
Physica A 609 (2023) 128370

✩

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Minireview

Accuracy criterion formean field approximations ofMarkov
processes on hypergraphs✩,✩✩

Dániel Keliger a,b,∗, Illés Horváth c

a Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, Műegyetem rkp.
3., H-1111 Budapest, Hungary
b Alfréd Rényi Institute of Mathematics, Budapest, Hungary
c MTA-BME Information Systems Research Group, Hungary

a r t i c l e i n f o

Article history:
Received 5 July 2022
Received in revised form 26 November 2022
Available online 1 December 2022

a b s t r a c t

We provide error bounds for the N-intertwined mean-field approximation (NIMFA) for
local density-dependent Markov population processes with a well-distributed underlying
network structure showing NIMFA being accurate when a typical vertex has many
neighbors. The result justifies some of the most common approximations used in epi-
demiology, statistical physics and opinion dynamics literature under certain conditions.
We allow interactions between more than 2 individuals, and an underlying hypergraph
structure accordingly.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

1. Introduction............................................................................................................................................................................................... 2
2. Setup .......................................................................................................................................................................................................... 3

2.1. The underlying hypergraph ........................................................................................................................................................ 3
2.2. Local density dependent Markov population process ............................................................................................................. 4
2.3. N-intertwined mean field approximation................................................................................................................................. 5
2.4. Examples ....................................................................................................................................................................................... 6

3. Error bounds for NIMFA .......................................................................................................................................................................... 8
4. Further reductions to NIMFA .................................................................................................................................................................. 13

4.1. Homogeneous mean field approximation................................................................................................................................. 13
4.2. Metapopulation models .............................................................................................................................................................. 14

4.2.1. Metapopulation models on graphs ............................................................................................................................ 14
4.2.2. Metapopulation models on hypergraphs .................................................................................................................. 15

4.3. Annealed networks ...................................................................................................................................................................... 16
4.4. Activity-driven networks ............................................................................................................................................................ 18
4.5. Dense graphs and Szemerédi’s regularity lemma.................................................................................................................... 19

5. Discussion.................................................................................................................................................................................................. 20
6. Proofs ......................................................................................................................................................................................................... 20

✩ Supported by the ÚNKP-21-1 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National
Research, Development and Innovation Fund.

✩ Partially supported by the ERC Synergy under Grant No. 810115 - DYNASNET.
∗ Corresponding author at: Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, Műegyetem

rkp. 3., H-1111 Budapest, Hungary.
E-mail addresses: zunerd@renyi.hu (D. Keliger), pollux@math.bme.hu (I. Horváth).
https://doi.org/10.1016/j.physa.2022.128370
0378-4371/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.physa.2022.128370
https://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2022.128370&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:zunerd@renyi.hu
mailto:pollux@math.bme.hu
https://doi.org/10.1016/j.physa.2022.128370
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


D. Keliger and I. Horváth Physica A 609 (2023) 128370

b
t

s
w
q

p
m
t
a
t

e
e
a
i

e
f
t
t
i
p

p
d
s
m
w
o

a
t
l
P
(

M
a
P
l
f

6.1. General proofs .............................................................................................................................................................................. 20
6.2. Proof of Theorem 2 .................................................................................................................................................................... 21
6.3. Proof of Theorems 4 and 5......................................................................................................................................................... 25
6.4. Proof of Proposition 2 ................................................................................................................................................................ 26
6.5. Proof of Theorem 6 .................................................................................................................................................................... 27
Declaration of competing interest.......................................................................................................................................................... 31
Data availability ........................................................................................................................................................................................ 31
References ................................................................................................................................................................................................. 31

1. Introduction

The analysis of stochastic population processes is an important topic in several disciplines, such as epidemiology,
iology, economics or computer systems [1–5]. Such processes consist of a large number of interacting individuals (agents)
hat execute random actions based on the behavior of other individuals.

A widely-used framework is Markov population processes, where each individual is in a local state from a fixed, finite
tate space, and can change their state in a Markovian manner. For such models, the state space increases exponentially
ith the population size, making an exact analysis infeasible even for moderate population sizes, instead raising the
uestion of good approximations as the next best thing.
The classical result of Kurtz [6,7] is based on two main assumptions: that each individual can observe the entire

opulation, and that the Markovian transition rates of each individual depend on the observation in a density-dependent
anner. The conclusion is that, as the number of individuals diverges, the evolution of the stochastic system converges

o a deterministic mean-field limit. This limit is straightforward to compute numerically, and can serve as a good
pproximation of the stochastic system when the number of individuals is large. The mean-field limit of Kurtz is referred
o as the homogeneous mean-field approximation in the present paper.

While the density-dependent Markov setting is flexible and covers many potential applications, the assumption that
ach individual can observe the entire population is very restrictive. In many population processes arising from real-life
xamples, individuals do not have full information about the entire population; instead, each individual can observe only
subset of the population. This information structure can be described by a network topology, where each individual has

nteractions only with its neighbors according to that topology.
The N-intertwined mean field approximation (NIMFA) [8] is a quenched mean-field approximation, where differential

quations are considered for each individual based on their expected evolution. NIMFA is a deterministic process different
rom the homogeneous mean-field approximation that incorporates the network structure naturally, making it a poten-
ially more accurate approximation. On the flip side, the computational complexity is considerably increased compared to
he homogeneous mean-field approximation; nevertheless, it remains tractable for population sizes large enough to make
t relevant for practical applications. Unfortunately, unlike for homogeneous systems, the justification for using NIMFA is
oorly understood, mostly relying on numerical evidence [9,10] along with a few theoretical results [11–14].
In the present paper, we focus on a specific class of Markov processes dubbed local density-dependent Markov population

rocesses, which preserves the density-dependent assumption of Kurtz, but allows an underlying network structure that
ictates the environments observed by each individual. This setting covers many of the frequently used stochastic models,
uch as the SIS process in epidemiology [15–18], Glauber dynamics in statistical physics [19,20], or the voter model and
ajority vote in opinion dynamics [21,22]. We incorporate interactions between more than 2 vertices into the model
ith an underlying hypergraph structure accordingly to reflect on some recent developments in the theory of higher
rder interactions.
We provide general error bounds for NIMFA that are strong on well-distributed networks. Furthermore, under

dditional homogeneity assumptions, such as annealed or activity driven networks [23,24] we show these error bounds
o be small, with the added benefit of further reducing the number of equations to other well-known approximations,
ike the heterogeneous mean field approximation [25]. Finally, we elaborate the on the argument given by K. Devriendt and
. Van Mieghem [26] and show that Szemerédi’s regularity lemma [27] can be applied to reduce the number of equations
depending on a given ε error).

The rest of the paper is structured as follows. Section 2 introduces basic notation and setup for density-dependent
arkov population processes along with examples of models used in the literature to illustrate these concepts and their
pplicability. Section 3 states the main results and also relates them to the recent work of Sridhar and Kar [12,13] and
arasnis et al. [14]. Section 4 discusses further reductions of NIMFA to more simple approximations used throughout the
iterature. Section 5 contains a summary of this paper along with the limitations of these results and possible directions
or further research.

Finally, proofs are contained in Section 6.
2
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Fig. 1. Edge (hyperedge) with weight w(m)
i,j1,...,jm

.

2. Setup

2.1. The underlying hypergraph

Let G be a finite hypergraph on N vertices. The vertex set is labeled [N] = {1, . . . ,N}. The hypergraph is not necessarily
uniform; edges may contain up to M + 1 vertices. The edges are ordered, with the first vertex being special, and we will
usually use the notation (i, j1, . . . , jm) for an edge where 1 ≤ m ≤ M and i, j1, . . . , jm ∈ [N]. The idea behind the distinction
f the first vertex in an edge is that w(m)

i,j1,...,jm
will describe the strength of connections where j1, . . . , jm have a joint effect

n vertex i (see Fig. 1).
The M = 1 case corresponds to (directed) graphs.
We allow so-called secondary loops (abbreviated as s. loop), which are (i, j) edges with non-distinct vertices among

1, . . . , jm ∈ [N]. Note that traditional loops for the m = 1 case are excluded from this definition.
We use the notation [N]m to denote the set of m-tuples, and j abbreviates (j1, . . . , jm).
For unweighted hypergraphs, adjacency indicators a(m)

i,j1,...,jm
(where 1 ≤ m ≤ M and i, j1, . . . , jm ∈ [N])

a(m)
i,j =

{
1 if i, j1, . . . , jm are on the same hyperedge
0 else

describe the connections between the vertices.
In-degrees for 1 ≤ m ≤ M are defined as

d(m)(i) :=
1
m!

∑
j∈[N]m

a(m)
i,j , (1)

(where m! is included to cancel the re-orderings of j), and the average in-degree for each 1 ≤ m ≤ M is

d̄(m)
:=

1
N

N∑
i=1

d(m)(i).

In the literature, some normalization is usually assumed. In the present paper, we introduce normalized weights
w

(m)
i,j1,...,jm

and corresponding normalized in-degrees

δ(m)(i) :=
∑

j∈[N]m
w

(m)
i,j .

representing the total weight of m-interactions effecting vertex i ∈ [N]. In the M = 1 case (classical graphs) we tend to
mit the upper index (m) and write w(m)

i,j simply as wij, and we also utilize the matrix notation W = (wij)i,j∈[N].
We have two Conventions for the normalization.
Convention 1:

w
(m)
i,j =

a(m)
i,j

m!d̄(m)
, δ(m)(i) =

d(m)(i)
d̄(m)

. (2)

Convention 2:

w
(m)
i,j =

a(m)
i,j

m!d(m)(i)
, δ(m)(i) = 1. (3)

(The same m! from (1) is now included in the conventions.)
3
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For either convention, whenever the denominator would be 0, the numerator will also be 0, and w(m)
i,j is simply set to

0 as well.
We set

wmax = max
i,j,m

w
(m)
i,j .

We are going to set regularity assumptions for the weights and degrees:

δ(m)(i) ≤ δmax, (4)∑
j∈[N]m

j s. loop

w
(m)
i,j ≤ R

√
wmax. (5)

For Convention 2, (4) always holds. For Convention 1, we need d(m)(i) ≤ δmaxd̄(m) (upper regularity of the hypergraph).
(5) always holds for M = 1. It also obviously holds if there are no secondary loops. In other cases, it is an actual

restriction on the total weight of secondary loops.
Symmetry is in general not assumed, that is, the hypergraph may be directed.
For some results concerning classical graphs (M = 1) with Convention 2, the extra assumption is needed for

out-degrees as well.

δout(j) :=
∑
i∈[N]

wij ≤ δ
out
max (6)

Assumption (4) and (6) can be understood as a weaker version of double stochasticity of W assumed in [12,13].

2.2. Local density dependent Markov population process

We define a Markov process on the hypergraph. Each vertex is in a state from a finite state space S. ξi,s(t) denotes the
indicator that vertex i is in state s at time t; the corresponding vector notation is

ξi(t) =
(
ξi,s(t)

)
s∈S .

We also introduce the notation

ξ
(m)
i,s (t) =

m∏
k=1

ξik,sk (t),

where i = (i1, . . . , im) is an edge and s = (s1, . . . , sm) is a collection of states (sk ∈ S, k = 1, . . . ,m). ξ (m)
i,s (t) describes the

ndicator of vertices i1, . . . , im being in states s1, . . . , sn at time t , respectively.
We define the m-neighborhood of vertex i corresponding to s = (s1, . . . , sm) as

φ
(m)
i,s (t) =

∑
j∈{N}m

w
(m)
i,j ξ

(m)
j,s (t). (7)

Some explanation is in order. Let s = (s1, . . . , sm) be fixed for now. According to (7), we consider all edges that include i
and m other vertices; for each such edge, we check whether the m other vertices are exactly according to the configuration
of states described by s; if yes, their contribution to φ(m)

i,s (t) is w(m)
i,j , otherwise their contribution is 0.

The m-neighborhoods of i consist of φ(m)
i,s (t) for all possible configurations of states s. The corresponding vector notation

is

φ
(m)
i (t) =

(
φ

(m)
i,s (t)

)
s∈Sm

, (8)

and we may even write

φi(t) =
(
φ

(m)
i (t)

)M
m=1

(9)

for the entire neighborhood of i.
In (7), the normalized weights w(m)

i,j are used; in case w(m)
i,j = 0 for some j, the corresponding interaction is simply not

resent.
Each vertex may transition to another state in continuous time. The transition rates of a vertex may depend on all of

ts m-neighborhoods for 1 ≤ m ≤ M; accordingly, the transition rate from s′ to s is described by the function

qss′ : ⊗M
m=1R

Sm
→ R

or each s′ ̸= s ∈ S .
4
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We assume qss′ is locally Lipschitz, and we also require qss′ (φ(1), . . . , φ(M)) ≥ 0 for non-negative inputs.
For ‘‘diagonal’’ rates,

qss := −
∑
s′ ̸=s

qs′s

corresponds to the total outgoing rate from state s.
The corresponding transition matrix is Q = (qss′)s,s′∈S . We emphasize that in this convention qss′ refers to an s ← s′

ransition and not an s→ s′ one. This ordering allows us to use column vectors and matrix multiplication from the left.
The dynamics of (ξi(t))Ni=1 is a continuous-time Markov chain with state-space SN where each vertex performs

ransitions according to the transition rates qs′s, independently from the others. After a transition, vertices update their
eighborhood vectors φi(t). We call such dynamics local-density dependent Markov processes.
We define the process

(
ξi,s
)
i,s formally via Poisson representation:

ξi,s(t) =ξi,s(0)+
∑
s′∈S
s′ ̸=s

Ni,ss′
(
Hi,ss′ (t)

)
− Ni,s′s

(
Hi,s′s(t)

)
,

Hi,ss′ (t) =
{
(τ , x) ∈ R2

| 0 ≤ τ ≤ t, 0 ≤ x ≤ qss′ (φi(τ )) ξi,s′ (τ )
}
,

(10)

here for each choice of 1 ≤ i ≤ N and s ̸= s′ ∈ S ,
(
Ni,ss′ (x, y) : x, y ≥ 0

)
is a 2-dimensional Poisson-process with density

, and the processes are independent for different (i, s, s′) triples.
(10) is a cumulative formula counting all transitions of the vertex i to and from state s up to time t; s← s′ transitions

re generated using the Poisson points in the 2-dimensional domain Hi,ss′ (t) which has area
∫ t
0 qss′ (φi(τ )) ξi,s′ (τ )dτ ,

nsuring the proper transition rate for s ← s′ jumps at time τ . The second term of the sum corresponds to s′ ← s
ransitions in a similar manner.

.3. N-intertwined mean field approximation

Although the state occupation probabilities of the population process can be described by the Chapman–Kolmogorov
quations, the number of equations is |S|N , making it infeasible for numeric or analytic investigations even for moderate
ized populations. To address this issue, several approximation schemes had been introduced in the literature with varying
omplexity.
This chapter discusses the quenched mean field approximation [8], also called the N-intertwined mean field approxi-

ation (NIMFA). NIMFA preserves all information regarding the graph structure and only neglects dynamical correlation
etween vertices. The goal is to derive state occupation probabilities for each vertex separately, resulting in a total of
S|N equations.

A possible intuition for NIMFA is as follows.

d
dt

E (ξi(t)) = E [Q (φi(t)) ξi(t)] (11)

an be derived from (10). To close (11), we apply the approximation φi(t) ≈ E (φi(t)), which is reasonable when N is large
nd there is low correlation between vertices:

E [Q (φi(t)) ξi(t)] ≈ E [Q (E (φi(t))) ξi(t)] = Q (E (φi(t)))E (ξi(t)) .

ccordingly, the NIMFA approximation zi(t) = (zi,s(t))s∈S, 1 ≤ i ≤ N is the solution of the system

d
dt

zi(t) =Q (ζi(t)) zi(t),

ζi(t) =
(
ζ
(m)
i (t)

)M
m=1

,

ζ
(m)
i (t) =

(
ζ
(m)
i,s (t)

)
s∈[N]m

=

⎛⎝∑
j∈Sm

w
(m)
i,j z(m)

j,s (t)

⎞⎠
s∈Sm

,

(12)

here zi(t) corresponds to ξi(t) and ζi(t) corresponds to φi(t), and then the approximation used is

P
(
ξi,s(t) = 1

)
= E

(
ξi,s(t)

)
≈ zi,s(t).

The following theorem ensures the existence and uniqueness of the solution of (12).

heorem 1. Let ∆S denote the set of probability vectors from RS . For any initial condition zi(0) ∈ ∆S for all i the ODE system
(12) has a unique global solution such that z (t) ∈ ∆S for all i and t > 0 as well.
i

5
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.4. Examples

In this section we give some examples for models covered by the formalism of Section 2.2.

he simplicial SIS model
We will use the simplicial SIS model, also referred to as the contact process as a running example.
In the M = 1 case (graphs) the setup is the following: Each vertex can be in one of two states: susceptible (S) and

nfected (I), hence the state space is S = {S, I}. Infected vertices become susceptible at a constant rate γ ≥ 0 while
usceptible vertices receive the illness with rate proportional to number of its infected neighbors.
The number of infected neighbors of vertex i ∈ [N] at time t equals to

N∑
j=1

aijξj,I (t)

s aijξj,I (t) the indicator of vertex j is connected to vertex i and that it is infected at time t . After normalizing it with d̄ or
d(i) depending on our choice of convention 1 or 2 one gets

N∑
j=1

wijξj,I (t) = φi,I (t).

Therefore, the transition rates takes the form qSI (φi(t)) = γ , qIS(φi(t)) = βφi,I (t) where β ≥ 0 is a suitable constant
factor. In matrix form:

Q (φi(t)) =
[
−γ γ

βφi,I (t) −βφi,I (t)

]
For the SIS process NIMFA takes the form:

d
dt

zi,I (t) = −γ zi,I (t)+ β(1− zi,I (t))
N∑
j=1

wijzj,I (t).

Here we used zi,S(t) = 1− zi,I (t) which is also the reason why it enough to write the I components only.
The extension of the SIS model to hypergraphs is called the simplicial SIS model. The curing rate stays γ , however

the infection dynamics is modified. A susceptible vertex can be infected via any (m + 1)-edge if all other m vertices are
nfected. The weighted sum of such edges (m+ 1)-edges is∑

j∈[N]m
w

(m)
i,j ξ

(m)
j,(I,...,I)(t) = φ

(m)
i,(I,...,I)(t).

The infection rates is sum of all the 1 ≤ m ≤ M with appropriate β1, . . . , βM ≥ 0 factors:

qIS(φi(t)) =
M∑

m=1

βmφ
(m)
i,(I,...,I)(t).

For the simplicial SIS model NIMFA takes the form

d
dt

zi,I (t) = −γ zi,I (t)+
(
1− zi,I (t)

) M∑
m=1

βm

∑
j∈[N]m

w
(m)
i,j z(m)

j,(I,...,I)(t),

lauber dynamics
Glauber dynamics is a stochastic process whose stationary distribution coincides with the distribution given by a spin

ystem, such as the Ising model [19].
There are two possible states: S = {+,−}. Instead of the indicators

ξi,+(t), ξi,−(t)

t is customary use the sign variables

σi(t) := ξi,+(t)− ξi,−(t) = 2ξi,+(t)− 1.

In physical systems it is natural to assume wij is symmetric and wii = 0.
The dynamics is the following:

• At each time step, choose a vertex i uniformly.
6
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• With probability pi(σ ) = eβSi(σ )

eβSi(σ )+1
, vertex i switches to state + (else −), where

Si(σ ) =
N∑
j=1

wijσj.

ote that Si(σ ) arises from the reduction of the energy

H(σ ) := −
1
2

∑
i<j

wijσiσj

when vertex i is flipped from − to + . The stationary distribution is then given by the Gibbs measure

P(σ ) :=
1
Z
e−βH(σ ),

Z :=
∑
σ

e−βH(σ ).

We modify the above dynamics. First, note that, in accordance with (7),

Si(σ (t)) =
N∑
j=1

wij
(
ξj,+(t)− ξj,−(t)

)
= φi,+(t)− φi,−(t).

With a slight abuse of notation, we denote

S (φi(t)) := αφi,+(t)− γφi,−(t),

allowing the dynamics to have a preferred state.
Furthermore, we turn to the continuous time version instead with transition rates given by

q+−(φ) =eβS(φ),
q−+(φ) =1.

Since there are only two states, it is enough to consider the probabilities of occupying state + . For this, NIMFA gives the
following system of ODEs:

d
dt

zi,+(t) = (1− zi,+(t))eβS(ζi(t)) − zi,+(t). (13)

The equilibrium state is given by the fixed point problem

zi,+ =
eβS(ζi)

eβS(ζi) + 1
. (14)

ssume α = 1, γ = −1 as in the original setting and that the underlying weighted graph is regular: ∀i δ(i) =
∑

jwij = 1.
han (14) reduces to

σ = tanh
(
1
2
βσ

)
,

∀i 2zi,+ − 1 = σ

giving back the classical mean field approximation of the Ising model on lattice. This is not surprising as both NIMFA and
the classical mean field approach is based on the assumption of independence of vertices.

Based on [20], we can generalize the model for hypergraphs via extending S(φ) to

S(φi(t)) :=
M∑

m=0

αmφ
(m)
i,(+,...,+)(t)− γmφ

(m)
i,(−,...,−)(t)

llowing the system to lose even more energy when 3 or more neighbors have the same configuration on a hyper-edge.

he voter model
The voter model is a conceptually simple stochastic process modeling opinion dynamics [21]. In the most simple case,

here are two possible states: S = 0, 1.
The dynamics can be described the following way: At each time step, we choose a vertex uniformly. Said vertex chooses

an neighbor also uniformly, and copies its state. Similarly to the Glauber dynamics, we will study the continuous time
version instead.
7
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For vertex i, the ratio of neighbors sharing belief s ∈ {0, 1} is

1
d(i)

N∑
j=1

aijξj,s(t) = φi,s(t)

with the choice of Convention 2. Hence, the transition rates take the form

q01(φi(t)) =λφi,0(t),
q10(φi(t)) =λφi,1(t) = λ

(
1− φi,0(t)

)
.

Using zi,1(t) = 1− zi,0(t), NIMFA can be written as

d
dt

zi,0(t) = −λ(1− ζi,0(t))zi,0(t)+ λζi,0(t)
(
1− zi,0(t)

)
.

modified majority rule model
Another popular model of opinion dynamics is the majority rule [21]. In this setting a group of m+ 1 individuals are

hosen who update their state simultaneously to the majority opinion. Ties are usually broke with either a random choice
r setting a preferred opinion to win in this case, say opinion 1. For the sake of simplicity, we apply the latter approach.
Due to the continuous time setting we use, we modify the majority rule such that only one individual updates its

pinion during a transition based on the state of the other vertices (not including its own opinion for the sake of
implicity).
As it is stated in [21], the hypergraph setting is more suitable for majority rule. We assume communities have a

ounded size M + 1, while each individual can be a part of many, possibly overlapping communities.
a(m)
i,j1,...,jm

is the indicator of vertices i, j1, . . . , jm ∈ [N] being in a community. We assume symmetry in the indices and
et a(m)

i,j1,...,jm
= 0 if there are duplicates. We use a slightly modified version of Convention 1:

w
(m)
i,j =

αmai,j
m!d̄(m)

,

here αm measures how much importance vertices put on communities of size m+ 1. wmax = maxm αm
m!d̄(m) can be small

either due to vertices being part of many communities of size m+ 1 on average or because they put less importance on
said communicates.

Introduce the notation |s| =
∑m

l=1 sl. Vertex i in community i, j1, . . . , jm changes its opinion to the majority of j1, . . . , jm
at rate w(m)

i,j . Therefore,

q01(φi(t)) =
M∑

m=0

∑
j∈[N]m

w
(m)
i,j 1{0 is the majority for j1,...,jm}

=

M∑
m=0

∑
j∈[N]m

w
(m)
i,j

∑
|s|<m

2

m∏
l=1

ξjl,sl (t) =
M∑

m=0

∑
|s|<m

2

φ
(m)
i,s (t),

q10(φi(t)) =
M∑

m=0

∑
|s|≥m

2

φ
(m)
i,s (t).

The NIMFA ODEs are

d
dt

zi,0(t) = (1− zi,0(t))
M∑

m=0

∑
|s|<m

2

ζ
(m)
i,s (t)− zi,0(t)

M∑
m=0

∑
|s|≥m

2

ζ
(m)
i,s (t).

3. Error bounds for NIMFA

In this section we are presenting our main results which bound the error arising from neglecting the dynamical
correlation between vertices.

Recall that (11) was closed by assuming φi(t) ≈ E (φi(t)). We introduce an auxiliary process where the empirical
neighborhood φi(t) is replaced by the approximate ζi(t) from (12):

ξ̂i,s(t) =ξi,s(0)+
∑
s′∈S
s′ ̸=s

Ni,ss′
(
Ki,ss′ (t)

)
− Ni,s′s

(
Ki,s′s(t)

)
,

K ′ (t) =
{
(τ , x) ∈ R2

| 0 ≤ τ ≤ t, 0 ≤ x ≤ q ′ (ζ (τ )) ξ̂ ′ (τ )
}
.

(15)
i,ss ss i i,s

8
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T
t
s

he process ξ̂i,s(t) is an indicator process just like ξi,s(t), so it takes 0 or 1 values, and
∑

s∈S ξ̂i,s(t) = 1 for any i ∈ [N] and
≥ 0. However, assuming independent initial conditions, ξ̂i(t) remain independent. Applying total expectation to (15)
hows

d
dt

E
(
ξ̂i(t)

)
= Q (ζi(t))E

(
ξ̂i(t)

)
,

which, along with (12), implies that if E
(
ξ̂i(0)

)
= zi(0), then ξ̂i(t)− zi(t) is a martingale and

E
(
ξ̂i(t)

)
= zi(t) ∀t ≥ 0. (16)

Using the same background Poisson processes Ni,ss′ provides a coupling between ξ and ξ̂ that will be useful later on.
We aim to give an upper bound for |ξ̂ (t)− ξ (t)|, as well as for |ξ̂ (t)− z(t)|. We start with |ξ̂ (t)− ξ (t)| by introducing

the error terms

D(0)
i (t) = sup

0≤τ≤t
E

(∑
s∈S

⏐⏐⏐ξi,s(τ )− ξ̂i,s(τ )⏐⏐⏐) ,
D̃(0)
i (t) =E

(
sup
0≤τ≤t

∑
s∈S

⏐⏐⏐ξi,s(τ )− ξ̂i,s(τ )⏐⏐⏐) .
Apparently, the only difference between the two is the order in which we take the supremum in time. D̃(0)

i (t) is more
strict as

D(0)
i (t) ≤ D̃(0)

i (t).

Observe that
∑

s∈S

⏐⏐⏐ξi,s(τ )− ξ̂i,s(τ )⏐⏐⏐ only has two possible values: 0 if ξi(t) = ξ̂i(t), and 2 otherwise (as there will be

two s ∈ S indices where ξi,s(t), ξ̂i,s(t) differs). This implies

sup
0≤τ≤t

P
(
ξi(τ ) ̸= ξ̂i(τ )

)
=

1
2
D(0)
i (t),

P
(
∃ 0 ≤ τ ≤ t : ξi(τ ) ̸= ξ̂i(τ )

)
=

1
2
D̄(0)
i (t)

We also introduce error terms describing the environments arising from ξi(t) and ξ̂i(t):

D(m)
i (t) = sup

0≤τ≤t
E

⎡⎣∑
s∈Sm

⏐⏐⏐φ(m)
i,s (τ )− ζ (m)

i,s (τ )
⏐⏐⏐
⎤⎦ (1 ≤ m ≤ M),

D̃(m)
i (t) =E

⎡⎣ sup
0≤τ≤t

∑
s∈Sm

⏐⏐⏐φ(m)
i,s (τ )− ζ (m)

i,s (τ )
⏐⏐⏐
⎤⎦ (1 ≤ m ≤ M).

Since the neighborhoods φi(t) and ζi(t) are constructed from the indicators ξi(t) and ξ̂i(t), it is reasonable to expect φi(t)
and ζi(t) to be close to each other — as long as ξi(t) and ξ̂i(t) are also close. To avoid circular reasoning, we carry on
handling these two types of errors together at the same time. This motivates the introduction of

D(m)
max(t) =max

i∈[N]
D(m)
i (t),

Dmax(t) =
M∑

m=0

D(m)
max(t),

D̃i(t) =
M∑

m=0

D̃(m)
i (t).

The vector notation D̃(t) =
(
D̄i(t)

)
i∈[N] will also be utilized.

Now we can go ahead to state the main results of the paper. The idea behind the statements is when the vertex weights
are generally small (the network is well-distributed) then vertices has low correlation between each other, hence NIMFA
is accurate.
9
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heorem 2 (Main). Assume the initial conditions ξi(0) are independent and (16) is satisfied. Then for every t ≥ 0 there is a
onstant C = C (t, δmax, R) such that

max
i

sup
0≤τ≤t

P
(
ξi(τ ) ̸= ξ̂i(τ )

)
≤

1
2
Dmax(t) ≤ C

√
wmax. (17)

Furthermore, if we additionally assume M = 1 (having 1-uniform hypergraphs) then there exist constants C1 =

C1(δmax), C2 = C2(δmax) such that for all t ≥ 0D̃(t) ≤C1 exp (C2 ∥W + I∥ t) ∥µ∥,

µ =

⎛⎝√ N∑
j=1

w2
ij

⎞⎠
i∈[N]

,
(18)

here the norm ∥ · ∥ is arbitrary, W =
(
wij
)N
i,j=1 and I is the identity matrix.

Remark 1. The reason why we have different results for M > 1 and M = 1 is technical in nature. The main observation
s that in the M = 1 case ξ̂i,s(t)− zi,s(t) is a martingale making possible to take sup0≤τ≤t inside the expectation via Doob’s
nequality. It is no longer the case for M > 1 where ξ̂ (m)

i,s (t)− z(m)
i,s (t) is typically not a martingale itself.

(17) is a local result in the sense that it provides a uniform bound, ensuring that ξ̂i,s(t) and ξi,s(t) are close for all
vertices i simultaneously. For example, in the SIS process it allows us to approximate infection probabilities for concrete
individuals, not just global or mesoscopic ratios.

(18) will be elaborated on in Theorem 3.
In general, we cannot expect a similar local result for ξ̂i,s(t) and zi,s(t) since ξ̂i,s(t) is an indicator while zi,s(t) is a

continuous variable. However, if we average out ξ̂i,s(t) over a macroscopic set of vertices, a similar result will hold.
In (18) the use of ℓ2 or ℓ∞ is advised. Observe

∥W∥∞ = max
i

∑
j

wij ≤ δmax

∥W∥2 ≤
√
∥W∥1∥W∥∞ =

√(max
j

∑
i

wij

)(
max

j

∑
i

wij

)
≤
√
δoutmaxδmax, (19)

aking exp (C2 ∥W + I∥ t) bounded in (18). Note that (19) is the only step where Assumption (6) regarding δoutmax is used.
As for ∥µ∥:

∥µ∥∞ = max
1≤i≤N

√ n∑
j=1

w2
ij ≤ max

1≤i≤N

√wmax

n∑
j=1

wij ≤
√
wmaxδmax,

∥µ∥2 =

√ N∑
i=1

N∑
j=1

w2
ij .

Convention 1 works well with the O
(√
wmax

)
error bound as wmax =

1
d̄
holds in that case suggesting vertices being

lose to independent when they have a lot of neighbors on average. Similarly to (17), it also gives a uniform error
ound, making it possible to approximate the probabilities at the individual level. For Convention 2 on the other hand,
max =

1
dmin

is sensitive to even one vertex with a low degree. If we are not attached to uniform bounds in i, we can
provide a more robust on for the error of a typical vertex, thus, it is possible to describe global or mesoscopic population
statistics.

Let ι ∼ U ([N]) the index of a randomly chosen vertex.

P
(
∃ τ ∈ [0, t] : ξι(τ ) ̸= ξ̂ι(τ )

)
=

1
N

N∑
i=1

P
(
∃ τ ∈ [0, t] : ξi(τ ) ̸= ξ̂i(τ )

)
≤

1
2N

N∑
i=1

D̃i(t) ≤

√ 1
4N

N∑
i=1

D̃2
i (t) = O

(√
1
N
∥µ∥22

)

10
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bserve

1
N
∥µ∥22 =

1
N

N∑
i=1

N∑
j=1

w2
ij (20)

s the squared and normalized Frobenius norm of the matrix W . We mention that such bound were used in [13] under
ore strict assumptions regarding W .
Note that for Convention 2

1
N

N∑
i=1

N∑
j=1

w2
ij =

1
N

N∑
i=1

N∑
j=1

aij
d2(i)

=
1
N

N∑
i=1

1
d(i)

, (21)

eaning the error is small when vertices typically have large degrees.
These observations along with Theorem 2 give the following result:

heorem 3. For M = 1 (directed, weighted graphs), there exist constants C1 = C1(t, δmax) and C2 = C2(t, δmax, δ
out
max) such

hat

max
i

P
(
∃ τ ∈ [0, t] : ξi(τ ) ̸= ξ̂i(τ )

)
≤C1
√
wmax, (22)

1
N

N∑
i=1

P
(
∃ τ ∈ [0, t] : ξi(τ ) ̸= ξ̂i(τ )

)
≤C2

√ 1
N

N∑
i=1

N∑
j=1

w2
ij . (23)

So far, we have only accounted for the error between ξi(t) and ξ̂i(t), however, what we are actually interested in is the
expectation E

(
ξ̂i(t)

)
= zi(t), the solution of the ODE system given by NIMFA. Thankfully,

(
ξ̂i(t)

)
i∈[N]

are independent,
hence, their averages must concentrate around the mean:

Theorem 4. Assume (16) holds with independent initial conditions. Then for any t ≥ 0 and any 1 ≤ K ≤ N,

E

[
sup
0≤τ≤t

∑
s∈S

⏐⏐⏐⏐⏐ 1K
K∑

i=1

(
ξ̂i,s(τ )− zi,s(τ )

)⏐⏐⏐⏐⏐
]
≤

2|S|
√
K
. (24)

The most natural application of Theorem 4 is for K = N , but it is formulated in a way so that it can be applied to any
convenient subset of vertices (the fact that the first K vertices are considered has no significance as the vertices can be
reordered arbitrarily).

Together, Theorems 2–4 give an error bound for the NIMFA approximation (see Figs. 2 and 3).

Theorem 5. Assume (16) holds with independent initial conditions. Then for any t ≥ 0, there exists a constant C = C(t, δmax, R)
uch that

sup
0≤τ≤t

E

(∑
s∈S

⏐⏐⏐⏐⏐ 1N
N∑
i=1

(
ξi,s(τ )− zi,s(τ )

)⏐⏐⏐⏐⏐
)
≤ C

(
√
wmax +

1
√
N

)
. (25)

Furthermore, if we additionally assume M = 1, there exist constants C1 = C1(t, δmax), C2 = C2(t, δmax, δ
out
max) such that

E

[
sup
0≤τ≤t

(∑
s∈S

⏐⏐⏐⏐⏐ 1N
N∑
i=1

(
ξi,s(t)− zi,s(t)

)⏐⏐⏐⏐⏐
)]
≤ C1

(
√
wmax +

1
√
N

)
(26)

nd

E

[
sup
0≤τ≤t

(∑
s∈S

⏐⏐⏐⏐⏐ 1N
N∑
i=1

(
ξi,s(t)− zi,s(t)

)⏐⏐⏐⏐⏐
)]
≤ C2

⎛⎝√ 1
N

N∑
i=1

N∑
j=1

w2
ij +

1
√
N

⎞⎠ (27)

here µ is the same as for Theorem 2.

elated works

In this section we compare our results to the recent independent work of Sridhar and Kar [12,13] and Parasnis
t al. [14].
11
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v
p

v
p

d
F

Fig. 2. The ratio of infected based on the average of 1000 simulations (triangles) compared to the estimate of NIMFA (solid line) on an N = 1000
ertex modified cycle graphs with the closest 10 (left) and 100 (right) neighbors being connected. (β = 2, γ = 1) As we increase the degrees NIMFA
erforms better.

Fig. 3. The ratio of infected based on the average of 10 simulations (triangles) compared to the estimate of NIMFA (solid line) on an N = 5000
ertex modified cycle graphs with the closest 10 (left) and 100 (right) neighbors being connected. (β = 2, γ = 1) As we increase the degrees NIMFA
erforms better.

In [12] the authors describe how the state densities of certain related stochastic processes on weighted graphs with
oubly symmetric matrix W can be approximated by a set of O(N) ODEs analogous to NIMFA given that the normalized
robenius norm 1

N

∑
i=1
∑N

j=1w
2
ij is small and N is large.

Given the conclusions of Theorem 4.2 in [12] and Theorem 5 in the present paper are very similar in nature, it makes
sense to compare the general setup, the conditions, the conclusions and the technique directly to those in the present
paper.

Setup. Strictly speaking, the stochastic processes discussed in the present paper and in [12,13] are different. In our work,
time is continuous while [12,13] start from discrete time steps then speed up time. This is a minor difference though, and
with appropriate time scaling, the models in [12,13] and the present paper define essentially the same object.

Conditions. In the present paper, we require only that the normalized degrees are bounded. This is more general than
the doubly stochastic W assumption of [12,13]. Specifically, our result also justifies Example 4.2 in [13].

Via (27), qualitatively the same type of error terms were retained in terms of the normalized Frobenius norm,
but [12,13] provides an error probability bound that is exponential in N . In the present paper, we do not focus on this
kind of large deviation bound in N .

[12,13] derive bounds for the global average. On the other hand, our results show more localized, uniform bounds in
terms of vertices. This is made possible by the use of the auxiliary Markov processes ξ̂i(t), allowing accurate predictions
about individual vertices too, not just global averages. Our framework also allows higher order interactions, while [12,13]
is restricted to order 2 interactions (graphs).

In [14] the authors study the SIR process in age-structured populations on time-varying networks. They show that
when N and the rewiring rate is high the prevalence of the age groups can be described via an ODE system analogous to
the metapopulation NIMFA model (34) in Section 4.2. Note that [14] applies to cases with fast, but finite rewiring rates
as well, while our result only considers the idealized case of infinite rewiring rates.
12
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. Further reductions to NIMFA

This section relates NIMFA to other approaches from the literature. Although NIMFA is a major reduction of the exact
olmogorov-equations, requiring only O(N) ODEs to be solved, it can be still computationally prohibitive when the number
f vertices is too large. Furthermore, NIMFA requires knowing both the full network structure and precise initial conditions
or all vertices. We look at further reductions to (12) when additional structure is known for the network or initial
onditions; several of these actually lead to other well-known models from the literature.

.1. Homogeneous mean field approximation

The homogeneous mean field approximation (HMFA) assumes that the vertices are well mixed, meaning, every vertex
nteracts with every other with equal weights. Formally, this can be described by a complete hypergraph (with all loops
nd secondary loops):

w
(m)
i,j =

1
Nm .

This definition may be generalized to include cases when w(m)
i,j = 0 for certain m indices, e.g. (M + 1)-uniform

hypergraphs. For ease of notation, instead of modifying the definition ofw(m)
i,j , it is also possible to choose the rate functions

qss′ (φ) so that they do not depend on the appropriate φ(m) coordinates, making the choice of w(m)
i,j irrelevant.

It is easy to see that for such networks, wmax =
1
N and δmax = 1. What remains to show is that (5) holds with some

bounded R.∑
j∈[N]m

jiss. loop

w
(m)
i,j =

1
Nm

⏐⏐{ j ∈ [N]m⏐⏐ j s. loop}⏐⏐ =
1−

1
Nm

⏐⏐{ j ∈ [N]m⏐⏐ j not s. loop}⏐⏐ = 1−
m−1∏
l=0

(
1−

l
N

)
=

O
(

1
N

)
≪

1
√
N
=
√
wmax,

(28)

ence, R can be chosen arbitrarily small for large enough N .
Our goal now is to derive a small system of equations for

u(t) :=
1
N

N∑
i=1

zi(t).

ur strategy is based on the observation that the neighborhood vectors ζi(t) are the same for all vertices.

ζ
(m)
i,s (t) =

1
Nm

∑
j∈[N]m

m∏
l=1

zjl,sl (t) =
m∏
l=1

⎛⎝ 1
N

N∑
jl=1

zjl,sl (t)

⎞⎠ =
m∏
l=1

usl (t) =: u
(m)
s (t)

This results in the ODE system:
d
dt

u(t) =Q (U(t)) u(t),

U(t) =
(
u(m)(t)

)M
m=1 ,

u(m)(t) =
(
u(m)
s (t)

)
s∈Sm
=

(
m∏
l=1

usl (t)

)
s∈Sm

.

(29)

For example, the simplicial SIS model (29) takes the form

d
dt

uI (t) = −γ uI (t)+ (1− uI (t))
M∑

m=1

βmum
I (t).

which was used in [16].
In this setting, Theorem 5 shows the ratio of vertices in state s ∈ S can be approximated by us(t) with O

(
1
√
N

)
error.

he well known results of Kurtz [6,7] correspond to the M = 1 case.
13
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Although (29) is both feasible for analytical and numerical investigations (due to its finite size) the assumption that

he network structure is well-mixed is quite restrictive. However, as we will see, the well-mixed condition can be relaxed
iven uniform initial conditions.
We call a weighted hypergraph regular if

∀ 1 ≤ i ≤ N, 1 ≤ m ≤ M δ(m)(i) = 1. (30)

ote that the value 1 is arbitrary and any other constant value would work with minor modifications to the rate functions
ss′ .
We note that (30) always holds for Convention 2 hypergraphs. For Convention 1, it holds when d(m)(i) = d̄(m)

∀1 ≤ i ≤
N, 1 ≤ m ≤ M (that is, the hypergraph is regular in the usual sense).

Proposition 1. Assume (30) and

zi(0) = u(0) ∀ 1 ≤ i ≤ N

or some u(0) ∈ ∆S . Then the solution of (12) takes the form

zi(t) = u(t) ∀ 1 ≤ i ≤ N

here u(t) satisfies (29).

We mention that statements similar to Proposition 1 have appeared in the literature before in certain special cases
28, Proposition 3.18]. Combining Proposition 1 with Theorem 2 ensures the accuracy of the homogeneous mean field
pproximation on regular graphs with large degrees and homogeneous initial conditions disregarding any further network
tructure.

roof of Proposition 1. Let u(t) be the solution of (29). Set zi(t) = u(t). We have to show that zi(t) satisfies (12). The
nitial conditions are satisfied according to the assumption, and for the derivatives,

u(m)
s (t) =u(m)

s (t)δ(m)(i) = u(m)
s (t)

∑
j∈[N]m

w
(m)
i,j =

∑
j∈[N]m

w
(m)
i,j z(m)

j,s (t) = ζ (m)
i,s (t),

d
dt

zi(t) =
d
dt

u(t) = Q (U(t)) u(t) = Q (ζi(t)) zi(t). □

4.2. Metapopulation models

As we saw in Section 4.1 , a way to reduce the number of equations is by grouping vertices together and representing
them by a single averaged-out term. In practice, this approach will only work if the vertices grouped together are
sufficiently homogeneous, which is typically not the case for the entire population. To mitigate this issue, we may
introduce communities, inside which we assume homogeneity, then derive the dynamics between communities. This
‘‘higher resolution’’ may increase accuracy, at the cost of a larger ODE system.

In practice, the communities can be chosen by demographic and geographic criterion such as age and location.
Alternatively, it is also possible to group vertices according to degree, or a third option is the use of community detection
algorithms [29].

We present the general setup for metapopulation models first for graphs in Section 4.2.1, then for hypergraphs in
Section 4.2.2.

For the SIS process on graphs similar results had been derived in [30].

4.2.1. Metapopulation models on graphs
First, assume M = 1. Divide the vertices into a partition V1, . . . , VK with size |Vk| = Nk such that vertices inside a

group are similar in some sense. The average weight between group Vk and Vl is

w̃kl =

∑
i∈Vk

∑
j∈Vl

wij

NkNl
. (31)

In the idealized case of metapopulations, wij would have the same value w̃kl for each i ∈ Vk, j ∈ Vl pair.)
Next we derive the dynamics for the averages

z̄k(t) :=
1
Nk

∑
i∈Vk

zj(t). (32)

ζi(t) has the same value ζ̄k(t) for all i ∈ Vk:

ζ̄k(t) = ζi(t) =
N∑
j=1

wijzj(t) =
K∑
l=1

Nlw̃kl   1
Nl

∑
j∈V

zj(t) =
K∑
l=1

w̄klz̄l(t). (33)
w̄kl l

14
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herefore, we can derive an ODE system for (32)
d
dt

z̄k(t) = Q
(
ζ̄k(t)

)
z̄k(t) (34)

which is equivalent to (12) on the graph G with vertex set {1, . . . , K } and weights (w̄kl)
K
k,l=1.

.2.2. Metapopulation models on hypergraphs
For the general metapopulation setting, we assume that for each m = 1, . . . ,M , the population is partitioned into

ocal groups V (m)
1 , . . . , V (m)

K (m) . The type of a vertex will be denoted by k =
(
k(1), . . . , k(M)

)
, which means that for each

= 1, . . . ,M , the given vertex is in the local group V (m)
k(m) . Vertices can be partitioned according to their type into

M
m=1 K

(m) global groups.
We aim to define a hypergraph on the types, with weights consistent with the average of weights within each group.

hat said, with the above setup, this is easier to do using local groups for each m = 1, . . . ,M .
For a given m, k(m) and l(m)

=

(
l(m)
1 , . . . , l(m)

m

)
, the total local m-weight between k(m) and l(m) is defined as

W (m)
k(m),l(m) :=

∑
i∈V (m)

k(m)

∑
j1∈V

(m)

l(m)
1

· · ·

∑
jm∈V

(m)

l(m)
m

w
(m)
i,j . (35)

Then, using the notation

Nl(m) :=

M∏
r=1

N (m)

l(m)
r
,

e define the weight of the edge containing the local groups k(m), l(m) as

w̃
(m)
k(m),l(m) :=

W (m)
k(m),l(m)

Nk(m)Nl(m)
. (36)

Let k(i) =
(
k(1)(i), . . . , k(M)(i)

)
denote the type of i. For easier notation, we will often use ι ∼ U ([N]), which is a random

vertex independent from everything else. Then we define the average of zi(t) over type k as

z̄k(t) := E ( zι(t)| k(ι) = k) =
1
Nk

∑
i∈Vk

zi(t). (37)

In this case as well, ζi(t) has the same value for all i ∈ Vk; this common value will be denoted by ζ̄k(t). Let ι1, . . . , ιm
enote i.i.d. copies of ι. Then

ζ̄
(m)
k (t) =ζ (m)

i (t) =
∑

j∈[N]m
w

(m)
i,j z(m)

j (t) =
∑
l(m)

w̃
(m)
k,l(m)

∑
j1∈V

(m)

l(m)
1

· · ·

∑
jm∈V

(m)

l(m)
m

z(m)
j (t)

=

∑
l(m)

Nl(m)w̃
(m)
k,l(m)  

:=w̄
(m)
k(m),j(m)

E

(
m∏

r=1

zιr (t)

⏐⏐⏐⏐⏐ k(m)(ι1) = l(m)
1 , . . . , k(m)(ιm) = l(m)

m

)

=

∑
l(m)

w̄
(m)
k(m),j(m)

m∏
r=1

E
(
zι(t)| k(m)(ι) = l(m)

r

)
.

(38)

This means that the ODE system for (37) is formally the same as (34) (with the appropriate definition of z̄k(t) and
ζ̄k(t)).

Note that ζ̄k(t) can also be expressed via z̄k(t) as

E
(
zι(t)| k(m)(ι) = l(m)

r

)
=E

(
E ( zι(t)| k(i) = k)| k(m)(ι) = l(m)

r

)
=

E
(
z̄k(ι)(t)

⏐⏐ k(m)(ι) = l(m)
r

)
,

making (34) a closed system.
In the special case when the hypergraph is (M + 1)-uniform, we can set K (m)

= 1 for all m < M virtually making the
local group k(M) and the global group k the same (apart from some 1’s in the first M−1 components). In this case, Q only
depends on ζ̄ (M)(t) which can be expressed as

ζ̄
(M)
k(M) =

∑
w̄

(m)
k(m),l(m)

m∏
z̄k(M)(lr )(t).
l(m) r=1

15
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.3. Annealed networks

So far, we only focused on the dynamics of the Markov process neglecting the dynamics of the network itself. When
here is a separation of scale between the speed of the Markov process and the changes to the network itself, two kinds
f idealizations are typically used:

• quenched networks: the speed at which the network changes is much slower than the Markov process. In this case,
the network is assumed constant in time.
• annealed networks: the speed at which the network changes is much faster than the Markov process. In this case,

we consider the network changes averaged out for the interactions.

Annealed networks can be modeled by replacing connections a(m)
i,j in (2) and (3) with the average ⟨a⟩(m)

i,j .
In this section, we present a setup for annealed networks generated via the configuration model [31]. Similar

calculations can be made for other models that include e.g. degree correlation such as equation (93) in [32].
Once again, we start with the graph case.
In the configuration model the degrees d(1), . . . , d(N) are given beforehand, and vertex i receives d(i) half-edges (stubs)

initially. Then in each round, we choose two stubs at random to connect and form an edge, repeating this procedure until
all stubs are paired.

Loops and multiple edges are possible, but their effect will be neglected. The expected connection between vertices i
and j is

⟨a⟩ij =
d(i)d(j)
d̄N

.

The degree of each vertex i indeed matches the prescribed d(i) as
N∑
j=1

⟨a⟩ij =
d(i)
d̄

1
N

N∑
j=1

d(j) = d(i).

⟨a⟩ij depends only on the degrees of i and j, so it can be interpreted as a metapopulation model where vertices
are grouped according to their degree. (Note that here we also use the index k = 0 for isolated vertices if any.) The
corresponding weights are

w̃kl =
kl

d̄2N
,

for Convention 1, and

w̃kl =
l

d̄N
.

for Convention 2.
Let qk :=

kNk
d̄N

denote the size biased degree distribution and introduce

Θ(t) :=
dmax∑
l=0

qlz̄l(t). (39)

Using (33), ζ̄k(t) can be written as

ζ̄k(t) =
k
d̄
Θ(t),

or Convention 1, and

ζ̄k(t) = Θ(t).

or Convention 2.
For example, the I component of the SIS process assuming Convention 1 is

d
dt

z̄k,I (t) = −γ z̄k,I (t)+
β

¯̄d
k
(
1− z̄k,I (t)

)
ΘI (t),

ΘI (t) =
dmax∑
l=0

qlz̄l,I (t).
(40)

hich is the Inhomogeneous Mean Field Approximation (IMFA) studied by Pastor-Satorras and Vespignani [25].
For Convention 1, to apply the results of the present paper, we need to assume upper regularity, i.e. δmax =

dmax
d̄

to
be bounded. In many applications, the degree distribution converges to a fixed distribution, making d̄ bounded; in such
setting, we accordingly require d to be bounded as well.
max

16
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Assuming upper regularity,

wmax =
d2max

d̄2N
=

1
N
δ2max

hus Theorem 5 actually provides an O
(

1
√
N

)
error bound.

As for Convention 2, δmax = 1 holds as usual, and

wmax =
1
N

dmax

d̄
.

Unfortunately, one cannot relax the bound on dmax by using (23) instead of (22) as it requires bounds for the
ut-degrees:

δout(j) =
N∑
i=1

wij =

dmax∑
k=0

Nk
d(j)
d̄N
=

d(j)
d̄
≤

dmax

d̄
≤ δoutmax.

Now we turn to the hypergraph case M > 1. We generalize the notion of the configuration model in the following
manner: For a fixed m, the m-degrees are given as d(m)(1), . . . , d(m)(N) and each vertex receives m-stubs based on their
degree. In each round, we choose m+1 m-stubs at random to form an m-edge, then repeat this procedure until all of the
stubs have been paired. This procedure is performed for each 1 ≤ m ≤ M independently.

For distinct i, j1, . . . jm, the probability of connecting them in a given round is

d(m)(i)
∏m

r=1 d
(m)(jr )(d̄(m)N

m+1

) ≈
(m+ 1)!d(m)(i)

∏m
r=1 d

(m)(jr )(
d̄(m)N

)m+1 .

Since there are d̄(m)N
m+1 rounds in total, we set

⟨a⟩(m)
i,j :=

m!d(m)(i)
∏m

r=1 d
(m)(jr )(

d̄(m)N
)m .

For the hypergraph case, we only examine Convention 1, for which

w̃
(m)
k(m),l(m) =

k(m)

d̄(m)

∏m
r=1 l

(m)
r(

d̄(m)N
)m .

Once again, the resulting hypergraph can be interpreted as a metapopulation model, where the local groups are given
ccording to the m-degrees of the vertices.
Clearly δ(m)(i) = d(m)(i)

d̄(m) , so we make an upper regularity assumption in this case as well, from which wmax = O
( 1
N

)
follows.

For hypergraphs, we also need to check the condition (5).

w̃
(m)
k(m),l(m) ≤

δm+1max

Nm ,

o (28) implies∑
j∈[N]m

jiss. loop

w
(m)
i,j ≤ C

∑
j∈[N]m

jiss. loop

1
Nm = O

(
1
N

)
≪
√
wmax, (41)

ence arbitrarily small R can be used for large enough N .
The next step is to calculate ζ̄k(t) based on (34). Define

q(m)
k(m) :=

k(m)Nk(m)

d̄(m)N
,

the size-biased degree distribution of the m-vertices. Also define

Θ (m)(t) :=
d(m)
max∑
l=1

q(m)
l E

(
zι(t)| d(m)(ι) = l

)
, (42)

nce again using the notation ι ∼ U ([N]).
Using (38),

ζ̄
(m)
k (t) =

∑
w̄

(m)
k(m),j(m)

m∏
E
(
zι(t)| d(m)(ι) = l(m)

r

)

l(m) r=1

17
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=
k(m)

d̄(m)

∑
l(m)

m∏
r=1

q(m)
lr E

(
zι(t)| d(m)(ι) = lr

)

=
k(m)

d̄(m)

m∏
r=1

d(m)
max∑
lr=1

q(m)
lr E

(
zι(t)| d(m)(ι) = lr

)
=

k(m)

d̄(m)

(
Θ (m)(t)

)m
.

Accordingly, e.g. the dynamics for the simplicial SIS model can be written as

d
dt

z̄k,I (t) = −γ z̄k,I (t)+ (1− z̄k,I (t))
M∑

m=1

β (m)

d̄(m)

(
Θ

(m)
I (t)

)m
. (43)

(43) was studied in [17] for the (M + 1)-uniform case, where E
(
zι(t)| d(M)(ι) = l

)
simplifies to z̄k(t) as the global class

and the local class k(M) coincide.

.4. Activity-driven networks

Activity-driven networks were introduced in [24].
Let a1, . . . , aK be positive numbers called activities and let a(i) denote the activity of vertex i. Instead of a graphs

tructure, each vertex chooses a random vertex uniformly with rate βa(i) and if they are an SI pair, the susceptible node
ecomes infected. Recoveries happen independently with rate γ .
The above model corresponds to an SIS process on the weighted graph

wij =
a(i)+ a(j)

N

since to form the (i, j) pair, either i or j needs to activate, and each vertex is chosen with probability 1
N . The graph is a

metapopulation model, with groups corresponding to the activity values.
We generalize this concept to allow higher order interactions. a(m)

1 , . . . , a(m)
K (m) are the possible m-activities and we

assume that vertex i chooses m other vertices at random with rate a(m)(i). This results in a hypergraph with weights

w
(m)
i,j =

1
Nm

(
a(m)
i +

m∑
r=1

a(m)
jr

)
.

Assume the activity rates are bounded from above by some amax <∞. Also, introduce

ā(m)
:=

1
N

N∑
i=1

a(m)(i).

hen

δ(m)(i) = a(m)
i +

1
Nm

∑
j∈[N]m

m∑
r=1

a(m)
jr = a(m)

i + ā(m)
≤ 2amax

so (4) is satisfied.
wmax ≍

1
N and (41) is applicable here as well satisfying (5), hence Theorem 2 applies.

ζ̄k(t) can also be expressed with the help of (38).

roposition 2. Let ι ∼ U([N]) a random index and p(m)
k(m) be the ratio of vertices in the local group k(m). Also, define

ψ (m)(t) :=
K (m)∑
l=1

a(m)
l p(m)

l E
(
zι(t)| a(m)(ι) = l(m)) .

Then the neighborhood vectors have the form

ζ̄
(m)
k (t) =

(
a(m)
km E (zι(t))+ ψ (m)(t)

)
Em−1 (zι(t)) .

The proof of Proposition 2 is given in Section 6.
18
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For activity-driven networks, the simplicial SIS model takes the form

d
dt

z̄k,I (t) =− γ z̄k,I (t)+
(
1− z̄k,I (t)

)
·

M∑
m=1

βmEm−1 (zι,I (t)) (a(m)
km E

(
zι,I (t)

)
+ ψ

(m)
I (t)

)
.

(44)

[33] proves that (44) describes the large graph limit correctly when M = 1.

.5. Dense graphs and Szemerédi’s regularity lemma

We call a hypergraph dense if there is some 0 < p0 ≤ 1 such that

d̄(m)
≥ p0Nm

∀ 1 ≤ m ≤ M. (45)

For Convention 1 graphs,

1
M! N

≤ wmax ≤
1

p0N
,

δmax ≤
1
p0

old and (41) directly follows, satisfying the conditions for Theorem 2.
We focus on the graph case M = 1. We assume that the rate functions qss′ are affine, that is, they have the form

qss′ (φ) = q(0)ss′ +
∑
r∈S

q(1)ss′,rφr , (46)

where q(0)ss′ ,

(
q(1)ss′,r

)
r∈S

are nonnegative constants. Many epidemiological models have this form, including the SIS process.
As it was pointed out in the preliminary work [26], Szemerédi’s regularity lemma [27] provides a method to

approximate (12) with a finite system up to arbitrary precision (for large enough N).
Roughly speaking, Szemerédi’s regularity lemma states that any large enough dense graph can be partitioned into

finitely many ‘‘boxes’’ (called an ε-regular partition) which have the same size (except one remainder box), and besides a
few exceptional pairs the edge count between two boxes behaves as if coming from a randomly mixed graph, with error
at most ε.

We denote an ε-regular partition by V0, V1, . . . , VK , where V0 is the exceptional set.

e(A, B) :=
∑
i∈A

∑
j∈B

aij

refers to the number of edges between the vertex sets A, B with the convention that edges in A ∩ B are counted double.
We define the graph G on vertices (V1, . . . , VK ). (V0 is neglected.)
The adjacency matrix is replaced by the edge density between A, B ⊆ [N] defined as

ρ(A, B) :=
e (A, B)
|A| · |B|

(47)

t is easy to see that 0 ≤ ρ (A, B) ≤ 1.
The adjacency matrix counterpart for G is simply the edge density between the V1, . . . , VK sets. For the average degree

we further define

p :=
d̄
N
, (48)

κ :=
|V1|

N
= · · · =

|VK |

N
(49)

here p is the global edge density of G and κ is the portion of vertices one box contains. The average degree in G is
Kp ≈ p

κ
, motivating the definition of the weights

w̄kl :=
κ

p
ρ (Vk, Vl) . (50)

The corresponding solution of (12) on the graph G with weights (50) is denoted by (vk(t))Kk=1 with initial condition

vk(0) =
1
|Vk|

∑
zi(0). (51)
i∈Vk

19
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Finally, we define

v̄(t) :=
K∑

k=1

|Vk|

N
vk(t) (52)

nd the average global density vector

z̄(t) :=
1
N

N∑
i=1

zi(t). (53)

heorem 6. ∀T > 0, ε > 0, p0 > 0 ∃Kmax ∈ Z+ such that for any G simple graph with density parameter p0 and N ≥ Kmax,
there exists a partition V0, V1, . . . , VK with K ≤ Kmax such that

• |V1| = · · · = |VK | ,

• |V0| ≤ εN,
• sup0≤t≤T ∥z̄(t)− v̄(t)∥1 ≤ ε.

The proof is provided in Section 6.
Szemerédi’s regularity lemma also guarantees that such a partition can be found in polynomial time [29].
We note that Kmax may increase rapidly as ε→ 0+ limiting the applicability of the approach. That said, for networks

with extra community structure, this approach may still be useful.

5. Discussion

In this paper we examined the accuracy of the so called N-Intertwined Mean Field Approximation on hypergraphs.
The idea of NIMFA is to assume vertices are independent from each other, then derive the dynamics of the occupation
probabilities of each vertex. This leaves us with and ODE system of size O(N) instead of an exponentially increasing system
iven by the exact Kolmogorov equations.
Our findings show that when the incoming weights are well distributed – for example, vertices typically have large

egrees – then NIMFA gives an accurate approximation. Under additional assumptions we showed how the number of
DEs can be further reduced to give well-known approximation methods from the literature, such as the heterogeneous
ean field approximation. Finally, we showed how Szemerédy’s regularity lemma can be used to reduce the number of
quations to constant order (depending only on the error desired) for large enough dense graphs.
These results have their limitations. The error bounds work poorly for truly sparse graphs (with bounded average

egrees). Analyzing such systems probably requires qualitatively different approaches.
The upper regularity condition can be restrictive for certain applications. We conjecture that the results could be greatly

eneralized in this direction for degree distributions with fast decaying tails.
For the reduction for dense graph we applied the strong version of Szemerédy’s lemma. The weak version of

zemerédy’s lemma, however, has more desirable algorithmic properties and a smaller bound on the number of ‘‘boxes’’
ne needs for a given ε. Extending the theorem in this direction might be beneficial for large, inhomogeneous, dense
ystems.
Finally, NIMFA has the disadvantage of requiring full knowledge of the network which is usually not possible in

ractice. Using metapopulation networks instead mitigates this problem, and also greatly reduces the number of equations
equired. This method, however, relies on the assumption that the metapopulation dynamics is close enough to the original
ne. Further research is needed to understand how well coarse graining performs in terms of preserving the network
ynamics.

. Proofs

.1. General proofs

We state and prove a technical lemma first which will be used throughout other proofs.

emma 1. Let a1, . . . , an and b1, . . . , bn two sets of numbers such that 0 ≤ |ai| , |bi| ≤ 1. Then⏐⏐⏐⏐⏐
n∏

i=1

ai −
n∏

i=1

bi

⏐⏐⏐⏐⏐ ≤
n∑

i=1

|ai − bi| .

roof of Lemma 1. The proof is by induction on n. The statement is trivial for n = 1. For n > 1,⏐⏐⏐⏐⏐
n∏

ai −
n∏

bi

⏐⏐⏐⏐⏐ =
⏐⏐⏐⏐⏐an

n−1∏
ai − bn

n−1∏
bi

⏐⏐⏐⏐⏐ =

i=1 i=1 i=1 i=1

20
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⏐⏐⏐⏐⏐(an − bn)
n−1∏
i=1

ai + bn

(
n−1∏
i=1

ai −
n−1∏
i=1

bi

)⏐⏐⏐⏐⏐ ≤
|an − bn|

n−1∏
i=1

|ai| + |bn| ·

⏐⏐⏐⏐⏐
n−1∏
i=1

ai −
n−1∏
i=1

bi

⏐⏐⏐⏐⏐ ≤
|an − bn| +

⏐⏐⏐⏐⏐
n−1∏
i=1

ai −
n−1∏
i=1

bi

⏐⏐⏐⏐⏐ ≤ |an − bn| +
n−1∑
i=1

|ai − bi| =

n∑
i=1

|ai − bi| . □

Next we show that (12) exhibits a unique global solution.

Proof of Theorem 1. The right hand side of (12) is locally Lipschitz, so there is a unique local solution.
Instead of qss′ , we use the modified rate functions

q̂ss′ (φ) := |qss′ (φ)| (54)

q̂ss(φ) =−
∑
s′ ̸=s

q̂s′s(φ)

which are nonnegative for any input; note that q̂ss′ (φ)
⏐⏐
φ≥0 = qss′ (φ)|φ≥0.

The modified version of (12) is
d
dt

ẑi(t) = Q̂
(
ζ̂i(t)

)
ẑi(t)

where Q̂ (φ) =
(
q̂ss′ (φ)

)
s,s′∈S . The local solution uniquely exist in this case as well, and it either extends to a global solution

or blows up at a finite time.
Assume that the local solution blows up at time t0. Then ζ̂i(t) is well-defined for any t < t0.
We construct an auxiliary time-inhomogeneous Markov process on [0, t0). The state space is S and the transition rates

at time t are given by the matrix Q̂
(
ζ̂i(t)

)
. ps(t) denotes the probability of being in state s ∈ S . The Kolmogorov equations

have the form
d
dt

p(t) = Q̂
(
ζ̂i(t)

)
p(t).

Since Q̂
(
ζ̂i(t)

)
is continuous for t < t0,

max
0≤τ≤t

Q̂ (ζ̂i(τ ))
exists and is finite.

Based on Grönwall’s inequality,

ẑi(t)− p(t) =ẑi(0)− p(0)+
∫ t

0
Q̂
(
ζ̂i(u)

) [
ẑi(τ )− p(τ )

]
dτ ,

ẑi(t)− p(t)
 = ẑi(0)− p(0)

+ sup
0≤u≤t

Q̂ (ζ̂i(τ )) ∫ t

0

ẑi(τ )− p(τ )
 dτ ,

sup
0≤τ≤t

ẑi(τ )− p(τ )
 ≤ ẑi(0)− p(0)

 exp( sup
0≤τ≤t

Q̂ (ζ̂i(τ )) · t) .
hoosing p(0) = ẑi(0) shows that ẑi(t) = p(t) for any 0 ≤ t < t0 as well.
But p(t) is a probability vector, that is, ẑi(t) ∈ ∆S , which contradicts ẑi(t) blowing up as t → t0, so the solution must

e global.
Since the solution is on the simplex ∆S , we have q̂ss′

(
ζ̂i(t)

)
= qss′

(
ζ̂i(t)

)
(that is, the absolute values in (54) are not

ecessary). Therefore ẑi(t) is a solution for the original Eq. (12) as well. Since the solution for (12) is unique, ẑi(t) = zi(t).
his makes zi(t) a global solution with values on the simplex ∆S . □

.2. Proof of Theorem 2

The strategy of the proof is to derive an inequality for Dmax(t) and D̃i(t) such that Grönwall’s inequality could be applied.

In the first step, we are showing an inequality for the error of the indicators.
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emma 2. There exists C̃1 = C̃1(δmax) such that

D(0)
max(t) ≤C̃1

∫ t

0
Dmax(τ )dτ ,

D̃(0)
i (t) ≤C̃1

∫ t

0
D̃i(τ )dτ .

roof of Lemma 2. ⊕ denotes symmetric difference.⏐⏐⏐ξi,s(τ )− ξ̂i,s(τ )⏐⏐⏐ ≤∑
s′∈S
s′ ̸=s

⏐⏐Ni,ss′
(
Hi,ss′ (τ )

)
− Ni,ss′

(
Ki,ss′ (τ )

)⏐⏐+ ⏐⏐Ni,ss′
(
Hi,ss′ (τ )

)
− Ni,ss′

(
Ki,ss′ (τ )

)⏐⏐ ≤
∑
s′∈S
s′ ̸=s

Ni,ss′
(
Hi,ss′ (τ )⊕ Ki,ss′ (τ )

)
+ Ni,s′s

(
Hi,s′s(τ )⊕ Ki,s′s(τ )

)
≤

∑
s′∈S
s′ ̸=s

Ni,ss′
(
Hi,ss′ (t)⊕ Ki,ss′ (t)

)
+ Ni,s′s

(
Hi,s′s(t)⊕ Ki,s′s(t)

)
In the last step we used the fact that Hi,ss′ (τ )⊕ Ki,ss′ (τ ) is an increasing set in τ .

Since the right hand side does not depend on τ , it makes no difference whether we take sup0≤τ≤t inside or outside of
the expectation.

D(0)
i (t) ≤ D̃(0)

i (t) ≤∑
s∈S

∑
s′∈S
s′ ̸=s

E
[
Ni,ss′

(
Hi,ss′ (t)⊕ Ki,ss′ (t)

)
+ Ni,s′s

(
Hi,s′s(t)⊕ Ki,s′s(t)

)]
The summations with respect to s and s′ only contribute a constant factor |S|2 which will be neglected. Also, the same

bound applies for E
[
Ni,ss′

(
Hi,ss′ (t)⊕ Ki,ss′ (t)

)]
and E

[
Ni,s′s

(
Hi,s′s(t)⊕ Ki,s′s(t)

)]
, so it is enough to keep track of only the

first one, with a factor of 2.
The rate functions are Lipschitz-continuous on a compact domain due to assumption (4), so they are bounded; their

maximum is denoted by qmax.

E
[
Ni,ss′

(
Hi,ss′ (t)⊕ Ki,ss′ (t)

)]
=

E
[∫ t

0

⏐⏐⏐qss′ (φi(τ )) ξi,s′ (τ )− qss′
(
φ̃i(τ )

)
ξ̂i,s′ (τ )

⏐⏐⏐ dτ] ≤
E

⎡⎣∫ t

0
qmax

⏐⏐⏐ξi,s′ (τ )− ξ̂i,s′ (τ )⏐⏐⏐+ Lq
M∑

m=1

∑
r∈Sm

⏐⏐⏐φ(m)
i,r (τ )− φ̃(m)

i,r (τ )
⏐⏐⏐ dτ

⎤⎦ ≤
(
qmax + Lq

) ∫ t

0

M∑
m=0

D(m)
i (τ )dτ ≤

(
qmax + Lq

) ∫ t

0

M∑
m=0

D̃(m)
i (τ )dτ

Setting C̃1 := 2
(
qmax + Lq

)
|S|2 yields

D(0)
i (t) ≤ D̃(0)

i (t) ≤ C̃1

∫ t

0

M∑
m=0

D(m)
i (τ )dτ ≤ C̃1

∫ t

0

M∑
m=0

D̃(m)
i (τ )  

=D̃i(τ )

dτ . □

The second half of the proof of Theorem 2 involves estimating the difference between the neighbors φi(t) and ζi(t) via
the differences of the indicators.
ζi(t) does not contain the indicators ξ̂i(t) directly, only their expectation zi(t). To bridge this gap, we introduce

‘‘intermediate neighborhoods’’

φ̂
(m)
i,s (t) =

∑
m

w
(m)
i,j ξ̂

(m)
j,s (t).
j∈[N]
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P

T

Note that under (16) and independent initial conditions,

E
(
ξ̂
(m)
i,s

)
= E

(
m∏
l=1

ξ̂il,sl (t)

)
=

m∏
l=1

E
(
ξ̂il,sl (t)

)
=

m∏
l=1

zil,sl (t) = z(m)
i,s

for non-secondary loop i indices. Assumption (5) was made to ensure secondary loops have low total weight.

⏐⏐⏐E(φ̂(m)
i,s (t)

)
− ζ

(m)
i,s (t)

⏐⏐⏐ =
⏐⏐⏐⏐⏐⏐
∑

j∈[N]m
w

(m)
i,j

[
E
(
ξ̂
(m)
j,s (t)

)
− z(m)

j,s (t)
]⏐⏐⏐⏐⏐⏐ =⏐⏐⏐⏐⏐⏐⏐⏐

∑
j∈[N]m

j s. loop

w
(m)
i,j

[
E
(
ξ̂
(m)
j,s (t)

)
− z(m)

j,s (t)
]⏐⏐⏐⏐⏐⏐⏐⏐ ≤

∑
j∈[N]m

j s. loop

w
(m)
i,j ≤ R

√
wmax.

(55)

The next lemma shows that φ̂i(t) and ζi(t) are close.

Lemma 3. Assume (16) holds with independent initial conditions. Then there is a C̃2 = C̃2 (δmax, R) such that for any
1 ≤ m ≤ M, i ∈ [N]

sup
0≤t

E

⎡⎣∑
s∈Sm

⏐⏐⏐φ̂(m)
i,s (t)− ζ (m)

i,s (t)
⏐⏐⏐
⎤⎦ ≤ C̃2

√
wmax. (56)

If we further assume M = 1, there exists a C̃3 such that for all t ≥ 0,

E

[
sup
0≤t

∑
s∈S

⏐⏐⏐φ̂i,s(t)− ζi,s(t)
⏐⏐⏐] ≤ C̃3

√ n∑
j=1

w2
ij  

=µi

. (57)

roof of Lemma 3. We start by applying (55).

sup
0≤t

E

⎡⎣∑
s∈Sm

⏐⏐⏐φ̂(m)
i,s (t)− ζ (m)

i,s (t)
⏐⏐⏐
⎤⎦ ≤

R |S|M
√
wmax + sup

0≤t
E

⎡⎣∑
s∈Sm

⏐⏐⏐φ̂(m)
i,s (t)− E

(
φ̂

(m)
i,s (t)

)⏐⏐⏐
⎤⎦ .

The first term is of the desired form; we examine the second term.

E

⎡⎣∑
s∈Sm

⏐⏐⏐φ̂(m)
i,s (t)− E

(
φ̂

(m)
i,s (t)

)⏐⏐⏐
⎤⎦ =∑

s∈Sm

E
(⏐⏐⏐φ̂(m)

i,s (t)− E
(
φ̂

(m)
i,s (t)

)⏐⏐⏐) ≤
∑
s∈Sm

√
D2
(
φ̂

(m)
i,s (t)

)
=

∑
s∈Sm

√∑
j∈[N]m

(
w

(m)
i,j

)2
D2
(
ξ̂
(m)
j,s (t)

)
≤

|S|M
√∑

j∈[N]m

(
w

(m)
i,j

)2
≤ |S|M

√
δmaxwmax.

he bound is uniform in t , so it can be upgraded to sup0≤t for free, and (56) holds with C̃2 =
(
R+
√
δmax

)
|S|M .

Next we turn to (57).
ξ̂i,s(t)− zi,s(t) is a martingale, so

φ̂i,s(t)− ζi,s(t) =
N∑
wij

[
ξ̂j,s(t)− zj,s(t)

]

j=1
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i
s also a martingale, and Doob’s martingale inequality yields

E

[
sup
0≤τ≤t

∑
s∈S

⏐⏐⏐φ̂i,s(τ )− ζi,s(τ )
⏐⏐⏐] ≤∑

s∈S

E
[
sup
0≤τ≤t

⏐⏐⏐φ̂i,s(τ )− ζi,s(τ )
⏐⏐⏐] ≤

∑
s∈S

√
E
[
sup
0≤τ≤t

⏐⏐⏐φ̂i,s(τ )− ζi,s(τ )
⏐⏐⏐2] ≤ 2

∑
s∈S

√
E
(⏐⏐⏐φ̂i,s(t)− ζi,s(t)

⏐⏐⏐2) =
2
∑
s∈S

√
D2
(
φ̂i,s(t)

)
= 2

∑
s∈S

√ N∑
j=1

w2
ijD2

(
ξ̂j,s(t)

)
≤ 2 |S|
=:C̃3

√ N∑
j=1

w2
ij . □

Next we show an upper bound for the differences of neighborhood vectors, which are captured by the values D(m)
max(t).

Lemma 4. Assume (16) and independent initial conditions. Then there exist constants C̃4 = C̃5 (δmax) such that for any t ≥ 0
and 1 ≤ m ≤ M

D(m)
max(t) ≤ C̃2

√
wmax + C̃4D(0)

max(t).

where C̃2 comes from Lemma 3.
If we further assume M = 1 then

D̃(1)(t) ≤ C̃3µ+WD̃(0)(t).

where C̃3 comes from Lemma 3.

Proof of Lemma 4. Using Lemma 3, we have

D(m)
i (t) = sup

0≤τ≤t
E

⎡⎣∑
s∈Sm

⏐⏐⏐φ(m)
i,s (τ )− ζ (m)

i,s (τ )
⏐⏐⏐
⎤⎦ ≤

C̃2
√
wmax + sup

0≤τ≤t
E

⎡⎣∑
s∈Sm

⏐⏐⏐φ(m)
i,s (τ )− φ̂(m)

i,s (τ )
⏐⏐⏐
⎤⎦ ≤

C̃2
√
wmax +

∑
j∈[N]m

w
(m)
i,j

⎛⎝ sup
0≤τ≤t

E

⎡⎣∑
s∈Sm

⏐⏐⏐ξ (m)
j,s (τ )− ξ̂ (m)

j,s (τ )
⏐⏐⏐
⎤⎦⎞⎠ .

Lemma 1 provides⏐⏐⏐ξ (m)
j,s (τ )− ξ̂ (m)

j,s (τ )
⏐⏐⏐ ≤ m∑

l=1

⏐⏐⏐ξjl,sl (τ )− ξ̂jl,sl (τ )⏐⏐⏐
sup
0≤τ≤t

E

⎡⎣∑
s∈Sm

⏐⏐⏐ξ (m)
j,s (τ )− ξ̂ (m)

j,s (τ )
⏐⏐⏐
⎤⎦ ≤ sup

0≤τ≤t
E

⎡⎣∑
s∈Sm

m∑
l=1

⏐⏐⏐ξjl,sl (τ )− ξ̂jl,sl (τ )⏐⏐⏐
⎤⎦ ≤

|S|M
m∑
l=1

sup
0≤τ≤t

E

[∑
r∈S

⏐⏐⏐ξjl,r (τ )− ξ̂jl,r (τ )⏐⏐⏐
]
≤ |S|M

m∑
l=1

D(0)
jl
(t) ≤ M |S|M D(0)

max(t).

Putting the inequalities together yields

D(m)
i (t) ≤C̃2

√
wmax +M |S|M D(0)

max(t)
∑

j∈[N]m
w

(m)
i,j  

=δ(m)(i)

D(m)
max(t) ≤C̃2

√
wmax +M |S|M δmax  

=:C̃4

D(0)
max(t).

For the second part of Lemma 4, we once again use Lemma 3.

D̃(1)
i (t) = E

[
sup

∑⏐⏐φi,s(τ )− ζi,s(τ )
⏐⏐] ≤
0≤τ≤t s∈S
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a
u

P

C̃3µi + E

[
sup
0≤τ≤t

∑
s∈S

⏐⏐⏐φi,s(τ )− φ̂i,s(τ )
⏐⏐⏐] ≤

C̃3µi +

N∑
j=1

wij

(
E

[
sup
0≤τ≤t

∑
s∈S

⏐⏐⏐ξj,s(τ )− ξ̂j,s(τ )⏐⏐⏐]) = C̃3µi +

N∑
j=1

wijD̃
(0)
j (t),

so

D̃(1)(t) ≤ C̃3µ+WD̃(0)(t). □

With all the preparations done, we finally turn to proving Theorem 2.

Proof of Theorem 2. Using Lemmas 2 and 4 and Grönwall’s inequality yields

Dmax(t) = D0
max(t)+

M∑
m=1

D(m)
max(t) ≤

MC̃2
√
wmax +

(
MC̃4 + 1

)
D(0)
max(t) ≤

MC̃2
√
wmax +

(
MC̃4 + 1

) ∫ t

0
Dmax(τ )dτ ,

so

Dmax(t) ≤ MC̃2e
(
MC̃4+1

)
t  

=:C

√
wmax.

Proving the second part is similar.

D̃(t) =D̃(0)(t)+
M∑

m=1

D̃(m)(t) ≤ MC̃3
=:C1

µ+M (W + I) D̃(0)(t) ≤

C1µ+ C̃1M
=:C2

∫ t

0
(W + I) D̃(τ )dτ ⇒

D̃(t) ≤C1 ∥µ∥ + C2 ∥W + I∥
∫ t

0

D̃(τ ) dτ ,
so D̃(t) ≤ C1eC2∥W+I∥t ∥µ∥ . □

6.3. Proof of Theorems 4 and 5

Proof of Theorem 4. For a fixed t and s, we apply Doob’s inequality for the martingale 1
K

∑K
i=1(ξ̂i,s(t) − zi,s(t)) and use

independence to get

E

(
sup
0≤τ≤t

⏐⏐⏐⏐⏐ 1K
K∑

i=1

(
zi,s(τ )− ξ̂i,s(τ )

)⏐⏐⏐⏐⏐
)
≤ 2D

(
1
K

K∑
i=1

(
zi,s(t)− ξ̂i,s(t)

))
=

2

⎛⎜⎜⎝ 1
K 2

K∑
i=1

D2
(
zi,s(t)− ξ̂i,s(t)

)
  

≤1

⎞⎟⎟⎠
1/2

≤
2
√
K
, (58)

nd (24) follows by inserting
∑

s∈S on the left hand side at the cost of an |S| factor on the right hand side. The bound is
niform in t , so we can upgrade to sup0≤t . □

roof of Theorem 5. For (25), we consider 0 ≤ τ ≤ t and use both Theorems 2 and 4:

E

(∑⏐⏐⏐⏐⏐ 1N
N∑(

ξi,s(τ )− zi,s(τ )
)⏐⏐⏐⏐⏐
)
≤

s∈S i=1
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(

a

6

A

w

∑
s∈S

E

(⏐⏐⏐⏐⏐ 1N
N∑
i=1

(
ξi,s(τ )− ξ̂i,s(τ )

)⏐⏐⏐⏐⏐+
⏐⏐⏐⏐⏐ 1N

N∑
i=1

(
ξ̂i,s(τ )− zi,s(τ )

)⏐⏐⏐⏐⏐
)
≤

1
N

N∑
i=1

∑
s∈S

E
⏐⏐⏐(ξi,s(τ )− ξ̂i,s(τ ))⏐⏐⏐  
≤Dmax(t)

+

∑
s∈S

E

⏐⏐⏐⏐⏐ 1N
N∑
i=1

(
ξ̂i,s(τ )− zi,s(τ )

)⏐⏐⏐⏐⏐  
≤2/
√
N

≤

Dmax(t)+
2|S|
√
N
≤ C

(
√
wmax +

1
√
N

)
.

The derivation of (26) is analogous to (25) with the exception of keeping the sup0≤τ≤t inside the expectation and using
18) instead of (17).

For (27), we just note that

E

[
sup
0≤τ≤t

(∑
s∈S

⏐⏐⏐⏐⏐ 1N
N∑
i=1

(
ξi,s(τ )− ξ̂i,s(τ )

)⏐⏐⏐⏐⏐
)]
≤

1
N
∥D̃(t)∥1

≤
1
√
N
∥D̃(t)∥2 = O

(√
1
N
∥µ∥22

)
,

nd the rest of the argument is essentially identical to the previous one. □

.4. Proof of Proposition 2

Let p(m)
km :=

Nk(m)
N denote the ratio of vertices in the local group km.

ζ̄
(m)
k (t) =

∑
l(m)

w̄
(m)
k(m),j(m)

m∏
r=1

E
(
zι(t)| k(m)(ι) = l(m)

r

)
=

∑
l(m)

(
m∏

r=1

p(m)
lr

)(
a(m)
km +

m∑
r=1

a(m)

l(m)
r

)
m∏

r=1

E
(
zι(t)| k(m)(ι) = l(m)

r

)
=

∑
l(m)

(
a(m)
km +

m∑
r=1

a(m)

l(m)
r

)
m∏

r=1

p(m)
lr E

(
zι(t)| k(m)(ι) = l(m)

r

)
(59)

Observe

K (m)∑
lm=1

p(m)
lr E

(
zι(t)| a(m)(ι) = l(m)

r

)
=

E
(
E
(
zι(t)| a(m)(ι) = l(m)

r

))
= E (zι(t)) .

lso introduce

ψ (m)(t) :=
K (m)∑
l=1

a(m)
l p(m)

l E
(
zι(t)| a(m)(ι) = l(m))

hich is renaissance of an activity biased average.
We expand (59) based on the terms a(m)

km +
∑m

r=1 a
(m)

l(m)
r

. For a(m)
km

a(m)
km

∑
l(m)

m∏
r=1

p(m)
lr E

(
zι(t)| k(m)(ι) = l(m)

r

)
=

a(m)
km

⎛⎝K (m)∑
l=1

p(m)
l E

(
zι(t)| k(m)(ι) = l(m))⎞⎠ m

=

a(m)
km Em (zι(t)) .
26
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F

p

a

T
T

or the a(m)
l′r

terms we have∑
l(m)

al(m)
r′

m∏
r=1

p(m)
lr E

(
zι(t)| k(m)(ι) = l(m)

r

)
=

K (m)∑
lr′=1

al(m)
r′

p(m)
lr′

E
(
zι(t)| k(m)(ι) = l(m)

r ′

)
  

ψ (m)(t)

K (m)∑
l(m)
r =1
r ̸=r′

m∏
r=1
r ̸=r′

p(m)
lr E

(
zι(t)| k(m)(ι) = l(m)

r

)
=

ψ (m)(t)

⎛⎝K (m)∑
l=1

p(m)
l E

(
zι(t)| k(m)(ι) = l(m))⎞⎠m−1

= ψ (m)(t)Em−1 (zι(t)) .

Therefore, (59) reduces to

ζ̄
(m)
k (t) = a(m)

km Em (zι(t))+ ψ (m)(t)Em−1 (zι(t))

=

(
a(m)
km E (zι(t))+ ψ (m)(t)

)
Em−1 (zι(t)) .

6.5. Proof of Theorem 6

Recall (47). We call the sets X, Y ⊂ [N] ε-regular if for all A ⊆ X, B ⊆ Y such that |A| > ε |X | , |B| > ε |Y | one has

|ρ (A, B)− ρ (X, Y )| < ε.

We use Szemerédi’s regularity lemma.

Lemma (Szemerédi’s Regularity Lemma). For every ε > 0, Kmin ∈ Z+ there is a Kmax such that if N ≥ Kmax there is a
artition V0, V1, . . . , VK such that

|V0| < εN,
|V1| = · · · = |VK | ,

Kmin ≤ K ≤ Kmax

nd there are at most ε
(K
2

)
pairs of (Vk, Vl) , 1 ≤ k < l ≤ K such that they are not ε-regular.

Fix a ε′ > 0 and a Kmin such that

Kmin >
1
ε′
.

his choice ensures that there are enough boxes such that most of the vertices are between boxes and not within them.
his is a fairly common approach in the context of Szemerédi’s regularity lemma [27].
Using Szemerédi’s regularity lemma for ε′, we obtain a partition denoted by V0, V1, . . . , VK .
For p and κ , as defined in (48) and (49), we have the following inequalities:

p =
d̄
N
≥

p0(N − 1)
N

≥
p0
2
> 0

1 =
K∑

k=0

|Vk|

N
≥

K∑
k=1

|Vk|

N
= Kκ H⇒ κ ≤

1
K
≤

1
Kmin

< ε′

where we used N ≥ 2.
Introduce the notations

z̄k(t) :=
1
|Vk|

∑
i∈Vk

zi(t),

ψ(t) :=
K∑

k=1

|Vk|

N
∥z̄k(t)− vk(t)∥1 = κ

K∑
k=1

∥z̄k(t)− vk(t)∥1 .

If V0 = ∅, we use the convention z0(t) ≡ 0.
From (53) and (52), we have

z̄(t) =
1
N

N∑
zi(t) =

K∑ |Vk|

N
1
|Vk|

∑
zi(t) =

K∑ |Vk|

N
z̄k(t)
i=1 k=0 i∈Vk k=0

27
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∥z̄(t)− v̄(t)∥1 =

 |V0|

N
z̄0(t)+

K∑
k=1

|Vk|

N
[z̄k(t)− vk(t)]


1

≤

|V0|

N
∥z̄0(t)∥1 +

K∑
k=1

|Vk|

N
∥z̄k(t)− vk(t)∥1 ≤ ε

′
+ ψ(t)

where in the last step we used |V0| < ε′N and

∥z̄0(t)∥1 ≤
1
|V0|

∑
i∈V0

∥zi(t)∥1  
=1

= 1.

Going forward, it is enough to examine ψ(t).
Next we calculate the derivative of z̄k(t). As M = 1, (29) takes the form

d
dt

zi,s(t) =
∑
s′∈S

qss′ (ζi(t)) zi,s′ (t) =∑
s′∈S

q(0)ss′ zi,s′ (t)+
∑
s′∈S

∑
r∈S

q(1)ss′,rζi,r (t)zi,s′ (t) =

∑
s′∈S

q(0)ss′ zi,s′ (t)+
∑
s′∈S

∑
r∈S

q(1)ss′,r

⎡⎢⎢⎢⎢⎣
N∑
j=1

aij
d̄
w

(m)
ij

zi,s′ (t)zj,r (t)

⎤⎥⎥⎥⎥⎦
d
dt

z̄k,s(t) =
∑
s′∈S

q(0)ss′ z̄k,s′ (t)+
∑
s′∈S

∑
r∈S

q(1)ss′,r

⎡⎣ 1
|Vk|

∑
i∈Vk

N∑
j=1

aij
d̄
zi,s′ (t)zj,r (t)

⎤⎦
Similarly,

d
dt
vk,s(t) =

∑
s′∈S

q(0)ss′ vk,s′ (t)+
∑
s′∈S

∑
r∈S

q(1)ss′,r

K∑
l=1

w̄klvk,s′ (t)vl,r (t)  
=:fk,s(V (t))

where V (t) :=
(
vk,s(t)

)
k∈[K ], s∈S and Z(t) =

(
z̄k,s(t)

)
k∈[K ], s∈S analogously.

Next we show a Lipschitz-type inequality for fk =
(
fk,s
)
s∈S .⏐⏐⏐⏐⏐z̄k,s′ (t)

K∑
l=1

w̄klz̄l,r (t)− vk,s′ (t)
K∑
l=1

w̄klvl,r (t)

⏐⏐⏐⏐⏐ ≤
⏐⏐z̄k,s′ (t)− vk,s′ (t)⏐⏐ K∑

l=1

w̄klz̄l,r (t)  
≤
∑K

k=1 w̄kl≤
2

p0K
K= 2

p0

+ vk,s′ (t)  
≤1

K∑
l=1

w̄kl
≤

2κ
p0

⏐⏐z̄l,r (t)− vl,r (t)⏐⏐ ≤

2
p0

(⏐⏐z̄k,s′ (t)− vk,s′ (t)⏐⏐+ κ K∑
l=1

⏐⏐z̄l,r (t)− vl,r (t)⏐⏐) ,
so ⏐⏐fk,s (Z̄(t))− fk,s (V (t))

⏐⏐ ≤ qmax

∑
s′∈S

⏐⏐z̄k,s′ (t)− vk,s′ (t)⏐⏐+
2qmax

p0

∑
s′∈S

∑
r∈S

(⏐⏐z̄k,s′ (t)− vk,s′ (t)⏐⏐+ κ K∑
l=1

⏐⏐z̄l,r (t)− vl,r (t)⏐⏐) =
qmax

(
1+

2 |S|
p0

)
∥z̄k(t)− vk(t)∥1 +

2qmax |S|
p0

ψ(t).

Summation for s ∈ S results only in an extra S factor, so there exists a constant Lf such thatf (Z(t))− f V (t)
 ≤ L ∥z̄ (t)− v (t)∥ + ψ(t) . (60)
k k ( ) 1 f ( k k 1 )
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a

s

c

Next we look to replace the right hand side of d
dt z̄k,s(t) with fk,s

(
Z(t)

)
. The corresponding error term is

gk,s(t) :=
∑
s′∈S

∑
r∈S

q(1)ss′,r

⎡⎣ 1
|Vk|

∑
i∈Vk

N∑
j=1

aij
d̄
zi,s′ (t)zj,r (t)−

K∑
l=1

w̄klz̄k,s′ (t)z̄l,r (t)

⎤⎦ , (61)

nd from d
dt z̄k(t) = gk(t)+ fk

(
Z(t)

)
, we have

z̄k(t) = z̄k(0)+
∫ t

0
gk(τ )dτ +

∫ t

0
fk
(
Z(τ )

)
dτ .

Using z̄k(0) = vk(0), ψ(t) can be bounded from above by

ψ(t) =κ
K∑

k=1

∥z̄k(t)− vk(t)∥1 ≤

t · sup
0≤τ≤t

κ

K∑
k=1

∥gk(τ )∥1 +
∫ t

0
κ

K∑
k=1

fk (Z(τ ))− fk (V (τ ))

1 dτ ≤

t · sup
0≤τ≤t

κ

K∑
k=1

∥gk(τ )∥1 + Lf

∫ t

0
κ

K∑
k=1

(∥z̄k(τ )− vk(τ )∥1 + ψ(τ )) dτ ≤

t · sup
0≤τ≤t

κ

K∑
k=1

∥gk(τ )∥1 + 2Lf

∫ t

0
ψ(τ )dτ ,

o from Grönwall’s inequality,

sup
0≤t≤T

ψ(t) ≤

(
T · sup

0≤t≤T
κ

K∑
k=1

∥gk(t)∥1

)
e2Lf T .

Therefore it is enough to show that sup0≤t≤T κ
∑K

k=1 ∥gk(t)∥1 = O
(
ε′
)
, and with an appropriate choice of ε = Cε′ we

an conclude

sup
0≤t≤T

∥z̄(t)− v̄(t)∥1 ≤ ε.

κ

K∑
l=1

∥gk(t)∥1 =

κ
∑
s∈S

K∑
k=1

⏐⏐⏐⏐⏐⏐
∑
s′,r∈S

q(1)ss′,r

⎡⎣ 1
|Vk|

∑
i∈Vk

N∑
j=1

aij
d̄
zi,s′ (t)zj,r (t)−

K∑
l=1

w̄klz̄k,s′ (t)z̄l,r (t)

⎤⎦⏐⏐⏐⏐⏐⏐ ≤
κqmax

∑
s,s′,r∈S

K∑
k=1

K∑
l=0

⏐⏐⏐⏐⏐⏐ 1
|Vk|

∑
i∈Vk

∑
j∈Vl

aij
d̄
zi,s′ (t)zj,r (t)− w̄klz̄k,s′ (t)z̄l,r (t)

⏐⏐⏐⏐⏐⏐∑
s,s′,r∈S(. . . ) only contributes a factor of |S|3 which we can include in the constant factor along with qmax. The

remaining terms are

κ

K∑
k=1

K∑
l=0

⏐⏐⏐⏐⏐⏐ 1
|Vk|

∑
i∈Vk

∑
j∈Vl

aij
d̄
zi,s′ (t)zj,r (t)− w̄klz̄k,s′ (t)z̄l,r (t)

⏐⏐⏐⏐⏐⏐ . (62)

In the next step we shall get rid of the diagonal (k, l) terms and also the terms with l = 0. We have

1
|Vk|

∑
i∈Vk

∑
j∈Vl

aij
d̄
zi,s′ (t)zj,r (t) ≤

1
|Vk| d̄

∑
i∈Vk

∑
j∈Vk

1 =
|Vl|

d̄
≤
ε′

p
≤

2ε′

p0
,

w̄klz̄k,s′ (t)z̄l,r (t) ≤
κ

p
≤

2ε′

p0
,
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s
c

w

r
t

i

u

N

k

o each term in the sum of (62) is O
(
ε′
)
. There are O(K ) pairs which are either diagonal or l = 0, so their overall

ontribution to the sum is O
(
κKε′

)
= O

(
ε′
)
, hence we can neglect them and what we are left with is

κ
∑

(k,l)∈I

⏐⏐⏐⏐⏐⏐ 1
|Vk|

∑
i∈Vk

∑
j∈Vl

aij
d̄
zi,s′ (t)zj,r (t)− w̄klz̄k,s′ (t)z̄l,r (t)

⏐⏐⏐⏐⏐⏐ . (63)

here I = {(k, l)|k, l ∈ [K ], k ̸= l}.
In order to have an upper bound for (63) we want to use the properties of the ε′-regular partition. However, Szemerédi’s

egularity lemma uses subsets of [N], or in other words, 0−1 valued indicators of vertices compared to zi,s(t) which may
ake any value from [0, 1].

To account for this problem, we introduce N independent homogeneous Markov processes taking values from S. Each
process makes Markov transitions according to the transition rate matrix Q (ζi(t)) and its initial distribution is given by(
zi,s(0)

)
s∈S . Let ηi,s(t) be an indicator of the i’th such process is at state s at time t . We also apply the notations

ηi(t) =
(
ηi,s(t)

)
s∈S ,

η̄k(t) :=
1
|Vk|

∑
i∈Vk

ηi(t).

It is easy to see that E (ηi(t)) = zi(t). Also, since i ∈ Vk and j ∈ Vl, i and j are different for k ̸= l, hence the corresponding
processes are independent, so

zi,s′ (t)zj,r (t) =E
(
ηi,s′ (t)ηj,k(t)

)
,

z̄k,s′ (t)z̄l,r (t) =E
(
η̄k,s′ (t)η̄l,r (t)

)
.

Therefore, (63) can be bounded from above by

E

⎡⎣κ ∑
(k,l)∈I

⏐⏐⏐⏐⏐⏐ 1
|Vk|

∑
i∈Vk

∑
j∈Vl

aij
d̄
ηi,s′ (t)ηj,r (t)− w̄klη̄k,s′ (t)η̄l,r (t)

⏐⏐⏐⏐⏐⏐
⎤⎦ . (64)

The upper bound we aim to obtain does not depend on the artificial randomness just introduced, hence the expectation
s ignored.

We make some algebraic manipulation to end up with edge densities needed for Szemerédi’s regularity lemma. We
se the notation

Vk,s(t) :=
{
i ∈ Vk| ηi,s(t) = 1

}
.

Then
1
|Vk|

∑
i∈Vk

∑
j∈Vl

aij
d̄
ηi,s′ (t)ηj,r (t) =

1
|Vk| d̄

e
(
Vk,s′ (t), Vl,r (t)

)
=

|Vl|

d̄
ρ
(
Vk,s′ (t), Vl,r (t)

) ⏐⏐Vk,s′ (t)
⏐⏐

|Vk|

⏐⏐Vl,r (t)
⏐⏐

|Vl|
=
κ

p
ρ
(
Vk,s′ (t), Vl,r (t)

)
η̄k,s′ (t)η̄l,k(t).

By recalling (50), the inside of (64) can be rewritten as

κ2

p

∑
(k,l)∈I

⏐⏐ρ (Vk,s′ (t), Vl,r (t)
)
− ρ (Vk, Vl)

⏐⏐ η̄k,s′ (t)η̄l,r (t). (65)

ote that the summands of (65) are O(1).
Using Szemerédi’s lemma to (65) is relatively straightforward from now on. We still have to deal with non-ε′-regular

, l pairs, and pairs where either
⏐⏐Vk,s′ (t)

⏐⏐ ≤ ε′ |Vk| or
⏐⏐Vl,r (t)

⏐⏐ ≤ ε′ |Vl|. The former set of pairs are denoted by I1 and the
latter by I2, and I3 := I \ (I1 ∪ I2) denotes the non-problematic pairs.

Then from |I1| ≤ ε
′
(K
2

)
≤ ε′K 2 we have

κ2

p

∑
(k,l)∈I1

⏐⏐ρ (Vk,s′ (t), Vl,r (t)
)
− ρ (Vk, Vl)

⏐⏐ η̄k,s′ (t)η̄l,r (t) = O
(
ε′κ2K 2)

= O
(
ε′
)
.

(k, l) ∈ I2 is equivalent with η̄k,s′ (t) ≤ ε′ or η̄l,k(t) ≤ ε′, yielding

κ2

p

∑ ⏐⏐ρ (Vk,s′ (t), Vl,r (t)
)
− ρ (Vk, Vl)

⏐⏐ η̄k,s′ (t)η̄l,r (t) ≤

(k,l)∈I2

30
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ε′κ2

p

∑
(k,l)∈I2

1 = O
(
ε′κ2K 2)

= O
(
ε′
)
.

Finally, (k, l) ∈ I3 gives⏐⏐ρ (Vk,s′ (t), Vl,r (t)
)
− ρ (Vk, Vl)

⏐⏐ < ε′ ⇒

κ2

p

∑
(k,l)∈I3

⏐⏐ρ (Vk,s′ (t), Vl,r (t)
)
− ρ (Vk, Vl)

⏐⏐ η̄k,s′ (t)η̄l,r (t) ≤
ε′κ2

p

∑
(k,l)∈I2

1 = O
(
ε′κ2K 2)

= O
(
ε′
)
.

This ensures that sup0≤t≤T κ
∑K

k=1 ∥gk(t)∥1 = O
(
ε′
)
indeed holds, concluding the proof of Theorem 6. □
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