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A. Timilsina,28 T. Todoroki,54, 55, 63 M. Tomášek,14 H. Torii,11 C.L. Towell,1 M. Towell,1 R. Towell,1 R.S. Towell,1

I. Tserruya,65 Y. Ueda,22 B. Ujvari,15 H.W. van Hecke,37 M. Vargyas,16, 66 S. Vazquez-Carson,12 J. Velkovska,64

M. Virius,14 V. Vrba,14, 27 E. Vznuzdaev,53 X.R. Wang,48, 55 Z. Wang,5 D. Watanabe,22 Y. Watanabe,54, 55

Y.S. Watanabe,11, 31 F. Wei,48 S. Whitaker,28 S. Wolin,25 C.P. Wong,20 C.L. Woody,7 M. Wysocki,50 B. Xia,49

C. Xu,48 Q. Xu,64 L. Xue,20 S. Yalcin,60 Y.L. Yamaguchi,11, 55, 60 A. Yanovich,24 P. Yin,12 J.H. Yoo,32

I. Yoon,58 I. Younus,35 H. Yu,48, 52 I.E. Yushmanov,33 W.A. Zajc,13 A. Zelenski,6 S. Zharko,57 and L. Zou8

(PHENIX Collaboration)

1Abilene Christian University, Abilene, Texas 79699, USA

ar
X

iv
:1

71
0.

01
65

6v
2 

 [
he

p-
ex

] 
 2

4 
O

ct
 2

01
8



2

2Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
3Department of Physics, Banaras Hindu University, Varanasi 221005, India

4Bhabha Atomic Research Centre, Bombay 400 085, India
5Baruch College, City University of New York, New York, New York, 10010 USA

6Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
7Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

8University of California-Riverside, Riverside, California 92521, USA
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The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the differential
cross section of φ(1020)-meson production at forward rapidity in p+p collisions at

√
s =510 GeV via

the dimuon decay channel. The partial cross section in the rapidity and pT ranges 1.2 < |y| < 2.2
and 2 < pT < 7 GeV/c is σφ = [2.28±0.09 (stat)±0.14 (syst)±0.27 (norm)]×10−2 mb. The energy
dependence of σφ (1.2 < |y| < 2.2, 2 < pT < 5 GeV/c) is studied using the PHENIX measurements
at
√
s =200 and 510 GeV and the Large-Hadron-Collider measurements at

√
s =2.76 and 7 TeV.

The experimental results are compared to various event generator predictions (pythia6, pythia8,
phojet, ampt, epos3, and epos-lhc).

I. INTRODUCTION

The φ(1020)-vector-meson production in p+p collisions
was intensively studied by various experiments at differ-
ent colliding energies and in different rapidity ranges [1–
18]. It is the lightest bound state of s and s̄ quarks
and is considered a good probe to study strangeness pro-
duction in p+p collisions. Production of φ mesons from
an initial nonstrange colliding system, such as p+p colli-
sions, is substantially suppressed in comparison to ω and
ρ vector mesons due to the Okubo-Zweig-Iizuka (OZI)
rule [19–21]. The φ-meson production at low transverse
momentum is dominated by soft processes and is sensitive
to the hadronization mechanism, while hard processes
become dominant at higher transverse momentum. In
p+p collisions, the production of strangeness is in general
not well described by generators such as pythia, which
tend to underestimate the production of strange parti-
cles [10, 22–24]. The study of φ-meson production in p+p
collisions is an important tool to study quantum chromo-
dynamics (QCD), providing data to tune phenomenolog-
ical QCD models in which an interplay is mandatory be-
tween perturbative QCD calculations, used in particular
for hard parton production dominant at higher pT , and
phenomenological QCD models, needed to describe the
nonperturbative hadronization into strange hadrons like
the φ meson.

In addition, recently, a long-range near-side angu-
lar correlation was observed in p+p collisions at Large-
Hadron-Collider (LHC) energies [25–27], which led to the
observation of collectivity in p+p collisions [28]. This
observation generated various explanations [29], includ-
ing those based on the color-glass-condensate (CGC)
model [30], and collective hydrodynamic flow [31] or color
reconnection [32, 33]. Being the heaviest easily acces-
sible meson made of light quarks, φ-meson production
provides the largest lever arm accessible to study effects
that scale with mass, as should be the case for collective
effects [34].

∗ Deceased
† PHENIX Spokesperson: akiba@rcf.rhic.bnl.gov

The study of φ-meson production in p+p collisions can
be an important tool to gain insight into new phenomena,
such as long-range angular correlations, that would have
a direct impact in the field of relativistic heavy-ion colli-
sions. The φ-meson production is an excellent observable
to probe the strangeness enhancement in the quark-gluon
plasma created in heavy-ion collisions [35–37].

We report the φ-meson-production cross section mea-
sured in p+p collisions at

√
s = 510 GeV. The analysis

uses a data sample of 144.6 pb−1 of integrated luminos-
ity obtained by the PHENIX experiment in 2013. The
cross section is averaged over the rapidity (y) interval
1.2 < |y| < 2.2 and reported in several bins of trans-
verse momentum (pT ) in the range 2 < pT < 7 GeV/c.
The results are compared to several model predictions
[24, 34, 38–41] and to the measurements previously re-
ported by the PHENIX experiment at

√
s = 200 GeV [15]

and by the LHC experiments measuring the φ-meson-
production cross section at forward rapidity at

√
s = 2.76

and 7 TeV [10–13, 17]. Measurements from experi-
ments at the Relativistic Heavy Ion Collider (RHIC) and
the LHC allow extracting the energy dependence of the
φ-meson-production cross section in the rapidity range
1.2 < y < 2.2, which provide information to further con-
strain model predictions.

II. EXPERIMENTAL SETUP

A complete description of the PHENIX detector can
be found in Ref. [42]. The results presented here are
obtained by measuring the φ meson via its µ+µ− decay
channel using both PHENIX muon spectrometers cover-
ing forward and backward pseudorapidities, 1.2 < |η| <
2.2, and the full azimuth.

Each muon arm spectrometer comprises hadron ab-
sorbers, a muon tracker (MuTr), which resides in a ra-
dial field magnet, and a muon identifier (MuID). The
absorbers are situated in front of the MuTr to provide
hadron (mostly pion and kaon) rejection and are built of
19 cm of copper, 60 cm of iron, and 36.2 cm of stain-
less steel. The MuTr comprises three sets of cathode
strip chambers in a radial magnetic field with an inte-
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grated bending power of 0.8 T.m. The final component
is the MuID, which has five alternating steel absorbers
and Iarocci tubes to further reduce the number of punch-
through hadrons misidentified as muons. Muon candi-
dates are identified by reconstructed tracks in the MuTr
matched to MuID tracks that penetrate through to the
last MuID plane.

Another detector system relevant to this analysis is
the beam-beam counter (BBC), comprising two arrays
of 64 Čerenkov counters, located on both sides of the
interaction point and covering the pseudorapidity 3.1 <
|η| < 3.9. The BBC system is used to measure the p+p
collision vertex position along the beam axis (zvtx) with
2 cm resolution and to provide the minimum bias (MB)
trigger.

III. DATA ANALYSIS

The results presented here are based on the data sam-
ple collected by PHENIX during the 2013 p+p run at√
s = 510 GeV. The BBC counters provide the MB trig-

ger, which requires at least one hit in each of the BBCs.
Events, in coincidence with the MB trigger, containing
a muon pair within the acceptance of the spectrometer
are selected by the level-1 dimuon trigger requiring that
at least two tracks penetrate through the MuID to its
last layer. A total of 5.3 × 108 dimuon triggered events
are recorded, which corresponds to a sampled integrated
luminosity of 144.6 pb−1.

A. Raw yield extraction

A set of quality assurance cuts is applied to the data to
select p+p events and muon candidates as well as to im-
prove the signal-to-background ratio. Good p+p events
are selected by requiring that the collision occurs in the
fiducial interaction region |zvtx| < 30 cm as measured by
the BBC. No selection is made on the event’s charged
particle multiplicity. The MuTr tracks are matched to
the MuID tracks at the first MuID layer in both position
and angle. In addition, the track is required to have more
than a minimum number of possible hits in the MuTr (12
out of the maximum 16) and MuID (6 out of the maxi-
mum 10), and cuts on the individual track χ2 values are
applied. Furthermore, there is a minimum allowed single
muon momentum along the beam axis, pz, which is recon-
structed and energy-loss corrected at the collision vertex,
of 2.4 GeV/c corresponding to the momentum cut effec-
tively imposed by the absorbers. Finally, a cut on the
χ2 of the fit to the common vertex of the two candidate
tracks near the interaction point is made.

The invariant mass distribution is formed by combin-
ing muon candidate tracks of opposite charges. This
unlike-sign dimuon spectrum is composed of correlated
and uncorrelated pairs. In the low-mass region (below
≈1.5 GeV/c2) the correlated pairs arise from the two-
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FIG. 1. Unlike-sign dimuon invariant mass spectrum before
background subtraction (solid [black] circles) and uncorre-
lated background distribution estimated using like-sign pairs
(open [black] circles) and the event-mixing technique (solid
[red] curve ).

body and Dalitz decays of the light neutral mesons η,
ρ, ω, η′ and φ as well as semi-muonic decays of corre-
lated charmed hadrons (and beauty in a negligible con-
tribution). The uncorrelated pairs are mainly coming
from semi-muonic decays of pions and kaons and punch-
through hadrons, and form the so-called combinatorial
background. The ratio of φ-meson signal over combina-
torial background is of the order of 0.7. This combina-
torial background is estimated using two methods: the
first one derives the combinatorial background from the
distribution formed within the same event by the muon
candidates of the same sign (like-sign pairs); and the
second one derives the combinatorial background from
the pairs formed by muon candidates of opposite charges
(unlike-sign pairs) coming from different events (mixed-
event). The normalization of the mass distribution of the
combinatorial background using the same-event like-sign
dimuon distributions (N++ and N−−) is calculated as:

NCB = 2
√
N++N−−.

The mixed-event like-sign dimuon mass distribution
is normalized to the same-event like-sign combinato-
rial background distribution in the invariant mass range
0.2 − 2.5 GeV/c2. This factor is then used to normal-
ize the mixed-event unlike-sign dimuon mass distribu-
tion. Figure 1 shows the unlike-sign dimuon spectrum
together with the combinatorial background estimated
by both methods that agree within 15% in the invariant
mass range of interest (0.8 < Mµµ < 1.3 GeV/c2).

The signal invariant mass spectrum is extracted by first
subtracting the uncorrelated combinatorial background
spectra from the unlike-sign spectra. The signal spectra
are then fitted to extract the φ contribution. The mass
resolution of both muon spectrometers is estimated us-
ing Monte Carlo simulation to be 93 (94) MeV/c2 for
the lowest pT bin (2 < pT < 2.5 GeV/c) and up to 114
(111) MeV/c2 for the highest pT bin (5 < pT < 7 GeV/c)
for the negative (positive) pseudorapidity muon spec-
trometer. Those resolutions being greater than the nat-
ural widths of the φ and ω, the two-body decay of φ
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FIG. 2. Unlike-sign signal (solid [black] points) fitted by the
sum of three components: φ meson (long dash [red] curve),
ρ+ω mesons (short dash [green] curve), and correlated back-
ground (dot dash [blue] curve), see text for details.

and ω contributions are described by Gaussians while
the two-body decay of the ρ-meson contribution is de-
scribed by a Breit-Wigner distribution convoluted with
a Gaussian. The contribution from ρ dimuon decay is
fixed by the assumption that the production cross sec-
tion of ρ and ω are related such as σρ = 1.15 × σω, as
measured in Ref. [12] and used in previous PHENIX anal-
ysis related to φ-meson production in the dimuon decay
channel [15, 43, 44]. To evaluate the shape of the corre-
lated background, a pythia [45] MB simulation followed
by geant3 [46] transport and detector response simu-
lation of the PHENIX detector is performed. The cor-
related background distribution is found to be well de-
scribed by an exponential plus a polynomial of first order
(χ2/ndf ≤ 1). To summarize, eight free parameters are
needed to describe the signal spectrum: two parameters
for the φ and (ω + ρ) signal normalizations, two parame-
ters to describe relative changes of Gaussian widths and
central masses with respect to simulation estimates and
four parameters to describe the correlated background
distribution and its normalization. The starting values
of the free parameters describing the shapes of the differ-
ent distributions are taken to be the ones from the Monte
Carlo simulation.

Figure 2 shows the fit results for the entire pT range at
backward rapidity. Extracted peak positions and widths
are found to be in good agreement with Monte Carlo
simulations.

B. Detector acceptance and reconstruction
efficiency

The product of detector acceptance and reconstruc-
tion efficiency, Aεrec, of dimuon decays of φ mesons is
determined by the full event reconstruction of the φ-
meson signal run through a full geant3 simulation of
the 2013 PHENIX detector setup, and embedded in MB
real-data. The pT distribution of the simulated φ-meson
signal is iteratively re-weighted to match the data pT dis-
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FIG. 3. Aεrec for φ detection in forward (1.2 < y < 2.2)
and backward (−2.2 < y < −1.2) muon spectrometers (a)
in the pT -rapidity plane and (b) integrated in rapidity per
spectrometer for each pT bin considered in the analysis.

tribution, the initial pT distribution being obtained from
pythia6 [45] using tune ATLAS CSC [38]. The embed-
ded simulated events are then reconstructed in the same
manner as data with the same cuts applied as in the real
data analysis. The Aεrec factor is extracted from the sim-
ulation as the ratio of reconstructed φ distribution over
the generated one in the same kinematic range. Figure 3
shows the Aεrec as a function of φ-meson pT and rapidity.
The main sources of the relative difference between both
spectrometers Aεrec are different detection efficiencies of
the MuTr and MuID systems and different amount of
absorber material.
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TABLE I. Systematic uncertainties associated with the dif-
ferential cross section calculation.

Type Origin Value

A Signal extraction 3–23%

B Aεrec: pT input distribution 2–8%

B Aεrec: Rapidity input distribution 3–5%

B Aεrec: Vertex width fluctuation 3.5%

B Aεrec: MuID hit efficiency 4%

B Aεrec: MuTr hit efficiency 2%

B Aεrec: MuTr tracking efficiency 10%

C MB trigger efficiency 10%

C Brφ→µ+µ− 6.6%

C. Differential cross section extraction

The pT -dependent differential cross section is calcu-
lated according to:

d2σφ
dpT dy

=
Nraw

Aεrec ∆pT ∆y BRφ→µ+µ−

σBBC
pp

εBBC NBBC
MB

, (1)

where BRφ→µ+µ− = (2.87±0.19)×10−4 is the branching
ratio of φ decay to dimuon [47]. Nraw is the extracted φ
raw yield for each pT bin, NBBC

MB = 4.16×1012 is the num-
ber of sampled MB events. The BBC trigger samples a
cross section of σBBC

pp = 32.5±3.2 mb in p+p collisions,
according to Vernier scans, however, it samples a larger
fraction of the cross section when the collision includes
a hard scattering process [48]. Studies with high pT π0

yields show an increase of the luminosity scanned by the
BBC by a factor of 1/εBBC , εBBC = 0.91±0.04 [49].
The inelastic cross sections given by pythia8 [50] for√
s = 500 and 510 GeV p+p collisions differ by 0.3%,

therefore no correction or additional systematic uncer-
tainty is added.

D. Systematic uncertainties

The main source of systematic uncertainties in the sig-
nal extraction comes from the uncorrelated and corre-
lated background distributions used. To estimate this un-
certainty, the extracted φ raw yields are compared using
the following two methods; (1) the mixing and like-sign
pair methods are separately used for subtraction of un-
correlated background and (2) the correlated background
is fit by an exponential plus first-order polynomial and
by an exponential plus second-order polynomial. The ex-
tracted φ raw yields are consistent among all different fit
trials. The quadratic mean of the raw yields extracted
from the trials is used as the central value, and the un-
certainty on the central value is the quadratic mean of
the uncertainties of all the trials. Table I summarizes the
systematic uncertainties.

Type-A is a point-to-point uncorrelated uncertainty
which allows the data points to move independently with
respect to one another and are added in quadrature with
statistical uncertainties. A systematic uncertainty equal
to the difference between the central and the extreme
values of the extracted yields accounts for the systematic
uncertainty related to the background description as a
whole. The systematic uncertainty associated with the
signal extraction method ranges from 3 to 23%, depend-
ing on the pT bin and the muon spectrometer considered
(negative/positive rapidity).

Type-B is a point-to-point correlated uncertainty
which allows the data points to move coherently. To eval-
uate the Aεrec systematic uncertainty, different pT and
rapidity input distributions of the simulated φ mesons
are used. The pT distribution is allowed to vary over the
range of the data statistical uncertainty (statistical plus
Type-A systematics uncertainties added in quadrature,
see above), yielding an up to 8% uncertainty. The ra-
pidity distribution shapes given by five generator models
(pythia6, pythia8, phojet, epos3 and epos-lhc) are
used as input rapidity distributions of the simulated φ
mesons, resulting in up to 5% uncertainty. The relative
systematic uncertainty of acceptance caused by the fluc-
tuation of vertex width is estimated to be 3.5% [51]. A
4% uncertainty from the measured MuID tube efficiency
and a 2% uncertainty from MuTr chamber efficiency are
assigned [15]. Simulation parameters are adjusted in or-
der to reproduce the tracking efficiency observed in the
data. While the relative tracking efficiency is validated
using J/ψ → µµ data, data-driven evaluation of the ab-
solute tracking efficiency are not available. Therefore,
we assign 10% uncertainty for the absolute tracking effi-
ciency as a conservative value [51].

Finally, Type-C is an overall normalization uncer-
tainty, which allows the data points to move together
by a common multiplicative factor. Type-C is composed
of 10% uncertainty assigned for the BBC cross section
and efficiency uncertainties and a 6.6% uncertainty from
the measurement of BRφ→µ+µ− .

IV. RESULTS

The pT -differential cross section is calculated indepen-
dently for each muon arm, then the results are combined
using the best-linear-unbiased-estimate method [52]. The
pT integrated (2 < pT < 7 GeV/c) cross section dσφ/dy
is given in Table II. Results obtained using the two muon
spectrometers are consistent within uncertainties. Com-
bining both arm results, the integrated cross section in
the kinematic range 2 < pT < 7 GeV/c and 1.2 < |y| <
2.2 is σφ = 2.28± 0.09 (stat)± 0.14 (syst)× 10−2 mb, to
which a 12% normalization uncertainty applies.

The φ-meson-differential cross section as a function of
pT measured in p+p collisions at

√
s = 510 GeV is shown

in Fig. 4 and listed in Table III. The data points are bin
shifted in pT using the Lafferty and Wyatt method [53]
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TABLE II. The φ-meson-production cross section dσφ/dy in
p+p collisions at

√
s = 510 GeV integrated in the transverse

momentum range 2 < pT < 7 GeV/c. The first uncertainty
represents the statistical and Type-A systematic uncertain-
ties, while the second is the systematic uncertainty of Type-B
and the third one is the additional ±12% Type-C normaliza-
tion systematic uncertainty.

y range dσφ/dy (mb)

1.2 < y < 2.2 (2.13± 0.14± 0.16± 0.26)× 10−2

−2.2 < y < −1.2 (2.46± 0.12± 0.18± 0.30)× 10−2

1.2 < |y| < 2.2 (2.28± 0.09± 0.14± 0.27)× 10−2

TABLE III. The φ-meson-differential-production cross sec-
tion d2σφ/dpTdy for 1.2 < |y| < 2.2 in p+p collisions at

√
s

= 510 GeV. p̃T is the pT at which the data point is plotted
(see text for details). The first uncertainty represents the sta-
tistical and Type-A systematic uncertainties, while the second
is the systematic uncertainty of Type-B and the third one is
the additional ±12% Type-C normalization systematic uncer-
tainty.

pT range p̃T d2σφ/dpTdy

( GeV/c) ( GeV/c) [mb/(GeV/c)]

2.0–2.5 2.24 (2.16± 0.17± 0.23± 0.26)× 10−2

2.5–3.0 2.74 (1.20± 0.05± 0.12± 0.14)× 10−2

3.0–3.5 3.24 (6.26± 0.36± 0.61± 0.75)× 10−3

3.5–4.0 3.74 (2.70± 0.20± 0.30± 0.32)× 10−3

4.0–5.0 4.44 (1.06± 0.07± 0.11± 0.13)× 10−3

5.0–7.0 5.79 (1.97± 0.19± 0.20± 0.24)× 10−4

to correct for the finite width of the pT bins.

The data are fitted by a Tsallis function [54] with
a resulting χ2/ndf = 0.66. The results are compared
to calculations performed using six different generator
models: pythia6 [45] using tune ATLAS CSC [38],
pythia8.210 [50] using tune Monash2013 [24], pho-
jet 1.12 [39], epos3.117 [34], epos-lhc [40] and ampt
v1.26 [41]. Data and models are compared as the ratio
of the model prediction over the Tsallis fit of the data.

The ampt simulation is done with the default ampt
model version 1.26 (without string melting), where the
initial conditions are determined by hijing [55]. Par-
ton scattering is done using the Zhang’s parton-cascade
(ZPC) model [56]. The hadronization is accomplished
using the Lund string fragmentation model [57, 58]. The
final state hadronic interactions are based on the “a rel-
ativistic transport” (ART) model [59]. We used the set
of parameters tabulated in Ref. [60] describing both the
charged particle distribution and elliptic flow measured in
Au+Au collisions at RHIC. The Lund string fragmenta-
tion parameters are a = 0.5 and b = 0.9 GeV−2, the QCD
coupling constant is αs = 0.33, and the screening mass is
µ = 3.2 fm−1, leading to a parton-scattering cross section
of 1.5 mb. Besides their production from the fragmenta-
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FIG. 4. (a) d2σφ/dpTdy measurements in p+p collisions at√
s = 510 GeV fitted by a Tsallis function. Error bars rep-

resent the statistical uncertainty and the boxes the Type-B
and Type-C systematic uncertainties added in quadrature.
(b) and (c) Comparison between the data and predictions of
six models (pythia6 using tune ATLAS CSC, pythia8 using
tune Monash2013, phojet 1.12, epos-lhc, ampt v1.26, and
epos3.117) shown as the ratio of the model to the data fitted
by a Tsallis function. (c) The data are compared to epos3
predictions using three different options of the model (see text
for details).

tion of excited strings in the initial collisions, φ mesons
can also be produced and absorbed from hadronic matter
via various hadronic reactions (baryon-baryon, meson-
baryon and meson-meson scatterings) [41].

The epos3 model includes, in addition to the descrip-
tion of the initial scattering based on a Gribov-Regge ap-
proach [61], a viscous hydrodynamic expansion of the cre-
ated system followed by a hadronization phase and a final
state hadronic cascade using the urqmd model [62, 63].
In epos3, the hydrodynamic evolution and the hadronic
cascade can be turned on or off, separately. The so-
called “Full” version of epos3 includes hydrodynamic
expansion of the created system followed by a final state
hadronic cascade. The epos3 “No-Casc” version does
not include the final state hadronic cascade and “No-
Hydro/No-Casc” has both hydrodynamic and the final
state hadronic cascade turned off. The epos-lhc calcu-
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lation presented in Fig. 4 is performed including a param-
eterized viscous hydrodynamic expansion of the created
partonic system.

As shown in panels (b) and (c) of Fig. 4, the experimen-
tal data are better reproduced by the ampt model and by
epos3 without the hadronic cascade. The epos3 “Full”
and epos-lhc overestimate the φ-meson production, and
phojet and pythia models tend to underestimate it
by a factor of two. A previous study of Monash2013
tune of pythia8 showed that the calculated transverse-
momentum spectra of φ mesons is overestimating the
experimental data at very soft momenta (below ∼500
MeV/c) and underestimates it at higher momenta, the
overall yield of φ mesons being correctly reproduced [24].

Additional calculations using the ampt model with
string melting (version 2.26) were performed. The φ-
meson-production yield was found to be a factor of two
higher than the one extracted using the default ampt
model with approximately the same pT dependence. For
clarity, those calculations are not shown in Fig. 4.

V. ENERGY DEPENDENCE OF φ-MESON
PRODUCTION

The PHENIX experiment previously measured the φ-
meson cross section at forward rapidity and for 1 < pT <
7 GeV/c in p+p collisions at

√
s = 200 GeV [15]. At

the LHC, the ALICE experiment measured the φ-meson-
production cross section via its dimuon decay channel
in p+p collisions at forward rapidity 2.5 < y < 4.0
and for 1 < pT < 5 GeV/c at

√
s = 2.76 TeV [17]

and 7 TeV [12]. Measurement of the φ-meson produc-
tion was also performed via the K+K− decay channel at
midrapidity |y| < 0.5 and for 0.4 < pT < 6 GeV/c at√
s = 7 TeV [13]. The LHCb experiment measured the

inclusive φ-meson-production cross section in the K+K−

decay channel in the kinematic range 2.44 < y < 4.06 and
0.6 < pT < 5 GeV/c in p+p collisions at

√
s = 7 TeV [10].

Figures 5–8 show comparisons between d2σφ/dpTdy
measurements at forward rapidities done by PHENIX at√
s = 200 GeV [15], by ALICE at

√
s = 2.76 TeV [17]

and 7 TeV [12] and by LHCb at
√
s = 7 TeV [10], respec-

tively, along with model predictions. The ampt model
is in good agreement with the measured cross sections at
both RHIC energies, but overestimates the production
cross section at LHC energies, especially at 7 TeV. The
pythia6 and phojet calculations at LHC energies are in
better agreement with the data than at RHIC energies,
where the models underestimate the measured produc-
tion cross section. The pythia8 prediction underesti-
mates the cross section for all four energies.

Panel (c) of Figs. 4–8 show the comparison between the
measurements fitted by a Tsallis function and epos3 us-
ing three different model settings (see above for details).
The comparison of those results reveals the effect of the
hydrodynamic expansion of the partonic system created
in p+p collisions and of the final state hadronic cascade

on the φ-meson production. The hydrodynamic evolution
does not impact the φ-meson production at RHIC en-
ergies (“No-Casc” and “No-Hydro/No-Casc” curves are
almost identical on panel (c) of Figs 4–8. A significant
effect appears at

√
s = 2.76 TeV and becomes stronger

at 7 TeV where the φ-meson-production cross section in-
creases by a factor of two for the pT range 1–3 GeV/c
when turning on the hydrodynamic evolution. The same
behavior was already observed for the production of Λ0,
Ks and Ξ± in p+p collisions at 7 TeV [34], showing that
the flow effects increase with the mass of the particle.
The final state hadronic cascade using the urqmd model
enhances the φ-meson-production cross section in the en-
tire pT range and for all collision energies. The epos3
“No-Casc” is the best configuration to reproduce the ex-
perimental data over the full collision energy range, while
the addition of the urqmd hadronic cascade overesti-
mates the φ-meson production compared to the experi-
mental data.

In the following, the φ-meson cross sections in the for-
ward rapidity range 1.2 < y < 2.2 at the different mea-
sured energies (0.2, 0.51, 2.76 and 7 TeV) are presented.
The pT range is fixed to 2 < pT < 5 GeV/c which is the
common range of all experimental measurements.

The cross sections measured by PHENIX in the kine-
matic range 1.2 < y < 2.2 and 2 < pT < 5 GeV/c are:

• σφ(200 GeV) = (1.10± 0.17)× 10−2 mb,

• σφ(510 GeV) = (2.24± 0.32)× 10−2 mb,

where the uncertainties correspond to the quadratic sums
of the statistical and systematic uncertainties.

The rapidity domains of the LHC measurements are
different from those of PHENIX. Accordingly, to com-
pare with PHENIX measurements the LHC measure-
ments are extrapolated to the same rapidity coverage
(i.e. 1.2 < y < 2.2). The procedure followed here is
to fit the LHC data points using the dσφ/dy shapes ob-
tained using the different models mentioned above, the
only free parameter being the normalization of the simu-
lated dσφ/dy distributions. Figure 9 shows the LHC pT
integrated data points overlaid on the dσφ/dy distribu-
tions obtained using pythia6, pythia8, phojet, epos3,
epos-lhc and ampt models at

√
s = 7 TeV (a) before

and (b) after the minimization procedure.
The LHC dσφ/dy at 1.2 < y < 2.2 is calculated as the

quadratic mean of the dσφ/dy from each of the model fits.
The difference between the mean and the extreme value
is taken as a systematic uncertainty, due to the rapidity
shifting procedure, and added in quadrature to the exper-
imental uncertainties. This uncertainty is 22.1% for the
2.76 TeV measurement and 15.5% at 7 TeV. The obtained
cross sections in 1.2 < y < 2.2 and 2 < pT < 5 GeV/c at
LHC energies are:

• σφ(2.76 TeV) = (1.15± 0.28)× 10−1 mb,

• σφ(7 TeV) = (2.23± 0.35)× 10−1 mb.
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Figure 10 shows the energy dependence of the partial-
φ-meson-production cross section integrated in 1.2 < y <
2.2 and 2 < pT < 5 GeV/c in p+p collisions compared
to pythia6, pythia8, phojet, ampt, epos3 and epos-
lhc model predictions.

The experimental measurements follow a power-law
versus the colliding energy defined as σφ(s) ∝ sn, with
n = 0.43±0.03 (black dotted line in Fig. 10). The χ2/ndf
of the power-law fit is 0.19.

The phojet generator reproduces the partial φ-meson
cross section correctly for LHC energies, but completely
fails at RHIC energies. On the other hand, the ampt
model performs well at lower energies but overshoots
the experimental data at 7 TeV. pythia6 shows an en-
ergy dependence following a power law with exponent
n = 0.43, comparable to that of the data, but under-
estimates the cross section by ∼30%. Accounting for
hydrodynamic evolution of the partonic system makes
epos3 qualitatively and quantitatively better consistent
with the data from both RHIC and LHC. The increas-
ing effect of the hydrodynamic evolution of the system
on the φ-meson production as the energy increases can
clearly be seen in Fig. 11. Also, the φ-meson enhance-
ment caused by the hadronic cascade is approximately
constant over the whole energy range, ≈20-30%.
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In epos3, when the hydrodynamic evolution is turned
off the hadrons are produced via string decays. On
the other hand, when hydrodynamic calculation is in-
cluded, the various string segments originating from
the initial Pomerons are separated into two collections
named “core” and “corona”. The “core” part will ex-
perience the hydrodynamic evolution while the segments
in the “corona” will leave the bulk matter and decay to
hadrons. String segments are placed in the “core” or
“corona” depending on their transverse momenta and on
the local string density [34]. After its hydrodynamical
evolution, the “core” hadronizes following the Cooper-
Frye freeze-out procedure. Figure 12 shows the “core”
and the “corona” contributions to the production of φ
mesons in p+p collisions for the four energies studied
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in this work. The contribution of the “core” part in-
creases with the colliding energy, being negligible com-
pared to the “corona” contribution at RHIC energies
and of the same order of magnitude at LHC energies
for 1 < pT < 3 GeV/c. The difference in the shape of
the pT distributions between the “core” and the “corona”
part (shift from low to intermediate pT ) is due to the fact
that in the “core” the φ mesons are produced from “fluid
cells characterized by a radial flow velocities” [34]. The
heavier the particle is the more transverse momentum it
receives from this mechanism.
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contributions to the production of φ mesons in p+p collisions
at 0.2 [blue], 0.51 [black], 2.76 [red] and 7 TeV [green].

VI. SUMMARY AND CONCLUSIONS

In summary, the φ-meson-production differential cross
section is measured in p+p collisions at

√
s =510 GeV

in the kinematic range 1.2 < |y| < 2.2 and 2 < pT <
7 GeV/c. The cross section integrated in pT and av-
eraged over positive and negative rapidities is σφ =
[2.28± 0.09 (stat)± 0.14 (syst)± 0.27 (norm)]× 10−2 mb.
The measured pT -differential cross section is compared to
various model predictions based on pythia6, pythia8,
phojet, ampt, epos3 and epos-lhc generators. The
default ampt model and the epos3 model without
hadronic cascade provide the best description of the data.

The energy dependence of the φ-meson-production
cross section is studied in the kinematic range 1.2 <
y < 2.2 and 2 < pT < 5 GeV/c, shifting LHC mea-
surements to the same rapidity range as PHENIX mea-
surements. The epos3 model shows that the addition
of the hydrodynamic evolution of the system induces an
enhancement of the φ-meson production at the LHC en-
ergies for 1 < pT < 3 GeV/c whereas no effect is seen
for RHIC energies. The LHC measurements tend to favor
the scenario with hydrodynamic evolution of the system
included in epos3 showing a possible hint of collective
effects in p+p collisions at high energy.

The epos3 model shows that the hydrodynamic flow
induces a shift from low to intermediate pT of the pro-
duced φ mesons. A similar effect is obtained from tuning
the color reconnection mechanism in pythia8 [32, 33].
The study of the 〈pT 〉 as a function of the charged particle
multiplicity produced in p+p collisions and its evolution
versus the colliding energy would be a relevant observable
of such effect, and would allow to discriminate between
alternative models. In addition to the already published
data at

√
s = 2.76 and 7 TeV regarding the production

of φ mesons at forward rapidity, the LHC experiments
took data in p+p collisions at 5, 8, and recently 13 TeV
where the effect should be even larger.
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