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Induced Turán problems and traces of hypergraphs
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Abstract

Let F be a graph. We say that a hypergraph H contains an induced Berge F if the vertices

of F can be embedded to H (e.g., V (F ) ⊆ V (H)) and there exists an injective mapping f from

the edges of F to the hyperedges of H such that f(xy) ∩ V (F ) = {x, y} holds for each edge xy

of F . In other words, H contains F as a trace.

Let exr(n,BindF ) denote the maximum number of edges in an r-uniform hypergraph with

no induced Berge F . Let ex(n,Kr, F ) denote the maximum number of Kr’s in an F -free graph

on n vertices. We show that these two Turán type functions are strongly related.

Mathematics Subject Classification: 05D05, 05C65, 05C35.

Keywords: extremal hypergraph theory, Berge hypergraphs, traces.

1 Definitions, Berge F subhypergraphs

A hypergraph H is r-uniform or simply an r-graph if it is a family of r-element subsets of a finite set

V (H). If the vertex set V (H) is clear from the text, then we associate an r-graph H with its edge

set E(H). Usually we take V (H) = [n], where [n] is the set of first n integers, [n] := {1, 2, 3, . . . , n}.

We also use the notation H ⊆
([n]
r

)

. For a set of vertices S ⊆ V (H) define the codegree of S, denoted

as deg(S), to be the number of edges of H containing S. The s-shadow, ∂sH, is the family of s-sets

contained in the edges of H. So ∂1H is the set of non-isolated vertices, and ∂2H is the graph whose

edges are the pairs with positive co-degree in H.

Definition 1.1. For a graph F with vertex set {v1, . . . , vp} and edge set {e1, . . . , eq}, a hypergraph

H contains a Berge F if there exist distinct vertices {w1, . . . , wp} ⊆ V (H) and distinct edges

{f1, . . . , fq} ⊆ E(H), such that if ei = vαvβ, then {wα, wβ} ⊆ fi. The vertices {w1, . . . , wp} are

called the base vertices of the Berge F .

Definition 1.2. For a graph F with vertex set {v1, . . . , vp} and edge set {e1, . . . , eq}, a hypergraph H

contains an induced Berge F if there exists a set of distinct vertices W := {w1, . . . , wp} ⊆ V (H)

and distinct edges {f1, . . . , fq} ⊆ E(H), such that if ei = vαvβ, then {wα, wβ} = fi ∩W .

In particular, in the case that H is a graph (2-uniform), an induced Berge F is just any copy of F

in H, not to be confused with the notion of induced subgraphs. If the two hypergraphs have the

same number of edges, e(H) = e(F), then we say that H itself is a(n induced) Berge F hypergraph.

The set of r-uniform (induced) Berge F hypergraphs is denoted by {B(F )}r ({Bind(F )}r, resp.).
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For example, if F is a triangle, E(F ) = {12, 13, 23}, then {B(F )}3 contains four triple systems:

{12a, 13a, 23a}, {12a, 13a, 23b}, {12a, 13b, 23c}, and {123, 13a, 23b}. The first three of them con-

tains an induced C3, the fourth does not. Parenthesis and indices are omitted when it does not

cause ambiguities.

1.1 Three types of extremal numbers

Given a set of r-graphs F the hypergraph H is called F-free if it does not have any subgraph

isomorphic to any member of F . The Turán number of F , denoted by exr(n,F), is the maximum

size of an F-free H ⊆
([n]
r

)

. Usually it is assumed that |F| is finite, so the well-known fact

ex2(n, {C3, C4, C5, . . . }) = n − 1 usually is not considered a Turán type result because the set of

forbidden graphs F , the set of all cycles, is infinite. If r = 2 then the index is usually omitted.

Also if F has only one member, F = {F}, then we write exr(n, F ) instead of exr(n, {F}).

The generalized Turán number for graphs, pioneered by Erdős [3] and recently systematically inves-

tigated by Alon and Shikhelman [1], is the following extremal problem. We only formulate the case

relevant to this paper. Given a graph F , let ex(n,Kr, F ) denote the maximum possible number of

copies of Kr’s in an F -free, n-vertex graph, i.e.,

ex(n,Kr, F ) := max

{

|Nr(H)| : H is F -free ,H ⊆

(

[n]

2

)}

,

where Nr(H) ⊆
([n]
r

)

is the family of r-element vertex sets that span a Kr in H. In particular

N2(H) = E(H) and ex(n,K2, F ) = ex(n, F ) is the regular Turán number of F .

For a graph F and positive integer r, let

exr(n,BF ) := max{e(H) : H ⊆

(

[n]

r

)

and H is Berge F -free}.

Ever since Győri, G. Y. Katona, and Lemons [8] investigated hypergraphs without long Berge paths

there is a renewed interest concerning extremal Berge type problems. Here we define a related

function, the induced Berge Turán number of F . Special cases were studied earlier, especially the

3-uniform case (e.g., Maherani and Shahsiah [13], Gyárfás [7], Sali and Spiro [18]).

exr(n,BindF ) := max{e(H) : H ⊆

(

[n]

r

)

and H is induced Berge F -free}.

We consider the relationship between these three functions. Obviously,

ex(n,Kr, F ) ≤ exr(n,BF ) ≤ exr(n,BindF ). (1)

Indeed, consider a graph G with |Nr(G)| = ex(n,Kr, F ). Since G is F -free, the r-graph Nr(G) is

Berge F -free, implying |Nr(G)| ≤ exr(n,BF ). The second inequality holds because if a hypergraph

contains no Berge F then it also contains no induced Berge F .

The induced Berge F problem is motivated by the forbidden configuration problem for matrices

(see Anstee [2] for a survey). It can also be reformulated as a hypergraph trace problem (see, e.g.,
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Mubayi and Zhao [15]). Few results are known for the induced Berge Turán problem. In [15], the

value of exr(n,BindKt) is determined asymptotically for K3 and K4, as well as Kt when t is close

to the uniformity r.

A special case of induced Berge hypergraphs, so called expansions were intensively studied, see,

e.g., Pikhurko [16], Kostochka, Mubayi, and Verstraëte [11], and the survey by Mubayi and Ver-

straëte [14].

There are also other areas of research in extremal graph theory which are called ‘induced’ Turán

type results. E.g., Prömel and Steger [17] investigated the extremal properties of graphs not

containing an induced copy of a given graph F . A more recent version is by Loh, Tait, Timmons,

and Zhou [12]. But most of these are only distant relatives of our induced Berge question.

2 Main results, bounds for exr(n,BindF )

2.1 The order of magnitude

Let F be a graph, r ≥ 2. Our aim is to determine the order of magnitude of the induced Berge

Turán number of F as n → ∞, or to reduce it to known problems. Then in the next subsection

we define a large class of 3-chromatic graphs Gtri which contains, e.g., all outerplanar graphs, and

apply our results and methods to determine their induced Berge Turán number more precisely.

Theorem 2.1. Let r ≥ 2, and fix a graph F such that E(F ) 6= ∅. Then, as n → ∞

exr(n,BindF ) = Θ( max
2≤s≤r

{ex(n,Ks, F )}).

This theorem shows that the order of magnitudes of the three functions in (1) behave differently

as r changes. For small r, in the range r ≤ χ(F ) − 1, all the three, exr(n, F ), exr(n,BF ), and

exr(n,BindF ), are of order Θ(nr) because the balanced complete (χ(F )−1)-partite r-graph contains

no Berge F (so its 2-shadow, the r-partite Turán graph is r-chromatic).

If r ≥ |V (F )| then ex(n,Kr, F ) = 0 (since a Kr contains a copy of F ). For general graphs F , the

behavior of the three functions in the range χ(F ) ≤ r ≤ |V (F )| − 1 is still unknown. Determining

the order of ex(n,Kr, F ) for r in this range would give an answer for the growth of exr(n,BindF ).

Concerning the Berge Turán function Gerbner and Palmer [5] showed that

exr(n,BF ) ≤ ex(n, F )

for r ≥ |V (F )|. So in this range exr(n,BF ) = O(n2). For the complete graphs the two sides have

the same order: exr(n,BKr) = Θ(n2) if r ≥ 3. However this does not hold if r is large compared

to |V (F )|. Grósz, Methuku, and Tompkins [6] proved that for any non-bipartite F and sufficiently

large r, the order of exr(n, F ) differs from that of ex(n, F ): there exists some number th(F ) such

that if r ≥ th(F ) then exr(n, F ) = o(n2).

In contrast, the order of the induced Berge Turán function exr(n,BindF ) is non-decreasing in r.

Moreover, it is basically monotone. If
⋂

E(F ) = ∅, i.e., F is not a star, then we will see later by
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Lemma 3.1 that
(

1−
r − 1

n

)

exr−1(n,BindF ) ≤ exr(n,BindF ). (2)

2.2 Outerplanar graphs and more

We define the class of t-vertex graphs G
(t)
tri by induction on t as follows. The class G

(2)
tri has only

a single member, K2. For t > 2 one obtains each member G of G
(t)
tri by taking a G(t−1) ∈ G

(t−1)
tri ,

taking an edge xy ∈ G(t−1), adding a new vertex z /∈ V (G(t−1)), and joining z to x and to y. Each

G ∈ G
(t)
tri has exactly t vertices and 2t − 3 edges. Finally, let Gtri be the family of all non-empty

subgraphs of the members of ∪t≥2G
(t)
tri .

Note that Gtri contains all outerplanar graphs, particuarly cycles, Ct, and forests. Each G ∈ Gtri

has chromatic number at most 3 and are obviously planar.

Theorem 2.2. Let r ≥ 2 be a positive integer. Fix a graph F ∈ Gtri. As n → ∞ we have

exr(n,BindF ) = Θ(ex(n, F )).

This theorem reveals further gaps between exr(n,BF ) and exr(n,BindF ). Győri and Lemons [9,

10] proved that for r ≥ 3 an r-uniform hypergraph avoiding a Berge cycle C2t+1 has at most

O(ex(n,C2t)) edges, which is known to be O(n1+(1/t)). On the other hand, in the same range, we

have exr(n,BindC2t+1) = Θ(n2).

Together, Theorems 2.1 and 2.2 show that ex(n,Ct) has the same order as max2≤s≤r{ex(n,Ks, F )}.

We obtain the following (known) corollary. For any r ≥ 2 and t ≥ 3

ex(n,Kr, Ct) = O(ex(n,Ct)).

We also state the case of trees.

Corollary 2.3. Let r ≥ 2 and T be a forest with at least two edges. Then exr(n,BindT ) =

Θ(ex(n, T )) = Θ(n).

Finally, we get better bounds for stars, F = K1,t−1.

Theorem 2.4. For any r ≥ 2, t ≥ 3, if n = a(r + t− 3) + b with b ≤ r + t− 4 then

a

(

r + t− 3

r

)

+

(

b

r

)

≤ exr(n,BindK1,t−1) ≤
n

r

(

r + t− 3

r − 1

)

.

In particular, if n is divisible by r + t− 3, the lower bound is n
r

(

r+t−4
r−1

)

.

3 Constructions and proofs

3.1 Simple constructions and a monotonicity of the induced Berge Turán func-

tion

If E(F ) has a single edge then for n ≥ |V (F )|+r−2 we have ex(n, F ) = ex(n,Kr, F ) = exr(n,BF ) =

exr(n,BindF ) = 0, so there is nothing to prove, all of our statements trivially hold.
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In all other cases we have exr(n,BindF ) = Ω(n) as one can see from the following constructions. If

F has two non-disjoint edges then a matching of r-sets gives exr(n,BindF ) ≥ ⌊n/r⌋. If F has two

disjoint edges then the hypergraph consisting of n− r+1 sets sharing a common (r− 1)-set yields

exr(n,BindF ) ≥ n− r + 1.

If x ∈ V (F ) is an isolated vertex then exr(n,BindF ) = exr(n,Bind(F \ {x})) for all n > (r −

2)|E(F )| + |V (F )|. So we may delete isolated vertices and asymptotically get the same Turán

number. From now on, we suppose that F has no isolated vertex and |E(F )| ≥ 2.

Lemma 3.1. Fix integers r, t ≥ 2. If F is a graph on t vertices such that F 6= K1,t−1 (and

e(F ) ≥ 2 and F has no islated vertex), then exr(n,BindF ) ≥ ex(r−1)(n − 1,BindF ). In particular,

exr(n,BindF ) = Ω(ex(n, F )).

Proof. Let H be an (r− 1)-uniform hypergraph on n− 1 vertices with exr(n− 1,BindF ) edges and

no induced Berge F . Construct an r-uniform hypergraph H′ with V (H′) = V (H) ∪ {v} such that

the edges of H′ are obtained by extending every edge of H to include the new vertex v. Suppose

H′ contains an induced Berge F . Since H was induced Berge F -free, v must be a base vertex.

Because v is contained in every edge of H′, there is a fixed vertex contained in every edge of F .

I.e., F = K1,t−1, a contradiction.

Inductively, we obtain ex2(n − r + 2,BindF ) ≤ exr(n,BindF ). But ex2(n − r + 2,BindF ) = ex(n−

r + 2, F ) = Θ(ex(n, F )). ✷

To show (2) let H be an induced Berge F -free (r − 1)-uniform hypergraph on n vertices, |H| =

ex(r−1)(n,BindF ). For x ∈ V := V (H) let Hx := {e ∈ H : e ⊂ V \ {x}}. Since each Hx is also

induced Berge F -free we get

(n− r + 1)ex(r−1)(n,BindF ) = (n− r + 1)|H| =
∑

x∈V

|Hx| ≤ n× ex(r−1)(n− 1,BindF ).

By Lemma 3.1 the right hand side is at most n× exr(n,BindF ). Rearranging yields (2). ✷

3.2 The α-core of a hypergraph

Let H be an r-partite, r-uniform hypergraph with parts V (H) = V1 ∪ . . . ∪ Vr. For some 1 ≤ s ≤ r

and edge e ∈ H, define e[s] to be the trace of e onto all parts other than Vs. That is, e[s] = e \ Vs.

Let H[s] = {e[s] : e ∈ E(H)}.

Theorem 3.2. For positive integers α, r, any r-uniform r-partite hypergraph H contains edge-

disjoint subhypergraphs A and B such that

(a) For any S ⊆ V (H), with |S| = r − 1, either degA(S) = 0 or degA(S) ≥ α.

(b) |B| ≥ |H\A|
α−1 and |B| ≤

∑r
s=1 |B[s]|.

Proof. We build A and B inductively. Initially set H0 := H, B0 := {∅}.
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At step i, if there exists an S ⊆ V (Hi−1) with |S| = r − 1 and 1 ≤ degHi−1
(S) ≤ α − 1, then let

ES be the edges of Hi−1 containing S. Set Hi = Hi−1 \ ES . Pick any edge, say Bi ∈ ES , and set

Bi = Bi−1 ∪ {Bi}.

The process ends after k steps when for every S ⊆ V (Hk) with |S| = r− 1, either degHk
(S) = 0 or

degHk
(S) ≥ α. Let A := Hk and B := Bk = {B1, . . . , Bk}. Then A satisfies (a).

To see that B satisfies (b), at each step i when we choose Bi ∈ ES , |ES | ≤ α − 1, so we obtain

that |B| is at least a 1/(α− 1) portion of the deleted edges. Next, at each step, we associated with

Bi a distinct set Si of r − 1 vertices. If Bi and Bj are associated with sets Si and Sj respectively

such that both sets are contained in (V1 ∪ . . .∪ Vr) \Vs, then in B[s], Bi[s] = Si and Bj [s] = Sj are

distinct. Hence
∑r

s=1 B[s] ≥ |{S1, . . . , Sk}| = |B|. ✷

Let any A ⊆ H satisfying (a) be called an α-core of H.

Lemma 3.3. Let α, r be positive integers, and let F be a graph with |V (F )| − 1 ≤ α. Let H be an

r-uniform, r-partite hypergraph with an α-core A. If the 2-shadow ∂2A of A contains a copy of F

then A (and therefore H) contains an induced Berge F .

Proof. We will find an induced Berge F on the same base vertex set V (F ). Let xy be an edge in

the copy of F , and let exy be an edge of A containing {x, y} with minimum |exy ∩ V (F )|. Such an

edge exy exists by the definition of the 2-shadow. If exy contains some vertex z ∈ V (F ) \ {x, y},

then the (r − 1)-set exy \ {z} is contained in at least α − 1 other edges in A. Since there are

|V (F )| − 3 ≤ α− 2 vertices in V (F ) \ {x, y, z}, we may find some z′ 6∈ V (F ) − {x, y, z} such that

exy \ {z} ∪ {z′} ∈ E(A), contradicting the choice of exy. Therefore exy ∩ V (F ) = {x, y}. We find

such an edge of A for each edge of F . ✷

If α ≥ e(F ) + |V (F )|, then with the same method one can find an induced Berge F in A such that

each pair of hyperedges exy and euv intersect only at {x, y}∩ {u, v}. This is called an F -expansion.

But this observation does not seem to help our purposes here.

Claim 3.4. Suppose that r ≥ 3 and A contains an induced Berge F , where |V (F )| ≤ α (and

E(F ) 6= ∅). Define a new graph F+ := F+
xy by adding a new vertex z /∈ V (F ), taking an edge

xy ∈ E(F ), and joining z to x and to y. Then A also contains an induced Berge F+.

Proof. By Lemma 3.3, there exists a hyperedge exy ∈ A such that exy ∩ V (F ) = {x, y}. Then for

any z′ ∈ exy \{x, y} we have that xz′ and yz′ ∈ ∂2A, so F+ is a subgraph of ∂2A. Then Lemma 3.3

completes the Claim. ✷

Lemma 3.5. Suppose that G ∈ Gtri with t = |V (T )| ≥ 3. Then G ∈ G
(t)
tri .

Proof. This statement seems to be evident, but still needs a proof. By definition, there exists an

s ≥ t such that G ∈ G
(s)
tri . Let s = s(G) be the smallest such s. We will show by induction on t that

s(G) = t. The base case t = 3 is obvious. Suppose t > 3 and that G is a subgraph of H ∈ G
(s)
tri ,

where the vertices of H are {v1, . . . , vs} and each vi (with i ≥ 3) has exactly two H-neighbors in

{v1, . . . , vi−1}. Moreover, these two neighbors (call them vα(i) and vβ(i)) are joined by an edge in

H. Let I ⊆ [s], I := {i1, . . . , it}, 1 ≤ i1 < · · · < it ≤ s, VI := {vi : i ∈ I}, and suppose that G
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is a spanning subgraph of H[VI ]. Since s is minimal, we have it = s and NH(vs) = {vα(s), vβ(s)}.

G′ := H[VI ]\{vs} has t−1 vertices, and it belongs to Gtri. By our induction hypothesis there exists a

H ′ ∈ Gt−1
tri such that G′ is a subgraph of H ′ on the same vertex set VI\{vs}. If {vα(s), vβ(s)} ⊆ V (H ′)

then by adjoining a new vertex z′ to H ′ and connecting it to vα(s) and vβ(s) we obtain a t-vertex

graph H ′′ from G
(t)
tri containing G. If |NH(vs) ∩ V (H ′)| ≤ 1 then it is even simpler to find such a

graph H ′′. ✷

3.3 Proofs of the upper bounds for induced Berge F problems

We prove a version of Theorem 2.1 with more precise bounds. For positive integers a and b,

(a)b = (a)(a − 1) · · · (a− b+ 1) denotes the falling factorial.

Theorem 3.6. Let t, r, n be positive integers, and let F be any graph with |V (F )| = t. Let H be

an n-vertex r-uniform hypergraph with no induced Berge F . If H is r-partite, then

e(H) ≤
r

∑

i=2

(t− 2)r−i(r)r−iex(n,Ki, F ).

Proof. We proceed by induction on r. The base case r = 2 is trivial since an induced Berge F is

just a copy of F . Thus ex2(n,BindF ) = ex(n,K2, F ) = ex(n, F ). Now let r ≥ 3. Let A and B be

subhypergraphs of H obtained from Theorem 3.2 with α = t− 1. So we have

|H| = |A|+ |H \ A| ≤ |A|+ (t− 2)

r
∑

s=1

|B[s]| ≤ |A|+ (t− 2)(r)exr−1(n,BindF ),

where the last inequality holds because each B[s] is (r − 1)-uniform, (r − 1)-partite and does not

contain an induced Berge F .

By Lemma 3.3, ∂2A contains no copy of F . Furthermore, since each edge in A creates a Kr in ∂2A,

|A| ≤ ex(n,Kr, F ). Applying the induction hypothesis, we obtain

|H| ≤ ex(n,Kr, F ) + (t− 2)r
r−1
∑

i=2

(t− 2)r−1−i(r − 1)r−1−iex(n,Ki, F )

and we are done. ✷

Corollary 3.7. Let t, r, n be positive integers, and let F be any graph with V (F ) = t. Then

max
2≤s≤r

{ex(n− (r − s),Ks, F )} ≤ exr(n,BindF ) ≤
rr

r!

r
∑

i=2

(t− 2)r−i(r)r−iex(n,Ki, F ).

In particular, exr(n,BindF ) = Θ(maxs≤r{ex(n,Ks, F )}).

Proof. The lower bound follows from Lemma 3.1 and (1). For the upper bound, we use the fact that

any r-uniform hypergraph H has an r-partite subhypergraph with at least r!
rr e(H) edges. Apply

Theorem 3.6 to any such subhypergraph. ✷
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Proof of Theorem 2.2. The lower bound comes from Lemma 3.1. For the upper bound, we proceed

by induction on r. First we show that if H is r-partite with no induced Berge F ∈ Gtri then

|H| ≤ (t− 2)r−2 r!

2
ex(n, F ). (3)

The base case r = 2 is trivial, so let r ≥ 3. Let A and B be subhypergraphs of H obtained from

Theorem 3.2 with α = t− 1. Again we have

|H| ≤ |A|+ (t− 2)

r
∑

s=1

|B[s]| ≤ |A|+ (t− 2)(r)exr−1(n,BindF ). (4)

Observe that A is empty. Indeed, if A contains at least one edge, then the 2-shadow ∂2A contains a

Kr. So Claim 3.4 and Lemma 3.5 imply that ∂2A contains a copy of F . Then we apply Lemma 3.3

to find an induced Berge F , a contradiction. Hence |A| = 0. Applying induction hypothesis, (4)

yields (3).

Finally, if H is not r-partite, then we apply the previous proof to an r-partite subgraph H′ of H

with at least r!
rr |H| edges to obtain |H| ≤ 1

2r
r(t− 2)r−2ex(n, F ). ✷

Proof of Theorem 2.4. For the lower bound, let each component of H be a clique such that there

are as many cliques of size r+ t− 3 as possible. If n = a(r+ t− 3)+ b where 0 ≤ b < r+ t− 3, then

|H| = a
(r+t−3

r

)

+
(b
r

)

. Suppose H contains an induced Berge K1,t−1. Then its base vertices, say

{v1, . . . , vt} must be contained in a single component of H. But each edge in a component contains

at least 3 base vertices, a contradiction.

For the upper bound, let H be an n-vertex, r-uniform hypergraph with no induced Berge K1,t−1.

We say that a set system {f1, . . . , fs} is strongly representable if for every fi ∈ F , there exists a

vi ∈ fi such that vi /∈ fj for all j 6= i. Füredi and Tuza [4] proved that if a set system F with |f | ≤ r

for all f ∈ F does not contain a strongly representable subfamily of size s then |F| ≤
(r+s−1

r

)

. For

any vertex v ∈ V (H), let Ev := {e \ {v} : v ∈ e ∈ H}. The (r − 1)-uniform set system Ev cannot

contain a strongly representable subfamily of size t − 1, otherwise the corresponding edges in H

and their representative vertices would yield an induced Berge K1,t−1 in H with vertex v as the

center vertex. Therefore deg(v) ≤
((r−1)+(t−2)

r−1

)

so |H| ≤ n
r

(r+t−3
r−1

)

. ✷
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