arXiv:2011.13715v1 [math.CO] 27 Nov 2020

Turan numbers and anti-Ramsey numbers for short cycles in
complete 3-partite graphs

Chungiu Fang ** Ervin Gy6ri 123 Chuangi Xiao #%3 Jimeng Xiao 54

1School of Mathematical Sciences, University of Science and Technology of China, Hefei
2Alfréd Rényi Institute of Mathematics, Budapest
3Central European University, Budapest
4School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an

Abstract
We call a 4-cycle in K, n,n, multipartite, denoted by CJUt | if it contains at least one

vertex in each part of Ky, nyns. The Turdn number ex(K,, ny g, CTUH) ( respectively,
ex(Kn; na.mns» {Cs, Cfln“l“})> is the maximum number of edges in a graph G C K, n, ns such

that G contains no CPuiti < respectively, G contains neither C3 nor C’ff’““i>. We call a Cjrults

rainbow if all four edges of it have different colors. The anti-Ramsey number ar(K,; n, ng, ijm“i)
is the maximum number of colors in an edge-colored of K, 5, n, With no rainbow CPUti. In
this paper, we determine that ex(Ky, nyns, CEUH) = ning + 2ng and ar(Kp, nyns, CP) =
eX(KTLl,TLQ,ngj {037 Cinulti}) + 1= ning =+ ns + 1, where ni Z ) Z ns Z 1.
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1 Introduction

We consider only nonempty simple graphs. Let G be such a graph, the vertex and edge set
of G is denoted by V(G) and E(G), the number of vertices and edges in G by v(G) and e(G),
respectively. We denote the neighborhood of v in G by N¢(v), and the degree of a vertex v in G
by dg(v), the size of Ng(v). Let Uy, Uy be vertex sets, denote by eq (U, Usz) the number of edges
between U; and Uz in G. We write d(v) instead of dg(v), N(v) instead of Ng(v) and e(Uy, Us)

instead of eq(Uy,Us) if the underlying graph G is clear.
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Given a graph family F, we call a graph H an F-free graph, if G contains no graph in F as
a subgraph. The Turdn number ex(G, F) for a graph family F in G is the maximum number of

edges in a graph H C G which is F-free. If F = {F'}, then we denote ex(G, F) by ex(G, F).

An old result of Bollobés, Erdés and Szemerédi [3] showed that ex(Kp, ngng, C3) = ning+nins
for ny > ng > n3 > 1 (also see [2/45]). Lv, Lu and Fang [8/9] constructed balanced 3-partite graphs
which are Cy-free and {C3, C4}-free respectively and showed that ex(Ky, ppn,Cs) = (\% + 0(1))n3/?
and ex(Kpnn, {C3,C4}) > (v/3 4 0(1))n*/2. Recently, Fang, Gyéri, Li and Xiao [7] showed that if

G C Ky mo,...n, and e(G) > f(n1,n2,...,n,) + 1, then G contains a multipartite cycle. Further

T

more, they proposed the following conjecture.

Conjecture 1. [7/ Forr > 3 and ny > ng > --- > n, > 1, if G C Ky, ny,...n, and e(G) >

T

f(ni,ne,...,n.) + 1, then G contains a multipartite cycle of length no more than %r.

The definitions of the multipartite subgraphs and the function f(ni,ne,...,n,) are defined as

follows.

Definition 1. [7] Let r > 3 and G be an r-partite graph with vertex partition Vi,Va, ..., V., we
call a subgraph H of G multipartite, if there are at least three distinct parts Vi, V;, Vi, such that
VIH)NV; #0,V(H)NV; # 0 and V(H) N Vi, # 0. In particular, we denote a multipartite H by

H™W (see Figure [ for an example of a C’i”“lti in a 3-partite graph).

Figure 1: A CJ™ in a 3-partite graph.

Forr>3andny >no>--->n, > 1, let

ning +ngng + -+ + Np—9Np_1 + Ny + T—El —1, r isodd;
f(n17n27"'7n7“) =

ning +ngng + -+ np_ny + 5 — 1, r is even.

In this paper, we consider the Turdn numbers of CJ™% and {C3, CP"W*} in the complete

3-partite graphs and obtain the following two results.



Theorem 1. For ny > ng > nz > 1, ex(Ky, ny g, CTUE

) = ning + 2ng.
Theorem 2. For ny > ng > n3 > 1, ex(Kpn, ng s {C’g,C’Zwm}) = ning + ns.

Notice that Theorem [2] confirms Conjecture [Il for the case when r = 3.

A subgraph of an edge-colored graph is rainbow, if all of its edges have different colors. For
graphs G and H, the anti-Ramsey number ar(G, H) is the maximum number of colors in an edge-
colored G with no rainbow copy of H. Erdds, Simonovits and Sés [6] first studied the anti-Ramsey
number in the case when the host graph G is a complete graph K, and showed the close relationship
between it and the Turdan number. In this paper, we consider the anti-Ramsey number of Cinum in

the complete 3-partite graphs.
Theorem 3. For ny > ng > n3 > 1, ar(Kp, nyngs C’Zf‘“l”) =nine +nsg + 1.

We prove Theorems [I] and [2lin Section 2 and Theorem [B]in Section 3, respectively. We always

denote the vertex partition of K, p,ns by Vi, V2 and Vi, where |Vi| =n;, 1 <1i < 3.
2 The Turan numbers of O and {C;, Cmultil

In this section,we first give the following lemma which will play an important role in our proof.

Lemma 4. Let G be a 3-partite graph with vertex partition X,Y and Z, such that for all z € X,
N(z)NY #0 and N(x)NZ # 0.
(i) If G is CJ"%i_free, then e(G) < |Y|Z| + 2|X|;
(i) If G is {C3, CJ") —free, then e(G) < |Y||Z] + |X|.
Proof. (i) Since G is C"Y_free, G[N(z)] is K1 o-free for each x € X. Therefore,
(GIN (@) = e(N(x) AY,N(z) N Z> < min {|N(;L~) AY], [N() N Z|}. (1)
For x € X, we let e, be the number of missing edges of G between N(z)NY and N(z)N Z.
By (), we have
ex = |N(z)NY]|-|N(z)N Z] —e(N(m) NY,N(x) ﬂZ)
> [N(z) N Y] - [N(z) N Z| — min {|N(x) AY], [N(z) N Z|} )

> |N(@)NY|+|N(z)NZ| -2,



where the last inequality holds since |[N(z) N Y| > 1 and |[N(z)NZ| > 1 for all x € X.

By (@), we get
DY <|N(x) AY|+|N@)nZ| - 2) — e(X,Y) +e(X, Z) — 2/X]. ()
reX rzeX

Notice that for any two distinct vertices x1,z2 € X, they can not have common neighboors in
both Y and Z at the same time, otherwise we find a copy of C7*“* in G. Thus each missing edge
between Y and Z be calculated at most once in the summation ) .y e,. Hence the number of
missing edges between Y and Z is at least >, .y e;. Then we have

e(Y,Z) < Y|IZ] = D ex < IY[IZ] = (e(X,Y) + e(X, Z) — 2|X]). (4)
zeX

By @), we get
e(G) =eX,)Y)+e(X,2)+eY,Z2) <|Y||Z| + 2|X|.
(ii) Since G is Cs-free, for each x € X
e(N(x)ﬁY,N(a:)ﬂZ) =0. (5)

Since for each z € X, [N(z)NY| > 1 and |[N(x)NZ| > 1 hold, by (@), the number of missing edges
between N(z)NY and N(z)NZ is |[N(z)NY|-|N(xz)NZ|. Notice that for any two distinct vertices
x1,x9 € X, they cannot have common neighboors in both Y and Z at the same time, otherwise
we find a copy of CJ"* in G. Hence, the number of missing edges between Y and Z is at least
Ywex IN(z)NY|-|N(z) N Z|. Thus,

e(Y,Z)<|Y||Z| = > |IN@)nY|-|N(z)N Z|
zeX

<YIZ| = Y (IN@)NY|+N(@)nZ|-1) (6)
zeX
= Y[|Z] + |X| - e(X,Y) —e(X, Z),
the second inequality holds since [N(z) NY| > 1and |[N(x)NZ| > 1 for x € X.
By (@), we have e(G) =e(Y,Z2) +e(X,Y) +e(X,Z) < |Y||Z] + | X]. O

Now we are able to prove Theorems [I] and



Proof of Theorem[1. Let G C Ky, n,n, be a graph, such that V; and V5 are completely joined, Vi
(respectively, V5) and V3 are joined by an nz-matching, see Figure @ Clearly, G is C7"“*free and

e(G) = ning + 2n3. Therefore, ex(Ky, nynss CPUy > nyng + 2ng3.

Figure 2: An example of " _free graph with nins + 2n3 edges.

Let G C Ky, ny s such that G is CP-free, now we are going to prove that e(G) < nins+2n;3

by induction on ni + ne + ngs.
For the base case n3 = 1, let V3 = {v}, we consider the following four subcases:
(i) N(v)N'Vy # 0 and N(v) N Va # (), then by Lemma [, we have e(G) < ning + 2.
(17) N(v) N Vi # 0 and Ng(v) NVy = (), then
e(G) = e(Vs, N(v)) + e(Va, N(v)) + e(Vi \ N(v),V2)
<d(v) +ng+ (nl - d(v))ng
<ning + 1.
(13i) N(v)NVy =0 and N(v) NV, # ), then
e(G) = e(Va, N(v)) + e(Vi, N(v)) + e(Va \ N(v), A)
< d(v) +nq + (ng — d(v))ny
<ning + 1.
(iv) N(v)NViy =0 and N(v) N Va =0, then e(G) = e(V1, Va) < nino.
Now let ng > 2, and assume that the conclusion is true for order less than ny + ne + n3. We
consider the following three cases.
Case 1. ni=ngo=ng=n>2.
If there exists one part, say Vi, such that N(v) N V5 # 0 and N(v) N V3 # 0, for all v € Vj,
then by Lemma [, we have e(G) < |Va||V3] + 2|Vi| = n? + 2n.



Thus, we may assume that for all i € [3], there exist a vertex v € V; and j € [3]\ {¢} such that

N(v) NV, = ). We separate it into two subcases.

Case 1.1. There exist two parts, say V7 and Vs, such that N(v1)NVo =0 and N(ve)NV; =0

for some vertices v1 € V7 and vy € V5.

Since G is C™¥-free, d(v1)+d(v2) < |V3|+1 = n+1. Without loss of generality, let v3 € V3 be
the vertex such that N(v3) NV; = (). Then the number of edges incident with {v1,vs,v3} in G is at
most d(v1)+d(ve)+n—1 < 2n. By the induction hypothesis, e(G—{v1,v2,v3}) < (n—1)2+2(n—1).
Thus, e(G) < (n—1)2 +2(n — 1) 4+ 2n < n? + 2n.

Case 1.2. There exist vertices v; € Vi,v9 € Vo and v € V3 such that either N(v;) NV =
O, N(va) N Vs =0,N(vs)NVy =0 or N(vy) NV3=0,N(v3)NVa=10,N(va) N Vi =0 holds.

Without loss of generality, we assume that N(vi) N Vo =0, N(vo) N V3 =0, N(v3) NV = 0. If
d(vy) + d(ve) + d(vs) < 2n + 1, then by the induction hypothesis, we have

e(G) < e(G — {v1,v2,v3}) + d(v1) + d(ve2) + d(v3)
<(n-172+2n—-1)+2n+1
< n? + 2n.

Now we assume that d(vy) + d(vs) + d(vs) > 2n + 2, hence, d(v;) > 1,d(ve) > 1,d(v3) > 1.
Since G is CJ*“i_free, each vertex in Vi \ {v1} can have at most one neighbour in N(v3), we have
e(Vi\{v1}, N(v3)) < n—1. Similarly, we have e(V3\{vs}, N(v2)) <n—1and e(Va\{va}, N(v1)) <
n—1.

Therefore,
e(V1,V2) = e(Vi\ {v1}, Vo \ N(v3)) + e(Vi \ {v1}, N(v3)) < (n —d(v3))(n — 1) + (n — 1),

e(V1, V) = e(Va \ {vs}, Vi \ N(v2)) + (V3 \ {v3}, N(v2)) < (n — d(v2))(n — 1) + (n — 1),

e(Va, V3) = e(Va \ {va}, V3 \ N(v1)) + e(Va \ {va}, N(v1)) < (n —d(v1))(n — 1) + (n — 1).



Thus,
e(G) = e(V1,Va) + e(V1, V3) + e(V2, V3)

Sn — (d(v1) + d(vs) + d(vg))> (n—1)+3(n—1)

<
< (3n—(2n+2)>(n—1)+3(n—1)

Case 2. n1 >no=ng=n> 2.

If there exists one vertex vy € V; such that d(vg) < n, by the induction hypothesis, we have
e(G) = e(G —vg) +d(vg) < (n1 — 1)n + 2n +n < nyn + 2n. Otherwise, we have d(v) > n + 1 for
all vertices v € V4. Hence, N(v) NV # () and N(v) NV3 # () hold for all v € V1. By Lemma H we
get e(G) < n? +2n; < nin + 2n.

Case 3. ny > ng > ng > 2.

If there exists one vertex vy € V5 such that d(vg) < nj, by the induction hypothesis, we have
e(G) = e(G —vp) +d(vg) < ni(ng2 — 1)+ 2n3 +n1 < ning + 2n3. Otherwise, we have d(v) > ny +1
for all vertices v € V4. Hence, N(v) N'V;4 # 0 and N(v) N'V3 # 0 for all v € V5. By Lemma Ml we

get e(G) < ning + 2ny < nyng + 2ns. O

Proof of Theorem[2. Let G C Ky, n,n, be a graph, such that V; and V5 are completely joined, Vi
and V3 are joined by an ng-matching and there is no edge between V5 and V3, see Figure[Bl Clearly,

G is {C5, Ot} _free and e(G) = ning + n3. Therefore, ex(Ky, ny.ns, {C3, CPUY) > nyng + ns.

Vi Va

Va3
Figure 3: An example of {Cs, CJ"™}-free graph with nins + ng edges.

Let G C Ky, nyny such that G is {Cs, O} -free, now we are going to prove e(G) < ning+ng
by induction on ny + ny + ng. For the base case ng = 1, let V3 = {v}. We consider the following

four subcases;



(i) N(v)N'Vp # 0 and N(v) NV # 0, then by Lemma [, e(G) < nijng + 1.
(it) N(v) N Vi # 0 and N(v) NV, = 0, then
e(G) = e(Vs, N(v)) + e(Va, N(v)) + e(Va, V1 \ N(v))
< d(v) +n2 + (n1 — d(v))na
<ning + 1.
(iii) N(v)NVy =0 and N(v) NV # 0, then
e(G) =e(Vs, N(v)) +e(Vy, N(v)) + e(Vy, Vo \ N(v))
< d(v) +nq + (ng — d(v))ny
<ning + 1.
(iv) N(v) NVy =0 and N(v) N Va =0, then e(G) = e(V1, Va) < nina.
Now let ng > 2, and assume that the conclusion is correct for order less than ny +ns +ngz. We
consider the following three cases.
Case 1. ni=ngo=ng3=n>2.
If there exists one part, say Vi, such that N(v) N V5 # 0 and N(v) N V3 # 0, for all v € Vj,
then by Lemma [, we have e(G) < |Va||V3] + [V4| = n? + n.
Thus, we may assume that for all ¢ € [3], there exists a vertex v € V; and j € [3] \ {i} such
that N(v) NV, = (. We separate the proof into two subcases.

Case 1.1. There exist two parts, say V7 and Vs, such that N(v1)NVo =0 and N(ve) NV =0
for some vertices v1 € V7 and vy € V5.

Since G is {C3, CP™-free, d(vy) + d(v) < |V3| +1 = n + 1. Without loss of generality, let
v3 € V3 be the vertex such that N(v3) N Vi = (). Then the number of edges incident to {v1, va,v3}
in G is at most d(v1) + d(v2) + n — 1 < 2n. By the induction hypothesis, e(G — {v1,v2,v3}) <
(n—1)2+(n—1). Thus, e(G) < (n— 12+ (n—1)+2n < n? +n.

Case 1.2. There exist vertices v; € Vi,v9 € Vo and v € V3 such that either N(v;) NV =
O, N(va) N Vs =0,N(vs) NVy =0 or N(vy) NV3=0,N(v3)NVa=10,N(va) N Vi =0 holds.

Without loss of generality, we assume that N(v1) N Vo =0, N(vo) N V3 =0, N(v3) NV = 0. If



d(v1) + d(v2) + d(vs) < 2n, by the induction hypothesis, we have
e(G) < e(G —{v1,v2,v3}) + d(v1) + d(v2) + d(v3)

<(n—-1P2+(m-1)+2n

<n®+n.
Otherwise, d(v1) + d(v2) + d(v3) > 2n + 1, hence, d(v1) > 1,d(ve) > 1, and d(vs) > 1. Since G is
{C3, CPIH Y _free,

e(Vi, V2) = e(Vi \ {v1}, Vo \ N(v3)) + e(Vi \ {v1}, N(v3)) < (n —d(v3))(n — 1) + (n — 1),

Vi, V5) = (Vs \ {us}, Vi \ V(o)) + e(Vs \ fus}, N(w2)) < (n — d(e2))(n — 1) + (n — 1),

e(Va, V3) = e(Va \ {va}, Va \ N(v1)) +e(Va \ {va}, N(v1)) < (n — d(v1))(n — 1) + (n — 1).

Thus,

e(G) = e(V1,Va) +e(V1, V3) + e(Va, V3)
< (30— () + d(v2) + d(ws)) ) (0~ 1) + 30~ 1)
<Bn—-—02n+2)(n—-1)+3(n—-1)
<n®-1

Case 2. n1 >ngo=n3=n>2.

If there exists one vertex vy € V; such that d(vg) < n, by the induction hypothesis, we have
e(G) = e(G —wv) +d(vg) < (n1 — 1)n +n+n < nin + n. Otherwise, d(v) > n + 1 for all vertex
v € V4. Thus N(v) NVa # () and N(v) N V3 # 0. By Lemma @ we have e(G) < n? +ny < nin +n.

Case 3. n1 > no > ng > 2.

If there exists one vertex vg € V5 such that d(vg) < nq, by the induction hypothesis, we have
e(G) = e(G — vg) + d(vg) < ni(ng — 1) +n3 + n1 < ning + ng. Otherwise, d(v) > ny + 1 for all
vertex v € V5. Thus N(v) NV; # 0 and N(v) NV3 # (. By Lemma [ we have e(G) < ning + ng <

ning + ns. -
3 The anti-Ramsey number of Cjiti

In this section, we study the anti-Ramsey number of Cinum in the complete 3-partite graphs.

Given an edge-coloring ¢ of G, we denote the color of an edge e by c(e). For a subgraph H of



G, we denote C(H) = {c(e)le € E(H)}. We call a spanning subgraph of an edge-colored graph

representing subgraph, if it contains exactly one edge of each color.

Given graphs G; and Gg, we use G1 A G9 to denote the graph consisting of G; and G2 which
intersect in exactly one common vertex. We call a multipartite Cs in a 3-partite graph non-cyclic
if there exists a vertex v in Cg such that the two neigborhoods in Cg of v belong to the same part.
Let F be a graph family which consists of CJ"* (see graph G in Figure H), C3 A C3 (see graph
Go in Figure @), the non-cyclic C§" (see graphs G3, G, in Figure ) and C3 A Cs (see graphs
G5, Gg, Gt in Figure M) and the C’ém“lti which contains at least two vertex-disjoint non-multipartite

P5 (see graph Gy in Figure M).
Gl G2 G3 G4
Gs Gr Gs
Figure 4: F = {Gl} U {GQ} U {Gg, G4} @] {G5, Gg, G7} U {Gg}

The following lemma will help us to find a rainbow Cinum in the edge-colored complete 3-partite

graphs and the idea comes from [I].
Lemma 5. Let ny > ng > ng > 1. For an edge-colored K, n,ny, if there is a rainbow copy of
some graph in F, then there is a rainbow copy of C’jf“l”.
Proof. We separate the proof into three cases.
Case 1. An edge-colored K, 1, n, contains a rainbow copy of G, G3 or Gj.

Suppose there is a rainbow copy of G2 in Ky, 5, ns, See Figure Bl then whatever the color of

viws 18, at least one of viuvewsovr and viwouwivy is a rainbow Cinum. Similarly, with the help of

10



G3 G4

Figure 5:

the red edge that showed in G3 and Gy, see Figure [B] one can easily find a rainbow copy of Ot
if there is a rainbow copy of G3 or Gy.

Case 2. An edge-colored K, 1, n, contains a rainbow copy of Gf.

Suppose there is a rainbow copy of G5 in Ky, n, ns, see Figure @l If vgwsuwqvs is not rainbow,
then uws shares the same color with one of vsws, vsws and uwsy. Hence, uvowsu U uviwou is a

rainbow copy of Go, by Case 1, we can find a rainbow copy of C’fmlti.

Figure 6:

Case 3. An edge-colored K, 1, n, contains a rainbow copy of G, G7 or Gg.

Gr Gg

Figure 7:

Suppose there is a rainbow copy of Gg in K, n, ns, see Figure [l If vouqwiugve is not rainbow,

then usw; shares the same color with one of vouy, urwi and wuove. Hence, viujvzwouswivy is a

11



rainbow copy of Gy, by Case 1, we can find a rainbow copy of CJ™™*. Similarly, with the help of
the red edge showed in G7 and Gg, see Figure [T, one can always find a rainbow copy of CJt if

there is a rainbow copy of G7 or Gs. O
Now we are able to prove Theorem [3l

Proof of Theorem[3. Lower bound: We color the edges of K, 5, n, as follows. First, color all
edges between V7 and V5 rainbow. Second, for each vertex v € V3, color all the edges between v
and V7 with one new distinct color. Finally, we assign a new color to all edges between V5 and V3.

In such way, we use exactly nino + ng + 1 colors, and there is no rainbow C’}F“m.

Upper bound: We prove the upper bound by induction on nq + ng + ng. By Theorem [Il we
have ar(Ky, ny1, CPUY) < ex(Kp, ng.1, CPMH) = nyng + 2, the conclusion holds for n3 = 1. Let
ng > 2, suppose the conclusion holds for all integers less than ni +ny+mns. We suppose there exists
an (ning + n3 + 2)-edge-coloring ¢ of Ky, n, n, such that there is no rainbow Cinulti in it. We take
a representing subgraph G.

Claim 1. G contains two vertex-disjoint triangles.

Proof of Claim 1. By Theorem 2 ex(K, nyns, 1C3, O} = ning + ng. Since e(G) =
ning + n3 + 2 and G contains no C’j}“‘lti, G contains at least two triangles T} and To. If |V(T7) N
V(Ty)| = 2, then Ty U Ty contains a CJ" a contradiction. If [V (T1) NV (Ty)| = 1, then Ty U Ty is

Cmulti

a copy of C3 A (3. By Lemma [5, we can find a rainbow CJ™™", a contradiction. Thus, 77 and T5

are vertex-disjoint. m

Let the two vertex-disjoint triangles be T1 = x1y1 2121 and Ty = x9y22929, where {1, 22} C V7,
{y1,92} € V2 and {z1, 22} C V5. Denote Vo = {x1, 72,41, y2, 21, 22} and U = (V1 U Vo U V) \ Vo.

Claim 2. ¢(G[W]) < 7.

Proof of Claim 2. If e(G[Vp]) > 8, then e(V(T}),V(T2)) > 2. Without loss of generality,
assume that x1y2 € E(G), we claim that x129,x921,y122,y221 ¢ E(G), otherwise x1ysrozoxy,
T1Y2X221%1, T1Y229Y1X1 OF T1Y221y1x1 would be a rainbow C’}fwm, Thus, we have zoy; € E(G).
We claim that c(y122) = c(y222), otherwise at least one of {z1y122y221, x2y122y222} is a rainbow

C’}F“m. Thus, G[Vh] — y222 + y122 is rainbow and contains a C3 A C3. By Lemma B we find a

12



rainbow O a contradiction. (]
If U = (), that is n; = ng = ng = 2, then 8 = ¢(G) = e(G[V]) < 7, by Claim 2, a contradiction.
Thus we may assume that U # ().
Claim 3. For all v € U, e(v, Vp) < 2

Proof of Claim 3. If there is a vertex v € U, such that eg(v,Vh) > 3, then G[Vp U {v}]

contains a C’multl a contradiction. n
Claim 4. n3 > 3.

Proof of Claim 4. Suppose ng = 2. Since U # (), we have n; > 3 = n3 + 1. If there is a
vertex v € Vj such that d(v) < ne, then e(G —v) = ning +ng+2 —d(v) > (ny — 1)ng +ng + 2. By

the induction hypothesis, we have
|C(K oy nams —0)| = e(G —v) > (n1 — Dng +n3 +2 = ar(Kn, —1.ny.mg, CT) + 1,

thus Ky, nyns — v contains a rainbow CPUH ) a contradiction. Thus we assume that d(v) > na + 1

for all v € V4. By Claim 1, we have e(Va, V3) > 2. Hence, we have

e(G) =e(Vi,Va UVs) +e(Va, V) = > d(v) + e(Va,V3) > ny(ng + 1) + 2 = nyng + nq + 2,
veV

and this contradicts to the fact that e(G) = ning + ng + 2. m
Claim 5. ¢(G[Vo]) + ¢(Vo,U) > 2ny + 2ng — 1.

Proof of Claim 5. If e(G[Vp]) + e(Vb,U) < 2n; + 2ng — 2, then
e(G[U]) = e(G)—(e(G[Vo])+e(Vo,U)) > ning+nz+2—(2n14+2n9—2) = (n1—2)(ne—2)+(n3—2)+2.
By the induction hypothesis, we have

|O(Kn1,n2,n3 - VO)| > E(G[U]) > (nl - 2)(712 - 2) + (’I’L3 - 2) +2= ar(Knl—Q,nz—Zns—?v Cmultl) +1,

CPlti 5 contradiction. ]

thus Ky, nons — Vo contains a rainbow
Denote Uy = {v € U : e(v, Vp) = 2}. By Claim 3, we have e(U, Vp) < |Up| + |U|. By Claim 2,
we just need to consider the following two cases.

Case 1. ¢(G[W]) = 7.
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By Claim 5, we have e(U,Vy) > 2n; + 2n2 — 1 — e(G[Vo]) = 2n1 + 2ny — 8. Since |U| =
ny +ng +ng — 6 and e(U, V) < |Uy| + |U|, we have |Uy| > n1 + no —n3 —2 > 1. Let v € Uy, then
the orange edges in G[Vy U {v}] (see FigureB) forms one subgraph in F (see Figure d). By Lemma

[ there is a rainbow C™* a contradiction.

Figure 8: Illustration of G[Vy U {v}].

Case 2. ¢(G[Vy]) = 6.

Figure 9: Ilustration of G[Vy U {v1,v2}].

By Claim 5, we have e(U,Vy) > 2n1 + 2n2 — 1 — e(G[Vo]) = 2n1 + 2ng — 7. Since |U| =
ny + ng +n3 — 6 and e(U, Vo) < |Up| + |U|, we have |Uy| > ny +no—ng—1>ny —1>ny — 2.
Thus, Uy contains at least two vertices v; and vy which come from distinct parts. Then the orange

edges in G[VyU{v1,v2}] (see Figure[)) forms one subgraph in F (see Figured). By Lemmal5] there
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exists a rainbow CP a contradiction. O
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