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Abstract

Let F' be a graph. We say that a hypergraph H contains an induced Berge F if the vertices
of F' can be embedded to H (e.g., V(F) C V(#)) and there exists an injective mapping f from
the edges of F' to the hyperedges of H such that f(xy) NV (F) = {z,y} holds for each edge xy
of F. In other words, H contains F' as a trace.

Let ex,(n,BinaF') denote the maximum number of edges in an r-uniform hypergraph with
no induced Berge F. Let ex(n, K, F') denote the maximum number of K,’s in an F-free graph
on n vertices. We show that these two Turan type functions are strongly related.

Mathematics Subject Classification: 05D05, 05C65, 05C35.
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1 Definitions, Berge F' subhypergraphs

A hypergraph H is r-uniform or simply an r-graph if it is a family of r-element subsets of a finite set
V(H). If the vertex set V(H) is clear from the text, then we associate an r-graph H with its edge
set E(H). Usually we take V(#H) = [n], where [n] is the set of first n integers, [n] := {1,2,3,...,n}.
We also use the notation H C ([2}). For a set of vertices S C V(H) define the codegree of S, denoted
as deg(9), to be the number of edges of H containing S. The s-shadow, OsH, is the family of s-sets
contained in the edges of H. So 01H is the set of non-isolated vertices, and doH is the graph whose
edges are the pairs with positive co-degree in H.

Definition 1.1. For a graph F' with vertex set {vi,...,v,} and edge set {e1,...,eq}, a hypergraph
H contains a Berge F if there exist distinct vertices {wi,...,w,} C V(H) and distinct edges
{fi,---, fq} € E(H), such that if e; = vovg, then {wq,wg} C fi. The vertices {wn,...,wy} are
called the base vertices of the Berge F.

Definition 1.2. For a graph F with vertezx set {v1,...,v,} and edge set {ei, ..., eq}, a hypergraph H
contains an induced Berge F if there exists a set of distinct vertices W := {wy,...,w,} C V(H)
and distinct edges {f1,..., fq} € E(H), such that if e; = vavg, then {wq, wg} = fiNW.

In particular, in the case that H is a graph (2-uniform), an induced Berge F' is just any copy of F
in H, not to be confused with the notion of induced subgraphs. If the two hypergraphs have the
same number of edges, e(H) = e(F), then we say that #H itself is a(n induced) Berge F' hypergraph.
The set of r-uniform (induced) Berge F' hypergraphs is denoted by {B(F)}, ({Bina(F)}r, resp.).
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For example, if F' is a triangle, E(F) = {12,13,23}, then {B(F)}s contains four triple systems:
{12a,13a,23a}, {12a,13a,23b}, {12a,13b,23c}, and {123,13a,23b}. The first three of them con-
tains an induced Cj3, the fourth does not. Parenthesis and indices are omitted when it does not
cause ambiguities.

1.1 Three types of extremal numbers

Given a set of r-graphs F the hypergraph H is called F-free if it does not have any subgraph
isomorphic to any member of F. The Turdn number of F, denoted by ex,(n,F), is the maximum
size of an F-free H C ([ﬁ]). Usually it is assumed that |F| is finite, so the well-known fact
exa(n,{Cs3,C4,C5,...}) = n — 1 usually is not considered a Turdn type result because the set of
forbidden graphs F, the set of all cycles, is infinite. If » = 2 then the index is usually omitted.
Also if F has only one member, F = {F'}, then we write ex,(n, F') instead of ex,(n, {F}).

The generalized Turdan number for graphs, pioneered by Erdés [3] and recently systematically inves-
tigated by Alon and Shikhelman [I], is the following extremal problem. We only formulate the case
relevant to this paper. Given a graph F', let ex(n, K,, F') denote the maximum possible number of
copies of K,’s in an F-free, n-vertex graph, i.e.,

ex(n, K, F) := max{|Nr(H)| . H is F-free ,H C <[Z]> },
where N;.(H) C ([:f]) is the family of r-element vertex sets that span a K, in H. In particular

No(H) = E(H) and ex(n, Ko, F) = ex(n, F)) is the regular Turdn number of F.

For a graph F' and positive integer r, let
ex,(n,BF) := max{e(H) : H C <[Z]> and H is Berge F-free}.

Ever since Gyéri, G. Y. Katona, and Lemons [§] investigated hypergraphs without long Berge paths
there is a renewed interest concerning extremal Berge type problems. Here we define a related
function, the induced Berge Turdn number of F. Special cases were studied earlier, especially the
3-uniform case (e.g., Maherani and Shahsiah [I3], Gyérfds [7], Sali and Spiro [18]).

ex,(n, BingF') := max{e(H) : H C <[Z]> and H is induced Berge F-free}.

We consider the relationship between these three functions. Obviously,
ex(n, K, F) < ex,(n,BF) < ex,(n, BingF). (1)

Indeed, consider a graph G with |N,.(G)| = ex(n, K., F'). Since G is F-free, the r-graph N,.(G) is
Berge F-free, implying |V, (G)| < ex,(n,BF). The second inequality holds because if a hypergraph
contains no Berge F' then it also contains no induced Berge F'.

The induced Berge F' problem is motivated by the forbidden configuration problem for matrices
(see Anstee [2] for a survey). It can also be reformulated as a hypergraph trace problem (see, e.g.,
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Mubayi and Zhao [I5]). Few results are known for the induced Berge Turdn problem. In [I5], the
value of ex,(n,BinqK¢) is determined asymptotically for K3 and K4, as well as K; when t is close
to the uniformity 7.

A special case of induced Berge hypergraphs, so called expansions were intensively studied, see,
e.g., Pikhurko [I6], Kostochka, Mubayi, and Verstraéte [11], and the survey by Mubayi and Ver-

straéte [14].

There are also other areas of research in extremal graph theory which are called ‘induced’ Turan
type results. E.g., Promel and Steger [I7] investigated the extremal properties of graphs not
containing an induced copy of a given graph F. A more recent version is by Loh, Tait, Timmons,
and Zhou [12]. But most of these are only distant relatives of our induced Berge question.

2 Main results, bounds for ex,(n, ByqF)

2.1 The order of magnitude

Let F' be a graph, » > 2. Our aim is to determine the order of magnitude of the induced Berge
Turdn number of ' as n — oo, or to reduce it to known problems. Then in the next subsection
we define a large class of 3-chromatic graphs Gy which contains, e.g., all outerplanar graphs, and
apply our results and methods to determine their induced Berge Turdan number more precisely.

Theorem 2.1. Let r > 2, and fix a graph F such that E(F) # (. Then, as n — o0

ex,(n, BingF') = @(2I£1§é<r{ex(n, Kg, F)}).

This theorem shows that the order of magnitudes of the three functions in (Il) behave differently
as r changes. For small 7, in the range r < x(F) — 1, all the three, ex,(n, F), ex,(n,BF), and
ex,(n, BinaF'), are of order ©(n") because the balanced complete (x(F')—1)-partite r-graph contains
no Berge F' (so its 2-shadow, the r-partite Turdn graph is r-chromatic).

If r > |V(F)| then ex(n, K, F') = 0 (since a K, contains a copy of F'). For general graphs F', the
behavior of the three functions in the range x(F) < r < |[V(F')| — 1 is still unknown. Determining
the order of ex(n, K, F') for r in this range would give an answer for the growth of ex,(n, BinqF).

Concerning the Berge Turén function Gerbner and Palmer [5] showed that
ex,(n,BF) <ex(n, F)

for r > |[V(F)|. So in this range ex,(n,BF) = O(n?). For the complete graphs the two sides have
the same order: ex,.(n,BK,) = ©(n?) if » > 3. However this does not hold if r is large compared
to |V(F)|. Grész, Methuku, and Tompkins [6] proved that for any non-bipartite F' and sufficiently
large r, the order of ex,(n, F') differs from that of ex(n, F'): there exists some number th(F') such
that if » > th(F) then ex,(n, F) = o(n?).

In contrast, the order of the induced Berge Turén function ex,(n,Bi,qF') is non-decreasing in 7.
Moreover, it is basically monotone. If (JE(F) = 0, i.e., F' is not a star, then we will see later by
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Lemma 3] that

-1
<1 I ) ex,—1(n, BingF) < ex,(n, Bing F). (2)
n

2.2 Outerplanar graphs and more

We define the class of t-vertex graphs Q&) by induction on t as follows. The class Qt(fi) has only
a single member, Ky. For ¢ > 2 one obtains each member G of Qt(ﬁl) by taking a G(—1) e Qgi_l),
taking an edge zy € G~ adding a new vertex z ¢ V(G(t_l)), and joining z to x and to y. Each
G e g(t) has exactly ¢ vertices and 2t — 3 edges. Finally, let G be the family of all non-empty

tri
subgraphs of the members of utzgg(t)

tri -

Note that Gi,; contains all outerplanar graphs, particuarly cycles, Cy, and forests. Each G € Gy
has chromatic number at most 3 and are obviously planar.

Theorem 2.2. Let r > 2 be a positive integer. Fix a graph F € Gyi. As n — oo we have
ex,(n, BinaF') = O(ex(n, F)).

This theorem reveals further gaps between ex,(n,BF') and ex,(n,Bi,qF'). Gyori and Lemons [9]
[10] proved that for r > 3 an r-uniform hypergraph avoiding a Berge cycle Cy11 has at most
O(ex(n, Cyt)) edges, which is known to be O(n'*(1/8). On the other hand, in the same range, we
have ex,(n, BingCat11) = O(n?).

Together, Theorems 2T and 22l show that ex(n, Ct) has the same order as maxo<s<,{ex(n, K, F')}.
We obtain the following (known) corollary. For any r > 2 and ¢ > 3

ex(n, Ky, Cy) = O(ex(n, C)).

We also state the case of trees.

Corollary 2.3. Let r > 2 and T be a forest with at least two edges. Then ex,(n,BigT) =
O(ex(n,T)) = O(n).

Finally, we get better bounds for stars, F' = Ky ;_;.
Theorem 2.4. For anyr >2,t>3,ifn=a(r+t—3)+b withb <r+t—4 then

a<r+t—3> + <b> < exp(n, BinaK1,-1) < ﬁ<T+t_3>-
r r ’ T r—1

.

In particular, if n is divisible by r +t — 3, the lower bound is %(

3 Constructions and proofs

3.1 Simple constructions and a monotonicity of the induced Berge Turan func-
tion

If E(F) has a single edge then for n > |V (F)|+r—2 we have ex(n, F) = ex(n, K, F) = ex,(n,BF) =
ex;(n, BingF') = 0, so there is nothing to prove, all of our statements trivially hold.
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In all other cases we have ex,(n, BingF') = €2(n) as one can see from the following constructions. If
F has two non-disjoint edges then a matching of r-sets gives ex,(n, BinqF') > |n/r|. If F has two
disjoint edges then the hypergraph consisting of n — r + 1 sets sharing a common (r — 1)-set yields
ex,(n, BingF) >n—r+1.

If x € V(F) is an isolated vertex then ex,(n,BinaF') = ex,(n,Bina(F \ {z})) for all n > (r —
2Q)|E(F)| 4+ |[V(F)|. So we may delete isolated vertices and asymptotically get the same Turdn
number. From now on, we suppose that F' has no isolated vertex and |E(F)| > 2.

Lemma 3.1. Fiz integers r,t > 2. If F' is a graph on t wvertices such that F' # K;;—1 (and
e(F) > 2 and F has no islated vertex), then ex,(n, BinaF') > ex_1)(n — 1, BjnaF). In particular,
ex,(n, BingF) = Q(ex(n, F)).

Proof. Let ‘H be an (r — 1)-uniform hypergraph on n — 1 vertices with ex,(n — 1, Bjy,qF') edges and
no induced Berge F. Construct an r-uniform hypergraph H' with V(H') = V(H) U {v} such that
the edges of H' are obtained by extending every edge of H to include the new vertex v. Suppose
H' contains an induced Berge F. Since H was induced Berge F-free, v must be a base vertex.
Because v is contained in every edge of H’, there is a fixed vertex contained in every edge of F.
Le., F' = Kj;_1, a contradiction.

Inductively, we obtain exa(n — r 4+ 2, Bing F') < ex,(n, BingF). But exo(n — r + 2, BjpgF) = ex(n —
r+2,F)=0(ex(n, F)). O

To show (2) let H be an induced Berge F-free (r — 1)-uniform hypergraph on n vertices, |H| =
eX(r_1)(n, BinaF'). For z € V := V(H) let H, := {e € H :e C V \ {z}}. Since each H, is also
induced Berge F-free we get

(n T+ 1)eX(r—1)(na BindF) = (’I’L —Tr+ 1)|H| = Z |Hw| <nx eX(r—l)(n - 17BindF‘)'
zeV

By Lemma B.1] the right hand side is at most n x ex,(n, BinqF'). Rearranging yields (2)). O

3.2 The a-core of a hypergraph

Let H be an r-partite, r-uniform hypergraph with parts V(H) = V3 U...UV,. For some 1 < s <r
and edge e € H, define €[3] to be the trace of e onto all parts other than V;. That is, e[s] = e\ V.
Let H[s] = {e[s] : e € E(H)}.

Theorem 3.2. For positive integers «,r, any r-uniform r-partite hypergraph H contains edge-
disjoint subhypergraphs A and B such that

(a) For any S C V(H), with |S| =r — 1, either deg4(S) = 0 or deg4(S) > a.
(b) 18> 25! and |B] < S, |B[s)|

Proof. We build A and B inductively. Initially set Ho := H, By := {0}.
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At step i, if there exists an S C V(H;_1) with [S| =7 —1 and 1 < degy, (S) < o — 1, then let
Eg be the edges of H;_; containing S. Set H; = H;—1 \ Es. Pick any edge, say B; € Eg, and set
B, =B;_1 U {Bz}

The process ends after k steps when for every S C V/(Hy) with |S| = r — 1, either degy, (S) = 0 or
degy, (S) > a. Let A:=Hy, and B := By = {B1,..., Br}. Then A satisfies (a).

To see that B satisfies (b), at each step i when we choose B; € FEg, |Es| < o — 1, so we obtain
that |B| is at least a 1/(cv — 1) portion of the deleted edges. Next, at each step, we associated with
B; a distinct set S; of » — 1 vertices. If B; and B; are associated with sets S; and S; respectively
such that both sets are contained in (V3 U...UV;)\ Vg, then in B[3], B;[s] = S; and B;[s| = S; are
distinct. Hence ., B3] > [{S1,..., Sk} = |B|. 0

Let any A C H satisfying (a) be called an a-core of H.

Lemma 3.3. Let o, 7 be positive integers, and let F be a graph with |V (F)| —1 < a. Let H be an
r-uniform, r-partite hypergraph with an a-core A. If the 2-shadow 02 A of A contains a copy of F
then A (and therefore H) contains an induced Berge F'.

Proof. We will find an induced Berge F' on the same base vertex set V(F). Let xy be an edge in
the copy of F', and let e, be an edge of A containing {z,y} with minimum |e;, NV (F')|. Such an
edge e,y exists by the definition of the 2-shadow. If e;, contains some vertex z € V(F) \ {z,y},
then the (r — 1)-set ey, \ {2} is contained in at least o — 1 other edges in A. Since there are
[V(F)| —3 < a— 2 vertices in V(F) \ {z,y, 2z}, we may find some 2’ ¢ V(F) — {z,y, z} such that
exy \ {2z} U {7’} € E(A), contradicting the choice of es,. Therefore ez, NV (F) = {z,y}. We find
such an edge of A for each edge of F. O

If « > e(F)+|V(F)|, then with the same method one can find an induced Berge F' in A such that
each pair of hyperedges e,, and e, intersect only at {z,y} N {u,v}. This is called an F-expansion.
But this observation does not seem to help our purposes here.

Claim 3.4. Suppose that r > 3 and A contains an induced Berge F, where |V(F)| < « (and
E(F) # 0). Define a new graph F* := F;;/ by adding a new vertex z ¢ V(F), taking an edge
xy € E(F), and joining z to x and to y. Then A also contains an induced Berge F'T.

Proof. By Lemma [B.3] there exists a hyperedge e, € A such that e, NV (F) = {z,y}. Then for
any 2’ € egy \ {2, y} we have that 22" and yz’ € 924, so F'T is a subgraph of 93 A. Then Lemma [3.3]
completes the Claim. O

Lemma 3.5. Suppose that G € Gy, witht = |V (T')| > 3. Then G € gt(ff
Proof. This statement seems to be evident, but still needs a proof. By definition, there exists an
s >t such that G € gt(ji’. Let s = s(G) be the smallest such s. We will show by induction on ¢ that
s(G) = t. The base case t = 3 is obvious. Suppose t > 3 and that G is a subgraph of H € Qt(fi),
where the vertices of H are {vi,...,vs} and each v; (with ¢ > 3) has exactly two H-neighbors in
{v1,...,vi1}. Moreover, these two neighbors (call them v, ;) and vg;)) are joined by an edge in
H. Let I Cs], I:={i1,...,i¢}, 1 <i3 <---<ip<s, Vi:={v :1i€ I}, and suppose that G
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is a spanning subgraph of H[V;]. Since s is minimal, we have i; = s and Ny (vs) = {vVa(s), Vg(s) }-
G’ := H[Vi]\{vs} has t—1 vertices, and it belongs to Gi,;. By our induction hypothesis there exists a

"€ G- 1 such that G’ is a subgraph of H' on the same vertex set V7\{vs}. If {va(s), vg(s)} € V(H')
then by adJ01n1ng a new vertex 2’ to H' and connecting it to Va(s) and vg(s) we obtain a t-vertex

graph H” from gm containing G. If [Ny (vs) NV (H')| < 1 then it is even simpler to find such a
graph H”. O

3.3 Proofs of the upper bounds for induced Berge F' problems

We prove a version of Theorem 2] with more precise bounds. For positive integers a and b,
(a)p = (a)(a—1)---(a—b+ 1) denotes the falling factorial.

Theorem 3.6. Let t,r,n be positive integers, and let F' be any graph with |V(F)| =t. Let H be
an n-vertex r-uniform hypergraph with no induced Berge F. If H is r-partite, then

H) < Z(t —2)" 7 (r),_iex(n, K;, F).

Proof. We proceed by induction on r. The base case r = 2 is trivial since an induced Berge F' is
just a copy of F. Thus exs(n,BijgF) = ex(n, Ky, F) = ex(n, F). Now let » > 3. Let A and B be
subhypergraphs of H obtained from Theorem with &« = ¢ — 1. So we have

|H| = |A|+ [H\ Al < |A| + (t -2 Z\B 1| < |A| + (t — 2)(r)ex,—1(n, Bina F),
s=1

where the last inequality holds because each B[s] is (r — 1)-uniform, (r — 1)-partite and does not
contain an induced Berge F'.

By Lemma[33], 954 contains no copy of F. Furthermore, since each edge in A creates a K, in 0sA,
|A| < ex(n, K., F). Applying the induction hypothesis, we obtain

r—1
|H| < ex(n,K,, F)+ (t—2) rz ) (e — 1)1 _jex(n, K;, F)
=2

and we are done. O

Corollary 3.7. Let t,r,n be positive integers, and let F' be any graph with V(F) =t. Then

r T

max {ex(n — (r — s), K, F)} < ex,(n,BingF) < T—' (t — 2)T_i(r)r_,-ex(n,Ki,F).
r

2<s<r !4
=2
In particular, ex,(n, BinaF') = O(maxs<,{ex(n, Ky, F)}).
Proof. The lower bound follows from Lemma[3.Iland (). For the upper bound, we use the fact that

any r-uniform hypergraph H has an r-partite subhypergraph with at least :—ie(H) edges. Apply
Theorem to any such subhypergraph. O
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Proof of Theorem[Z2. The lower bound comes from Lemma Bl For the upper bound, we proceed
by induction on r. First we show that if H is r-partite with no induced Berge F' € Gi,; then

|H| < (t— 2)’"_2%!ex(n, F). (3)

The base case r = 2 is trivial, so let » > 3. Let A and B be subhypergraphs of H obtained from
Theorem B.2] with o = ¢ — 1. Again we have

M| < A+ (t=2) Y IB[]| < JA| + (= 2)(r)ex,—1(n, Bina F)- (4)

s=1

Observe that A is empty. Indeed, if A contains at least one edge, then the 2-shadow Jy. A contains a
K. So Claim B4 and Lemma 3.5 imply that d,.A contains a copy of F. Then we apply Lemma [3.3]
to find an induced Berge F', a contradiction. Hence |A| = 0. Applying induction hypothesis, (@)

yields (@3]).

Finally, if H is not r-partite, then we apply the previous proof to an r-partite subgraph H' of H
with at least ZH|H| edges to obtain [H| < 277 (t — 2)"2ex(n, F). O

Proof of Theorem [2.7]. For the lower bound, let each component of H be a clique such that there
are as many cliques of size r +t — 3 as possible. If n = a(r+¢—3)+b where 0 < b < r+t — 3, then
|H| = a(r+£_3) + (g) Suppose H contains an induced Berge Ki;—i. Then its base vertices, say
{v1,...,v:} must be contained in a single component of H. But each edge in a component contains
at least 3 base vertices, a contradiction.

For the upper bound, let # be an n-vertex, r-uniform hypergraph with no induced Berge Ki ;1.
We say that a set system {f1,..., fs} is strongly representable if for every f; € F, there exists a
v; € fi such that v; ¢ f; for all j # 4. Fiiredi and Tuza [4] proved that if a set system F with |f| <r
for all f € F does not contain a strongly representable subfamily of size s then |F| < (T+i_1). For
any vertex v € V(H), let B, := {e\ {v} : v € e € H}. The (r — 1)-uniform set system FE, cannot
contain a strongly representable subfamily of size t — 1, otherwise the corresponding edges in H
and their representative vertices would yield an induced Berge Ki;_1 in H with vertex v as the
center vertex. Therefore deg(v) < ((T_l)f§t_2)) so [H| < ﬂ(TH_?’). O

r r\ r—1
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