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SPACES OF COUNTABLE FREE SET NUMBER AND

PFA

ALAN DOW AND ISTVÁN JUHÁSZ

Abstract. The main result of this paper is that, under PFA, for
every regular space X with F (X) = ω we have |X | ≤ w(X)ω ; in
particular, w(X) ≤ c implies |X | ≤ c. This complements numerous
prior results that yield consistent examples of even compact Haus-
dorff spaces X with F (X) = ω such that w(X) = c and |X | = 2c.

We also show that regularity cannot be weakened to Hausdorff
in this result because we can find in ZFC a Hausdorff space X

with F (X) = ω such that w(X) = c and |X | = 2c. In fact, this
space X has the strongly anti-Urysohn (SAU) property that any
two infinite closed sets in X intersect, which is much stronger than
F (X) = ω. Moreover, any non-empty open set in X also has size
2c, and thus answers one of the main problems of [8] by providing
in ZFC a SAU space with no isolated points.

1. Introduction

Following the terminology introduced in [5], we call a subset S ⊂ X
free in X if it admits a well-ordering, or equivalently an indexing by
ordinals, that turns it into a free sequence in X. In other words, free
sets in X are just the ranges of free sequences in X. Also, we shall use
F(X) to denote the collection of all free subsets in X. Clearly, then

F (X) = sup{|S| : S ∈ F(X)},

and we call F (X) the free set number of X.
All our other terminology and notation concerning cardinal functions

is standard, as e.g. it is in [4]. Our treatment of PFA follows section
V.7 of [9].

The main result of this paper is that, under PFA, for every regular
space X with F (X) = ω we have |X| ≤ w(X)ω; in particular, w(X) ≤ c
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2 A. DOW AND I. JUHÁSZ

implies |X| ≤ c. (By regular we mean regular and Hausdorff.) We will
also show that regular cannot be weakened to Hausdorff in this result.

To put our result in perspective, we note that free sets are obviously
discrete, hence we have F (X) ≤ s(X) for any topological space X.

By the classical result of Hajnal and Juhász [3], we have |X| ≤ 22
s(X)

for any Hausdorff space X, and there are many consistent examples
showing that this inequality is sharp for s(X) = ω. For instance,
Fedorchuk’s celebrated hereditary separable compact space X from [2],
constructed from ♦, satisfies w(X) = c = ω1 and |X| = 2c. In [7]
consistent examples of hereditary separable 0-dimensional spaces X
are forced, with both c and 2c as large as you wish, independently of
each other, such that w(X) = c and |X| = 2c.

On the other hand, Todorcevic proved in [10, Theorem 11] that PFA
implies |X| ≤ c for any Hausdorff space X with s(X) = ω. While this
fails if we only have F (X) = ω, even if in addition w(X) = c holds, we
do get |X| ≤ c from PFA for regular X with F (X) = ω and w(X) ≤ c.

2. A ZFC result

There seems to be basically only one ZFC method of constructing
free sequences (sets) that is the main lemma 2.1 of [5]. We repeat it
here because we shall use it several times.

Lemma 2.1. Assume that X is a space, A ⊂ X, κ is an infinite
cardinal, and W ⊂ τ(X), moreover

(a) W is closed under unions of subfamilies of size < κ,
(b) A \W 6= ∅ for each W ∈ W,
(c) for each S ⊂ A with S ∈ F(X) and |S| < κ there is W ∈ W with

S ⊂ W .

Then there is a subset of A of size κ that is free in X.

Our next result is an easy consequence of Lemma 2.1. We recall that
a Gκ-set is one obtainable as the intersection of at most κ open sets.

Lemma 2.2. Assume that X is any space, z ∈ X, and κ is an infinite
cardinal, moreover for every open U with z ∈ U there is a closed Gκ-set
H such that z ∈ H ⊂ U . (Clearly, this holds true if X is regular.) If,
in addition, Y ⊂ X \ {z} is such that

(i) H ∩ Y 6= ∅ for every Gκ-set H with z ∈ H,
(ii) z /∈ S for every S ∈ F(X) ∩ [Y ]≤κ,

then F(X) ∩ [Y ]κ
+
6= ∅, i.e. there is a subset of Y of size κ+ that is

free in X.
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Proof. We may apply Lemma 2.1 with Y instead of A, κ+ instead of
κ, and with W consisting of all open Fκ-sets U such that z /∈ U . �

Before presenting the main result of this section, we need to introduce
the following piece of notation.

Definition 2.3. For any (infinite) cardinal κ,

h(κ) = sup{|X| : X is regular with F (X) = ω and d(X) ≤ κ}.

Note that we trivially have 2κ ≤ h(κ) ≤ 22
κ

.

Theorem 2.4. For every regular space X with F (X) ≤ κ we have

|X| ≤
(
w(X) · h(κ)

)κ
.

Proof. Let us put µ = w(X) · h(κ) and then fix an open base B of X
with |B| = w(X) ≤ µ. Next we consider an elementary submodel M
of H(ϑ) for a large enough regular cardinal ϑ such that |M | = µκ, M
is κ-closed, and X,B ∈ M . We shall show that X ⊂ M .

Indeed, assume on the contrary that X ∩ M = Y and z ∈ X \ Y .
Now, if H is any Gκ-set with z ∈ H then there is some C ∈ [B]≤κ such
that z ∈ C = ∩C ⊂ H . But B ⊂ M and the κ-closedness of M imply
C ∈ M , and so C ∩M = C ∩ Y 6= ∅ by elementarity and z ∈ C, hence
H ∩ Y 6= ∅ as well.

Next, for every subset S ∈ [Y ]≤κ we have |S| ≤ h(κ) ≤ µ by defi-
nition, moreover S ∈ M and hence S ∈ M as well. But then we also
have S ⊂ Y . This means that both conditions of Lemma 2.2 are satis-
fied, hence there is a subset of Y of size κ+ that is free in X. But this
contradicts F (X) ≤ κ, completing our proof. �

3. Some consequences of PFA

We start this section with a general theorem that gives conditions
which, under PFA, imply the existence of an uncountable free set.

Theorem 3.1. Assume PFA. Let X be a topological space, Y ⊂ X its
subspace, and A ⊂ [Y ]ω satisfying the following three conditions.

(1) For every countable A0 ⊂ A we have

Z(A0) =
⋂

{A : A ∈ A0} ∩ Y 6= ∅.

(2) For every y ∈ Y there are an open Uy with y ∈ Uy and Ay ∈ A
such that Uy ∩ Ay = ∅.

(3) Let H be the collection of all H ⊂ Y intersecting Z(A0) for all
A0 ∈ [A]≤ω. For every H ∈ H there is A ∈ A with A ⊂ H.

Then Y has an uncountable subset that is free in X. (All closures above
are taken in X.)
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Proof. We start by fixing a well-ordering ≺ of Y and then a large
enough regular cardinal κ such that H(κ) contains all the objects above.
We shall say that M is suitable if it is a countable elementary submodel
of H(κ) and contains

{
X, Y,≺,A, {〈Uy, Ay〉 : y ∈ Y },H

}
. We shall

denote by S the collection of all suitable M ’s.
For every M ∈ S let y(M) be the ≺-minimal member of Z(M ∩A).

Note that if M,N ∈ S with M ∈ N then Z(M ∩ A) ⊃ Z(N ∩ A) and
y(M) ∈ N imply y(M) ≺ y(N).

Now we are ready to define the partial order P = 〈P,<〉 that will be
used to prove our result. The elements of P will be all finite ǫ-chains of
members of S. Clearly, for every p ∈ P , if p 6= ∅ then ∩p is the bottom
and ∪p is the top member of p.

To define < , we first introduce the following notation. If N ∈ p ∈ P
then we let

W (p,N) =
⋂

{Uy(M) : M ∈ p and y(N) ∈ Uy(M)}.

Clearly, then y(N) ∈ W (p,N) ⊂ Uy(N) and N ∈ M ∈ p implies y(M) /∈
Uy(N) by condition (2).

Now, by definition, p < q holds for for p, q ∈ P iff p ⊃ q and for
every M ∈ p \ q with M ∈ ∪q we have y(M) ∈ W (q, N), where N is
the minimal element of q such that M ∈ N .

We have to check that < is transitive. So, assume that r < p < q,
M ∈ r \ q with M ∈ ∪q, moreover N is the minimal element of q such
that M ∈ N . Now we distinguish two cases.

First, if N is also the minimal element of p such that M ∈ N then
we have y(M) ∈ W (p,N) ⊂ W (q, N), using that q ⊂ p. Otherwise,
the minimal K ∈ p containing M satisfies M ∈ K ∈ N , while N is
also the minimal element of q with K ∈ N . So, by definition, p < q
implies y(K) ∈ W (q, N) that clearly implies W (p,K) ⊂ W (q, N). But
by r < p we have y(M) ∈ W (p,K), hence y(M) ∈ W (q, N) as well.

To be able to apply PFA, we also have to show that P is proper. To do
that, we choose a large enough regular cardinal ϑ such that P ∈ H(ϑ).
Clearly, ϑ > 2κ will do. We intend to show that for every countable
elementary submodel M of H(ϑ) with P ∈ M and for every condition
p0 ∈ P ∩M there is a condition q0 < p0 which is (M,P)-generic.

It is standard to check that N = M ∩ H(κ) ∈ S, hence {N} ∈ P .
More generally, for any p0 ∈ P ∩ M we have p0 ∈ N , hence q0 =
p0∪{N} ∈ P and q0 < p0. We claim that this q0 is (M,P)-generic, i.e.
for every dense set D in P, if D ∈ M then D ∩M is predense below
q0. Now, this is trivially implied by the following key lemma.
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Lemma 3.2. For every dense set D in P with D ∈ M, if N ∈ p ∈ D,
where N = M∩H(κ), then there is r ∈ D ∩M such that r ∪ p < p.

Proof. To start with, we fix the dense D ∈ M and p ∈ D with N ∈ p.
Then we write p− = p ∩ M and p \ M = {N = N0 ǫN1 ǫ... ǫNk}.
It will be convenient to put Pk = {p ∈ P : |p| = k + 1}. Clearly,
p− ∈ P ∩ M and p \ M ∈ Pk. Also, each q ∈ Pk is of the form
q = {Mq,0 ǫMq,1 ǫ... ǫMq,k}.

The r ∈ D∩M that we need will be of the form r = p− ∪q for some
q ∈ Pk ∩M with p− ∈ Mq,0. Then, to have r ∪ p < p, what we need is
that y(Mq,i) ∈ W (p,N) for all i ≤ k. To handle this, we shall write

sq = 〈y(Mq,i) : i ≤ k〉

for any q ∈ Pk.
Since p−, D, Pk ∈ M, so is

E0 = {q ∈ Pk : p
− ∈ ∩q = Mq,0 and p− ∪ q ∈ D},

as well as L0 = {sq : q ∈ E0}. We also have L0 ∈ H(κ), hence
L0 ∈ N = M ∩ H(κ). We clearly have p ∈ E0, hence sp ∈ L0.
Finally, let T0 be tree consisting of all initial segments of members of
L0, formally

T0 = {t ↾ i : t ∈ L0 and i ≤ k + 1}.

Thus L0 is the top level of T0; our trees grow upwards.
Next we are going to recursively prune T0 in k steps to obtain the

trees T0 ⊃ T1 ⊃ ... ⊃ Tk in such a way that sp ∈ Ti ∈ M and hence
Ti ∈ N for all i ≤ k. Of course, we already know these for i = 0.

To prepare this recursive pruning, we introduce some new notation.

First, we are going to denote by Â the family of all those subsets of
Y that include some member of A. Note that condition (3) of our

theorem simply says that H ⊂ Â. Once we have the tree Ti and t ∈ Ti

we are going to write

[t]i = {s ∈ Ti : t ⊂ s or s ⊂ t},

moreover suci(t) will denote the set of immediate successors of t in Ti.
We shall also need the following simple claim.

Claim 3.2.1. For every suitable M ∈ S and H ⊂ Y , if y(M) ∈ H ∈ M
then H ∈ H.

Indeed, if we had H /∈ H then, by elementarity, there would be
some A0 ∈ [A]≤ω ∩M with H ∩ Z(A0) = ∅. But then we would have
y(M) ∈ Z(M ∩A) ⊂ Z(A0), a contradiction.
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Now, to get T1 from T0, we first define

L1 =
{
t ∈ T0 : |t| = k and suc0(t) ∈ Â

}
,

and then put T1 = ∪{[t]0 : t ∈ L1}. It is clear that then T0 ∈ N implies
L1, T1 ∈ N . To see that sp ∈ T1, we have to show that tp = sp ↾ k ∈ L1.
But this follows from y(Mp,k) ∈ suc0(tp) ∈ Mp,k and the above Claim

because suc0(tp) ∈ H ⊂ Â.
The general recursive step from Ti to Ti+1 (for i < k) is very similar.

Given Ti ∈ N , we first define

Li+1 =
{
t ∈ Ti : |t| = k + 1− i and suci(t) ∈ Â

}
,

and then put Ti+1 = ∪{[t]i : t ∈ Li+1} ⊂ Ti. By induction, then
Ti ∈ N implies Li+1, Ti+1 ∈ N , moreover if tp = sp ↾ k − i then
y(Mp,k−i) ∈ suci(tp) ∈ Mp,k−i and the Claim imply tp ∈ Li+1, and
hence sp ∈ Ti+1.

So, after having completed all the k steps, we arrive at the tree Tk

which clearly has the following property: For every t ∈ Tk if |t| ≤ k

then suck(t) ∈ Â.
Now we are going to show that Tk has a member s = 〈yi : i ≤ k〉 ∈ N

such that yi ∈ W (p,N) for all i ≤ k. First, to find y0, we use ∅ ∈ N∩Tk

and suck(∅) ∈ N ∩ Â to obtain A0 ∈ N ∩ A such that A0 ⊂ suck(∅).
We then have y(N) ∈ A0, hence W (p,N) ∩ A0 6= ∅. But, as A0 is
countable, we also have A0 ⊂ N , hence any y0 ∈ W (p,N) ∩ A0 is
in N ∩ suck(∅). We may go on like this by induction. Given sj =
〈yi : i < j〉 ∈ N ∩ Tk such that yi ∈ W (p,N) for all i < j for some

0 < j ≤ k, we use suck(sj) ∈ N ∩ Â to obtain Aj ∈ N ∩ A such that
Aj ⊂ N ∩ suck(sj). Then y(N) ∈ Aj , and hence W (p,N) ∩ Aj 6= ∅
yields us yj ∈ N ∩W (p,N) ∩ suck(sj).

We have Tk ⊂ T0, so s ∈ T0∩M, and this means that by elementarity
there is some q ∈ Pk ∩M such that s = sq and r = p− ∪ q ∈ D ∩M.
But the choice of s = sq then allows us to conclude that r ∪ p < p,
completing the proof of the Lemma. �

Now we turn to the much easier task of finding ω1 dense sets in P

such that a filter in P meeting all of them gives us an uncountable
subset of Y that is free in X. First we show that for every countable
ordinal α the set D(α) = {p ∈ P : α ∈ ∪p} is dense in P. Indeed, for
any p ∈ P clearly there is M ∈ S such that {p, α} ⊂ M . But then
p > q = p ∪ {M} ∈ D(α).

So, assume that G ⊂ P is a filter in P such that G ∩ D(α) 6= ∅
for all α ∈ ω1. Clearly, then ∪G ⊂ S is an uncountable ǫ-chain that
is well-ordered by ǫ in type ω1. Since {M,N} ⊂ S with M ∈ N
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implies y(M) ≺ y(N), it follows that S = {y(M) : M ∈ ∪G} is also
well-ordered by ≺ in type ω1.

Since G is a filter in P, if {M,N} ⊂ G with M ∈ N then we have
{M,N} < {N}, hence y(M) ∈ Uy(N) by the definition of < . On the

other hand, if N ∈ M then y(M) ∈ Ay(N). Thus Uy(N) ∩ Ay(N) = ∅
implies that

{y(M) : M ∈ ∪G ∩N} ∩ {y(M) : M ∈ ∪G and N ∈ M} = ∅

for every N ∈ ∪G. So, the set S+ of all successor members of S under
≺ is free in X. �

We are now ready to present our promised main result.

Theorem 3.3. Under PFA we have |X| ≤ w(X)ω for every regular
space X with F (X) = ω.

Proof. We are going to prove the contrapositive of the statement: If X
is regular with |X| > w(X)ω then F (X) > ω. Let us fix an open base
B of X with |B| = w(X) and then consider an elementary submodel M
of H(ϑ) for a large enough regular cardinal ϑ such that |M | = w(X)ω,
M is ω-closed, and X,B ∈ M . Let Y = M ∩ X and pick z ∈ X \ Y .

Since B ∈ M and M is ω-closed, we clearly have z ∈ Y
δ
, i.e. G∩Y 6= ∅

for any Gδ-set G with z ∈ G.
Now we distinguish two cases. First, if there is H ⊂ Y such that

z ∈ H
δ

but z /∈ S for all S ∈ [H ]ω then H has an uncountable subset
free in X by Lemma 2.2, hence we are done. (This part does not use
PFA.)

So, we may assume that, putting A = {A ∈ [Y ]ω : z ∈ A}, every

H ⊂ Y with z ∈ H
δ

includes a member of A. In particular, we have
A 6= ∅.

Now, if A0 is any countable subfamily of A then by the ω-closure of
M and by elementarity we have Z(A0) =

⋂
{A : A ∈ A0} ∩ Y 6= ∅. So,

condition (1) of Theorem 3.1 is satisfied.
Fix A ∈ A and for every y ∈ Y pick open Uy with y ∈ Uy and Vy

with z ∈ Vy such that Uy ∩ Vy = ∅. Then for Ay = A ∩ Vy ∈ A we
have Uy ∩ Ay = ∅. This means that condition (2) of Theorem 3.1 is
also satisfied.

Finally, assume that H ∈ H, i.e. H ∩ Z(A0) 6= ∅ for all countable

A0 ⊂ A. We claim that then z ∈ H
δ
. By the regularity of X, it suffices

for this to show that z ∈ G implies G ∩ H 6= ∅ for any Gδ-set of the
form G = ∩n<ωUn, where Un+1 ⊂ Un for all n < ω. But for any fixed
A ∈ A then A0 = {A ∩ Un : n < ω} ⊂ A, moreover Z(A0) ⊂ G, hence
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G ∩H 6= ∅. But by our assumption then H includes a member of A,
hence condition (3) of Theorem 3.1 is also satisfied. Consequently, we
get an uncountable subset of Y that is free in X by Theorem 3.1, in
this case as well. �

Since w(X) ≤ 2d(X) for any regular space X and PFA implies c =
2ω1 = ω2 , we have h(ω) = h(ω1) = ω2 under PFA, as an immediate
corollary of Theorem 3.3. These lead to the following results, whose
easy proofs are left to the reader.

Corollary 3.4. Assume PFA and let X be a regular space.

(i) If F (X) = ω and t(X) ≤ ω1 then d(X) ≤ c implies |X| ≤ c.
(ii) If F (X) = t(X) = ω then |X| ≤ d(X)ω.

Since F (X) = t(X) for compact X, part (ii) implies |X| ≤ d(X)ω

for countably tight compact X. This, of course was known as a conse-
quence of Balogh’s classical result that countably tight compacta are
sequential under PFA, see [1].

We close this section by raising two related questions that we could
not answer.

Problem 3.5. Does PFA imply |X| ≤ d(X)ω for each regular space X
with F (X) = ω? Or, at least, does PFA imply |X| ≤ c if d(X) ≤ c

Problem 3.6. Can Theorem 3.3 be extended from regular to Urysohn
spaces?

4. The Hausdorff case

In this section we are going to present a ZFC example of a Hausdorff
space X such that F (X) = ω, w(X) ≤ c, and |X| = 2c. So, this
will show that regularity cannot be weakened to Hausdorff in our main
result 3.3. The example is non-trivial, however, fortunately for us, we
only need to perform a minor modification of the example from [8]
where the hard work was done.

Now, the example from [8] is a separable strongly anti-Urysohn (SAU)
space X of cardinality 2c. The SAU property means that any two in-
finite closed sets in X intersect. This then trivially implies F (X) = ω
because then every free sequence in X has order type less than ω + ω.
(Actually, a SAU space must also have at least two non-isolated points
but as this X is separable, it has only countably many isolated points.)

The reason why the space X from [8] needs to be modified for our
purposes is that its weight is 2c. So, the space we need will be Xr,
whose topology τr is the coarser topology on X generated by RO(X),
the family of all regular open sets in X. Then Xr is Hausdorff because
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U ∩V = ∅ for any open U, V in X implies IntU = IntV = ∅. Also, Xr

is SAU because X is, hence F (Xr) = ω. Finally, since X is separable,
we have |RO(X)| = c, consequently w(X) ≤ c.

The space X from [8] is right-separated, i.e. scattered and, al-
though many consistent examples of crowded SAU spaces had been
constructed, their existence in ZFC was not known. So, it was asked
explicitly in [8] if they exist. Now, Xr has the same isolated points as
X, so it is not crowded but using w(X) ≤ c we can actually get such
an example, thus giving an affirmative answer to this problem from [8].

Theorem 4.1. Xr has a closed, hence also SAU, subspace Y such that
∆(Y ) = 2c, i.e. every non-empty open set in Y has cardinality 2c. In
particular, Y is crowded.

Proof. Let U be the family of all those open sets in Xr that have size
< 2c. Since hL(Xr) ≤ w(Xr) ≤ c, there is a subfamily V ⊂ U with
|V| ≤ c such that W = ∪U = ∪V. But we have cf(2c) > c, hence
|W | < 2c. Now, it is obvious that Y = Xr \W is as required. �

Thus only just one open problem is left concerning SAU spaces that
we cannot resist to repeat here: Is it provable in ZFC that every SAU
space has cardinality at most 2c? It was proved in [5] that 22

c

is an
upper bound.
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