . . . , zn be inde-
pendent uniform elements on Sd−1 orthogonal to z. Let xi be chosen uniformly from
Br(zi). By (8), the density function of the joint distribution of (x1, . . . , xn) is just
the function on the right hand side of (51). On the other hand, by (5) the joint
distribution of (z1, . . . , zn) has density function

An−1
d−1Ad−n−1

An
d−2

D(z1, x2, . . . , zn). (52)

Since (x1, . . . , xn) is a random point in Br(z1)× · · · ×Br(zn), the density function of
(x1, . . . , xn) is the average of (52) on Br(z1)× · · · ×Br(zn). �

Lemma 24 Let G = (V,E) be a d-sparse bipartite graph (d ≥ 3). Then

t(G,Wr) =
A

|E|−|W |
d−1

A
|E|
d−2

∫

(Sd−1)U

∏

v∈W

Ad−d(v)−1Dr(x(N(v))) dπU (x). (53)
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Proof. Let U ∪W be a bipartition of V , then using (51),

t(G,Wr) =

∫

(Sd−1)V

∏

i∈W,j∈N(i)

W (xi, xj) dπ
V (x)

=

∫

(Sd−1)U

∏

i∈W




∫

Sd−1

∏

j∈N(i)

W (xi, xj) dπ(xj)


 dπU

=

∫

(Sd−1)U

∏

i∈W

(
An−1

d−1Ad−n−1

An
d−2

Dr(x1, x2, . . . , xn)

)
dπU .

Simplifying, we get (53). �

Theorem 25 If G is a bipartite graph that satisfies the sparsity condition, and
t(G, d) < ∞, then

t(G, d) = lim
r→0

t(G,Wr).

Proof. According to Lemma 24 and the formula (19), it is enough to prove that

lim
r→0

∫

(Sd−1)U

∏

v∈W

Dr(x(N(v))) dπU (x) =

∫

(Sd−1)U

∏

v∈W

D(x(N(v))) dπU (x). (54)

Let

D̂r(x) =
∏

v∈W

Dr(x(N(v))) and D̂(x) =
∏

v∈W

D(x(N(v))).

It is clear that D̂r(x) → D̂(x) as r → 0 for almost all x ∈ (Sd−1)U . By Lemma 4 we
have that D̂r(x) ≤ CdD̂(x) for some c > 0 independent from r and x. Since t(G, d)
is finite, the function D̂ is integrable, and so cD̂ is an integrable upper bound on D̂r.
Thus (54) follows by Lebesgue’s Dominated Convergence Theorem. �

The next theorem is a corollary of Theorem 25.

Theorem 26 For every d ≥ 3 there is a sequence of finite graphs {Gi}∞i=1 such that
if a finite bipartite graph H satisfies the sparsity condition, then

lim
i→∞

t(H,Gi)/t(e,Gi)
|E(H)| = t(H, d).

Proof. For n ∈ N let Un := Wd,1/n/‖Wd,1/n‖∞, then Un is a symmetric measurable
function with values in [0, 1]. It follows from the results in [14] that there is a finite
graph Gn such that

∣∣∣t(H,Gn)/t(e,Gn)
|E(H)| − t(H,Un)/t(e, Un)

|E(H)|
∣∣∣ ≤ 1/n.
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Since t(e,Wd,1/n) = 1, we also have that t(H,Un)/t(e, Un)
|E(H)| = t(H,Wd,1/n). To-

gether with Theorem 25, this completes the proof. �

Theorem 26 shows that in some senseHd is a limit of finite graphs. It is interesting
to mention that the sequence {Gi}∞i=1 given by the proof of the theorem is a sparse
graph sequence. We also have an interesting corollary of Theorem 26.

Corollary 27 If H is a d-sparse bipartite graph that satisfies Sidorenko’s conjecture,
then t(H, d) ≥ 1.

Sidorenko’s conjecture is verified for large families of bipartite graphs, and thus
Corollary 27 implies several non-trivial inequalities for ortho-homomorphism den-
sities. Some other graph theoretic inequalities can also be transported to ortho-
homomorphism densities with the help of Theorem 26; but we omit the details here.

7 Open problems

Let us conclude with some special and more general problems left open by our work.

Problem 28 Decide the finiteness of t(Crn, d) the open cases (d, n) ∈
{(4, 5), (4, 6), (5, 4)} in Proposition 21.

Problem 29 Characterize graphs G and dimensions d for which t(G, d) is finite. As
an interesting example: if G is the incidence graph of the Fano plane, is t(G, 4) finite?

Problem 30 The fact that the cube graph Cr4 is, in a sense, exceptional among
crowns, may be related to the fact that for 4-sparse graphs, the real algebraic variety
of all ortho-homomorphisms in dimension 4 is irreducible, except for the cube. Is
there a more substantial connection?

Problem 31 Make sense of the identity (48), perhaps generalized to all cycles and
all dimensions.

Problem 32 Let G be a d-sparse graph, and let µ be a probability measure on ΣG,d

with Markovian conditioning. Is µ uniquely determined by G?

Problem 33 Are there natural graph sequences converging to the orthogonality
graph? The orthogonality graph Hp,d of Fd

p \ {0} (more exactly, the conjugacy graph

in the projective space Pd−1
p ) is a natural example, but it does not work: cf. [2],

Section 12.5, from which it follows that conjugacy graphs of finite projective spaces
tend to a trivial limit in the sense of action convergence (a form of right convergence).
From the other side, it is easy to compute that t∗(K3,Hp,3) = (p2+p+1)/(p+1)2 ∼ 1,
while we have seen that t(K3,H3) = 2/π, showing that Hp,3 does not tend to H3 in
the local sense either.
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Problem 34 Instead of random unit vectors, we could consider other probability
distributions; Gaussian would be a natural choice. In the sequentially constructed
random map, we map each node v onto a random vector from the standard Gaussian
distribution on the subspace orthogonal to the previously chosen images of neighbors
of v. We expect that a density function making this mapping independent of the
order of the nodes can be constructed along the same lines as in this paper. This
construction may have even nicer properties than our random ortho-homomorphism;
but this is not discussed in this paper.

As another natural generalization, we could determine subgraph densities in the
uniform measure on pairs of points of a unit sphere at any given distance (different
from π/2). Even more generally, perhaps the methods above can be applied to any
probability measure on pairs of points in Rd invariant under the orthogonal group.

Problem 35 Based on (44) and (45), one can (formally) derive the following for-
mula:

t(G, d) =
∑

τ :E(H)→N

∫

(Sd−1)V

∏

ij∈E

λτ(ij)fτ(ij)(xi · xj) dπV (x). (55)

Note that the product in the formula is a multivariate polynomial on Rdn with rational
coefficients which depends on the edge labeling τ . It is not clear when this infinite
sum converges and when the equality holds.
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