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Abstract: We propose two novel types of spatially multiplexed single-photon sources based on
incomplete binary-tree multiplexers. The incomplete multiplexers are extensions of complete
binary-tree multiplexers, and they contain incomplete branches either at the input or at the output
of them. We analyze and optimize these systems realized with general asymmetric routers and
photon-number-resolving detectors by applying a general statistical theory introduced previously
that includes all relevant loss mechanisms. We show that the use of any of the two proposed
multiplexing systems can lead to higher single-photon probabilities than that achieved with
complete binary-tree multiplexers. Single-photon sources based on output-extended incomplete
binary-tree multiplexers outperform those based on input-extended ones in the considered
parameter ranges, and they can in principle yield single-photon probabilities higher than 0.93
when they are realized by state-of-the-art bulk optical elements. We show that the application of
the incomplete binary-tree approach can significantly improve the performance of the multiplexed
single-photon sources for suboptimal system sizes that is a typical situation in current experiments.
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1. Introduction

The development of single-photon sources (SPSs) is of utmost importance for the effective
realization of a number of experiments in the fields of photonic quantum technology and quantum
information processing [1,2]. A promising realization of SPSs are the heralded single-photon
sources that can yield highly indistinguishable single photons in near-perfect spatial modes
with known polarization [3–8]. In such sources, the detection of one member of a correlated
photon pair generated in spontaneous parametric down-conversion (SPDC) or spontaneous
four-wave mixing (SFWM) heralds the presence of its twin photon. Though the periodicity
of heralded single-photon sources can be guaranteed by pulsed pumping of the photon pair
source, the inherent probabilistic nature of the photon pair generation in these nonlinear processes
results in the occasional occurrence of multipair events in the pair generation. This detrimental
effect can be reduced by various multiplexing techniques such as spatial multiplexing [9–15]
and time multiplexing [16–27] where heralded photons generated in a set of multiplexed units
realized in space or in time are rerouted to a single output mode by a switching system. In
multiplexed SPSs, the multi-photon noise can be suppressed by keeping the mean photon number
of the generated photon pairs low in a multiplexed unit by decreasing the power of the pumping
beam of the nonlinear process generating the photon pairs. However, this reduction can be
accompanied by the decrease of the single-pair probability, too. Multiplexing of several units can
compensate for this unwanted effect and can ensure the high probability of successful heralding
in the whole system. Multi-photon events can also be reduced by using single-photon detectors
with photon-number-resolving capabilities for heralding [6,15,28–31]. High-efficiency inherent
photon-number resolving detectors (PNRDs) in various realizations such as transition edge
sensors [32–35] or superconducting nanowire detectors [36] are also available for this task.
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An unavoidable issue of real multiplexed systems is the appearance of various losses of
the optical elements in both the heralding stage and the multiplexing system that leads to the
limitation of the performance of multiplexed SPSs [30,37]. Full statistical frameworks have
already been developed for the description of any kind of multiplexed SPSs using various photon
detectors that take all relevant loss mechanisms into account [31,38,39]. These frameworks
make it possible to optimize multiplexed SPSs, that is, to maximize the output single-photon
probability by determining the optimal system size, that is, the number of multiplexed units,
and the mean number of photon pairs generated in the multiplexed units for a given set of loss
parameters. The analysis of various multiplexing configurations showed that the single-photon
probability that can be achieved in these systems after the optimization are different even by
using identical optical elements in the setups. This finding motivates the development of novel
multiplexing schemes leading to higher single-photon probabilities.

In spatial multiplexing, which is the topic of the current research, several individual pulsed
heralded SPSs are used in parallel. In these systems, after a successful heralding event in one of
the multiplexed units, the heralded signal photon is rerouted to the single output by a set of binary
photon routers. In the literature, these routers were proposed to be arranged into an asymmetric
(chain) or a symmetric (binary-tree) structure [30,37]. Spatial multiplexing has been realized
experimentally up to two multiplexed units by using SFWM in photonic crystal fibers [12,14],
and up to four multiplexed units by using SPDC in bulk crystals [11,15] and waveguides [13]. In
all these experiments symmetric, that is, complete binary-tree multiplexers were used. In the case
of symmetric spatial multiplexing the number of multiplexed units is restricted to a power of two.
The theoretical description of such systems shows that the optimal number of multiplexed units
for which the output single-photon probability is maximal can be rather high for small losses of
the multiplexing system [31]. However, in view of the currently realized experiments cited above
the realistic number of multiplexed units can be much smaller than the ones recommended by the
theory for the optimal operation. The realization of a spatially multiplexed SPS with suboptimal
system size that obeys the power-of-two restriction of symmetric multiplexers would most likely
yield single-photon probabilities significantly lower than the one predicted theoretically.

In this paper, to resolve this problem, we propose two novel types of spatially multiplexed
SPSs based on incomplete binary-tree multiplexers built with asymmetric binary routers. In
these systems the power-of-two restriction on the number of multiplexed units characterizing
symmetric multiplexers is eliminated, that is, the number of multiplexed units can be arbitrary.
We analyze the proposed systems in detail by applying the statistical theory introduced in Ref.
[31] for describing multiplexed SPSs equipped with PNRDs. We show that the proposed schemes
can yield higher single-photon probabilities than the complete binary-tree scheme realized
thus far in experiments. Moreover, for suboptimal system sizes the single-photon probabilities
can be considerably higher for these novel schemes than the ones that can be achieved with a
corresponding SPS based on symmetric multiplexing.

2. Incomplete binary-tree multiplexers

The idea of any spatial multiplexing scheme is to convey heralded photons generated in a set of
multiplexed units (MUs) to the single output of a multiplexer characterized by a given geometry
of a set of binary (2-to-1) photon routers (PRs). Each of the multiplexed units contain a nonlinear
photon pair source, a detector used to herald the presence of a signal photon of a photon pair by
detecting the corresponding idler (twin) photon, and optionally a delay line placed in the path of
the signal photon. Using such delay lines might be required in order to introduce a sufficient delay
into the arrival time of the signal photons to the inputs of the multiplexer arms, and thus to enable
the operation of the logic controlling the routers. When the detector is activated by the presence
of one or more idler photons of photon pairs generated by the nonlinear photon pair source in a
multiplexed unit, the corresponding signal photons are coupled into the multiplexer. In the most
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general case, photon-number-resolving detectors (PNRDs) can be used to detect the idler photons.
These detectors can realize any detection strategy defined by the actual detected photon numbers,
that is, the set of predefined number of idler photons for which the corresponding signal photons
generated in the nonlinear process are allowed to enter the multiplexer. As for the periodicity of
the single-photon source required in most of the applications, it can be guaranteed by pulsed
pumping of the photon pair source.

After the generation of photon pairs and the detection of the idler photons, the corresponding
signal photons are conveyed into a multiplexer system characterized by a particular arrangement
of a set of photon routers (PRs). In our analysis, all the PRs forming the spatial multiplexer are
assumed to be identical. Routers are usually assumed to be symmetric, however, this restriction
is not necessary, routers can be asymmetric, that is, they might have different transmission
coefficients assigned to their two input ports. Figure 1 presents a possible bulk optical realization
of such an asymmetric binary photon router. The building blocks of these routers are two
Pockels-cells (PCs) serving as possible entrance points of the signal photons generated in the
multiplexed units, and two polarizing beam splitters (PBSs), one of which acting as the output of
the PR.

Fig. 1. Schematic figure of a bulk optical photon router PRi. PBSs denote polarizing beam
splitters, PCs are Pockels cells. Vr and Vt denote transmission coefficients characterizing
the losses for Input1 and Input2, respectively.

The polarization of the signal photons is known at the two input ports of the router. The PCs
controlled by a priority logic can modify the polarization of these photons so that the pairs of
PCs and PBSs can select and reroute the photons in the chosen mode to the output of the routers
and eventually to the output of the whole multiplexer. If a mode is not selected, it can be directed
out of the system or it can be absorbed by a suitable optical element.

Asymmetric binary routers are characterized by two transmission coefficients Vr and Vt
corresponding to the transmission probabilities of the photons entering the router at Input1 and
Input2, respectively. In the case of the router presented in Fig. 1 Vr quantifies the losses due to
the transmission through a PC and the two reflections in the PBSs. The other transmission, Vt,
describes the losses introduced by the transmission through a PC and a PBS. These transmissions
also contain an additional propagation loss in the router. Later on in this paper Vt and Vr will be
referred to as the transmission and reflection efficiencies and in all the schemes discussed in our
work we will use routers with the coefficients Vr and Vt belonging to the left and right inputs of
the router, respectively.

Previous papers aiming at theoretical modeling or experimental realization of periodic single-
photon sources based on spatial multiplexing used two main types of multiplexers. One of them
is an asymmetric architecture in which the routers are arranged into a chain structure, that is, the
outputs of the newly added routers are always coupled to one of the inputs of the previously added
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router [30,37]. The other geometry is a symmetric structure in which the constituent routers are
arranged into a complete binary-tree multiplexer (CBTM) [9–15,30,31,38,39].

An asymmetric architecture can have any number of inputs N. However, in the case of the
symmetric arrangement the number of inputs is restricted to a power of two, that is, N = 2m,
where m is the number of levels in the symmetric multiplexer. Below we propose two novel
arrangements presented in Figs. 2 and 3 that are essentially incomplete binary-tree multiplexers
in which the number of inputs is arbitrary. Obviously, there are several ways to convert a CBTM
into an incomplete binary-tree multiplexer by omitting certain parts of the branches of the system
randomly. Here we consider two basic types of incomplete multiplexers having well-defined
structures. In these schemes, an initially m-level symmetric multiplexer is extended step-by-step
toward another, m+ 1-level symmetric multiplexer by adding new photon routers and multiplexed
units to the system at the inputs and outputs of the initial symmetric system. Such systems can be
easily realized experimentally by the extension of SPSs based on symmetric multiplexing created
in experiments reported thus far. In Figs. 2 and 3 PRis denote asymmetric binary (2-to-1) photon
routers and MUis represent multiplexed units. The various inputs (or arms) of the multiplexers
are numbered from left to right, their overall number N is equal to the number of MUs.

Fig. 2. Schematic diagram of an input-extended incomplete binary-tree multiplexer
(IIBTM). PRis and MUis denote binary photon routers and multiplexed units, respectively.
The sequential numbers of the levels are indicated on the left-hand side of the figure. Routers
with a light red background form a complete binary-tree multiplexer (CBTM) with m1 = 3
complete levels. Numbering of the PRs reflect the order in which they are added to the
multiplexer. N1 is the number of MUs on the incomplete level with the highest sequential
number.

The first proposed novel multiplexing scheme is presented in Fig. 2. In this scheme, new
asymmetric PRs are added to the inputs of an initially m-level symmetric multiplexer indicated
by light red background in the figure one by one from left to right. This building strategy is
reflected by the numbering of the PRs in the figure. This type of multiplexing scheme will be
referred to as input-extended incomplete binary-tree multiplexer (IIBTM).

The structure of the other proposed novel incomplete binary-tree multiplexer presented in Fig. 3
is also based on an initially complete binary-tree multiplexer indicated by light red background
in the figure. The next step is to couple the output of the initial symmetric multiplexer into one
of the inputs of a newly added router. In the figure, such a novel router is indicated by PR8. Let
us assume that always the left input of the novel router is used in such a situation. Then another
router is added to the other (right) input of the previously added router. In the figure, such a router
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Fig. 3. Schematic diagram of an output-extended incomplete binary-tree multiplexer
(OIBTM). PRis and MUis denote binary photon routers and multiplexed units, respectively.
The sequential numbers of the levels are indicated on the left-hand side of the figure. Routers
with a light red background form a 3-level complete binary-tree multiplexer (CBTM).
Numbering of the PRs reflect the order in which they are added to the multiplexer. m2 is the
number of levels of the OIBTM. m3 is the number of complete levels in the scheme. N2 is
the number of inputs of the initial CBTM. N3 denotes the number of inputs on the unfinished
level under construction on the incomplete branch of the multiplexer below the output PR8.

is denoted by PR9, and it is built onto the right input of PR8. Then the subsequent new routers
are added to the incomplete branch of the multiplexer one by one from left to right until the given
level is completed. This process is repeated until an m + 1-level symmetric multiplexer is formed.
This building strategy is represented by the numbering of the PRs in the figure. Throughout our
paper, this arrangement will be referred to as output-extended incomplete binary-tree multiplexer
(OIBTM).

Next, we introduce the formulas characterizing the transmission through the various arms of
the multiplexers. This quantity will be termed as total transmission coefficient and denoted by
Vn. Its role is explained in detail in Sec. 3.

The formula describing the total transmission coefficient Vsym
n of the nth arm of a CBTM

containing m levels and N = 2m inputs is

Vsym
n = Vm−H(n−1)

r VH(n−1)
t , n = [1, 2, . . . , N], (1)

where H(x) denotes the Hamming weight of x, that is, the number of ones in its binary
representation.

In the case of an IIBTM let us assume that the overall number of inputs is N. In Fig. 2 this
number is N = 11. Denote the number of inputs or MUs at the level with the highest number by
N1. In the figure on level 4 there are 3 routers (PR8 to PR10) with 6 inputs, therefore N1 = 6. Then
the total transmission coefficient V in

n characterizing the nth arm of an IIBTM can be expressed as

V in
n = Vm1+1−H(n−1)

r VH(n−1)
t if 0<n ≤ N1,

V in
n = Vm1−H(n−N1/2−1)

r VH(n−N1/2−1)
t if N1<n ≤ N.

(2)

Both quantities m1 and N1 are determined by the overall number of inputs N. The number of
levels in the initial symmetric multiplexer is m1 = ⌊log2 N⌋, where ⌊x⌋ denotes the floor function
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that gives as output the greatest integer less than or equal to x. In the figure m1 = 3. Finally, the
value N1 can be derived as N1 = 2(N − 2m1 ).

As an example, we present the list of total transmission coefficients V in
n characterizing the

arms of the multiplexer of the IIBTM scheme shown in Fig. 2:

V in
n = [V4

r , V3
r Vt, V3

r Vt, V2
r V2

t , V3
r Vt, V2

r V2
t , VrV2

t , V2
r Vt, VrV2

t , VrV2
t , V3

t ]. (3)

In the case of OIBTMs, assume again that the overall number of inputs of this multiplexer is N.
In Fig. 3 this number is N = 11. Denote the number of inputs of the initial CBTM by N2. In the
figure, it is N2 = 8. The number of inputs on the unfinished level under construction (level 3 in
the figure) on the incomplete branch of the multiplexer below the output PR is denoted by N3. In
the figure N3 = 2, that is, the number of inputs of PR10. Then the total transmission coefficients
Vout

n characterizing the arms of the OIBTM can be expressed as

Vout
n = Vm2−H(n−1)

r VH(n−1)
t , if 0 < n ≤ N2

Vout
n = VtVm3−H(n−N2−1)

r VH(n−N2−1)
t , if N2 < n ≤ N2 + N3

Vout
n = VtV

m3−1−H(n−N2−
N3
2 −1)

r VH(n−N2−
N3
2 −1)

t , if N2 + N3 < n ≤ N.

(4)

All the quantities mi and Ni can be derived from the overall number of inputs N. The value
m2 denotes the number of levels of the OIBTM. It can be derived as m2 = ⌈log2(N)⌉, where
⌈x⌉ denotes the ceiling function that returns with the least integer greater than or equal to
x. In the figure m2 = 4. Accordingly, the number of inputs of the initial CBTM N2 can be
expressed as N2 = 2m2−1. The number of complete levels m3 in the scheme can be calculated as
m3 = ⌊log2(N − N2)⌋ + 1, where ⌊x⌋ denotes the floor function. In the figure, m3 = 2. Finally,
the number of inputs on the unfinished level under construction on the incomplete branch of the
multiplexer below the output PR is N3 = 2(N − N2 − 2m3−1).

As an example, we show the total transmission coefficients Vout
n of the OIBTM presented in

Fig. 3:

Vout
n = [V4

r , V3
r Vt, V3

r Vt, V2
r V2

t , V3
r Vt, V2

r V2
t , V2

r V2
t , VrV3

t , V2
r Vt, VrV2

t , V2
t ]. (5)

Note that the total transmission coefficients presented in Eqs. (1), (2) and (4) are indexed
according to their positions in the multiplexer, that is, the subsequent values are generally not
sorted into an ascending or descending order.

3. Statistical theory

In order to analyze the proposed systems in detail we start from the general statistical theory
introduced in Ref. [31] that can be applied for describing any periodic SPSs based on spatial
multiplexing and equipped with PNRDs. In this framework, it is assumed that l photon pairs are
generated in the nth multiplexed unit by a nonlinear source and the detection of a predefined
number of photons j (j ≤ l) during a heralding event triggers the opening of the input ports of the
multiplexer. In general, i signal photons can be expected at the output of the multiplexing system,
the probability of which can be written as

P(S)
i =

(︁
1 −

∑︂
j∈S

P(D)(j)
)︁N
δi,0 +

N∑︂
n=1

[︄ (︁
1 −

∑︂
j∈S

P(D)(j)
)︁n−1

×

∞∑︂
l=i

∑︂
j∈S

P(D)(j |l)P(λ)(l)Vn(i|l)

]︄
. (6)

In this formula P(D)(j) denotes the probability of detecting exactly j photons in the nth
multiplexed unit. P(D)(j |l) is the conditional probability of registering j photons, provided that l
photons arrive at the detector. The probability of generating l photon pairs in the nth multiplexed



Research Article Vol. 30, No. 5 / 28 Feb 2022 / Optics Express 7005

unit when the mean photon number of the generated photon pairs is λ in that unit is denoted
by P(λ)(l). We assume that the quantities λ, P(D)(j), P(D)(j |l), and P(λ)(l) do not depend on
the sequential number of the multiplexed unit n, that is, each of them is identical for all the
multiplexed units. Vn(i|l) stands for the conditional probability of the event that the output of
the multiplexer is reached by i photons, provided that the number of signal photons arriving
from the nth multiplexed unit into the system is l. The set S describes the application of an
optional detection strategy. It contains the predefined number of detected heralding photons in a
multiplexed unit for which the generated signal photons are allowed to enter the multiplexer. We
assume that S consists of numbers from 1 to J ≤ Jb, that is, S = {1, 2, . . . , J}. Jb is the maximal
number of photons that the PNRD can distinguish. Accordingly, single-photon detection (SPD)
corresponds to the set S = {1} while, e.g., S = {1, 2} describes the case when heralding occurs at
the detection of one or two photons by the PNRD.

The first term in Eq. (6) contributes only to the case where no photon reaches the output, that
is, to the probability P(S)

0 . It describes the case when none of the PNRDs in the multiplexed
units have detected a photon number in S. The second term in Eq. (6) describes the case that the
heralding event occurs in the nth unit. The first factor in this term is the probability that none of
the first n − 1 detectors have detected a photon number in S. The second factor corresponds to
the event that out of the l photons entering the multiplexer from the nth multiplexed unit after
heralding, only i reach the output due to the losses of the multiplexer. The summation over n in
the second term takes into consideration all the possible contributions to the probability P(S)

i .
In Eq. (6) the various probabilities can be expressed as follows. The probability P(λ)(l)

represents that a nonlinear source generates l photon pairs. In our calculations we use Poisson
distribution, that is,

P(λ)(l) =
λle−λ

l!
, (7)

λ representing the mean photon number of the photon pairs generated by the nonlinear source
and arriving at the detectors in the multiplexed units, that is, the input of the heralding process.
Hence, we refer to it by the term input mean photon number in the following. Poissonian
distribution is valid for multimode SPDC or SFWM processes, that is, for weaker spectral filtering
[12,15,40–44]. Assuming this distribution makes it possible to compare our results with the
ones presented in a significant part of the literature related to SPS, which were also obtained for
Poissonian distribution [10,11,17,18,27,37–39]. Nevertheless, we present results also for the
thermal distribution

P(λ)
T (l) =

λl

(1 + λ)1+l (8)

in the cases we consider as important. This distribution is valid for single-mode, that is,
spectrally narrow-filtered SPDC or SFWM. In this case, the multiplexed SPSs can yield highly
indistinguishable single photons that are required for e.g. large-scale optical quantum information
experiments.

The formula for the conditional probability P(D)(j |l) can be obtained as

P(D)(j |l) = ⎛⎜⎝
l

j
⎞⎟⎠ V j

D(1 − VD)
l−j, (9)

where l and j are the number of the generated and detected photons inside a multiplexed unit,
respectively, by using a detector with efficiency VD. Finally, the total probability P(D)(j) reads

P(D)(j) =
∞∑︂
l=j

P(D)(j |l)P(λ)(l). (10)
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We note that beside the finite detector efficiency VD Eqs. (9) and (10) do not take into account
other possible imperfections of the detector such as dark counts and the miscategorization of the
actual photon count values of PNRDs. This does not pose any significant limitation against the
realistic nature of our model, consult Ref. [31] for a detailed justification.

The conditional probability

Vn(i|l) =
⎛⎜⎝

l

i
⎞⎟⎠ V i

n(1 − Vn)
l−i (11)

describes the case when i signal photons reach the output of the whole multiplexer given that l
signal photons are generated in the nth multiplexed unit. For analyzing a particular setup the
corresponding total transmission coefficient Vn should be substituted into Eq. (11). In the case
of the schemes studied in this paper the formulas in Eqs. (1), (2), and (4) can be used for the
CBTM, the IIBTM, and the OIBTM schemes, respectively. We note that for the priority logic
that corresponds to Eq. (6) the preferred multiplexed unit is the one with the smallest sequential
number n when heralding events occur in multiple units. However, the multiplexed units can be
numbered arbitrarily. Therefore, it is appropriate to reorder the numbering of the multiplexed
units in the considered schemes so that the total transmission coefficients Vn of the corresponding
arms of the multiplexer after renumbering are arranged into a decreasing order at a given set of
loss parameters. This means that the total transmission coefficient V1 will be the highest one
while VN will be the lowest one. The numbering of the multiplexer arms having identical total
transmission coefficients Vn can be chosen arbitrarily. Applying such an indexing, the multiplexer
arm with the highest Vn corresponding to the smallest loss is preferred by the priority logic when
multiple heralding events occur in the system. This approach decreases the probability that the
photon is lost in the multiplexer, thus it can result in higher single-photon probabilities.

Knowing the output probabilities P(S)
i defined in Eq. (6) for all photon numbers i, the normalized

second-order autocorrelation function g(2)(t = 0) can be obtained as

g(2)(t = 0) =

∞∑︂
i=2

Pii(i − 1)(︄
∞∑︂

i=1
Pii

)︄2 . (12)

This quantity measures the multiphoton components of the output state with respect to the
single-photon component.

Using the presented framework, the optimization of the considered systems can be accomplished
in the following way. We fix the total transmission coefficients Vn of the systems, that is, Vsym

n , V in
n ,

and Vout
n , for the CBTM, the IIBTM, and the OIBTM, respectively. This means that the reflection

and transmission efficiencies of the router Vr and Vt, respectively, and the general transmission
coefficient Vb are fixed. We also fix the detection strategy S and the detector efficiency VD. Then
two parameters are left to be optimized that are the input mean photon number λ and the number
of multiplexed units N. First, we determine the optimal value of the input mean photon number
λ for which the single-photon probability P1 is the highest for a fixed value of the number of
multiplexed units N. This probability is termed as the achievable single-photon probability and
denoted by P1,N while the corresponding photon number is called optimal input mean photon
number and denoted by λopt. We repeat this procedure for all values of N between 2 and Nmax.
The reasonable choice of the value Nmax depends on the values of the loss parameters. In our
calculations, we choose the value of Nmax between 40 and 120 empirically so that it ensures
to reveal the structure of the P1,N(N) function. In the end, we select the optimal value Nopt for
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which the achievable single-photon probability P1,N is the highest. This probability is termed as
the maximal single-photon probability, denoted by P1,max and it belongs to the optimal number
of multiplexed units Nopt and the optimal input mean photon number λopt corresponding to Nopt.
We remark that, although λopt can be found for every value of N, we do not use a separate term
for the one belonging to the optimal number of multiplexed units Nopt.

We note that in the following we use the superscripts “out”, “in”, and “sym” for all these
quantities to denote results achieved for SPSs based on OIBTM, IIBTM, and CBTM, respectively.

4. Results

In this section we summarize our results regarding the optimization of SPSs based on the proposed
incomplete binary-tree multiplexers composed of asymmetric routers. Asymmetric routers with
high transmission efficiencies can be realized with bulk optical elements, as it is presented in
Fig. 1. Therefore, the ranges of the various transmission efficiencies are chosen so that their
upper boundaries correspond to the best loss parameters of state-of-the-art bulk optical elements.
Accordingly, the upper boundaries of the ranges of the reflection and transmission efficiencies
of the router are taken to be Vr = 0.99 and Vt = 0.985, respectively [25,45]. For the detector
efficiency, we choose VD = 0.98 as the upper boundary because this value is the highest one
reported in the literature [33]. The general transmission coefficient Vb is strongly affected by the
actual experimental realization of the system; we assume the value of Vb = 0.98 for its highest
feasible value.

Let us first clarify the role of the detection strategy. First, we determine the ranges of the loss
parameters for which the maximal single-photon probability P1,max achieved with SPSs based
on the proposed multiplexing schemes and applying the S = {1, 2} detection strategy surpasses
the same probability achieved by applying the SPD strategy. Figure 4(a) shows the difference
∆

out,S
P = Pout,S={1,2}

1,max − Pout,SPD
1,max between the maximal single-photon probabilities for SPSs based

on OIBTM obtained by assuming S = {1, 2} detection strategy and SPD strategy, respectively,
as a function of the transmission efficiency Vt and the reflection efficiency Vr for the detector
efficiency VD = 0.8 and the general transmission coefficient Vb = 0.9. Below the continuous line,
that is, for smaller values of the reflection and transmission efficiencies Vr and Vt, respectively,
the detection strategy S = {1, 2} outperforms the SPD strategy.

Figure 4(b) shows the same quantity ∆out,S
P as a function of the detector efficiency VD and the

reflection efficiency Vr for the transmission efficiency Vt = 0.8 and the general transmission
coefficient Vb = 0.9. Below the line, the detection strategy S = {1, 2} outperforms the SPD
strategy. The figure shows that this difference does not have a strong dependence on the detector
efficiency VD. We note that increasing the general transmission coefficient Vb would cause the
level ∆out,S

P = 0 to shift toward smaller values of the reflection and transmission efficiencies Vr

and Vt, respectively. We calculated similar differences ∆in,S
P for SPSs based on IIBTM and ∆sym,S

P
for SPSs based on CBTM. In these cases, we also found that the S = {1, 2} strategy outperforms
the SPD strategy only for smaller values of the reflection and transmission efficiencies Vr and
Vt, respectively. Therefore, in our analysis we use the lower boundary 0.9 of the ranges for the
efficiencies Vr, Vt, and VD ensuring that SPD is the optimal detection strategy for the whole
considered parameter ranges. As all the subsequent results are obtained for the SPD strategy,
henceforth we do not indicate this fact. Next, we discuss the properties of the achievable
single-photon probabilities for the proposed schemes. Figure 5 shows typical results for the
achievable single-photon probabilities P1,N as a function of the number of multiplexed units
N. In Fig. 5(a) we present results for SPSs based on OIBTM for the general transmission
coefficient Vb = 0.98, the detector efficiency VD = 0.9, the reflection efficiency Vr = 0.92, and
the transmission efficiency Vt = 0.95, while Fig. 5(b) is an example for SPSs based on IIBTM for
the parameters Vb = 0.98, VD = 0.8, Vr = 0.92, and Vt = 0.95. Note that CBTMs are special
cases of incomplete binary-tree multiplexers for certain values of the number of multiplexed
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Fig. 4. (a) The difference ∆out,S
P = Pout,S={1,2}

1,max − Pout,SPD
1,max between the maximal single-

photon probabilities for SPSs based on OIBTM obtained by assuming S = {1, 2} detection
strategy and SPD strategy, respectively, as a function of the transmission efficiency Vt and
the reflection efficiency Vr for the detector efficiency VD = 0.8 and the general transmission
coefficient Vb = 0.9. (b) The same quantity ∆out,S

P as a function of the detector efficiency
VD and the reflection efficiency Vr for the transmission efficiency Vt = 0.8 and the general
transmission coefficient Vb = 0.9. Below the continuous lines, the detection strategy
S = {1, 2} outperforms the SPD strategy.

units, therefore the point sequences presented in Fig. 5 contain results for CBTM also. These
points are marked with red squares. In previous studies [31,38] it was found that for CBTM, the
achievable single-photon probability P1,N as a function of the number of multiplexed units N has
a single maximum. This is due to the fact that increasing the system size, that is, the number of
levels in the multiplexer the losses in the system are increased, that is, all the total transmission
coefficients Vn assigned to the various branches of the multiplexer are decreased that deteriorates
the benefit of multiplexing. However, the achievable single-photon probabilities presented in
Fig. 5 for SPSs based on OIBTM and IIBTM show local maxima for values of the number of
multiplexed units N that are between the special power-of-two numbers of multiplexed units
characterizing the CBTM. The absolute maxima of the achievable single-photon probabilities
presented in Fig. 5 for SPSs based on incomplete binary-tree multiplexers are higher than the
maximum of the same quantity for SPSs based on CBTM. These maxima can occur either for
smaller or larger values of the number of multiplexed units N than for CBTM. As no simple
rule can be found for this behavior with respect to the parameters Vb, VD, Vr, and Vt, we did
not analyze this problem in detail. We note that the breaking points in the point sequences
representing OIBTM in Fig. 5(a) correspond to the case when a new router is added to a complete
symmetric subtree on the incomplete branch of the OIBTM. However, in the case of IIBTM in
Fig. 5(b) the breaking points can be observed only when a new router is added to a CBTM.

Next, we compare the performance of the two proposed incomplete binary-tree multiplexer
schemes and that of the CBTM scheme. The results of these calculations are presented in
Fig. 6. Fig. 6(a) shows the difference ∆out−sym

P = Pout
1,max − Psym

1,max between the maximal single-
photon probabilities for SPSs based on OIBTM and on CBTM, respectively, as a function
of the transmission efficiency Vt and the reflection efficiency Vr for the general transmission
coefficient Vb = 0.98 and the detector efficiency VD = 0.9. The corresponding function
∆

in−sym
P = Pin

1,max − Psym
1,max for SPSs based on IIBTM and on CBTM, respectively, can be seen in

Fig. 6(b). The figures show that SPSs based on either OIBTM or IIBTM outperform SPSs based
on CBTM on the considered range of the parameters. It is in accordance with the expectations,
as CBTMs are special cases of OIBTMs and IIBTMs. The advantage introduced by the OIBTM
or the IIBTM is smaller for higher values of the reflection efficiencies Vr or the transmission



Research Article Vol. 30, No. 5 / 28 Feb 2022 / Optics Express 7009

Fig. 5. The achievable single-photon probabilities P1,N as a function of the number of
multiplexed units N for SPSs based on (a) OIBTM for the parameters Vb = 0.98, VD = 0.9,
Vr = 0.92, and Vt = 0.95, and on (b) IIBTM for the parameters Vb = 0.98, VD = 0.8,
Vr = 0.92, and Vt = 0.95. For comparison, the same quantity is presented for CBTM,
denoted by red squares.

efficiencies Vt. From the figures one can also deduce that for a fixed value of the transmission
efficiency Vt or the reflection efficiency Vr the highest differences ∆out−sym

P or ∆in−sym
P can be

obtained for SPSs based on multiplexers equipped with symmetric routers, that is, when Vr = Vt.
The maximal value of the difference ∆out−sym

P,max is 0.026 that can be achieved at Vr = Vt = 0.9 while
the maximal value of the difference ∆in−sym

P is 0.019 that occurs for the values Vr = Vt = 0.949.
Note that the details of the functions of Figs. 6 including the particular data of these maxima are
affected by the actual values of the detector efficiency VD and the general transmission coefficient
Vb. However, the main characteristics of these functions remain the same. We also remark
that, due to the asymmetry of both OIBTMs and IIBTMs, the images presented in Fig. 6 are
asymmetric.

Fig. 6. (a) The difference ∆out−sym
P = Pout

1,max − Psym
1,max between the maximal single-photon

probabilities for SPSs based on OIBTM and on CBTM, respectively, as a function of the
transmission efficiency Vt and the reflection efficiency Vr for the general transmission
coefficient Vb = 0.98 and the detector efficiency VD = 0.9. (b) The corresponding function
∆

in−sym
P = Pin

1,max − Psym
1,max for SPSs based on IIBTM and on CBTM, respectively.

Finally, we compare the performance of the two novel proposed incomplete binary-tree
multiplexer schemes. In Fig. 7(a) we show the difference ∆out−in

P = Pout
1,max − Pin

1,max between the
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maximal single-photon probabilities for SPSs based on OIBTM and on IIBTM, respectively,
as a function of the transmission efficiency Vt and the reflection efficiency Vr for the general
transmission coefficient Vb = 0.98 and the detector efficiency VD = 0.9. According to the figure,
OIBTM outperforms IIBTM in the whole considered ranges of the transmission and reflection
efficiencies Vt and Vr, respectively. Intuitively, this observation can be explained as follows. In
the case of IIBTM, the addition of new routers to the multiplexer always leads to new branches
with higher losses, that is, smaller total transmission efficiencies Vn than the ones in the initial
CBTM. On the contrary, for OIBTM, the total transmission efficiencies Vn of the novel branches
of OIBTM are always higher than the ones characterizing the initial CBTM. As we described in
Sec. 3, the priority logic prefers multiplexer arms with higher Vn in the case of multiple heralding
events, therefore this property of OIBTM can result in higher single-photon probabilities. For
the values of the general transmission coefficient Vb and the detector efficiency VD used in these
calculations, the highest differences between the maximal single-photon probabilities P1,max of
the two schemes are ∆out−in

P ≈ 0.016 at Vt ≈ 0.9 and Vr ≈ 0.92.

Fig. 7. (a) The difference ∆out−in
P = Pout

1,max − Pin
1,max between the maximal single-photon

probabilities for SPSs based on OIBTM and on IIBTM, respectively, as a function of the
transmission efficiency Vt and the reflection efficiency Vr for the general transmission
coefficient Vb = 0.98 and the detector efficiency VD = 0.9. (b) The corresponding function
for the difference ∆out

N -in = Nout
opt − Nin

opt between the optimal number of multiplexed units.
Continuous black lines separate regions where OIBTM or IIBTM outperforms the other
with respect to the optimal number of multiplexed units.

The results thus far showed that by using incomplete binary-tree multiplexers, it is possible
to increase the maximal single-photon probability. However, from an experimental point of
view, the number of optical elements required to realize these multiplexers is also important. In
Fig. 7(b) we show the difference ∆out

N -in = Nout
opt −Nin

opt between the optimal number of multiplexed
units for SPSs based on OIBTM and on IIBTM, respectively, as a function of the transmission
efficiency Vt and the reflection efficiency Vr for the general transmission coefficient Vb = 0.98
and the detector efficiency VD = 0.9. The figure shows that the difference ∆out

N -in, that is, the
experimentally optimal choice of the multiplexing scheme, is strongly affected by the efficiencies
Vt and Vr of the routers. The difference fluctuates between positive and negative values, that
is, for some parameters the number of multiplexed units is smaller for SPSs based on OIBTM,
for other parameters this quantity is smaller for SPSs based on IIBTM. For small values of the
reflection and transmission efficiencies Vr and Vt, respectively, the absolute difference

|︁|︁∆out
N -in

|︁|︁ is
rather small while for high values of these efficiencies

|︁|︁∆out
N -in

|︁|︁ increases. The difference between
the optimal number of multiplexed units can be as high as ∆out

N -in ≈ 15. Note, however, that in
these cases the optimal number of multiplexed units Nopt is also very high (Nopt ≈ 40). In view
of these observations, when an experiment is realized with finite experimental resources with
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given loss parameters, it is worth using the full statistical treatment presented in this paper to
determine which of the proposed incomplete multiplexers yields higher maximal single-photon
probability with less optical elements.

Let us now assess the performance of SPSs based on OIBTM in more detail. Table 1 shows
the maximal single-photon probabilities Pout

1,max for this setup, the required optimal number of
multiplexed units Nout

opt , and the optimal input mean photon numbers λout
opt at which they can be

achieved for various values of the reflection efficiency Vr, the transmission efficiency Vt and the
detector efficiency VD, and for the general transmission coefficient Vb = 0.98.

Table 1. Maximal single-photon probabilities Pout
1,max for SPS based on OIBTM, the

required optimal number of multiplexed units Nout
opt , and the optimal input mean

photon numbers λout
opt at which they can be achieved for various values of the

reflection efficiency Vr , the transmission efficiency Vt and the detector efficiency VD ,
and for the general transmission coefficient Vb = 0.98.

Vt = 0.9 Vt = 0.95 Vt = 0.985

Vr VD Pout
1,max Nout

opt λout
opt Pout

1,max Nout
opt λout

opt Pout
1,max Nout

opt λout
opt

0.92 0.80 0.685 10 0.686 0.743 20 0.446 0.809 40 0.315

0.92 0.90 0.716 10 0.78 0.772 11 0.696 0.835 20 0.517

0.92 0.95 0.733 10 0.869 0.793 10 0.836 0.855 20 0.658

0.92 0.98 0.744 10 0.943 0.808 10 0.925 0.87 20 0.824

0.97 0.80 0.757 17 0.472 0.801 36 0.262 0.862 40 0.205

0.97 0.90 0.787 17 0.576 0.828 18 0.466 0.88 38 0.279

0.97 0.95 0.805 17 0.711 0.845 18 0.586 0.896 20 0.464

0.97 0.98 0.818 9 0.927 0.858 10 0.87 0.908 19 0.682

0.99 0.80 0.807 34 0.324 0.852 40 0.214 0.899 74 0.114

0.99 0.90 0.834 18 0.513 0.872 33 0.314 0.911 37 0.213

0.99 0.95 0.854 17 0.66 0.888 17 0.534 0.921 36 0.269

0.99 0.98 0.869 17 0.82 0.901 17 0.692 0.931 18 0.561

From the table one can deduce that increasing any of the three parameters Vr, Vt, or VD leads to
an increase in the single-photon probability Pout

1,max. The highest single-photon probabilities that
can in principle be achieved by output-extended systems is higher than 0.93 for the parameters
Vb = 0.98, VD = 0.98, Vr = 0.99 and Vt = 0.985. These parameters are considered to be
realizable by state-of-the-art technology. At a given value of VD the increase of the reflection
and transmission efficiencies Vr and Vt, respectively, is generally accompanied by an increase
in the required number of multiplexed units Nout

opt . Obviously, smaller losses corresponding to
higher transmissions allow us to use larger optimal system sizes to achieve higher maximal single-
photon probabilities Pout

1,max via multiplexing. However, an increase in the detector efficiency VD
corresponding to an increased probability that the single-photon events are selected correctly by
the detectors generally leads to a decrease in Nout

opt . This is due to the fact that in this case the
multi-photon events can be excluded by the detectors themselves, there is no need for suppressing
the occurrence of these events by decreasing the intensity and subsequently increasing the system
size, that is, introducing longer arms with higher losses to the multiplexer is not so crucial
anymore.

The observations concerning the optimal input mean photon number λout
opt are the opposite.

Increasing either the reflection efficiency Vr or the transmission efficiency Vt the optimal input
mean photon number λout

opt decreases, while increasing the values of the detector efficiency VD
leads to an increase in the values of λout

opt. The finding that the relationship between the optimal
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number of multiplexed units Nout
opt and the optimal input mean photon number λout

opt is inverse is
not unexpected: having less multiplexed units in the multiplexing system can be compensated by
higher values of the input mean photon numbers that guarantees the occurrence of at least one
heralding event in the whole multiplexer.

In Table 2 we list other parameters characterizing the performance of SPSs based on OIBTM
for the same values of the loss parameters used in Table 1. We calculated the value of the
second-order autocorrelation function g(2)out defined in Eq. (12) quantifying the multiphoton
components of the output state with respect to the single-photon component. Its value is equal to
zero for an ideal single-photon source. From the data presented in Table 2 one can conclude that
the values of g(2)out are quite low. The obtained smallest values appearing for low losses are better
than the best values achieved in single-photon experiments thus far [2]. Hence, the OIBTM
scheme seem to show high performance in this respect.

Table 2. The difference ∆out
P -sym = Pout

1,max − Psym
1,max between the maximal single-photon

probabilities for SPSs based on OIBTM and on CBTM, respectively, using Poisson distribution,
the second-order autocorrelation function g(2)

out for SPS based on OIBTM using Poisson
distribution, and the difference ∆P

P -T = PPoisson
1,max − Pthermal

1,max between the maximal single-photon
probabilities for SPSs based on OIBTM obtained by assuming Poisson and thermal

distributions, respectively, for various values of the reflection efficiency Vr , the transmission
efficiency Vt and the detector efficiency VD , and for the general transmission coefficient

Vb = 0.98.

Vt = 0.9 Vt = 0.95 Vt = 0.985

Vr VD ∆out
P -sym g(2)out ∆P

P-T ∆out
P -sym g(2)out ∆P

P-T ∆out
P -sym g(2)out ∆P

P-T

0.92 0.80 0.019 0.128 0.036 0.015 0.085 0.034 0.002 0.061 0.025

0.92 0.90 0.019 0.075 0.041 0.018 0.068 0.029 0.003 0.050 0.024

0.92 0.95 0.020 0.043 0.043 0.018 0.041 0.032 0.003 0.032 0.024

0.92 0.98 0.020 0.019 0.045 0.019 0.019 0.034 0.004 0.016 0.023

0.97 0.80 0.003 0.090 0.031 0.009 0.051 0.023 0.006 0.040 0.016

0.97 0.90 0.004 0.056 0.031 0.009 0.045 0.025 0.007 0.028 0.015

0.97 0.95 0.005 0.035 0.028 0.011 0.029 0.021 0.008 0.023 0.015

0.97 0.98 0.006 0.019 0.026 0.013 0.017 0.019 0.008 0.014 0.014

0.99 0.80 0.003 0.063 0.026 0.001 0.042 0.018 0.005 0.023 0.010

0.99 0.90 0.003 0.050 0.024 0.001 0.031 0.017 0.005 0.021 0.010

0.99 0.95 0.003 0.033 0.024 0.001 0.026 0.016 0.005 0.013 0.009

0.99 0.98 0.003 0.016 0.023 0.001 0.014 0.016 0.005 0.011 0.009

In Table 2 we also present the difference ∆P
P-T = PPoisson

1,max − Pthermal
1,max between the maximal

single-photon probabilities for SPS based on OIBTM obtained by assuming Poisson and thermal
distributions for the input photon pairs, respectively. The observed differences are always positive,
that is, the maximal single-photon probabilities that can be achieved with the thermal distribution
are always smaller than the ones achievable with the Poisson distribution. This result is not
surprising as for a given mean photon number the probability of single-photons is always smaller
for the thermal distribution than for the Poisson distribution. However, the observed differences
are not significant, the values of ∆P

P-T are between 0.009 and 0.045, and they are around 0.01 for
low losses. We note that though we do not present data on the optimal number of multiplexed
units Nopt, their values are generally higher for the thermal distribution than for the Poisson
distribution. Intuitively, larger multiplexing systems are required to reduce the multiphoton
probabilities in the output for thermal distribution input for which the multiphoton probabilities
are relatively larger. By repeating the calculation for other characteristics of the system considered
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previously assuming the thermal distribution for the input photons, we found that the observed
properties are qualitatively the same for both input statistics. Hence, our conclusions are valid for
the thermal distribution as well.

Table 2 also contains data on the difference ∆out
P -sym = Pout

1,max − Psym
1,max between the maximal

single-photon probabilities for SPSs based on OIBTM and on CBTM, respectively. These
differences correspond to the observations related to Fig. 6(a). These differences can be
considered as moderate. However, as it can be seen in Fig. 5, for suboptimal system sizes the
proposed schemes can guarantee considerable enhancement compared to corresponding CBTMs
with lower number of multiplexed units. In view of the fact that spatial multiplexing with
symmetric multiplexers has been successfully realized experimentally up to four multiplexed
units [11–15], the consideration of multiplexing systems for suboptimal system sizes is highly
relevant.

In Table 3 we present data for the enhancement of the single-photon probabilities that can be
achieved by using OIBTMs for suboptimal system sizes for two parameter sets. Table 3(a) presents
results for the best values of the loss parameters. It shows that relevant enhancement (2-3%)
can be achieved by adding only three more multiplexed units to an eight-unit CBTM. Table 3(b)
shows results for larger losses. In this case, the achieved enhancement can reach 7% by adding
two more multiplexed units to a four-unit CBTM. Moreover, in Table 3 we present data showing
that the maximal single-photon probabilities of OIBTMs can be approached to a precision of
0.01 by using OIBTMs having approximately half the number of multiplexed units than used in
the corresponding CBTMs yielding the maximal single-photon probabilities. These examples
show that using OIBTMs in SPSs, one can produce high single-photon probabilities at reduced
number of the required component sources compared to CBTMs with similar performance.

Table 3. The maximal single-photon probability Pout
1,max for SPS

based on OIBTM, the corresponding optimal number of multiplexed
units Nout

opt , the achievable single-photon probabilities Psym
1,N and Pout

1,N
for SPS based on CBTM and OITBM for suboptimal numbers of

multiplexed units denoted in the indices, the number of multiplexed
units N∆P=0.01 required to approach the maximal single-photon
probability to ∆P = 0.01, the maximal single-photon probability
Psym

1,max for SPS based on CBTM, and the corresponding optimal

number of multiplexed units Nsym
opt , for various values of the detector

efficiency VD , for the general transmission coefficient Vb = 0.98, and
for two pairs of the transmission and reflection efficiencies Vt and
Vr , respectively, a) Vt = 0.985, Vr = 0.99, and b) Vt = 0.95, Vr = 0.97.

a)

VD Pout
1,max Nout

opt Psym
1,N=8 Pout

1,N=11 N∆P=0.01 Psym
1,max Nsym

opt

0.80 0.899 74 0.800 0.835 35 0.895 64

0.90 0.911 37 0.856 0.882 18 0.906 32

0.95 0.921 36 0.887 0.907 14 0.916 32

0.98 0.932 18 0.907 0.924 10 0.926 16

b)

VD Pout
1,max Nout

opt Psym
1,N=4 Pout

1,N=6 N∆P=0.01 Psym
1,max Nsym

opt

0.80 0.801 35 0.645 0.720 17 0.792 32

0.90 0.828 18 0.703 0.775 10 0.819 16

0.95 0.845 18 0.733 0.804 9 0.834 16

0.98 0.858 10 0.752 0.822 9 0.845 8
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Finally, we consider the performance of SPSs based on OIBTMs for some sets of larger loss
parameters. Such losses characterize the multiplexers, that is, the optical switches, e.g. in recent
multiplexed SPS experiments realized in integrated optics [12,13]. In Table 4 we present the
maximal single-photon probabilities Pout

1,max and Psym
1,max for SPSs based on OIBTM and CBTM,

respectively, for the SPD and the S = {1, 2} detection strategies, and the corresponding optimal
numbers of multiplexed units Nout

opt and Nsym
opt . On the considered range of the loss parameters

the S = {1, 2} detection strategy outperforms the SPD strategy. The data show that by using an
OIBTM with the S = {1, 2} detection strategy the achieved maximal single-photon probabilities
can be higher by 0.03-0.1 than the probabilities that can be achieved by a symmetric multiplexer
and SPD strategy. Note that the enhancement in the single-photon probability is lower when
both multiplexing schemes are used with the same detection strategy (e.g. 0.003-0.025 for SPD
strategy). Moreover, in most cases, the presented significant improvement can be achieved by
adding a single multiplexer unit to the optimal symmetric multiplexer in the OIBTM scheme.
Also, in one example (Vr = Vt = 0.7, S = {1, 2}) the enhancement of the single-photon probability
can be achieved by using less multiplexed units in the OIBTM than in the symmetric multiplexer.
These examples show that the advantage of using the OIBTM scheme can be more pronounced
for larger losses in the system. Application of the incomplete binary-tree approach in current
SPS experiments based on spatial multiplexing can significantly improve the performance of
these systems.

Table 4. The maximal single-photon probabilities Pout
1,max and Psym

1,max for
SPSs based on OIBTM and CBTM, respectively, and the corresponding

optimal numbers of multiplexed units Nout
opt and Nsym

opt for various values of
the transmission efficiency Vt and the reflection efficiency Vr , for the
detection efficiency VD = 0.9, and the general transmission coefficient

Vb = 0.98. Results are calculated for the SPD and the S = {1, 2} detection
strategies.

SPD S = {1, 2}

Vr = Vt Pout
1,max Nout

opt Psym
1,max Nsym

opt Pout
1,max Nout

opt Psym
1,max Nsym

opt

0.6 0.3499 3 0.3460 2 0.4462 3 0.4367 2

0.7 0.4267 5 0.4047 4 0.4910 3 0.4679 4

0.75 0.4802 5 0.4575 4 0.5129 5 0.5012 4

0.8 0.5374 5 0.5124 4 0.5459 5 0.5330 4

5. Conclusion

We have proposed two types of incomplete binary-tree multiplexers aiming at increasing
the performance of spatially multiplexed single-photon sources. These multiplexers contain
incomplete branches either at the input or at the output of the symmetric ones, hence the power-
of-two restriction on the number of multiplexed units characterizing symmetric multiplexers
is eliminated for them. We applied a general statistical theory that includes all relevant loss
mechanisms for analyzing and optimizing these single-photon sources based on these multiplexers
realized with general asymmetric routers and photon-number-resolving detectors. We have shown
that the use of any of the two proposed multiplexing systems can lead to higher single-photon
probabilities than that achieved with complete binary-tree multiplexers applied thus far in
experiments. We have found that the performance of single-photon sources based on output-
extended incomplete binary-tree multiplexers is better than that of those based on input-extended
ones in the considered ranges of the parameters. The single-photon probabilities that can in
principle be achieved by output-extended systems are higher than 0.93 when they are realized
by state-of-the-art bulk optical elements. We have demonstrated that the application of the
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incomplete binary-tree approach can significantly improve the performance of the multiplexed
single-photon source systems for suboptimal system sizes which is the typical situation in
current experiments. A special advantage of using the proposed multiplexer schemes is that
high single-photon probabilities can be achieved at a reduced number of the required component
sources compared to complete binary-tree multiplexers with similar performance.
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