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Abstract

To celebrate the 40th anniversary of EJC, I share some problems close
to my heart. They relate mainly to two areas I became acquainted with
more than 50 years ago during my years as a student at the Eötvös Uni-
versity, Budapest. I was fascinated by Ramsey theory learned at the
course of Vera T. Sós and the notion of perfect graphs and related struc-
tures learned from Erdős and Gallai. I was also impressed by the early
developments of hypergraph theory led by Berge and his French school.

1 The world surrounding perfect graphs

Let χ(G) (resp. θ(G)) denote the minimum number of independent sets (resp.
cliques) needed to partition the vertices of G and let ω(G) (resp. α(G)) denote
the maximum size of a clique (resp. independent set) of G. A graph G is χ-
bounded (resp. θ-bounded) by a function f if χ(H) ≤ f(ω(H)) (resp. θ(H) ≤
f(α(H))) for every induced subgraph H of G.

The above notions were inspired by the class of perfect graphs, the class of
graphs χ-bounded by the identity function, f(x) = x. Lovász [27] proved that
complements of perfect graphs are also perfect i.e. they are also θ-bounded by
the identity function.

It was shown in [16] that the only graph family that is χ-bounded and also
θ-bounded by the same function is the family of perfect graphs. However, as
suggested in [16], graph families χ-bounded by a small function f might be
θ-bounded as well by some other function, called a complementary function.
The vague term “small” appears here because it is known that complementary
functions do not exist if f(x) is not close to the identity function. The best
known example of a function without complementary function is f(x) = x +

x
logj(x)

, for arbitrary fixed j [22].

The smallest complementary function of f is denoted by f∗. In particular,
I conjectured that the family of graphs χ-bounded by f(x) = x+1 has comple-
mentary functions. This conjecture have been recently resolved by Scott and
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Seymour [35] relying on their earlier result [34] that graphs without induced
odd cycles of length at least five form a χ-bounded family (proving another
conjecture from [16]). As the theory of χ-bounded classes has been developing
rapidly, the reader should consult the survey of Scott and Seymour [33] which,
among other works, summarizes results from their (presently) 13-part sequence
of papers devoted to the subject. Nevertheless there are still mysteries in the
world surrounding perfect graphs.

1.1 The closest relative of perfect graphs

In a sense the slightest extension of perfect graphs is the family of graphs χ-
bounded by the function

f(x) =

{
3 for x = 2
x for x > 2.

As proved in [22], f∗(2) = 3 but for its next value only 4 ≤ f∗(3) ≤ 6 is
known, in general ⌊

8

5
x

⌋
≤ f∗(x) ≤

(
x+ 1

2

)
.

Problem 1.1. ([22]) Is f∗(x) linear? Perhaps the lower bound gives the truth?

1.2 Graphs χ-bounded by x+ 1

A further extension (beyond the function in subsection 1.1) is provided by the
family of graphs χ-bounded by the function g(x) = x + 1. Scott and Seymour
[35] proved that g∗(x) exists but even the value g∗(2) is not immediate.

Proposition 1.2. g∗(2) = 4.

Proof. The smallest triangle-free 4-chromatic graph, the Grötzsch graph M4

gives the lower bound for g∗(2). Indeed, M4 is obviously χ-bounded by the
function x+2 and not χ-bounded by x+1. On the other hand, it is not difficult
to check that M4 is θ-bounded by x + 1. Then g∗(2) ≤ 4 follows from the
k = 2 case of the following deep result of Folkman [9] (conjectured by Erdős
and Hajnal [8]).

Theorem 1.3. Assume that G is a graph such that every induced subgraph H

of G satisfies α(H) ≥ |V (H)|−k
2 . Then χ(G) ≤ k + 2.

Returning to the upper bound of g∗(2), assume that G is θ-bounded by x+1
and an induced subgraphs H of G satisfies ω(H) = 2. Then

|V (H)|
2

≤ θ(H) ≤ α(H) + 1

and, according to Theorem 1.3 with k = 2, this condition implies χ(H) ≤ 4. �
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The linear lower bound
⌊
8
5x

⌋
of f∗(x) is valid for g∗(x) as well but a slightly

better one comes from the following graph G. Consider two vertex disjoint six-
cycles with vertex sets {Ai : i ∈ [6]}, {Bi : i ∈ [6]}. Moreover, for i = 1, 3, 5
let Bi be adjacent with Ai, Ai+1 and for i = 2, 4, 6 let Bi be adjacent with
Ai+2, Ai+3, Ai+4, Ai+5. Defining Gk as k disjoint copies of G we have ω(Gk) =
3, χ(Gk) = 4, α(Gk) = 3k, θ(Gk) = 5k and can be easily seen that Gk is χ-
bounded by g = x+1. However, since 8

5 < 5
3 ,

⌊
8
5x

⌋
is not a θ-bounding function

for Gk.

Problem 1.4. Is g∗(x) linear?

1.3 Almost perfect graphs

Another possibility to extend the world of perfect graphs a little bit is relaxing
Lovász’s characterization [28] of perfectness: a graph G is perfect if and only if
its induced subgraphs H satisfy the condition

α(H)ω(H) ≥ |V (H)|. (1)

Define almost perfect graphs as those graphs G whose induced subgraphs H
satisfy

α(H)ω(H) + 1 ≥ |V (H)|. (2)

In Problem 6.8 [16] I asked whether almost perfect graphs are χ-bounded
(equivalently θ-bounded). It follows from the result of Scott and Seymour [35]
that they are. Perhaps even the following question has an affirmative answer.

Question 1.5. Are almost perfect graphs χ-bounded by the function g(x) =
x+ 1?

The answer to Question 1.5 is yes when ω(G) = 2 (or α(G) = 2). Indeed,

then (2) translates to α(H) ≥ |V (H)|−1
2 and by Theorem 1.3 χ(H) ≤ 3.

I close this section with a related (more than 20 years old) question distilled
from a problem I heard from Erdős in a summer afternoon.

Question 1.6. ([18]) Consider the family of graphs in which the vertex set of
every path induces a 3-colorable subgraph. Is this family χ-bounded?

As far as I know the best bound in Question 1.6 is logarithmic in |V (G)|
[31].

2 Variations on the Ramsey theme

The problem of finding the 2-color Ramsey number of the path occurred to
me in 1966. At the Combinatorics course of Vera T. Sós I learned that graphs
with many edges have a long path and 2-colored complete graphs have a large
monochromatic clique. This suggested to find how long monochromatic paths
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exist in 2-colored complete graphs. I shared the question with Laci Gerencsér
and it was amazing how our conversations converged to a proof [13]. Forty years
went by, then Gábor Sárközy, Szemerédi’s ex-student fortified my research group
and eventually we could solve the 3-color case as well [23]. While the 2-color
case has a “down to earth” proof by induction and valid for all n, the 3-color
case works only for “rocket high” n because the Regularity lemma is used in
the proof. Both methods, sometimes their combinations, give important tools
in many Ramsey type problems.

2.1 Vertex coverings by monochromatic paths

A footnote in my first paper [13] states that the vertex set of any 2-colored
complete graph can be partitioned by the vertices of two monochromatic paths.
This generated a lot of different extensions and variations surveyed in [21].
When I mentioned this in 1995 to Paul Erdős he said he did not believe it. In
fact, he thought I meant that the two paths must have the same color. Within
two weeks we arrived to a partial answer to his new problem.

Theorem 2.1. ([7]) The vertex set of a 2-colored Kn can be always covered by
the vertices of at most 2

√
n monochromatic paths of the same color.

Problem 2.2. ([7]) Is it possible to cover the vertex set of any 2-colored Kn

with at most
√
n monochromatic paths of the same color? This would be best

possible.

In Theorem 2.1 and Problem 2.2 the covering paths are not required to be
even edge-disjoint. Returning to the original problem, I have the following.

Conjecture 2.3. ([17]) The vertex set of an r-colored Kn can be always parti-
tioned into r monochromatic paths.

Conjecture 2.3 was proved for r = 3 by Pokrovskiy [29]. Interestingly, Con-
jecture 2.3 is true for infinite graphs (Rado [30]) and k-uniform hypergraphs
(Elekes, Soukup,Soukup, Szentmiklóssy [5]) even for tight paths where all con-
secutive k-sets of the vertices on the path form the edges of the path. For
general r the best result known [25] gives a vertex partition with no more than
cr log(r) monochromatic paths.

2.2 Balanced colorings

With Paul Erdős we called an edge coloring of Kn with r colors balanced if every
subset of ⌈n/r⌉ vertices contains at least one edge in each color ([6]). One can
easily see that K5 is the smallest complete graph with a balanced 2-coloring.
This seems exceptional, for r = 3, 4 the smallest complete graphs with balanced
r-colorings are K13,K21. In general we found balanced r-colorings of Kn when
n = r2+r+1 and r+1 is a prime power. These colorings are derived from finite
planes of order r + 1 and they have the property that in each color i there is a
partition of the vertex set into r + 1 complete graphs of color i (r of them is a
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Kr and one is a Kr+1. This property ensures that the coloring is balanced. We
thought that r2 + r + 1 is the smallest n for which balanced r-colorings exist.

Since ⌈ r2+r+1−i
r ⌉ = r + 1 for i = 1, . . . , r, the conjecture can be formulated as

follows.

Conjecture 2.4. ([6]) In every r-coloring of the edges of Kr2+1 there exist r+1
vertices with at least one missing color among them (r ≥ 3, true for r = 3, 4).

2.3 The chromatic Ramsey number of acyclic hypergraphs

It is tempting to extend results for Kn to any n-chromatic graph. Sometimes
this is successful, I realized that my tree-packing conjecture [19] is equivalent
for Kn and for n-chromatic graphs ([20], see Section 3). A famous case when
the extension badly fails is the Alon-Saks-Seymour conjecture refuted by Huang
and Sudakov [26]. It does not work for Ramsey numbers in general either, but
if the target graph (or hypergraph) is acyclic, it has a chance. In fact, I do not
know any acyclic graph (or hypergraph) G for which the 2-coloring of the edges
of any graph (or hypergraph) with chromatic number at least R(G) does not
contain a monochromatic copy of G (where R(G) is the 2-color Ramsey number
of G). Nevertheless it is hard to believe that equality always holds...

This problem was initiated with Bialostocki in [2] and continued by Garrison
[11], Alon at al. [1]. As proved in [24], there exists a bound, f(G), such that
any 2-coloring of the edges of any graph (or hypergraph) of chromatic number
at least f(G) contains a monochromatic copy of G. (The chromatic number
of a hypergraph is the minimum k such that the vertices can be colored with
k colors so that each edge has at least two colors.) A warm up case, when G
is a two-edge path, the Ramsey number comes from [4] for any number colors
and this extends to the chromatic version as well [11]. However, for 3-uniform
hypergraphs, only the following is known (not an easy result, its proof uses the
degree choosability version of Brooks theorem).

Theorem 2.5. ([24]) In every k-coloring of the edges of any (k+1)-chromatic
3-uniform hypergraph there are two edges of the same color, intersecting in one
vertex (k ≥ 2).

Question 2.6. Theorem 2.5 is best possible for k = 2, 3. What about larger
values of k?

The next step, to find how large chromatic number ensures that in every
2-coloring of the edges there are two edges of the same color intersecting in one
vertex, seems interesting. Let the 1-intersection graph of a hypergraph H be
the graph whose vertices correspond to edges of H and two vertices are adjacent
if and only if the corresponding edges of H intersect in exactly one vertex.

Question 2.7. Let H be an r-uniform hypergraph such that its 1-intersection
graph is bipartite. Is H 2-colorable? (Open already for r = 4.)
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2.4 Coloring blocks of Steiner triple systems - the sail
mystery

Classical results of Graham, Leeb, Rothchild [14] imply that in any 2-coloring of
the blocks of large enough projective STS’s (points and lines of PG(n, 2)) there
is a monochromatic Fano plane. In a recent paper [15] we looked at a similar
problem with different quantifiers. Instead of looking for a monochromatic copy
of a configuration C in 2-colorings of the blocks of a special families of STS’s,
we called C 2-Ramsey if there is a monochromatic C in every 2-colored STS(n)
with sufficiently large admissible n. It turned out that among the unavoidable
configurations of at most four blocks there is only one for which we could not
decide whether C is 2-Ramsey. This is the sail: three blocks through a point p
and a fourth block that intersects each of them in points different from p.

Question 2.8. Is the sail 2-Ramsey?

It is worth noting that a positive answer cannot come from a density argu-

ment because there are sail-free partial STS(n)’s with much more than n(n−1)
12 ,

the half of the total number of blocks. In fact, the maximum number of blocks
in a sail-free partial STS(n) is asymptotic to n2/9, [10].

3 The tree packing conjecture

During the problem section of the Hungarian combinatorial colloquium at Keszthely
in 1976 Richard Guy kindly recommended a question from my talk to the audi-
ence: is it true thatKn has an edge-disjoint decomposition into T1, T2, . . . , Tn−1,
where Ti is any tree with i edges. This became known as the “tree packing con-
jecture” [36].

We proved with Lehel [19] that the tree packing conjecture is true if all trees
are stars or paths. However, the five page proof can be replaced by a “proof
without words” discovered by Zaks and Liu [37]. I completely forgot another
nice special case asked 44 years ago in [36], I think it worth restating.

Conjecture 3.1. The tree packing conjecture is true if Tn−1 is arbitrary and
T1, T2, . . . , Tn−2 are paths.

The tree packing conjecture is true if all but two trees are stars [19] and even
if all but three are stars as proved by Roditty [32].

Gerbner, Keszegh and Palmer proposed [12] a natural extension of the tree
packing conjecture: is it true if Kn is replaced by any n-chromatic graph? They
proved [12] that it is true if all but three trees are stars. However, the case when
all trees are stars and paths resisted, it seemed that neither proofs ([19], [37])
can be generalized to n-chromatic graphs. Then, to my great surprise, it turned
out that an easy “black box” argument settles this generalization.

Theorem 3.2. ([20]) Assume that Kn has an edge disjoint decomposition into
trees T1, . . . , Tn−1. Then any n-chromatic graph contains edge disjoint copies of
these trees.
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For many interesting developments related to the tree packing conjecture
(packing small trees, packing large trees, packing bounded degree trees etc.) I
recommend [3] and its references.

Acknowledgement. Careful reading and advices of the referees are appreci-
ated.
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[3] J. Böttcher, J. Hladky, D. Piguet, A. Taraz, An approximate version of the
tree packing conjecture, Israel Journal of Mathematics 211 (2016) 391–446.

[4] S. A. Burr, J. A. Roberts, On Ramsey numbers for stars, Utilitas Math. 4
(1973) 217–220.

[5] M. Elekes, D. Soukup, L. Soukup, Z. Szentmiklóssy, Decomposition of edge-
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