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Abstract
In 1952, Dirac proved that every 2-connected n-vertex graph with the minimum degree k+1

contains a cycle of length at least min{n, 2(k + 1)}. Here we obtain a stability version of this
result by characterizing those graphs with minimum degree k and circumference at most 2k+ 1.

We present applications of the above-stated result by obtaining generalized Turán numbers.
In particular, for all ` ≥ 5 we determine how many copies of a five-cycle as well as four-cycle
are necessary to guarantee that the graph has circumference larger than `. In addition, we give
a new proof of Luo’s Theorem for cliques using our stability result.

1 Introduction

Circumference of graphs

The problem of determining whether a graph contains a Hamiltonian cycle has been a funda-
mental question of graph theory. Deciding the Hamiltonicity for graphs is NP-complete. Therefore
it is interesting to study sufficient conditions for Hamiltonicity. The natural generalization of this
problem is to find sufficient conditions for a given circumference which is the length of a longest
cycle. In 1952 Dirac obtained a bound on the circumference of 2-connected graphs in terms of the
minimum degree. Let us denote the circumference of a graph G by c(G).
Theorem 1. (Dirac [4]) Let G be a 2-connected n-vertex graph with minimum degree at least k+1,
then

c(G) ≥ min{n, 2(k + 1)}.

Later in 1977, Kopylov obtained a similar bound on the circumference of 2-connected graphs
in terms of the average degree. Let us denote the number of edges of a graph G by e(G).
Theorem 2. (Kopylov [17]) Let G be a 2-connected n-vertex graph with c(G) ≤ ` then

e(G) ≤ max


(
`− 1

2

)
+ 2(n− `+ 1),

(⌊
`
2
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2

)
+
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`

2
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n−

⌊
`

2

⌋)
+ 12|(`−1)
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Füredi, Kostochka and Verstraëte [9] obtained the stability result of Kopylov’s Theorem. Before
presenting the result we need to introduce a class of extremal graphs. Let Kk be the clique of k
vertices and Ik be the independent set of k vertices. For a positive integer a, let aKk be the graph
consisting of a disjoint cliques of order k. For graphs G and H, we denote by G ∪H the disjoint
union of graphs G and H. We denote by G+H the join of G and H, that is the graph obtained by
connecting each pair of vertices between a vertex disjoint copies of G and H. For example Kk +In−k

has minimum degree k and circumference is 2k for n ≥ 2k. For a set of vertices A ⊆ V (G), let
G−A be the induced subgraph of G on the vertex set V (G) \A, i.e. G−A = G[V (G) \A].
Introduction of some classes of extremal graphs. We denote the graphKk+In−k by H(n, 2k)
and let H(n, 2k + 1) be a graph obtained from H(n, 2k) by adding an additional edge incident to
two vertices of the independent set In−k.

Here we define a class of graphs H1,n,k for all integers k and n such that n = b(k − 1) + 3
for some positive integer b. Let b = b1 + b2 for some non-negative integers b1 and b2. Then let
G0 be the graph ((b1Kk−1 + {u1}) ∪ (b2Kk−1 + {u2})) + {u}. Let G be the graph obtained from
G0 by adding the edge u1u2, G1 be the graph obtained from G by removing the edge uu1, G2 be
the graph obtained from G by removing the edge uu1 and G3 be the graph obtained from G by
removing edges uu1 and uu2. All such graphs G,G1, G2 and G3 are from the class H1,n,k. Note
that all graphs in H1,n,k have circumference 2k + 1.

For all integers k and n such that n = b(k − 1) + 1 for some positive integer b, let

H2,n,k = {K2 + bKk−1,K2 + bKk−1}.

Note that, the graphs from H2,n,k have circumference 2k.
Theorem 3. ( Füredi, Kostochka, Verstraëte [9]) Let G be a 2-connected n-vertex graph such
that c(G) = ` and n ≥ 3 b`/2c, then eitehr

e(G) <
(
d`/2e+ 2

2

)
+
(⌊

`

2

⌋
− 1

)(
n−

⌈
`

2

⌉
− 2

)
,

or G ⊆ H(n, `) or G−A is a star forest for some A ⊆ V (G) of size at most `
2 .

Recently, Ma and Ning also obtained more general stability-type results of Kopylov’s Theorem
in [20]. In this work we prove the following stability version of Dirac’s theorem.
Theorem 4. Let G be a 2-connected graph of n vertices with n ≥ c(G) + 1 and δ(G) = k. Then
either c(G) ≥ 2k + 2, or

• c(G) = 2k + 1 and G ⊆ H(n, 2k + 1), or G ∈ H1,n,k, or G ⊆ K2 + (Kk ∪ n−k−2
k−1 Kk−1), or

k = 4 and G ⊆ K3 + n−3
2 K2, or k = 3 and G ⊆ K2 + (Sn−3−2t ∪ tK2).

• c(G) = 2k and G ⊆ H(n, 2k) or G ∈ H2,n,k.
This theorem seems to have many applications. With this new tool, it is possible to re-prove

some classical results in graph theory. Even more with this theorem we determined generalized
Turán numbers of cycles.

Applications for Generalised Turán numbers.

A central topic of extremal combinatorics is to investigate sufficient conditions for the appear-
ance of a given cycle. In particular, it is popular to maximize the number of cycles of length ` in
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graphs of given order without a cycle of length k as a subgraph. For given integers k > 3 and m,
Gishboliner and Shapira determined the order of magnitude of how many copies of k-cycle is enough
to guarantee the appearance of a m-cycle. This problem was also settled independently in [10] for
k and m even. Maximizing the number of triangles in k-cycle free graphs is still not settled, since
this number is closely related to Turán number of even cycles see [13].

While Erdős was measuring how far are the triangle-free graphs from bipartite graphs, he
naturally asked a question ‘What is the maximum number of pentagons in a triangle-free graph’ [5].
This question was settled half a century later by Grzesik [11] and independently by Hatami, Hladký,
Král, Norine, Razborov [16], using flag algebras. In 1991, Győri, Pach, Simonovits [14], defined
the generalized Turán number and obtained some results. In particular, they maximized copies of
a bipartite graph with an almost one-factor in triangle-free graphs. While investigating pentagon-
free 3-uniform hypergraphs Bollobás-Győri [3] initiated the study of the converse of the problem of
Erdős. They asked the following question ‘What is the maximum number of triangles in a pentagon-
free graph’. This problem is still open, for the improvements on the upper-bound see [3, 7, 8].

Grzesik and Kielak in [12] determined that every graph on n vertices without odd cycles of
length less than k contains at most (n/k)k cycles of length k for all k ≥ 7. This result is an
extension of the previously mentioned problem of Erdős [5]. Erdős and Gallai determined the
maximum number of edges in a graph not containing long paths and cycles as well in [6]. Luo [19]
extended this result by determining the maximum number of cliques in a graph with a given
circumference. The generalized Turán version of this problem for paths was studied in [15].
Notations. The cycle of length ` is denoted by C`. C≥` denotes the family of all cycles of length
at least `. For an integer n, a graph H and a family of graphs F , Alon and Shikhelman denoted
generalized Turán number by ex(n,H,F) in [1,2]. Where ex(n,H,F) denotes the maximum number
of copies of H as a subgraph in an n-vertex graph not containing F as a subgraph for all F ∈
F . When family F consists of a single graph F , i.e. F = {F} we write ex(n,H, F ) instead of
ex(n,H, {F}).

For graphs G and H let H(G) be the number of copies of H in G. For example the number of
cycles of length k in G is denoted by Ck(G). For a vertex v in a graph G, let Ct(v) be the number
of cycles of length t containing the vertex v in G. For v ∈ V (G), we denote the neighborhood of v
by N(v). For a vertex v, the closed neighbourhood of it N(v) ∪ {v} is denoted by N [v].
Generalized Turán-type results. In this paper, by applying Theorem 4, we determine the
maximum number of four-cycles and pentagons in graphs with bounded circumference. Even more
we prove that the extremal graph is unique for large enough n.
Theorem 5. For all integers ` ≥ 6 and n ≥ 100`3/2 we have

ex(n,C5, C≥`+1) = C5(H(n, `)),

and H(n, `) is the unique extremal graph.
For ` = 5 and n ≥ 200, we have

ex(n,C5, C≥`+1) =
⌊

(n− 3)2

2

⌋
,

the extremal graph is a member of the family H1,n,k with parameters
⌊

n−3
2

⌋
,
⌈

n−3
2

⌉
.
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Theorem 6. For all integers n and ` such that ` ≥ 4 and n ≥ 10`3/2, we have

ex(n,C4, C≥`+1) = C4(H(n, `)),

and H(n, `) is the unique extremal graph.
In addition, we also give a new proof of Luo’s following theorem by using Theorem 4.

Theorem 7. (Luo [19]) For all integers n and ` ≥ 3 we have

ex(n,Ks, C≥`+1) ≤ n− 1
`− 1

(
`

s

)
.

The equality holds if and only if `− 1|n− 1.
We expect Theorem 5 holds not only for cycles of length four and five but for cycles of any

length more than 3.
Conjecture 1. For all integers n, k and ` such that k ≥ 4, ` > k and n large enough, we have

ex(n,Ck, C≥`+1) = Ck(H(n, `)).

We also prove the following theorem which verifies Conjecture 1 asymptotically for large enough
k and n.
Theorem 8. The following holds for every integer k ≥ 3.

lim
`→∞

 lim
n→∞

ex(n,C2k, C≥`+1)⌊
`
2

⌋k
nk

 = 1
2k ,

lim
`→∞

 lim
n→∞

ex(n,C2k+1, C≥`+1)⌊
`
2

⌋k+1
nk

 = 1
2 .

2 Preliminaries
Erdős and Gallai used the following robust lemma to find the extremal number of graphs with

bounded circumference. We use the lemma to prove Theorem 4.
Lemma 9. (Erdős-Gallai [6]) Let G be a 2-connected graph and x, y be two given vertices. If every
vertex other than x, y has a degree at least k in G, then there is an (x, y)-path of length at least k.

Even more, Li and Ning applied this lemma to prove the existence of (H,C, t)-fans under some
conditions. For our proof of Theorem 4 we need the existence of (H,C, t)-brooms under the same
conditions. Let us introduce the notion of (H,C, t)-brooms.
Definition. Let G be a graph, C be a cycle of G, and H be a component of G−C. A subgraph B
of G is called an (H,C, t)-broom, if it consists of t paths P1, P2, · · · , Pt each starting at the same
vertex of H and finishing at distinct vertices of C for some t ≥ 2, such that
(1) All vertices of P1 except the last are in V (H).
(2) The paths Pi have length one for all 2 ≤ i ≤ t.
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The same proof of Theorem 2.1 in the paper of Li and Ning [18] proves the following theorem.
Naturally, to refrain from repetition, we will not include their proof in this work.
Lemma 10. (Li-Ning [18]) Let G be a 2-connected graph, C a cycle of G, and H a connected
component of G−C. If each vertex v ∈ V (H) has dG(v) ≥ k, then there is an (H,C, t)-broom with
at least k edges.

3 Proof of the Stability of Dirac’s theorem
Here we present the proof of Theorem 4. Let G be an n-vertex 2-connected graph with

minimum degree k ≥ 2 and circumference at most 2k + 1. By Theorem 1, G contains a cycle of
length at least min{n, 2k}. Since n ≥ c(G) + 1, hence we have c(G) ∈ {2k + 1, 2k}. Let C be a
longest cycle of G and H1, H2, · · · , Hs be connected components of G − C for some s ≥ 1, where
G−C is the induced subgraph of G on the vertex set V (G)\V (C). Since δ(G) ≥ k, each component
Hj contains an (Hj , C, t)-broom with at least k edges by Lemma 10. In the following part of the
proof we characterize the structure of each Hi.

Let B be an edge-maximal (H1, C, t)-broom consisting of following t paths vPu1, vu2, . . . ,
and vut. Recall that vertices {u1, u2, . . . , ut} are distinct vertices of the cycle C. Each cycle has a
positive and a negative direction to visit their vertices, without loss of generality we assume that
starting at the vertex u1 going around C in the positive direction we visit terminal vertices of B in
this given order u2, u3 · · ·ut. For a given vertex u of C, we denote its two neighbors on the cycle
by u+ and u−, where u−uu+ is a sub-path of C in the positive direction. For two vertices x, y of
C, x−→Cy denotes the segment of C from x to y in the positive direction, x←−Cy denotes the segment
of C from x to y in the negative direction.

Recall the length of C is 2k or 2k + 1 and v(B) ≥ k + 1 by Lemma 10. On the other hand we
have

v(C) = t+
t∑

i=1
v(u+

i

−→
Cu−i+1) ≥ t+ (t− 2) + 2(v(B)− t) = 2v(B)− 2,

where indices are taken modulo t. Hence we have v(B) = k + 1. Furthermore if v(C) = 2k, then
the segments u+

1 Cu
−
2 and u+

t Cu
−
1 contain exactly v(vPu1)− 1 = k− t+ 1 vertices while the rest of

the segments contain exactly one vertex. If v(c) = 2k + 1, then one of the segments contains one
more vertex.
Claim 1. We have either k = 4, c(G) = 9 and G ⊆ K3 + n−3

2 K2, or t ∈ {2, k}, H1 = Kk−t+1 and
each vertex of H1 is incident with all vertices of {u1, . . . , ut}.

Proof. At first we assume t = k. Therefore all paths of the broom B are single edges and all
segments u+

i

−→
Cu−i+1 of cycle C contain exactly one vertex except if c(G) = 2k and one segment

containing two vertices if c(G) = 2k + 1. Without loss of generality, suppose u+
1
−→
Cu−2 contains two

vertices. We have V (H1) = {v} since otherwise we could extend the cycle C given that G is C ∪H1
is 2-connected. Hence we are done if k = t.

From here we assume 2 ≤ t ≤ k − 1. The path vPu1 is a path of k − t + 2 vertices, let vPu1
be v0v1 · · · vk−tu1, where v0 = v.

First we assume V (H1) 6= {v, v1, . . . , vk−t}. Let H ′1 be a maximal connected component of
H1 − {v0, v1, . . . , vk−t}. Since G is 2-connected there are at least two edges from H ′1 to the rest of
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the graph. At first we suppose that there is a vertex y in V (H ′1) with a neighbour u′ on C. Since
H ′1 is a subgraph of connected graph H1, there is an edge vix between V (H ′1) and {v0, v1, . . . , vk−t}
for some i satisfying 0 ≤ i ≤ k − t. Since x and y are vertices of V (H ′1) there exists a path xP ′y
from x to y in H ′1. If u′ is on the segment u+

j

−→
Cu−j+1 for some j satisfying 1 ≤ j ≤ t, then

ujPvixP
′yu′
−→
Cuj or uj

−→
Cu′yP ′xviPv0u2Cuj

is a longer cycle. Since otherwise v(u+
j

−→
C (u′)−) ≥ k−t−i+2 and v((u′)+−→Cu−j+1) ≥ i+2 contradicting

to k − t+ 2 ≥ v(u+
j

−→
Cu−j+1) = v(u+

j

−→
C (u′)−) + 1 + v((u′)+−→Cu−j+1) ≥ k − t+ 5. Moreover, if u′ = uj

for some j satisfying 3 ≤ j ≤ t, then

uj−1v0PvixP
′yuj
−→
Cuj−1

is a longer cycle, a contradiction. Hence, u′ ∈ {u1, u2} and NG(V (H ′1)) ⊆ {v0, v1, . . . , vk−t, u1, u2}.
Furthermore, if t ≥ 3, u′ 6= u2 and NG(V (H ′1)) ⊆ {v0, v1, . . . , vk−t, u1}. For otherwise,

u3v0PvixP
′yu2
←−
Cu3 or u1PvixP

′yu2
−→
Cu1

is a longer cycle, a contradiction. (If it is not the first case, then i = 0 and v(u+
1
−→
Cu−2 ) = k− t+ 1)

Observe that no two consecutive vertices of the path u2vPu1 are incident to a vertex of V (H ′1).
By the minimum degree condition, we have |V (H ′1)| > 1 since k ≥ 3. Since G is 2-connected,
there are at least two independent edges between {v0, · · · , vk−t, u1, u2} and V (H ′1). Note that
u2, v0, · · · , vk−t, u1 is a path, for the technical reasons we denote v−1 := u2 and vk−t+1 := u1. From
all such pairs of edges, we choose two independent edges x1vi and x2vj minimizing j − i if H ′1 is
2-connected. Otherwise we still minimize j− i such that that x1 is in one of the 2-connected blocks
of H ′1 containing exactly one cut vertex x′ of H ′1 denote by B′1. The vertex x2 is in any other
2-connected blocks of H ′1. From minimality of j − i, vertices of V (B′1 \ {x′}) are not incident with
vertices from {vi+1, · · · , vj−1}. Every vertex of B′1 \ {x′} has degree at least k in G. On the other
hand they are incident with vertices from V (B′1) and {v−1, · · · , vk−t, vk−t+1} \ {vi+1, · · · , vj−1}.
Hence we have the degree of vertices B′1 \ {x′} in B′1 is at least

k −
⌈
i+ 2

2

⌉
−
⌈
k − t− j + 2

2

⌉
≥ j − i− 1.

Note that at least one of the vertices of {vi, vj} is not from {u1, u2}, since H ′1 is subgraph of
connected H1. By Lemma 9, there is a path x1P1x

′ in the block B′1 of length at least j − i − 1.
Therefore there is a path x1P

′′x2 of length at least j−i+1 inH ′1, a contradiction to the maximality of
the broom B. Since by exchanging viPvj with vix1P

′′x2vj , we would get a bigger broom. Therefore
we have V (H1) = {v0, v1, . . . , vk−t}

Here we show N(vi) ⊆ V (H1) ∪ {u1, · · · , ut} for 0 ≤ i ≤ k − t. The statement holds for v0,
suppose some vi is adjacent to a vertex u′ which is on some segment u+

j

−→
Cu−j+1. Then one of the

following cycles is longer than C

u′
−→
CujPviu

′ or uj+1
−→
Cu′viPv0uj+1,
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a contradiction. Hence we have N(vi) ⊆ V (H1)∪{u1, · · · , ut} for 0 ≤ i ≤ k−t. From the minimum
degree condition we have k ≤ dG(vi) ≤ (v(H1)− 1) + t = k. Hence H1 is a clique and each vertex
of H1 is incident with all vertices in {u1, · · · , ut}.

If t = 2, we have H1 is a copy of Kk−1 and each vertex is adjacent to both u1, u2. Therefore
we are done in this case.

If t = 3, then consider the following cycle

u3
−→
Cu2vk−tPv0u3.

Since the length of it is not greater than C and v(u+
2
−→
Cu−3 ) ≤ 2, we have k− t = 1 and the segment

u+
2
−→
Cu−3 contains exactly two vertices(This means c(G) = 2k + 1). From here it is straightforward

to check that G ⊆ K3 + (n−3
2 K2).

If k > t ≥ 4, one of segment u+
2
−→
Cu−3 or u+

3
−→
Cu−4 contains one vertex. Without loss of generality

we may assume v(u+
2
−→
Cu−3 ) = 1. Therefore the cycle u3

−→
Cu2vk−tPv0u3 is a longer cycle than C, a

contradiction.

From Claim 1 we have either G ⊆ K3 + (n−3
2 K2) and k = 4 or G contains a longest cycle C

and each connected component of G − C is either a vertex and adjacent to k vertices on C, or a
clique of size k − 1 and all vertices of the clique are adjacent to the same two vertices of C. If Hi

is a (k − 1)-clique, we call the two neighbors of Hi lying on C the attached point.
First consider that each Hi is a clique of size k−1 and let wi, w

′
i denote the two attached points

of Hi for all 1 ≤ i ≤ s. If c(G) = 2k, one can easily check that v(w+
i

−→
Cw′−i ) = v(w′+i

−→
Cw−i ) = k− 1,

{wi, w
′
i} = {w1, w

′
1} and w+

i

−→
Cw′−i , w′+i

−→
Cw−i are both a copy of Kk−1, hence G ∈ H2,n,k. When

c(G) = 2k + 1, by Claim 1, we say the segment w1
−→
Cw′1 contains k vertices. If s = 1, then

G ⊆ K2 + (Kk ∪ 2Kk−1). If s ≥ 2, then since c(G) = 2k + 1, we have {w1, w
′
1} ∩ {wi, w

′
i} 6= ∅ for

any 2 ≤ i ≤ s. Therefore either all Hi have the same two attached points {w1, w
′
1} on C and we

can see the segment w1
−→
Cw′1 as a subgraph of Kk and we obtain G ⊆ K2 + (Kk ∪ n−k−2

k−1 Kk−1). Or
there are two of them such that their neighbours on C are w1, w

′
1 and w1, w

′−
1 and G ∈ H1,n,k, this

finishes the proof in this case.
Next consider the case there is a component of G − C of size one. Let us denote this vertex

by v. The vertex v has k neighbours on the cycle C and set N(v) = {u1, . . . , uk}. Even more the
distance between any two consecutive neighbours of v is exactly two if c(G) = 2k and with one has
distance three if c(G) = 2k+ 1(if in such case, we assume u1

−→
Cu2 is of distance 3). It is easy to see

that for any other components of size 1, they have the same neighborhood with v since C is the
longest. First assume there is no other component of size k − 1. If c(G) = 2k, then V (C) −N(v)
is independent and hence G ⊆ H(n, 2k). If c(G) = 2k + 1, then V (C) − N(v) contains exactly
one edge which lies on the segment of distance 3 between two consecutive neighbours of v. Hence
G ⊆ H(n, 2k + 1).

Hence we may assume that some component are (k − 1)-cliques with k ≥ 3, saying Hi is one
of such component with two attach points {u′, u′′}. If one of the attached points of Hi lies on
u+

i

−→
Cu−i+1, we will find a longer cycle using Hi, a contradiction. Thus {u′, u′′} ⊆ N(v) and we set

u′ = ua, u
′′ = ub with a, b ∈ [k]. If k ≥ 4, then by the distance of u′−→Cu′′, we know ub−1 6= ua and

ua+1 6= ub. We have uaHiub
←−
Cua+1vub−1

−→
Cua is a longer cycle, a contradiction. Then k = 3 and it
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is easy to see that c(G) = 7 and ua = u1, ub = u2. That is G− {u1, u2} is the disjoint union of a
star and matching, G = K2 + (Sn−3−2t ∪ tK2). This finishes the proof of Theorem 4. �

4 The applications for generalized Turán problems
In this chapter we present some applications of Theorem 4. In particular we determine the exact

value of the generalized Turán number of pentagons or C4 in graphs with bounded circumference
and give a new proof of Theorem 7.

Proof of Theorem 5.

Throughout this subsection we denote b`/2c := k and λ := `− 2k.
Lemma 11. Let F be a graph isomorphic to an n-vertex graph from the following set{

H(n, `), K2 + (Kk ∪ bKk−1), K3 + n− 3
2 K2,K2 + (Sn−3−2t ∪ tK2)

}
∪H1,n,k ∪H2,n,k.

We have
• If ` ≥ 6 and n ≥ 3k,

C5(F ) ≤ C5(H(n, `)).

The equality holds if and only if F = H(n, `).
• If ` = 5 and n ≥ 7, then F ∈ H1,n,k with parameters

⌊
n−3

2

⌋
and

⌈
n−3

2

⌉
contains most C5.

Proof. It is straightforward to determine the number of five cycles in H(n, `).

C5(H(n, `)) =
(
n− k

2

)(
k

3

)
· 3 · 2 + (n− k)

(
k

4

)(
4
2

)
· 2 +

(
k

5

)
5!
10

+ λ

{
(n− k − 2)

(
k

2

)
· 2 +

(
k

3

)
· 3 · 2

}
. (1)

Suppose F ∈ H1,n,k, with parameters b1 and b2. If ` ≥ 6 and n ≥ 3k, then the number of pentagons
in F is

C5(F ) = n− 3
k − 1

(
k + 1

5

)
5!
10 + 2

((
b1
2

)
+
(
b2
2

))(
k − 1

2

)
(k − 1)

+ 2(b1 + b2)
(
k − 1

2

)
+ b1b2(k − 1)2

≤ n− 3
k − 1

(
k + 1

5

)
5!
10 + 2

(
n−3
k−1
2

)(
k − 1

2

)
(k − 1) < C5(H(n, `)).

If ` = 5, then C5(F ) = b1b2. It is easy to see when b1 =
⌊

n−3
2

⌋
and b2 =

⌈
n−3

2

⌉
, C5(F ) attains

maximum, which is greater than C5(H(n, 5)) = 2(n− 4).
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If F ∈ H2,n,k, then the number of pentagons in F is

C5(F ) = n− 2
k − 1

(
k + 1

5

)
5!
10 + 2

(
n−2
k−1
2

)(
k − 1

2

)
(k − 1) < C5(H(n, `)).

If F = K2 + (Kk ∪ bKk−1) with parameters b1 and b2, then the number of pentagons in F is

C5(F ) =
(
b

(
k + 1

5

)
+
(
k + 2

5

))
5!
10 + 2

(
b

2

)(
k − 1

2

)
(k − 1) + 2

(
kb

(
k − 1

2

)
+ b

(
k

2

)
(k − 1)

)
<C5(H(n, `)).

If F = K3 + n−3
2 K2, then the number of pentagons in F is

C5(F ) = n− 3
2

5!
10 + 2

(
n−3

2
2

)
(2 ∗ 3 ∗ 2) +

(
n−3

2
2

)
(2 ∗ 2 ∗ 3 ∗ 2) < C5(H(n, `)).

If F = K2 + (Sn−3−2t ∪ tK2), then the number of pentagons in F is

2
(
t

2

)
∗ 2 ∗ 2 +

(
s

2

)
(2 + 4) + 4ts+ 2(s+ 1)t < C5(H(n, `))

Lemma 12. Let G be a 2-connected C≥`+1-free graph with n vertices, such that n ≥ 3k. For a
vertex v of G with degree d(v) ≤ k − 1, we have

C5(v) ≤ k(k − 2)2n− 1
2k

2(k − 2)2.

Proof. We denote the set of vertices V (G) − N [v] by N2(v). Let e1 be the number of edges in
G[N(v)], e2 be the number of edges between the sets of vertices N(v) and N2(v) and e3 be the
number of edges in G[N2(v)] respectively. Since G is a 2-connected C≥`+1-free graph with n-vertices
such that n ≥ 3k, by Theorem 2 we have

e1 + e2 + e3 ≤ k(n− k) +
(
k

2

)
+ λ. (2)

Here we classify pentagons vv1v2v3v4v incident with the vertex v in G. We say vv1v2v3v4v is
Type-i if i = |{v2, v3} ∩N(v)|.

In this paragraph, we estimate the maximum number of Type-2 pentagons. There are at most
e1 choices representing an edge v2v3. After fixing such an edge, there are at most

(|N(v)|−2
2

)
choices

for the pair of vertices v1 and v4. Hence the number of Type-2 pentagons in G is at most

e1

(
d(v)− 2

2

)
· 2 ≤ e1(k − 3)(k − 4).

Here we estimate the maximum number of Type-1 pentagons. Note that the opposite edge of
v in the pentagon must be between N(v) and N2(v). Hence there are at most e2 choices for such

9



an edge. After fixing such an edge there are
(|N(v)|−1

2
)
choices for vertices v1 and v2. Hence the

number of Type-1 pentagons in G is at most

e2

(
d(v)− 1

2

)
· 2 ≤ e2(k − 2)(k − 3).

Here we estimate the maximum number of Type-0 pentagons. If each vertex of N2(v) has at most
k − 2 neighbors in N(v), then the number of Type-0 pentagons in G is at most e3(k − 2)(k − 2).
Therefore, by inequality (2), we have

C5(v) ≤ (e1 + e2 + e3)(k − 2)2 ≤
(
k(n− k) +

(
k

2

)
+ λ

)
(k − 2)2

≤ k(k − 2)2n− 1
2k

2(k − 2)2.

If there is a vertex of N2(v) with k − 1 neighbors in N(v), then we have d(v) = k − 1. We
partition N2(v) into two sets A and B. Such that A contains all vertices in N2(v) with at least
k − 2 neighbors in N(v). The set of remaining vertices N2(v) \ A is denoted by B. Let e′3 denote
the number of edges in G[A] and e′′3 := e3 − e′3. In particular e′′3 denotes number of edges in N2(v)
incident with at least one vertex from B. The number of Type-0 pentagons is at most

e′3(k − 1)(k − 2) + e′′3(k − 3)(k − 2)

and

C5(v) ≤ e′3(k − 1)(k − 2) + (e1 + e2 + e′′3)(k − 2)(k − 3). (3)

If |A| ≤ k + 1, we have e′3 ≤
(k+1

2
)
. By inequality (2) and the above inequality we have

C5(v) ≤
(
k + 1

2

)
(k − 1)(k − 2) + k(n− k)(k − 2)(k − 3)

= k(k − 2)(k − 3)n− k4

2 + 4k3 − 13k2

2 + k

≤ k(k − 2)2n− 1
2k

2(k − 2)2.

If |A| ≥ k + 2 then we distinguish two cases for estimating e′3 depending on the value of λ. If
` = 2k, then G[A] is P4-free, P3 ∪ P2-free and 3P2-free since G is C`+1-free.

This implies e(G[A]) = e′3 ≤ n − k − 1. If ` = 2k + 1, then G[A] is P5-free, P4 ∪ P2-free,
P3 ∪ 2P2-free, 2P3-free and 4P2-free. Which implies e′3 ≤ n − k. Hence by inequality (2) and the
inequality (3) we have

C5(v) ≤ (n− k)(k − 1)(k − 2) +
(
nk − k(k + 1)

2 − (n− k) + 1
)

(k − 2)(k − 3)

= k(k − 2)(k − 3)n+ 2(k − 2)(n− k)− 1
2(k + 1)k(k − 2)(k − 3) + (k − 2)(k − 3)

≤ k(k − 2)2n− 1
2k

2(k − 2)2.

We are done.
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Here we finish the proof of Theorem 5 by means of progressive induction. Let Gn denote an
extremal graph of ex(n,C5, C≥`+1). We may assume Gn is connected. First we prove the case ` ≥ 6.
Let us define the following function.

φ(n) = ex(n,C5, C≥`+1)− C5(H(n, `)).

Note that φ(n) = C5(Gn)−C5(H(n, `)) and it is a non-negative integer. In the following claim we
find an upper-bound for φ(n).
Claim 2. For all n such that n ≥ 100k, either Gn = H(n, `), or

φ(n) ≤ φ(n− 1)− k(k − 2)(n− 4k).

Proof. By the definition of φ we have

φ(n− 1)− φ(n) = (C5(H(n, `))− C5(H(n− 1, `)))− (C5(Gn)− C5(Gn−1)) .

Therefore from equality (1), we get

C5(H(n, `))− C5(H(n− 1, `)) = k(k − 1)(k − 2)
(
n− k + 5

2

)
+ λk(k − 1). (4)

If Gn contains a cut vertex, let B1 and B2 be two end-blocks of Gn with |V (B2)| ≥ |V (B1)| and
let b1, b2 be the cut vertices of B1 and B2, respectively. At first we assume V (B2) ≥ |V (B1)| ≥ 3k
and δ(Bi) ≥ k for each i = 1, 2. Since each Bi is 2-connected, combining Theorem 4 with Lemma 11,
we have Bi = H(|V (Bi)|, `). A contradiction to the maximality of the number of pentagons in Gn,
since we have

C5(H(v(B1), `)) + C5(H(v(B2), `)) < C5(H(v(B1)− 1, `)) + C5(H(v(B2) + 1, `)),

by convexity. Note that we could exchange B1 and B2 with H(v(B1) − 1, `) and H(v(B2) + 1, `)
since they are the end-blocks. Hence, either v(B1) ≤ 3k or δ(Bi) ≤ k−1 for some Bi. If v(B1) ≤ 3k
then let v be a vertex other than b1 in B1, then since n ≥ 100k,

C5(v) ≤ 12
(

3k
4

)
≤ k(k − 2)2(n− k

2 ).

This implies

C5(Gn)− C5(Gn−1) ≤ C5(v) ≤ k(k − 2)2(n− k

2 ). (5)

For the latter case δ(Bi) ≤ k − 1 for some Bi without loss of generality, assume there is a vertex
v in B1 such that v has at most k − 1 neighbors in B1. If v 6= b1, then since B1 is 2-connected
and v(B1) ≥ 3k, inequality (5) holds by Lemma 12. If v = b1, we remove all edges incident to
b1 in the subgraph B1. We destroyed at most k(k − 2)2n − 1

2k
2(k − 2)2 copies of C5 by Lemma

12. Even more the resulting graph is disconnected graph on n vertices. Therefore it contains at
most C5(Gn−1) pentagons, since we could identify a vertex from each connected component. Thus
the inequality (5) holds in this case too.
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Combining equality (4) and inequality (5), we get

φ(n− 1)− φ(n) ≥ k(k − 1)(k − 2)
(
n− k + 5

2

)
+ λk(k − 1)− k(k − 2)2(n− k

2 )

≥ k(k − 2)(n− 4k),

therefore we are done if Gn is not 2-connected.
If Gn is 2-connected and it contains a vertex v of degree at most k− 1, then by Lemma 12 we

have C5(v) ≤ k(k− 2)2n− 1
2k

2(k− 2)2, hence φ(n)− φ(n− 1) ≥ k(k− 2)(n− 4k) holds and we are
done. If δ(G) ≥ k, then combining Theorem 4 and Lemma 11, we have Gn = H(n, `).

The function φ(n) is decreasing non-negative function. We have a trivial bound

φ(100k) ≤
(

100k
5

)
5!
10 − C5(H(100k, `)) ≤ 109k5.

For each n such that n > 100k we have either C5(H(n, `)) = ex(n,C5, C≥`+1) and φ(n) = 0 or
φ(n) 6= 0 and we have

φ(n) ≤ φ(100k)− k(k − 2)
n∑

i=100k

(i− 4k) ≤ 109k5 − n+ 92k
2 (n− 100k),

by Claim 2. Therefore for all n ≥ 105k3/2 we have φ(n) = 0. Hence we have ex(n,C5, C≥`+1) =
C5(H(n, `)).

Next we prove the special case when ` = 5 using progressive induction. Note that k = 2. Let the
graph from H1,n,k with parameters

⌊
n−3

2

⌋
,
⌈

n−3
2

⌉
be denoted by Fn and φ(n) = ex(n,C5, C≥`+1)−

C5(Fn).
Claim 3. For all n such that n ≥ 29, either Gn = Fn, or

φ(n) ≤ φ(n− 1)−
⌊
n− 27

2

⌋
.

Proof. If the extremal graph Gn is 2-connected, then by Theorem 4 and Lemma 11 we have Gn = Fn

and we are done.
If Gn is not 2-connected then let B1, B2 be two distinct end-blocks of Gn such that v(B2) ≥

v(B1). If v(B1) ≤ 5, then by removing a vertex of degree at most four from B1 we destroy at most
12 copies of C5. Hence we have φ(n− 1)− φ(n) ≥ C5(Fn)− C5(Fn−1)− 12 =

⌊
n−3

2

⌋
− 12.

If v(B1), v(B2) ≥ 6, then note that δ(B1), δ(B2) ≥ 2, we have B1 = Fv(B1), B2 = Fv(B2) by
Theorem 4 and Lemma 11 or B1 = H(6, 5). By convexity of the number of pentagons in Fn and
H(n, 5), Gn is not the extremal graph, a contradiction.

By Claim 3, we start progressive induction from n = 29 and when n ≥ 200, we get Gn is
2-connected and Gn = Fn. This completes the proof of Theorem 5. �
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Proof of Theorem 6

The proof of Theorem 6 is very similar to the proof of Theorem 5. At first we prove the
following lemmas.
Lemma 13. For all n ≥ `, among all graphs in the set {H(n, `),K2 +(Kk∪bKk−1),K3 + n−3

2 K2}∪
H1,n,k ∪H2,n,k, H(n, `) contains most copies of C4.

We omit the proof since the proof is straightforward and similar to Lemma 11
Lemma 14. Let G be a 2-connected C≥`+1-free graph on n vertices. If some vertex v has degree at
most k − 1, then

C4(v) ≤
(
k − 1

2

)
n.

Proof. The number of ways to choose adjacent vertices of v in a C4 is at most
(k−1

2
)
and the number

of choices for the opposite vertex of v is at most n, hence we have C4(v) ≤
(k−1

2
)
n.

To finish the proof we also use progressive induction method. Let us define the following
function

φ(n) = ex(n,C4, C≥`+1)− C4(H(n, `)).
Using the same technique as in Claim 2, we have either the extremal graph Gn is 2-connected with
δ(G) ≥ k hence Gn = H(n, `), or

φ(n− 1)− φ(n) = C4(H(n, `))− C4(H(n− 1, `))− C4(v)

≥
(
k

2

)
(n− k − 1) + 3

(
k

3

)
−
(
k − 1

2

)
n

≥ (k − 1)n− 3k(k − 1)
2 ≥ (k − 1)(n− 2k).

The function φ(n) is decreasing non-negative function. We have a trivial bound

φ(4k) ≤ 3
(

4k
4

)
− (k − 1)n

(
n− 4k

2

)
.

Therefore for all n ≥ 10k 3
2 we have φ(n) = 0. Hence we have ex(n,C4, C≥`+1) = C4(H(n, `),

this completes the proof of Theorem 6. �

A new proof of Luo’s Theorem.

We prove Theorem 7 by induction on the number of vertices n. If n ≤ `, then the theorem
trivially holds. In what follows we prove the theorem for n ≥ `+ 1 assuming it holds for all graphs
with smaller number of vertices.

Note that we may assume that G is connected, otherwise, we are done by induction on each
component. If G is 2-connected and δ(G) ≥

⌊
`
2

⌋
, then by Theorem 4 we have

Ks(G) ≤ Ks(H(n, `)) < n− 1
`− 1

(
`

s

)
.
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If G is 2-connected and some vertex v has degree less than
⌊

`
2

⌋
, then

Ks(G) ≤ Ks(G− v) +
(⌊

`
2

⌋
− 1

s− 1

)
<
n− 1
`− 1

(
`

s

)
,

by induction hypothesis.
If G is not 2-connected, let B1 be the 2-connected end-block with the cut vertex v. Then by

the induction hypothesis we have

Ks(G) = Ks(B1) +Ks(G− (V (B1) \ {v})) ≤ v(B1)− 1
`− 1

(
`

s

)
+ (n− v(B1) + 1)− 1

`− 1

(
`

s

)

= n− 1
`− 1

(
`

s

)
.

Equality holds if and only if `− 1|n− 1 and each maximal 2-connected block is a copy of K`. �

5 Counting general cycles
In this section we prove Theorem 8. At first note that H(n, `) provides a lower-bound for the

number of C2k and C2k+1 as well.
At first we will show

lim
`→∞

 lim
n→∞

ex(n,C2k, C≥`+1)⌊
`
2

⌋k
nk

 ≤ 1
2k .

Let G be a 2-connected graph with circumference at most `. Then by Theorem 2 we have
e(G) ≤

⌊
`
2

⌋
n. Let e1, e2, . . . , ek be k independent edges such that there are no more than two

cycles of length 2k containing edges e1, e2, . . . , ek in this given order. Then the number of 2k-cycles
on such k independent edges in G is at most

2
(
⌊

`
2

⌋
n)k

4k .

Which is the desired upper bound in case the rest of the cycles are negligible. Indeed for independent
edges e1, e2, . . . , ek if there are more than two cycles of length 2k containing edges e1, e2, . . . , ek in
this given order then the induced graph on the vertex set ∪k

i=1{vi, ui} contains 2C3 ∪ (k − 3)P2 as
a subgraph where ei = viui. Hence the number of such cycles is at most

(2k)!
(

2
3

⌊
`

2

⌋2
n

)2

(
⌊
`

2

⌋
n)k−3

where we use Theorem 7 to bound the number of cycles and Theorem 2 to bound the number of
edges. This shows the desired upper-bound.
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We use induction on the number of vertices to show

lim
`→∞

 lim
n→∞

ex(n,C2k+1, C≥`+1)⌊
`
2

⌋k+1
nk

 ≤ 1
2 .

Observe that it is enough to show that there exists a vertex incident to at most

k

2

⌊
`

2

⌋k+1
nk−1 +N`k`

k+1nk−2

cycles of length 2k+1, for some constant N`. By Dirac’s theorem we have a vertex of G with degree
at most

⌊
`
2

⌋
. Let v be a vertex of minimum degree. Let us fix two vertices w1 and w2 adjacent

to v.
Claim 4. The number of paths of length 2k − 1 from w1 to w2 is at most

k

⌊
`

2n
⌋k−1

+N ′``
k−1nk−2

for some constant N ′` dependent on `.

Proof. The number of such 2k − 1-paths with terminal vertices w1 and w2 with a subgraph iso-
morphic to K4 ∪ (k− 3)K2 or 2K3 ∪ (k− 4)K2 is bounded by N ′``k−1nk−2 by Theorem 7, for some
constant N ′`.

The number of 2k−1-paths with terminal vertices w1 and w2 using the fixed k−1 independent
edges in the given order without having a subgraph K4∪ (k−3)K2 or 2K3∪ (k−4)K2 is at most k.
Hence we have the number of 2k − 1-paths with terminal vertices w1 and w2 is at most

k

⌊
`

2

⌋k−1
nk−1 +N ′``

k−1nk−2

The number of cycles of length 2k + 1 incident with this vertex is at most(⌊
`
2

⌋
2

)
k

(⌊
`

2

⌋k−1
nk−1 +N ′``

k−1nk−2
)
.

This finishes the proof. �

6 Acknowledgements
We would like to thank Yixiao Zhang for useful remarks on the manuscript. The research

of Győri and Salia was supported by the National Research, Development and Innovation Office
NKFIH, grants K132696 and SNN-135643.

15



References
[1] Noga Alon and Clara Shikhelman. Many T copies in H-free graphs. Journal of Combinatorial

Theory, Series B, 121:146–172, 2016.
[2] Noga Alon and Clara Shikhelman. Additive approximation of generalized Turán questions.

arXiv preprint arXiv:1811.08750, 2018.
[3] Béla Bollobás and Ervin Győri. Pentagons vs. triangles. Discrete Mathematics, 308(19):4332–

4336, 2008.
[4] Gabriel Andrew Dirac. Some theorems on abstract graphs. Proceedings of the London Math-

ematical Society, 3(1):69–81, 1952.
[5] Paul Erdős. On some problems in graph theory, combinatorial analysis and combinatorial num-

ber theory. Graph Theory and Combinatorics (Cambridge, 1983), Academic Press, London,
pages 1–17, 1984.

[6] Paul Erdős and Tibor Gallai. On maximal paths and circuits of graphs. Acta Mathematica
Academiae Scientiarum Hungarica, 10(3-4):337–356, 1959.

[7] Beka Ergemlidze, Ervin Győri, Abhishek Methuku, and Nika Salia. A note on the maximum
number of triangles in a C5-free graph. Journal of Graph Theory, 90(3):227–230, 2019.

[8] Beka Ergemlidze and Abhishek Methuku. Triangles in C5-free graphs and hypergraphs of girth
six. arXiv preprint arXiv:1811.11873, 2018.

[9] Zoltán Füredi, Alexandr Kostochka, and Jacques Verstraëte. Stability in the Erdős–Gallai
theorems on cycles and paths. Journal of Combinatorial Theory, Series B, 121:197–228, 2016.

[10] Dániel Gerbner, Ervin Győri, Abhishek Methuku, and Máté Vizer. Generalized Turán prob-
lems for even cycles. arXiv preprint arXiv:1712.07079, 2017.

[11] Andrzej Grzesik. On the maximum number of five-cycles in a triangle-free graph. Journal of
Combinatorial Theory, Series B, 102(5):1061–1066, 2012.

[12] Andrzej Grzesik and Bartłomiej Kielak. On the maximum number of odd cycles in graphs
without smaller odd cycles. Journal of Graph Theory, 99(2):240–246, 2022.

[13] Ervin Győri and Hao Li. The maximum number of triangles in c2k+ 1-free graphs. Combina-
torics, Probability and Computing, 21(1-2):187–191, 2012.

[14] Ervin Győri, János Pach, and Miklós Simonovits. On the maximal number of certain subgraphs
in Kr-free graphs. Graphs and Combinatorics, 7(1):31–37, 1991.

[15] Ervin Győri, Nika Salia, Casey Tompkins, and Oscar Zamora. The maximum number of P`

copies in Pk-free graphs. Discrete Mathematics & Theoretical Computer Science, 21(1), 2018.
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