
Approximate Keys and Functional Dependencies in
Incomplete Databases With Limited Domains?

Munqath Al-atar1,2, Attila Sali1,3

1 Department of Computer Science and Information Theory,
Budapest University of Technology and Economics

m.attar@cs.bme.hu
2 ITRDC, University of Kufa

munqith.alattar@uokufa.edu.iq
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Abstract. A possible world of an incomplete database table is obtained by imputing
values from the attributes (infinite) domain to the place of NULLs. A table satisfies
a possible key or possible functional dependency constraint if there exists a possible
world of the table that satisfies the given key or functional dependency constraint. A
certain key or functional dependency is satisfied by a table if all of its possible worlds
satisfy the constraint. Recently, an intermediate concept was introduced. A strongly
possible key or functional dependency is satisfied by a table if there exists a strongly
possible world that satisfies the key or functional dependency. A strongly possible
world is obtained by imputing values from the active domain of the attributes, that
is from the values appearing in the table. In the present paper, we study approxi-
mation measures of strongly possible keys and FDs. Measure g3 is the ratio of the
minimum number of tuples to be removed in order that the remaining table satisfies
the constraint. We introduce a new measure g5, the ratio of the minimum number of
tuples to be added to the table so the result satisfies the constraint. g5 is meaningful
because the addition of tuples may extend the active domains. We prove that if g5
can be defined for a table and a constraint, then the g3 value is always an upper
bound of the g5 value. However, the two measures are independent of each other in
the sense that for any rational number 0 ≤ p

q
< 1 there are tables of an arbitrarily

large number of rows and a constant number of columns that satisfy g3 − g5 = p
q
. A

possible world is obtained usually by adding many new values not occurring in the
table before. The measure g5 measures the smallest possible distortion of the active
domains.

Keywords: Strongly possible functional dependencies, Strongly possible keys, incom-
plete databases, data Imputation, Approximate functional dependencies, approximate keys.

1 Introduction

The information in many industrial and research databases may usually be incomplete
due to many reasons. For example, databases related to instrument maintenance, medical
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applications, and surveys [10]. This makes it necessary to handle the cases when some
information missing from a database and are required by the user. Imputation (filling in) is
one of the common ways to handle the missing values [20].

A new approach for imputing values in place of the missing information was introduced
in [2], to achieve complete data tables, using only information already contained in the
SQL table attributes (which are called the active domain of an attribute). Any total table
obtained in this way is called a strongly possible world. We use only the data shown on the
table to replace the missing information because in many cases there is no proper reason
to consider any other attribute values than the ones that already exist in the table. Using
this concept, new key and functional dependency constraints called strongly possible keys
(spKeys) and strongly possible functional dependencies (spFDs) were defined in [5, 3] that
are satisfied after replacing any missing value (NULL) with a value that is already shown in
the corresponding attribute. In section 2, we provide the formal definitions of spKeys and
spFDs.

The present paper continues the work started in [5], where an approximation notion was
introduced to calculate how close any given set of attributes can be considered as a key, even
when it does not satisfy the conditions of spKeys. This is done by calculating the minimum
number of tuples that need to be removed from the table so that the spKey constraint holds.

Tuple removal may be necessary because the active domains do not contain enough
values to be able to replace the NULL values so that the tuples are pairwise distinct on
a candidate key set of attributes K. In the present paper, we introduce approximation
measures of spKeys and spFDs by adding tuples. Adding a tuple with new unique values will
add more values to the attributes’ active domains, thus some unsatisfied constraints may get
satisfied. For example, Car Model and DoorNo is designed to form a key in the Cars Types
table shown in Table 1 but the table does not satisfy the spKey sp〈Car Model,DoorNo〉.
Two tuples would need to be removed, but adding a new tuple with distinct door number
value to satisfy sp〈Car Model,DoorNo〉 is better than removing two tuples. In addition to
that, we know that the car model and door number determines the engine type, then the
added tuple can also have a new value in the DoorNo attribute so that the table satisfy
(Car Model,DoorNo)→sp Engine Type rather than removing other two tuples.

Car Model Door No Engine Type

BMW I3 4 doors ⊥

BMW I3 ⊥ electric

Ford explorer ⊥ V8

Ford explorer ⊥ V6

Table 1: Cars Types Incomplete Table

Adding tuples with new values provides more values in the active domains used to satisfy
the spKey. But if the total part of the table does not satisfy the key, then it is useless to
add more values to the active domain. Thus, we assume throughout this paper that the
K-total part of the table satisfies the spKey sp〈K〉 constraint, and that the X-total part
satisfies the spFD constraint X →sp Y (for exact definitions see Section 2). The interaction
between spFDs and spKeys is studied in [1]. We also assume that every attribute has at
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least one non-null value (so that the active domain is not the empty set) and we have at
least 2 attributes in the key set K since it was observed in [5] that a single attribute can
only be an spKey if the table does not contain NULL in it.

The main objectives of this paper are:

– Extend the g3 measure defined for spKeys in [5] to spFDs.
– Propose a new approximation measure for spKeys and spFDs called g5, that adopt

adding tuples with new values to the tables that violate the constraints.
– Compare the newly proposed measure g5 with the earlier introduced measure g3 and

show that adding new tuples is more effective than removing violating ones.
– Nevertheless, g3 and g5 are independent of each other.

It is important to observe the difference between possible worlds and strongly possible
worlds. The former one was defined and studied by several sets of authors, for example in
[18, 9, 28]. In possible worlds, any value from the usually countably infinite domain of the
attribute can be imputed in place of NULLs. This allows an infinite number of worlds to be
considered. By taking the newly introduced active domain values given by the added tuples
and minimizing the number of the tuples added, we sort of determine a minimum world
that satisfies the constraints and contains an spWorld allowed by the original table given.

The paper is organized as follows. Section 2 gives the basic definitions and notations.
Some related work and research results are discussed in section 3. The approximation mea-
sures for spKeys and spFDs are provided in Sections 4 and 5 respectively. And finally, the
conclusions and the future directions are explained in Section 6.

2 Basic Definitions

Let R = {A1, A2, . . . An} be a relation schema. The set of all the possible values for each
attribute Ai ∈ R is called the domain of Ai and denoted as Di = dom(Ai) for i = 1,2,. . . n.
Then, for X ⊆ R, then DX =

∏
∀Ai∈K

Di.

An instance T = (t1,t2, . . . ts) over R is a list of tuples such that each tuple is a function
t : R →

⋃
Ai∈R dom(Ai) and t[Ai] ∈ dom(Ai) for all Ai in R. By taking a list of tuples we

use the bag semantics that allows several occurrences of the same tuple. Usage of the bag
semantics is justified by that SQL allows multiple occurrences of tuples. Of course, the order
of the tuples in an instance is irrelevant, so mathematically speaking we consider a multiset
of tuples as an instance. For a tuple tr ∈ T and X ⊂ R, let tr[X] be the restriction of tr to
X.

It is assumed that ⊥ is an element of each attribute’s domain that denotes missing
information. tr is called V -total for a set V of attributes if ∀A ∈ V , tr[A] 6= ⊥. Also, tr is a
total tuple if it is R-total. t1 and t2 are weakly similar on X ⊆ R denoted as t1[X] ∼w t2[X]
defined by Köhler et.al. [17] if

∀A ∈ X (t1[A] = t2[A] or t1[A] = ⊥ or t2[A] = ⊥).

Furthermore, t1 and t2 are strongly similar on X ⊆ R denoted by t1[X] ∼s t2[X] if

∀A ∈ X (t1[A] = t2[A] 6= ⊥).

For the sake of convenience we write t1 ∼w t2 if t1 and t2 are weakly similar on R and use
the same convenience for strong similarity. Let T = (t1, t2, . . . ts) be a table instance over
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R. Then, T ′ = (t′1, t
′
2, . . . t

′
s) is a possible world of T , if ti ∼w t′i for all i = 1, 2, . . . s and

T ′ is completely NULL-free. That is, we replace the occurrences of ⊥ with a value from the
domain Di different from ⊥ for all tuples and all attributes. A active domain of an attribute
is the set of all the distinct values shown under the attribute except the NULL. Note that
this was called the visible domain of the attribute in papers [2, 3, 5, 1].

Definition 2.1. The active domain of an attribute Ai (V DT
i ) is the set of all distinct values

except ⊥ that are already used by tuples in T :

V DT
i = {t[Ai] : t ∈ T} \ {⊥} for Ai ∈ R.

To simplify notation, we omit the upper index T if it is clear from the context what instance
is considered.

Then the V D1 in Table 2 is {Mathematics, Datamining}. The term active domain refers
to the data that already exist in a given dataset. For example, if we have a dataset with
no information about the definitions of the attributes’ domains, then we use the data itself
to define their own structure and domains. This may provide more realistic results when
extracting the relationship between data so it is more reliable to consider only what infor-
mation we have in a given dataset.

While a possible world is obtained by using the domain values instead of the occurrence
of NULL, a strongly possible world is obtained by using the active domain values.

Definition 2.2. A possible world T ′ of T is called a strongly possible world (spWorld) if
t′[Ai] ∈ V DT

i for all t′ ∈ T ′ and Ai ∈ R.

The concept of strongly possible world was introduced in [2]. A strongly possible worlds allow
us to define strongly possible keys (spKeys) and strongly possible functional dependencies
(spFDs).

Definition 2.3. A strongly possible functional dependency, in notation X →sp Y , holds in
table T over schema R if there exists a strongly possible world T ′ of T such that T ′ |= X → Y .
That is, for any t′1, t

′
2 ∈ T ′ t′1[X] = t′2[X] implies t′1[Y ] = t′2[Y ]. The set of attributes X is

a strongly possible key, if there exists a strongly possible world T ′ of T such that X is a key
in T ′, in notation sp〈X〉. That is, for any t′1, t

′
2 ∈ T ′ t′1[X] = t′2[X] implies t′1 = t′2.

Note that this is not equivalent with spFD X →sp R, since we use the bag semantics. For
example, {Course Name, Year} is a strongly possible key of Table 2 as the strongly possible
world in Table 3 shows it.

Course Name Year Lecturer Credits Semester

Mathematics 2019 ⊥ 5 1

Datamining 2018 Sarah 7 ⊥

⊥ 2019 Sarah ⊥ 2

Table 2: Incomplete Dataset

If T = {t1, t2, . . . , tp} and T ′ = {t′1, t′2, . . . , t′p} is an spWorld of it with ti ∼w t′i, then t′i
is called an sp-extension or in short an extension of ti. Let X ⊆ R be a set of attributes and
let ti ∼w t′i such that for each A ∈ R : t′i[A] ∈ V D(A), then t′i[X] is an strongly possible
extension of ti on X (sp-extension)
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Course Name Year Lecturer Credits Semester

Mathematics 2019 Sarah 5 1

Datamining 2018 Sarah 7 2

Datamining 2019 Sarah 7 2

Table 3: Complete Dataset

3 Related Work

Giannella et al. [11] measure the approximate degree of functional dependencies. They de-
veloped the IFD approximation measure and compared it with the other two measures: g3
(minimum number of tuples need to be removed so that the dependency holds) and τ (the
probability of a correct guess of an FD satisfaction) introduced in [16] and [12] respectively.
They developed analytical bounds on the measure differences and compared these measures
analysis on five datasets. The authors show that when measures are meant to define the
knowledge degree of X determines Y (prediction or classification), then IFD and τ mea-
sures are more appropriate than g3. On the other hand, when measures are meant to define
the number of ”violating” tuples in an FD, then, g3 measure is more appropriate than IFD
and τ . This paper extends the earlier work of [5] that utilized the g3 measure for spKeys
by calculating the minimum number of tuples to be removed from a table so that an sp-
Key holds if it is not. The same paper proposed the g4 measure that is derived from g3 by
emphasizing the effect of each connected component in the table’s corresponding bipartite
graph (where vertices of the first class of the graph represent the table’s tuples and the
second class represent all the possible combinations of the attributes’ active domains). In
this paper, we propose a new measure g5 to approximate FDs by adding new tuples with
unique values rather than deleting tuples as in g3.

Several other researchers worked on approximating FDs in the literature. King et al.
[15] provided an algorithmic method to discover functional and approximate functional
dependencies in relational databases. The method provided is based upon the mathematical
theory of partitions of row identification numbers from the relation, then determining non-
trivial minimal dependencies from the partitions. They showed that the operations that
need to be done on partitions are both simple and fast.

In [26], Varkonyi et al. introduced a structure called Sequential Indexing Tables (SIT)
to detect an FD regarding the last attribute in their sequence. SIT is a fast approach so it
can process large data quickly. The structure they used does not scale efficiently with the
number of the attributes and the sizes of their domains, however. Other methods, such as
TANE and FastFD face the same problem [23]. TANE was introduced by Huhtala [13] to
discover functional and approximate dependencies by taking into consideration partitions
and deriving valid dependencies from these partitions in a breadth-first or level-wise manner.

Bra, P. De, and Jan Paredaens gave a new decomposition theory for functional depen-
dencies in [8]. They break up a relation into two subrelations whose union is the given
relation and a functional dependency that holds in one subrelation is not in the other.

In [25], Tusor et al. presented the Parallelized Sequential Indexing Tables method that is
memory-efficient for large datasets to find exact and approximate functional dependencies.
Their method uses the same principle of Sequential Indexing Tables in storing data, but
their training approach and operation are different.
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Pyro is an algorithm to discover all approximate FDs in a dataset presented by Kruse
[19]. Pyro verifies samples of agree sets and prunes the search spaces with the discovered
FDs. On the other hand, based on the concept of ”agree sets”, Lopes et al. [22] developed
an algorithm to find a minimum cover of a set of FDs for a given table by applying the
so-called ”Luxenburger basis” to develop a basis of the set of approximate FDs in the table.

Simovici et al. [24] provide an algorithm to find purity dependencies such that, for a
fixed right-hand side (Y ), the algorithm applies a level-wise search on the left-hand sides
(X) so that X → Y has a purity measure below a user-defined threshold. Other algorithms
were proposed in [14, 21] to discover all FDs that hold in a given table by searching through
the lattice of subsets of attributes.

In [27], Jef Wijsen summarizes and discusses some theoretical developments and concepts
in Consistent query answering CQA (when a user queries a database that is inconsistent
with respect to a set of constraints). Database repairing was modeled by an acyclic binary
relation ≤db on the set of consistent database instances, where r1 ≤db r2 means that r1 is at
least as close to db as r2. One possible distance is the number of tuples to be added and/or
removed. In addition to that, Bertossi studied the main concepts of database repairs and
CQA in [6], and emphasis on tracing back the origin, motivation, and early developments.
J. Biskup and L. Wiese present and analyze an algorithm called preCQE that is able to
correctly compute a solution instance, for a given original database instance, that obeys the
formal properties of inference-proofness and distortion minimality of a set of appropriately
formed constraints in [7].

4 SPKey Approximation

In [5], the authors studied strongly possible keys, and the main motivation is to uniquely
identify tuples in incomplete tables, if it is possible, by using the already shown values
only to fill up the occurrences of NULLs. Consider the relational schema R = and K ⊆ R.
Furthermore, let T be an instance over R with NULLs. Let T ′ be the set of total tuples
T ′ = {t′ ∈ Πb

i=1V D
T
i : ∃t ∈ T such that t[K] ∼w t′[K]}, furthermore let G = (T, T ′;E)

be the bipartite graph, called the K-extension graph of T , defined by {t, t′} ∈ E ⇐⇒
t[K] ∼w t′[K]. Finding a matching of G that covers all the tuples in T (if exists) provides
the set of tuples in T ′ to replace the incomplete tuples in T with, to verify that K is an
spKey. A polynomial-time algorithm was given in [3] to find such matching. It is a non-
trivial application of the well-known matching algorithms, as |T ′| is usually an exponential
function of the size of the input table T .

The Approximate Strongly Possible Key (ASP Key) was defined in [5] as follows.

Definition 4.1. Attribute set K is an approximate strongly possible key of ratio a in table
T , in notation asp−a 〈K〉, if there exists a subset S of the tuples T such that T \ S satisfies
sp 〈K〉, and |S|/|T | ≤ a. The minimum a such that asp−a 〈K〉 holds is denoted by g3(K).

The measure g3(K) represents the approximation which is the ratio of the number of tuples
needed to be removed over the total number of tuples so that sp 〈K〉 holds. The measure
g3(K) has a value between 0 and 1, and it is exactly 0 when sp 〈K〉 holds in T , which means
we don’t need to remove any tuples. For this, we used the g3 measure introduced in [16],
to determine the degree to which ASP key is approximate. For example, the g3 measure of
sp〈X〉 on Table 4 is 0.5, as we are required to remove two out of four tuples to satisfy the
key constraint as shown in Table 5.



Approximate Keys and FDs 7

It was shown in [5] that the g3 approximation measure for strongly possible keys satisfies

g3(K) =
|T | − ν(G)

|T |
.

where ν(G) denotes the maximum matching size in the K-extension graph G. The smaller
value of g3(K), the closer K is to being an spKey.

For the bipartite graph G defined above, let C be the collection of all the connected
components in G that satisfy the spKey, i.e. for which there exists a matching that covers
all tuples in the set (∀C∈C @X ⊆ C ∩ T such that |X| > N(X) by Hall’s Theorem). Let
D ⊆ G be defined as D = G \

⋃
∀C∈C C, and let C ′ be the set of connected components

of D. Let VC denote the set of vertices in a connected component C. The approximation
measure of strongly possible keys may be more appropriate by considering the effect of each
connected component in the bipartite graph on the matching. We consider the effect of
the components of C to get doubled in the approximation measure, as these components
represent that part of the data that do not require tuple removal. So a derived version of
the g3 measure was proposed and named g4 considering these components’ effects,

g4(K) =
|T | − (

∑
C∈C (|VC |) +

∑
C′∈C ′ ν(C ′))

|T |+
∑

C∈C |VC |
.

Furthermore, it was proved that for a set of attributes K in any table, we have either
g3(K) = g4(K) or 1 < g3(K)/g4(K) < 2. Moreover, there exist tables of an arbitrarily large
number of tuples with g3(K)/g4(K) = p

q for any rational number 1 ≤ p
q < 2.

In this paper, we extend our investigation on approximating spKeys by considering
adding new tuples instead of removing them to satisfy an spKey if possible. Removing a
non-total tuple t1 means that there exist another total and/or non-total tuple(s) that share
the same strongly possible extension with t2. The following proposition shows that we can
always remove only non-total tuples if the total part of the table satisfies the key.

Proposition 4.1. Let T be an instance over schema R and let K ⊆ R. If the K-total part
of the table T satisfies the key sp 〈K〉, then there exists a minimum set of tuples U to be
removed that are all non-K-total so that T \ U satisfies sp 〈K〉 .

Proof. Observe that a minimum set of tuples to be removed is T \ X for a subset X of
the set of vertices (tuples) covered by a particular maximum matching of the K-extension
graph. Let M be a maximum matching, and assume that t1 is total and not covered by M .
Then, the unique neighbour t′1 of t1 in T ′ is covered by an edge (t2, t

′
1) of M. Then t2 is

non-total since the K-total part satisfies sp 〈K〉, so we replace the edge (t2, t
′) by the edge

(t1, t
′) to get matching M1 of size |M1| = |M |, and M1 covers one more total tuple. Repeat

this until all total tuples are covered.

4.1 Measure g5 for spKeys

The g3 approximation measure for spKeys was introduced in [5]. In this section, we introduce
a new approximation measure for spKeys. As we consider the active domain to be the source
of the values to replace each null with, adding a new tuple to the table may increase the
number of the values in the active domain of an attribute. for example, consider Table 4,
the active domain of the attribute X1 is {2} and it changed to {2, 3} after adding a tuple
with new values as shown in Table 6.
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X

X1 X2

⊥ 1

2 ⊥
2 ⊥
2 2

Table 4: Incomplete Table
to measure sp〈X〉

X

X1 X2

⊥ 1

2 2

Table 5: The table after
removing (asp−a 〈X〉)

X

X1 X2

⊥ 1

2 ⊥
2 ⊥
2 2

3 3

Table 6: The table
after adding (asp+b 〈X〉)

In the following definition, we define the g5 measure as the ratio of the minimum number
of tuples that need to be added over the total number of tuples to have the spKey satisfied.

Definition 4.2. Attribute set K is an add-approximate strongly possible key of ratio b in
table T , in notation asp+b 〈K〉, if there exists a set of tuples S such that the table TS satisfies
sp 〈K〉, and |S|/|T | ≤ b. The minimum b such that asp+b 〈K〉 holds is denoted by g5(K).

The measure g5(K) represents the approximation which is the ratio of the number of tuples
needed to be added over the total number of tuples so that sp 〈K〉 holds. The value of the
measure g3(K) ranges between 0 and 1, and it is exactly 0 when sp 〈K〉 holds in T , which
means we do not have to add any tuple. For example, the g5 measure of sp〈X〉 on Table 4
is 0.25, as it is enough to add one tuple to satisfy the key constraint as shown in Table 6.

Let T be a table and U ⊆ T be the set of the tuples that we need to remove so that
the spKey holds in T , i.e, we need to remove |U | tuples, while by adding a tuple with new
values, we may make more than one of the tuples in U satisfy the spKey using the new
added values for their NULLs. In other words, we may need to add a fewer number of tuples
than the number of tuples we need to remove to satisfy an spKey in the same given table.
For example, Table 4 requires removing two tuples to satisfy sp 〈X〉, while adding one tuple
is enough.

On the other hand, one may think about mixed modification of both adding and deleting
tuples for Keys approximation, by finding the minimum number of tuples needs to be either
added or removed. If first the additions are performed, then after that by Proposition 4.1, it
is always true that we can remove only non-total tuples; then, instead of any tuple removal,
we may add a new tuple with distinct values. Therefore, mixed modification in that way
would not change the approximation measure, as it is always equivalent to tuples addition
only. However, if the order of removals and additions count, then it is a topic of further
research whether the removals can be substituted by additions.

The values of the two measures, g3 and g5, range between 0 and 1, and they are both
equal to 0 if the spKey holds (we do not have to add or remove any tuples). Proposition
4.2 proves that the value of g3 measure is always larger than or equal to the value of g5
measure.

Proposition 4.2. For any K ⊆ R with |K| ≥ 2, we have g3(K) ≥ g5(K).

Proof. Indeed, we can always remove non-total tuples for g3 by Proposition 4.1. Let the
tuples to be removed be U = {t1, t2, . . . tu}. Assume that T ∗ is an spWorld of T \ U , which
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certifies that T \ U |= sp 〈K〉 For each tuple ti ∈ U , we add tuple t′i = (zi, zi, . . . , zi) where
zi is a value that does not occur in any other tuple originally of T or added. The purpose
of adding t′i is twofold. First it is intended to introduce a completely new active domain
value for each attribute. Second, their special structure ensures that they will never agree
with any other tuple in the spWorld constructed below for the extended instance. Let ti”
be a tuple such that exactly one NULL in K of ti is replaced by zi, any other NULLs of ti are
imputed by values from the original active domain of the attributes. It is not hard to see
that tuples in T ∗ ∪ {t′1, t′2 . . . , t′u} ∪ {t1”, t2” . . . , tu”} are pairwise distinct on K.

According to Proposition 4.2 we have 0 ≤ g3(K)−g5(K) < 1 and the difference is a rational
number. What is not immediate is that for any rational number 0 ≤ p

q < 1 there exist a

table T and K ⊆ R such that g3(K)− g5(K) = p
q in table T .

Proposition 4.3. Let 0 ≤ p
q < 1 be a rational number. Then there exists a table T with an

arbitrarily large number of rows and K ⊆ R such that g3(K)− g5(K) = p
q in table T .

Proof. We may assume without loss of generality that K = R, since T ′ |= sp 〈K〉 if and
only if we can make the tuples pairwise distinct on K by imputing values from the active
domains, that is values in R\K are irrelevant. Let T be the following q× (p+2) table (with
x = q − p− 1).

T =

1 1 1 . . . 1

1 1 1 . . . 2
...

1 1 1 . . . x


q − p− 1

⊥ 1 . . . 1 1

1 ⊥ . . . 1 1

. . .

1 1 . . . ⊥ 1


p+ 1

(1)

Since the active domain of the first p + 1 attributes is only {1}, we have to remove p + 1
rows so g3(K) = p+1

q . On the other hand it is enough to add one new row (2, 2, . . . , 2, q− p)
so g5(K) = 1

q . Since p
q = cp

cq for any positive integer c, the number of rows in the table could
be arbitrarily large.

The tables constructed in the proof of Proposition 4.3 have an arbitrarily large number of
rows, however, the price for this is that the number of columns is also not bounded. The
question arises naturally whether there are tables with a fixed number of attributes but with
an arbitrarily large number of rows that satisfy g3(K)− g5(K) = p

q for any rational number

0 ≤ p
q < 1? The following theorem answers this problem.

Theorem 4.1. Let 0 ≤ p
q < 1 be a rational number. Then there exist tables over schema

{A1, A2} with arbitrarily large number of rows, such that g3({A1, A2})− g5({A1, A2}) = p
q .

Proof. The proof is divided into three cases according to whether p
q <

1
2 , p

q = 1
2 or p

q >
1
2 .

In each case, the number of rows of the table will be an increasing function of q and one just
has to note that q can be chosen arbitrarily large without changing the value of the fraction
p
q .
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Case p
q <

1
2 Let T<.5 be defined as

T<.5 =

q − p− 1



1 1

1 2
...

...

1 q − p− 1

p+ 1



⊥ ⊥
⊥ ⊥
...

...

⊥ ⊥

Clearly, g3(K) = p+1
q , as all the tuples with NULLs have to be removed. On the other hand,

if tuple (2, q−p) is added, then the total number of active domain combinations is 2 ·(q−p),
out of which q− p is used up in the table, so there are q− p possible pairwise distinct tuples
to replace the NULLs. Since p

q < 1
2 , we have that q − p ≥ p + 1 so all the tuples in the

q + 1-rowed table can be made pairwise distinct. Thus, g3(K)− g5(K) = p+1
q −

1
q .

Case p
q = 1

2 Let T=.5 be defined as

T=.5 =

q − p− 2



1 1

1 2
...

...

1 q − p− 2

p+ 2



⊥ ⊥
⊥ ⊥
...

...

⊥ ⊥

Table T=.5 contains all possible combinations of the active domain values, so we have to
remove every tuple containing NULLs, so g3(K) = p+2

q . On the other hand, if we add just

one new tuple (say (2, q − p − 1)), then the largest number of active domain combinations
is 2 · (q − p − 1) that can be achieved. There are already q − p − 1 pairwise distinct total
tuples in the extended table, so only q − p − 1 < p + 2 would be available to replace the
NULLs. On the other hand, adding two new tuples, (2, q− p− 1) and (3, q− p) creates a pool
of 3 · (q − p) combinations of active domains, which is more than (q − p− 1) + p+ 2 that is
needed.
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Case p
q >

1
2 Table T is defined similarly to the previous cases, but we need more careful

analysis of the numbers.

T =

b



1 1

1 2
...

...

1 b

x



⊥ ⊥
⊥ ⊥
...

...

⊥ ⊥

(2)

Clearly, g3(K) = x
x+b . Let us assume that y tuples are needed to be added. The maximum

number of active domain combinations is (y + 1)(y + b) obtained by adding tuples (2, b +
1), (3, b+ 2), . . . , (y + 1, y + b). This is enough to replace all tuples with NULLs if

(y + 1)(y + b) ≥ x+ y + b. (3)

On the other hand, y − 1 added tuples are not enough, so

y(y − 1 + b) < x+ y − 1 + b. (4)

Since the total number of active domain combinations must be less than the tuples in the
extended table. We have p

q = g3(K) − g5(K) = x−y
x+b that is for some positive integer c we

must have cp = x− y and cq = x+ b if gcd(p, q) = 1. This can be rewritten as

y = x− cp ; y + b = c(q − p) ; b = cq − x ; x+ y + b = y + cq. (5)

Using (5) we obtain that (3) is equivalent with

y ≥ cp

c(q − p)− 1
. (6)

If c is large enough then d cp
c(q−p)−1e = d p

q−pe so if y = d p
q−pe is chosen then (6) and

consequently (3) holds. On the other hand, (4) is equivalent to

y <
cq − 1

c(q − p)− 2
. (7)

The right hand side of (7) tends to q
q−p as c tends to infinity. Thus, for large enough c we

have b cq−1
c(q−p)−2c = b q

q−pc. Thus, if

y = d p

q − p
e ≤ b q

q − p
c (8)

and q
q−p is not an integer, then both (3) and (4) are satisfied for large enough c. Observe

that p
q−p + 1 = q

q−p , thus (8) always holds. Also, if q
q−p is indeed an integer, then we have

strict inequality in (8) that implies (7) and consequently (4).
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5 spFD Approximation

In this section, we measure to which extent a table satisfies a Strongly Possible Functional
Dependency (spFD) X →sp Y if T 6|= X →sp Y .

Similarly to Section 4, we assume that the X-total part of the table satisfies the FD
X → Y , so we can always consider adding tuples. The measures g3 and g5 are defined
analogously to the spKey case.

Definition 5.1. For the attribute sets X and Y , σ : X →sp Y is a remove-approximate
strongly possible functional dependency of ratio a in a table T , in notation
T |=≈−a X →sp Y , if there exists a set of tuples S such that the table T \ S |= X →sp Y ,
and |S|/|T | ≤ a. Then, g3(σ) is the smallest a such that T |=≈−a σ holds.

The measure g3(σ) represents the approximation which is the ratio of the number of tuples
needed to be removed over the total number of tuples so that T |= X →sp Y holds.

Definition 5.2. For the attribute sets X and Y , σ : X →sp Y is an add-approximate
strongly possible functional dependency of ratio b in a table T , in notation T |=≈+

b X →sp Y ,
if there exists a set of tuples S such that the table T ∪S |= X →sp Y , and |S|/|T | ≤ b. Then,
g5(σ) is the smallest b such that T |=≈+

b σ holds.

The measure g5(σ) represents the approximation which is the ratio of the number of tuples
needed to be added over the total number of tuples so that T |= X →sp Y holds. For
example, consider Table 7. We are required to remove at least 2 tuples so that X →sp Y
holds, as it is easy to check that if we remove only one tuple, then T 6|= X →sp Y , but on
the other hand, the table obtained by removing tuples 4 and 5, shown in Table 8 satisfies
X →sp Y . It is enough to add only one tuple to satisfy the dependency as the table in Table
9 shows.

X Y

X1 X2

⊥ 1 1

2 ⊥ 1

2 ⊥ 1

2 1 2

2 1 2

2 2 2

Table 7: Incomplete Table
to measure (X →sp Y )〉

X Y

X1 X2

⊥ 1 1

2 ⊥ 1

2 ⊥ 1

2 2 2

Table 8: The table after
removing (−aX →sp Y )

X Y

X1 X2

⊥ 1 1

2 ⊥ 1

2 ⊥ 1

2 1 2

2 1 2

2 2 2

3 3 3

Table 9: The table after
adding (+b X →sp Y )

5.1 The Difference of g3 and g5 for spFDs

The same table may get different approximation measure values for g3 and g5. For example,
the g3 approximation measure for Table 7 is 0.334 (it requires removing at least 2 tuples
out of 6), while its g5 approximation measure is 0.167 (it requires adding at least one tuple
with new values).
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The following theorem proves that it is always true that the g3 measure value of a table
is greater than or equal to the g5 for spFDs.

Theorem 5.1. Let T be a table over schema R, σ : X →sp Y for some X,Y ⊆ R. Then
g3(σ) ≥ g5(σ).

The proof is much more complicated than the one in the case of spKeys, because we cannot
assume that there always exists a minimum set of non-total tuples to be removed for g3,
as the table in Table 10 shows. In this table the third tuple alone forms a minimum set of
tuples to be removed to satisfy the dependency and it has no NULL.

X Y

X1 X2

1 ⊥ 1

1 ⊥ 1

1 1 2

1 1 ⊥

1 2 3

Table 10: X-total tuple needs to be removed

From that table, we need to remove the third row to have X →sp Y satisfied. Let us
note that adding row (3, 3, 3) gives the same result, so g3(X →sp Y ) = g5(X →sp Y ) = 1.
However, there exist no spWorlds that realize the g3 and g5 measure values and agree on
those tuples that are not removed for g3.

Proof. of Theorem 5.1 Without loss of generality, we may assume that X ∩ Y = ∅, because
T |= X →sp Y ⇐⇒ T |= X \ Y →sp Y \ X. Also, it is enough to consider attributes in
X ∪Y . Let U = {t1, t2, . . . , tp} be a minimum set of tuples to be removed from T . Let T ′ be
the spWorld of T \U that satisfies X → Y . Let us assume that t1, . . . ta are such that ti[X]
is not total for 1 ≤ i ≤ a. Furthermore, let ta+1[X] = . . . = tj1 [X], tj1+1[X] = . . . = tj2 [X],
. . ., tjf+1[X] = . . . = tp[X] be the maximal sets of tuples that have the same total projection
on X. We construct a collection of tuples {s1, . . . sa+f+1}, together with an spWorld T ∗ of
T ∪ {s1, . . . , sa+f+1} that satisfies X → Y as follows.

Case 1. 1 ≤ i ≤ a. Let zi be a value not occurring in T neither in every tuple sj constructed
so far. Let si[A] = zi for ∀A ∈ X and si[B] = ti[B] for B ∈ R \ X. The corresponding
sp-extensions s∗i , t

∗
i ∈ T ∗ are given by setting s∗i [B] = t∗i [B] = β where β ∈ V DB arbitrarily

fixed if ti[B] = ⊥ in case B ∈ R \X, furthermore t∗i [A] = zi if A ∈ X and ti[A] = ⊥.

Case 2. X-total tuples. For each such set tjg−1+1[X] = . . . = tjg [X] (g ∈ {1, 2, . . . , f + 1})
we construct a tuple sa+g. Let vg1 , v

g
2 , . . . v

g
kg
∈ T \U be the tuples whose sp-extension vgj

′
in

T ′ satisfies vgj
′
[X] = tjg [X] for 1 ≤ j ≤ kg. Let vg1 , v

g
2 , . . . v

g
` be those that are also X-total.

Since the X-total part of the table satisfies X →sp Y , tjg−1+1, . . . tjg , v
g
1 , v

g
2 , . . . v

g
` can be

sp-extended to be identical on Y . Let us take those extensions in T ∗.



14 Munqath Al-atar, Attila Sali

Let sa+g be defined as sa+g[A] = za+g where za+g is a value not used before for A ∈ X,
furthermore sa+g[B] = vg`+1[B] for B ∈ R \X. The sp-extensions are given as vg∗q [A] = za+g

if vg∗q [A] = ⊥ and A ∈ X, otherwise vg∗q [A] = vgq
′[A] for ` + 1 ≤ q ≤ kg. Finally, let

s∗a+g[B] = vg1
′
[B] for B ∈ R \X.

For any tuple t ∈ T \ U for which no sp-extension has been defined yet, let us keep its
extension in T ′, that is let t∗ = t′.

Claim T ∗ |= X →sp Y . Indeed, let t1, t2 ∈ T ∪ {s1, . . . , sa+f+1} be two tuples such that
their sp-extensions in T ∗ agree on X, that is t1∗[X] = t2∗[X]. If t1∗[X] contains a new value
zj for some 1 ≤ j ≤ a + f + 1, then by definition of the sp-extensions above, we have
t1∗[Y ] = t2∗[Y ]. Otherwise, either both t1, t2 are X-total, so again by definition of the sp-
extensions above, we have t1∗[Y ] = t2∗[Y ], or at least one of them is not X-total, and then

t1∗ = t1
′

and t2∗ = t2
′
. But in this latter case using T ′ |= X →sp Y we get t1∗[Y ] = t2∗[Y ].

The values g3 and g5 are similarly independent of each other for spFDs as in the case of
spKeys.

Theorem 5.2. For any rational number 0 ≤ p
q < 1 there exists tables with an arbitrarily

large number of rows and bounded number of columns that satisfy g3(σ) − g5(σ) = p
q for

σ : X →sp Y .

Proof. Consider the following table T . We clearly have g3(X →sp Y ) = x
x+b for T as all

T =

X Y

X1 X2

1 1 1

1 2 2

...
...

...

1 b b

⊥ ⊥ b + 1

⊥ ⊥ b + 2

...
...

...

⊥ ⊥ b + x

Table 11: g3 − g5 = p
q

tuples with NULLs must be removed. On the other hand, by adding new tuples and so
extending the active domains, we need to be able to make at least x + b pairwise distinct
combinations of X-values. If y tuples are added, then we can extend the active domains to
the sizes |V D1| = y + 1 and |V D2| = y + b. Also, if y is the minimum number of tuples to
be added, then

g3(X →sp Y )− g5(X →sp Y ) =
x− y
x+ b

=
p

q
(9)
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if cp = x − y and cq = x + b for some positive integer c. From here y = x − cp and
y + b = c(q − p) Thus, what we need is

(y + 1)(y + b) = (y + 1)c(q − p) ≥ cq (10)

and, to make sure that y − 1 added tuples are not enough,

y(y + b− 1) = y(c(q − p)− 1) ≤ cq − 1. (11)

Easy calculation shows that (10) is equivalent with y ≥ p
q−p , so we take y =

⌈
p

q−p

⌉
. On the

other hand, (11) is equivalent with y ≤ cq−1
c(q−p)−1 . Now, similarly to Case 3 of the proof of

Theorem 4.1 observe that cq−1
c(q−p)−1 →∞ as c→∞, so, if c is large enough, then (11) holds.

5.2 Semantic Comparison of g3 and g5

In this section, we compare the g3 and g5 measures to analyze their applicability and usability
for different cases. The goal is to specify when it is semantically better to consider adding
or removing rows for approximation for both spFDs and spKeys.

Considering the teaching table in Table 12, we have the two strongly possible constraints
Semester TeacherID →sp CourseID and sp〈Semester TeacherID〉. It requires adding one
row so that asp+a 〈Semester TeacherID〉 = +

a Semester TeacherID →sp CourseID. But on
the other hand, it requires removing 3 out of the 6 rows. Then, it would be more convenient
to add a new row rather than removing half of the table, which makes the remaining rows
not useful for analysis for some cases.

Adding new tuples to satisfy some violated strongly possible constraints ensures that we
make the minimum changes. In addition to that, in the case of deletion, some active domain
values may be removed. There are some cases where it may be more appropriate to remove
rather than add tuples, however. This is to preserve semantics of the data and to avoid using
values that are out of the appropriate domain of the attributes while adding new tuples with
new unseen values. For example, Table 13 represents the grade records for some students
in a course that imply the key (Name, Group) and the dependency PointsAssignment→
Result, while both of sp〈NameGroup〉 and PointsAssignment→sp Result are violated by
the table. Then, adding one tuple with the new values (Dummy, 3, 3, Maybe, Hopeless) is
enough to satisfy the two strongly possible constraints, while they can also be satisfied by
removing the last two tuples. However, it is not convenient to use these new values for the
attributes, since they are probably not contained in the intended domains. Hence, removing
two tuples is semantically more acceptable than adding one tuple.

If g3 is much larger than g5 for a table, it is better to add rows than remove them.
Row removal may leave only a short version of the table which may not give a useful data
analysis, as is the case in Table 11. If g3 and g5 are close to each other, it is mostly better to
add rows, but when the attributes’ domains are restricted to a short-range, then it may be
better to remove rows rather than adding new rows with ”noise” values that are semantically
not related to the meaning of the data , as is the case in Table 13.

6 Conclusion and Future Directions

Two approximation measures for spKeys and spFDs were investigated. The first one, g3, is
the ratio of the minimum number of rows to be removed, and was introduced for functional
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Semester TeacherID CourseID

First 1 1

⊥ 1 2

First 2 3

⊥ 2 4

First 3 5

⊥ 3 6

Table 12: Incomplete teaching table

Name Group Points Assignment Result

Bob 1 2 Submitted Pass

Sara 1 1 Not Submitted Fail

Alex 1 2 Not Submitted Fail

John 1 1 Submitted Pass

⊥ 1 1 ⊥ Retake

Alex ⊥ 2 ⊥ Retake

Table 13: Incomplete course grading table

dependencies in tables without NULL values in [11] and for spKeys in [2]. In the present
paper, we extended the definition for spFDs, as well. A new measure g5 was also intro-
duced here, which measures the ratio of the minimum number of tuples to be added to
satisfy a strongly possible constraint. This measure is only meaningful for strongly possible
constraints because ordinary functional dependencies or possible functional dependencies
cannot be made valid by adding tuples. However, the new tuples may extend the active
domains of the attributes and hence may make some strongly possible constraints satisfied.
Note that any add-approximate spKey or spFD is a possible key, respectively possible FD.
Thus, the g5 measure measures the minimum number of ”extra” attribute values one has to
use in a possible world satisfying the constraint.

We proved that the value of g5 is at most as large as the value of g3 for both spKeys
and spFDs. Otherwise, however, the two measures are independent of each other, as their
difference can take any non-negative rational value less than one.

The referees suggested considering tuple removal and addition concurrently, or tuple
modification. If first the additions are performed, then after that by Proposition 4.1, it is
always true that we can remove only non-total tuples; then, instead of any tuple removal, we
may add a new tuple with distinct values. Therefore, mixed modification in that way would
not change the approximation measure, as it is always equivalent to tuples addition only.
However, if the order of removals and additions count, then it is a topic of further research
whether the removals can be substituted by additions. Also, Proposition 4.1 is only valid
for spKeys, so mixed modifications are interesting research problem for spFDs. One tuple
modification can easily be replaced by one removal and one addition. The question remains
open whether one can gain more with tuple modifications than the above replacement. A
future research direction is to tackle algorithmic and complexity questions. It was proven
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in [3] that checking whether for a given subset K ⊆ R and table T , T |= sp〈K〉 holds
can be decided in polynomial time. However, the questions whether g3(sp〈K〉) ≤ q and
g5(sp〈K〉) ≤ q are not known to be polynomial. The problem is that we would have to
check all possible tables T ′ ⊂ T with |T ′|/|T | ≥ 1− q which could mean exponentially many
tables. On the other hand, it is clear that both problems, g3(sp〈K〉) ≤ q and g5(sp〈K〉) ≤ q
are in NP.

The analogous question for spFDs, that is whether T |= X →sp Y for a table T and
subsets X,Y ⊆ R, is itself NP-complete [3]. This suggests that the problem of bounding the
approximation measures g3 and g5 for spFDs is also intractable. However, it is a topic of
further study to really prove it.

We studied handling missing values for Multi-valued Dependencies (spMVDs) in [4]. An
interesting future research direction can be measuring approximation ratio of spMVDs.
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