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Abstract
In grasses, biomass and grain production are affected by plant architecture traits such as tiller number, leaf size and orienta-
tion. Thus, knowledge regarding their genetic basis is a prerequisite for developing new improved varieties. Mutant screens 
represent a powerful approach to identify genetic factors underpinning these traits: the HorTILLUS population, obtained by 
mutagenesis of spring two-row cultivar Sebastian, is a valuable resource for this purpose in barley. In this study, 20 mutant 
families from the HorTILLUS population were selected and evaluated for tiller number, leaf angle and a range of other plant 
architecture and agronomic traits using an unreplicated field design with Sebastian as a check cultivar. Principal Component 
Analysis revealed strong relationships among number of tillers, upper canopy leaf angle, biomass and yield-related traits. 
Comparison to the Sebastian background revealed that most mutants significantly differed from the wild-type for multiple 
traits, including two mutants with more erect leaves and four mutants with increased tiller number in at least one phenological 
stage. Heatmap clustering identified two main groups: the first containing the two erect mutants and the second containing 
Sebastian and the high-tillering mutants. Among the high-tillering mutants, two showed significantly higher biomass and 
grain yield per plant compared to Sebastian. The selected mutants represent promising materials for the identification of 
genetic factors controlling tillering and leaf angle in barley.
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Introduction

By the year 2030, the global human population will be over 
8.3 billion leading to an increase in demands for food and 
energy (FAO 2017). Development of new crop cultivars 
with enhanced features is a priority to meet these necessi-
ties. Manipulation of plant architecture traits was the most 
significant result of the Green Revolution, as illustrated by 
rice and wheat varieties with strong and short stems and 
higher grain yields (Khush 2001).

Barley (Hordeum vulgare ssp. vulgare), an important 
plant in the history of humanity, has been cultivated for 
over 10,000 years (Pankin and Von-Korff 2017). Today, 
barley ranks in fourth place for worldwide cereal produc-
tion after maize, rice and wheat and third in the European 
Union (FAOSTAT 2018). Compared to other grasses, barley 
is highly tolerant to stresses such as drought, cold and salt, 
which represent key traits for adaptation to climate change 
(Dawson et al. 2015). Barley grains are mainly used as food, 
animal feed and malt for the brewing and distilling indus-
tries (Munoz-Amatriain et al. 2014). Recently, straw has 
attracted attention as a source of renewable energy with a 
view to develop barley as a dual-purpose crop to produce 
grains and biofuel. Concurrent increase in biomass and grain 
yield has been proposed as a strategy to meet demands for 
higher food production (Aisawi et al. 2015). The lack of 
progress in harvest index increase for the last 40 years makes 
biomass improvement more important than before (Foulkes 
et al. 2011).

Among morphological traits contributing to biomass and 
grain production, leaf angle and tiller number have been 
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shown to play an important role and were targeted in several 
breeding programs (Mock and Pearce 1975; Shearman et al. 
2005; Peng et al. 2008).

Leaf angle—i.e. the inclination between leaf blade mid-
rib and stem—is a major trait influencing light interception, 
photosynthetic efficiency throughout the canopy and pro-
ductivity in relation to planting density (Mantilla-Perez and 
Salas Fernandez 2017). Optimal plant architecture would 
require erect leaves on the upper part and horizontally 
arranged ones in the lower part of the canopy, as suggested 
in the smart canopy concept for crop biomass and yield (Ort 
et al. 2015). For example, in winter and spring wheat leaf 
angle was shown to affect photosynthetic efficiency and net 
carbon accumulation and a higher rate of dry matter produc-
tion has been reported for spring wheat genotypes with erect 
leaves (Choudhury 2000; Parry et al. 2011). In rice, smaller 
leaf angle was also reported as a substantial morphological 
factor contributing to higher biomass production (Li et al. 
2009; Sakamoto et al. 2006; Kumagai et al. 2014).

Another important character influencing yield and yield 
components in wheat, rice and barley is tillering (Sakamoto 
and Matsuoka 2004; Sreenivasulu and Schnurbusch 2012; 
Shaaf et al. 2019). Tillers are branches arising from basal 
nodes of the culm, affecting shoot architecture and conse-
quently crop density and biomass (Donald 1968; Seavers 
and Wright 1999). In rice and other grasses, a positive cor-
relation between tiller number and biomass has been demon-
strated (Barnaby et al. 2019), however excessive tillering can 
negatively affect grain filling. Hence, a moderate increase 
in tiller number is preferable to improve biomass and yield 
(Boe 2007; Das et al. 2004).

As supported by these examples, knowledge regarding the 
genetic basis of plant architecture traits and their relation-
ships with biomass and yield is necessary for crop improve-
ment. However, compared to rice, relatively few genes con-
trolling leaf angle and tillering have been identified in barley 
(reviewed in Shaaf et al. 2019) and their relationships with 
grain and biomass production is not well studied. Mutagen-
ized populations are powerful tools to dissect the genetic 
bases of traits and identify the underlying genes (Ahloowalia 
et al. 2004; Nachimuthu et al. 2015; Riaz and Gul 2015). 
Barley benefits from large mutant collections that were suc-
cessfully used in previous studies to discover genes involved 
in tillering and leaf angle (Druka et al. 2011; Tavakol et al. 
2015; Liller et al. 2015; Mascher et al. 2014; Dockter et al. 
2014). Several mutants with erect leaf angle have been 
reported such as uzu1, lig1, ari-e, ari-o, ari-u.245, brd1, 
brh1, brh13.p and, brd1-3, brh2 and ari-l (reviewed in Shaaf 
et al. 2019). Among these, the uzu1 mutant was widely used 
to develop cultivated barley varieties with erect leaves, semi-
dwarf stature, increased lodging resistance and yield (Chono 
et al. 2003). On the other hand, Braumann et al. (2017; 2018) 
showed reductions in grain yield and thousand-grain-weight 

for lines carrying mutations in Brh1 or Brh2, respectively, 
indicating that erect leaf mutants vary in terms on agronomic 
performance, also depending on genetic background.

Previously described barley high-tillering mutants 
include granum-a (gra-a), many noded dwarf1 (mnd1), 
mnd3, mnd6 and grassy tillers, hvd14, intermedium spike-c 
(int-c), int-m, semidwarf1 (sdw1) (reviewed in Shaaf et al. 
2019). Jia et al. (2011) reported significant increase of tiller 
number and yield in the sdw1 mutant, however other reports 
suggest that this effect may depend on genetic background 
and/or environmental conditions (reviewed in Kuczynska 
et al. 2013). Another high tillering mutant int-m exhibited 
reduced number of seeds compared to wild type (Liller et al. 
2015). Chemical mutagenesis is a powerful approach for 
the development of mutagenized populations that can be 
used in forward and reverse genetics approaches to screen 
for mutants with desired phenotypes. In the last two dec-
ades several Targeting Induced Local Lesions in Genomes 
(TILLING) populations have been produced for barley 
(Caldwell et al. 2004; Talamè et al. 2008; Gottwald et al. 
2009; Lababidi et al. 2009; Lundqvist 2014; Schreiber et al. 
2019). Among them, an interesting resource is HorTILLUS 
(Hordeum vulgare—TILLING—University of Silesia), 
developed from double treatment of spring barley variety 
“Sebastian” with sodium azide (NaN3) and N-Methyl-N-
nitrosourea (MNU) (Szurman-Zubrzycka et al. 2018). Its 
high average mutation density (1/477 kb, calculated on the 
basis of 32 genes) makes HorTILLUS an ideal tool for both 
functional genomic studies and forward selection of barley 
mutants with required phenotypic changes. In the current 
investigation, new mutants altered in leaf angle and tiller 
number were identified from the HorTILLUS population and 
characterized. Relationships with yield, yield components 
and biomass along with other traits were also studied.

Materials and methods

Plant materials and initial screening

The genetic materials used for the present work were 
selected from the HorTILLUS population derived from 
sodium azide  (NaN3) and N-Methyl-N-nitrosourea (MNU) 
mutagenesis of the barley spring two-row cultivar “Sebas-
tian” (Szarejko and Maluszynski 1999; Szarejko et al. 2017; 
Szurman-Zubrzycka et al. 2018). This cultivar was selected 
due to its high yield potential, malting quality and resist-
ance to several important diseases.  M3 seeds from a subset 
of 3481 individual  M2 plants with the highest number of 
seeds were planted in the field and phenotypically evalu-
ated (Szurman-Zubrzycka et al. 2018). Progenies of these 
plants were used in the present study to select mutants with 
increased tiller number (TN) and erect leaf angle (LA). The 
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screening was performed in two batches in 2015 and 2016 at 
the experimental field of University of Silesia in Katowice, 
Poland, located in Bochuchwalowice village (50° 26′ 47.6″ 
N 19° 11′ 05.1″ E).  M4 seeds from 854  M3 families (375 
families in 2015 and 479 families in 2016) were used for 
the screening. Seeds of each family were evenly sown in 
two rows of 120 cm length and 15 cm spacing, 10 seeds per 
row (altogether 20 seeds per  M3 family). Seeds of Sebas-
tian cultivar were sown in 2-row replicates every 30 rows 
between the mutagenized lines. The phenotypic evaluation 
was performed at the heading stage. In 2015, the leaf angle 
was evaluated by visual comparison of Sebastian and mutant 
lines. Additionally, the angle between external leaves was 
determined: this angle for Sebastian cultivar was on average 
90°, thus all mutant plants with narrower angle were consid-
ered as more erect and selected for further analysis. In 2016 
all candidate lines selected the previous year together with 
479 newly sown families were examined for insertion angle 
of penultimate leaf (leaf below the flag leaf) from three till-
ers using the PocketPlant3D smartphone application (Con-
falonieri et al. 2017). Tiller number was counted manually in 
both years of screening, at heading stage. Altogether around 
14,400 individual  M4 plants were subjected to phenotyping. 
A total of 75 candidate mutant plants from 24  M4 families 
were selected for further analysis as potentially interesting 
for LA and TN.

Field evaluation and phenotyping

Twenty  M5 or  M6 seeds from selected individual plants of 
each mutant family were sown at the end of February 2017 
at “F. Dotti” experimental farm from Università degli Studi 
di Milano, Lodi, Italy (45° 20′ 18.7″ N 9° 27′ 03.6″ E) using 
an unreplicated field design in three blocks containing the 
wild-type Sebastian as check cultivar. Finally, a total of 20 
mutant families were selected for further screening and 
evaluation of phenotypic stability and performance, after 
excluding 4 families due to germination problems (Table 1). 
The field was plowed at 20 cm depth and before sowing the 
seedbed was prepared for better germination. Seeds from 
2015- and 2016-selected plants of each mutant were sown 
in each plot with two rows containing ten seeds within each 
row. The distance between plants within rows was 14 cm 
and 30 cm was the spacing between rows. The winter bread 
wheat cultivar Bologna was grown between barley plots 
(equal distances of 30 cm from barley rows). Sebastian was 
replicated also in 28 plots distributed across the field experi-
ment. Weeds were controlled by hand at tillering and stem 
elongation stages. Data were collected from at least 10 plants 
per family for 26 phenological and agronomical characters at 
different development stages as follows (See supplementary 
Table S1 for additional information).

At the tillering stage, we measured tiller number (TNT), 
50 days after sowing when plants were still prostrate. At 
heading stage, we measured days to heading (DH), number 
of tillers at heading (TNH), and the leaf insertion angle 
(PAngle) using smartphone application PocketPlant3D 
(Confalonieri et al. 2017). At ripening stage, we measured 
days to ripening (DR), plant height (PH), total number of 
tillers at ripening (TNR), fertile tiller number (FTNR), 
peduncle extrusion (PedE), flag leaf length (FLL), spike 
length (SpL), awn length (AwnL), and spike width (SpW). 
Each plant was finally harvested and the following traits 
were measured at the post-harvest stage: peduncle length 
(PedL), length of first uppermost internode below the 
peduncle (Int1L), length of the second internode below 
the first internode (Int2L), third internode length (Int3L), 
fourth internode length (Int4L), fifth internode length 
(Int5L), sixth internode length (Int6L), spike weight 
(SpWt), seed yield per plant (SeedYPl), harvest index 
(HI), number of seeds per spike (SeedSp), number of seeds 
per plant (SeedPl), and aboveground biomass per plant.

Statistical analyses

All statistical analyses were performed in Rstudio (RStu-
dio Team 2020). Analysis of variance was conducted using 
a linear mixed model implemented in the R package lme4, 
with mutants as fixed and blocks and lines within mutants 
as random effects (Bates et al. 2015). The adjusted means 
of the mutants and standard errors were then calculated 
using R package “emmeans”. Means of each mutant were 
then compared to control cultivar Sebastian for each trait 
and their difference was tested using the “multcomp” R 
package and raw p-values were adjusted using the false 
discovery rate (FDR) method. For subsequent analysis the 
adjusted means of mutants and Sebastian for each trait 
were used. A hierarchical clustering heatmap of mutants 
by traits was drawn using R package “heatmaply” after 
linear normalization of the phenotypic data (x = y-min/
max–min) in which x values were encoded as a grid of 
colored cells. The rows and columns of the matrix were 
ordered to highlight patterns and accompanied by dendro-
grams. Pairwise Spearman rank correlation coefficients of 
variables were calculated and the resulting matrix of coef-
ficients was visualized as a heatmap highlighting clusters 
of intercorrelated traits. To reduce the complexity of rela-
tionships, a data reduction technique was performed using 
principal components analysis (PCA) implemented in the 
R package “factoextra” and the resulting PC scores were 
plotted. To know the relative importance of each variable 
on each PC score a loading plot of PCs was visualized 
using the R package “qgraph”.
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Table 1  Mean values for evaluated mutants measured for 26 traits

Values with significant higher and lower values compared to Sebastian are underlined with bolded and italic text, respectively (see Supplemental 
Fig. S1)

Group Genotype PAngle TNT TNH TNR FTNR DH DR PedE FLL PH SpL AwnL SpW

Sebastian Sebastian 16.22 7.95 14.26 17.08 10.34 150 179 − 8.88 7.73 41 9.66 12.76 0.924
Other M01.0787 12.4 4.64 8.57 9.97 5.3 154 179 − 8.95 5.19 32.3 7.53 11.35 0.841
Other M02.0509 12.21 7.61 9.6 11 7.99 147 175 − 6.76 5.96 47.7 8.06 9.39 0.92
Other M03.1687 10.29 7.61 11.98 12.98 9.26 154 179 − 9.57 5.77 34 8.12 11.93 0.974
Other M04.2143 10.5 8.8 14.94 22.96 9.91 154 184 − 8.28 7.23 26.1 6.25 10.34 0.987
LA M05.5061 9.76 6.44 10.73 14.28 9.19 136 164 − 6.24 5.83 39 8.46 12.75 0.856
LA M06.7165 5.44 6.36 15.06 19.57 12.26 149 180 − 6.34 4.76 31.7 8.54 6.8 0.983
TN M07.5478 24.38 13 26.76 30.05 18.13 148 178 − 6.84 8.53 47.8 9.51 10.86 0.958
TN M08.0589 18.78 11.4 17.95 22.11 13.94 147 175 − 8.3 8.26 46.1 10.79 12.8 0.94
TN M09.7479 18.71 7.68 17.34 21.15 12.34 153 179 − 10.85 8.11 38.1 10.16 12.21 0.868
Other M10.0908 18.26 8.04 13.9 17.97 10.26 151 179 − 10.2 8.34 37.5 9.81 12.94 0.909
Other M11.2167 15.04 7.55 13.3 16.1 9 154 182 − 10.04 6.99 34.7 9.45 12.91 0.919
Other M12.2610 12.63 7.88 14.14 17.35 8.51 154 182 − 8.83 6.8 35.9 9.19 11.47 0.879
Other M13.2616 12.29 6.44 11.75 13 7.01 150 177 − 8.29 7.47 42.2 9.11 12.01 0.813
Other M14.2753 14.73 6.68 11.29 13.08 6.82 153 180 − 10.56 6.49 38.5 8.78 12.23 0.817
Other M15.2848 14.85 7.07 15.04 19.01 8.53 153 185 − 6.28 5.52 28.1 7.9 11.03 0.778
TN M16.3026 15.91 8.73 17.71 19.7 11.7 150 179 − 8.48 8.38 39.8 9.66 12.84 0.924
Other M17.5022 14.37 8.08 16.04 19.51 12.5 148 180 − 8.64 7.77 42.1 10.58 12.58 0.946
Other M18.5267 17.65 7.91 17.84 21.79 12.34 148 176 − 7.44 9.31 45.7 10.1 11.73 0.917
Other M19.5306 19.77 7.86 14.49 17.79 10.22 150 178 − 10.36 8.06 37.1 10.04 11.99 0.975
Other M20.0161 16.51 6.59 11.36 12.93 7.02 154 172 − 9.79 9.85 32.5 8.74 13.49 0.923

Int6L Int5L Int4L Int3L Int2L Int1L PedL SeedSp SeedPl SpWt SeedYPl Biomass HI

Sebastian Sebastian 0.869 1.97 3.74 5.4 6.94 10.78 11.27 26.3 210.3 1.641 11.7 22.1 50.8
Other M01.0787 0.879 1.83 3.14 4.23 5.48 8.58 7.9 20.1 86.1 1.043 4.02 8.9 44.4
Other M02.0509 1.724 3.28 5.33 6.51 7.89 11.16 11.24 21.7 146.8 1.051 6.55 13.5 47.9
Other M03.1687 0.777 1.87 3.39 4.73 5.8 9.03 8.56 24.8 189.4 1.38 9.96 19.2 51
Other M04.2143 0.425 1 2.04 2.73 3.37 6.99 9.37 14.1 96.3 0.831 5.64 16.7 32.7
LA M05.5061 0.414 1.43 3.19 4.86 6.41 10.1 13.16 22.9 153.3 1.287 7.36 13.7 54.1
LA M06.7165 0.971 2 3.2 4.4 5.69 7.85 7.49 24 207.4 1.06 8.24 17.3 48
TN M07.5478 1.167 2.42 4.14 5.68 7.78 12.71 13.18 28.6 360.5 1.673 17.89 35.3 52.8
TN M08.0589 0.964 2.1 4.23 6.05 7.78 12.11 12.84 28.9 295.9 1.853 16.67 31 51.7
TN M09.7479 0.729 1.68 3.36 5.45 7 9.9 9.9 25.5 235.9 1.423 11.33 23.4 48.3
Other M10.0908 0.844 1.86 3.4 4.91 6.49 10 10.23 21 158.8 1.416 9.43 21.3 43.9
Other M11.2167 0.86 1.71 2.99 4.43 5.82 9.02 9.69 22.1 155.6 1.346 8.06 17.1 45.9
Other M12.2610 0.836 1.73 3.31 4.78 6.1 9.35 9.46 21.4 151.5 1.253 8.39 19.2 41.6
Other M13.2616 0.77 2.04 3.77 5.67 7.26 11.02 11.77 23.9 126.9 1.33 5.9 12.2 46.2
Other M14.2753 1.234 2.3 3.71 5.14 6.18 9.29 10.25 19.3 96.8 1.044 4.53 12.3 37.7
Other M15.2848 0.46 1.08 1.72 2.85 4.43 7.94 9.55 15.8 95.4 0.852 4.65 12.2 37.6
TN M16.3026 0.761 1.75 3.44 5.1 6.66 10.74 11.42 25.5 222.3 1.636 12.01 24 48
Other M17.5022 0.852 1.95 3.66 5.37 7 11.34 11.74 20.7 218.8 1.395 12.73 26.9 44
Other M18.5267 1.054 2.59 4.53 6.08 7.47 11.63 12.74 27.2 204.5 1.679 11.1 25.8 42.6
Other M19.5306 0.823 1.84 3.73 5.46 6.82 9.16 9.31 22.6 153.6 1.549 9.82 20.8 46.8
Other M20.0161 0.655 1.48 2.69 4.12 5.45 8.69 9.5 22.8 120.5 1.113 5.82 12.6 47.4
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Results

Screening of the HorTILLUS population for leaf 
angle and tillering mutants

Comparison to the Sebastian background revealed that 
most mutants significantly differed from the wild-type 
for multiple traits (Table 1, Figure S1). Considering the 
intended purpose of identifying mutants with erect leaves 
and increased tillering, six mutants emerged as potentially 
interesting. Two mutants exhibited more erect leaves com-
pared to Sebastian (LA mutants), although they differed 
with respect to other traits. Mutant M05.5061 displayed 
lower values for PAngle, TNH, DH, DR, FLL, SpW, and 
higher HI, PedE, PedL. Mutant M06.7165 had lower 
PAngle, FLL, AwnL and SpWt, higher SpW; PH was 
also reduced in this mutant as a result of decreased Int1L, 
Int2L, Int3L, PedL.

Four mutants produced more tillers than Sebastian in 
at least one of the growth stages (TN mutants). Mutants 
M07.5478 and M08.0589 had increased tillers for TNT, 
TNH, TNR, and FTNR. Mutant M09.7479 had increased 
tillers at heading and ripening, but not at tillering stage. 
One mutant, M16.3026, showed increased tiller number 
only at heading stage (TNH). M07.5478 had increased 
PAngle, PH, PedE, SeedSp, SeedPl, SeedYPl and Biomass, 

while showing a lower value for AwnL. M08.0589 showed 
higher values for PAngle, PedL, PH, SpWt, SpL, SeedSp, 
SeedPl, SeedYPl, Biomass, and lower values for DH and 
DR compared to Sebastian. Mutant M09.7479 from this 
group had higher values for DH and SeedPl, and lower 
values for SpW, PedE.

Of the 14 remaining lines, four (M03.1687, M10.0908, 
M17.5022 and M13.2616) exhibited no statistically signifi-
cant differences compared to the wild-type (partly due to 
variation within families), while 10 differed from Sebastian 
for various traits. Mutant M01.0787 showed significantly 
lower values for traits TNT, TNH, TNR, FTNR, FLL, PH, 
SpL, SeedPl, SpWt, SeedYPl and Biomass, while DH was 
higher compared to Sebastian. Mutant M02.0509 had higher 
PH and lower AwnL compared to Sebastian variety. Traits 
PH, SpL, AwnL, SeedSp, SpWt and HI had significantly 
lower values for mutant M04.2143 compared to Sebastian, 
while DH value was higher. Mutant M11.2167 showed a sig-
nificantly higher value for DH but lower values for PH. Trait 
DH was the only significant difference for mutant M12.2610 
compared to wild-type. Mutant M14.2753 showed higher 
values for DH, and lower values for traits PedE, SeedSp, 
SpW, SpWt, SeedYPl and HI. For mutant M15.2848 higher 
values for DH, DR, PedE and lower values for FLL, PH, 
PedL, SpL, AwnL, SeedSp, SeedPl, SpW, SpWt, SeedYPl, 
biomass and HI were observed. Higher values of PedL 
were observed for mutant M18.5267 compared to Sebastian 

Fig. 1  Heatmap of two-dimensional visualization of genotypes-by-trait table based on normalized values encoded as a grid of colored cells. The 
rows and columns of the matrix are ordered to highlight patterns accompanied by dendrograms
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variety. For traits PAngle, SpW higher values were observed 
for mutant M19.5306, while AwnL, PedE, PedL had lower 
values. Mutant M20.0161 showed significant increases for 
DH, FLL and AwnL and a lower value for PH compared to 
Sebastian variety.

Based on heatmap clustering, the 21 genotypes were 
split into two major groups (Fig.  1). The first cluster 
includes 12 mutants, two LA and 10 other mutants. The 
group is characterized by lower values for most traits 
except for high values of internode length, DH, DR, SpW 

and HI. Mutant M05.5061 from LA group showed the 
highest value for HI among all mutants. The second cluster 
is a smaller group consisting of all TN mutants, four other 
mutants and Sebastian suggesting a closer phenotypic 
similarity to the background compared to the first group. 
This group is characterized by higher values for most yield 
and biomass traits especially for tiller number at different 
stages. For example, mutant M07.5478 had the highest 
values for tiller number in different stages, PAngle, PH, 
SeedPl, SeedYPl and Biomass, while M08.0589 exhibited 
the highest values of SpL, SpWt, and SeedSp.

Fig. 2  Plot of correlogram showing pairwise Spearman correlations 
between 26 traits evaluated on 20 mutants from HorTILLUS popu-
lation and background cultivar Sebastian. The frames indicate traits 

with stronger intracorrelations and the colors show negative or posi-
tive values based on the scale bar
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Trait correlations

The correlation coefficients between each pair of traits are 
presented in Fig. 2. The correlogram revealed four clusters 
of traits with positively stronger correlations within-clus-
ter. For example, DH and DR are strongly and positively 

correlated, but show predominantly negative correlations 
with traits from other clusters. PAngle had strong positive 
correlations with AwnL and FLL. In the larger intra-correla-
tion cluster, all biomass- and yield-related traits were present 
with stronger positive correlations with tiller number traits. 
Also, PAngle showed a moderate correlation with biomass 

A

C D

B

Fig. 3  Visualization Principal Component Analysis (PCA) for 26 
traits evaluated on 20 mutants with background cultivar Sebastian. 
a Loading plot of traits on first five PC scores, green and red edges 
indicate positively and negatively correlated traits on the correspond-
ing PC scores, respectively. The width of edges indicates the strength 
of relationship; Biplot of PC1 versus PC2 (b), PC1 versus PC3 (c), 

and PC2 versus PC3 (d), with vectors pinned at the origin of PCs. 
Their projected values on each PC show how much weight they have 
on that PC. Major groups are color coded. The large circles repre-
sent the group summaries (the median PC projection for each of the 
groups)
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and SeedYPl. These results indicate a positive relationship 
of tiller number in different stages and penultimate leaf angle 
with biomass.

Principal components analysis

The loading plot of traits on the first five PCs is illustrated 
in Fig. 3a. In the plot, green and purple edges show posi-
tive and negative correlations, respectively, between traits 
(boxes) and PCs (circles). The wider the edge, the stronger 
the correlation and vice versa. PCA analysis revealed that the 
main traits contributing to PC1 are biomass, tiller number, 
plant height and internode length. The main traits contribut-
ing to PC2 are TNR and TNH. PedE and AwnL respectively 
showed positive and negative contributions to PC3. Days to 
heading and ripening were the major loadings on PC4.

PCA analysis indicated that the first four PCs with 
eigenvalues higher than one were the most important PCs 
explaining, respectively, 48.1%, 17.2%, 10.8%, and 8.7% 
of total variance, and with a cumulative variance of 84.7% 
(Fig. 3). In the biplot of PC1 vs. PC2 (Fig. 3b), the first 
principal component separated LA mutants from TN and 
Sebastian, while the second principal component could dis-
tinguish both LA and TN groups from Sebastian: mutants 
M07.5478 and M08.0589 belonging to the TN group, pos-
sessed greater values of biomass- and yield-related traits. In 
the second biplot of PC1 versus PC3 (Fig. 3c), M06.7165 
could be distinguished from other mutants mainly because 
of reduced AwnL and increased PedE. The biplot of PC1 vs. 
PC4 (Fig. 3d) allowed separation of LA mutant M05.5061 
from others due to its early heading and ripening. Compared 
to other mutants, M09.7479 and M16.3026 were phenotypi-
cally closer to Sebastian.

Discussion

Abundant mutant collections are available for barley and 
have been exploited to identify a plethora of morphological 
mutants. However, most previous mutant screenings have 
only considered few traits, lacking information about other 
agronomic traits. In the current study, 20 barley families 
from the HorTILLUS population were evaluated under 
field conditions for a total of 26 plant architecture, biomass 
and yield-component traits taking a multivariate analysis 
approach in order to comprehensively profile each mutant 
and explore relationships among different traits.

Among them, two mutants exhibited significantly more 
erect PAngle, and four mutants had higher tiller numbers. 
The latter in general demonstrated higher biomass and yield 
related characteristics.

LA mutant M06.7165 exhibited erect leaves, reduced 
plant height, awn length, and spike weight, while biomass 

and seed yield per plant were comparable to Sebastian. 
This mutant is phenotypically similar to the ari-e mutant, 
caused by a defective allele of the HvDEP1 gene encoding 
a AAG3-type gamma subunit of heterotrimeric G protein 
(Wendt et al., 2016). The ari-e mutation was uncovered in 
the Scottish malting barley cultivar Golden Promise and 
shown to result in erect leaf angle, reduced plant height and 
awn length: agronomic data collected from multiple trials 
showed that this allele can produce either positive or nega-
tive effects on grain yield depending on the environment and 
genetic background (Wendt et al. 2016). It would be interest-
ing to test whether such factors also affect the performance 
of M06.7165.

LA mutant M05.5061 was characterized by the highest 
harvest index, early heading and ripening. In contrast to the 
reduced plant height of many erect mutants (Dockter et al. 
2014), the overall plant height of M05.5061 is comparable to 
Sebastian. Interestingly, basal internodes were shorter in the 
mutant, but peduncle length was increased, as was pedun-
cle extrusion. Taken together these features distinguish this 
mutant from other erect leaf mutants, making it an interest-
ing target for further genetic analysis.

Considering the high plasticity of tillering throughout the 
plant life cycle, we decided to record data for tiller num-
bers at different phenological stages (tillering, heading and 
ripening), as well as the final number of fertile tillers. This 
approach allowed the identification of four mutants with 
different tillering behaviour: in M07.5478 and M08.0589 
tillering was increased at all stages, while M09.7479 had 
increased tiller numbers at heading and ripening, but not at 
tillering stage, and M16.3026 showed increased tiller num-
ber only at heading stage. These results suggest that genetic 
control of tillering at later developmental stages may at least 
in part be distinct from earlier stages. This idea is consistent 
with results from a recent genome-wide association study of 
tillering in a collection of 768 barley lines: tiller number at 
later time points was associated with more quantitative trait 
loci (QTLs) compared to early time points (Haaning et al. 
2020). Mutants M07.5478 and M08.0589 were especially 
interesting as they started tillering early resulting in higher 
numbers of fertile tillers. Indeed, both mutants had increased 
values for biomass, SeedPl, SeedSp and SeedYPl. Interest-
ingly, these lines also showed increased plant height com-
pared to cv. Sebastian, in contrast to previously introduced 
mutants in which plant height was lower than wild-type 
(Franckowiak and Lundqvist 2002, 2013; Babb and Mue-
hlbauer 2003; Druka et al. 2011; Ramsay et al. 2011; Oka-
gaki et al. 2013; Mascher et al. 2014; Hussien et al. 2014; 
Marzec et al. 2016; Shaaf et al. 2019).

Analysis of correlation and PCA, indicated stronger rela-
tionships between tillering and biomass and yield related 
traits in the TA group compared to LA group. In general, TN 
mutants had also increased levels of yield. This is in contrast 
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to high tillering mutant int-m which exhibited reduced num-
ber of seeds compared to wild type (Liller et al. 2015).

With respect to LA mutants, our results show no major 
differences in yield components. While many studies have 
shown close relationships between leaf erectness and 
increased yield in cereals (Mantilla-Perez and Salas Fer-
nandez 2017), this effect is largely dependent on improved 
radiation distribution at canopy level in high plant density 
conditions. In the current study agronomic evaluations were 
conducted on single plants grown in rows, which is not rep-
resentative of the conditions in a plant stand. Further char-
acterization of our LA mutants should be carried out at plot 
level under different planting densities.

In conclusion, promising mutant lines for both erect leaf 
angle and increased tiller number were reported in our study. 
Further investigations are needed to identify the underly-
ing genes and gain insight into the molecular bases of these 
phenotypic effects.
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