HITCHIN WKB-PROBLEM AND P =W CONJECTURE IN
LOWEST DEGREE FOR RANK 2 OVER THE 5-PUNCTURED
SPHERE
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ABSTRACT. We use abelianization of Higgs bundles away from the ramification
divisor and fiducial solutions to analyze the large scale behaviour of Fenchel—
Nielsen co-ordinates on the moduli space of rank 2 Higgs bundles on the Rie-
mann sphere with 5 punctures. We solve the related Hitchin WKB problem
and prove the lowest degree weighted pieces of the P = W conjecture in this
case.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

In this paper we investigate the moduli space Mp,) of Higgs bundles on CP! with
5 logarithmic points in rank 2 and the corresponding character variety Mg, subject
to specific choices of parameters. These spaces are complex varieties of dimension
4. The first aim of the paper is to give a complete answer (Propositions 10, 12, 14)
for these spaces to the Hitchin WKB problem raised in [27]:
Hitchin WKB problem Consider a non-trivial C*-orbit in the Hitchin base and
a family of Higgs bundles lifting this orbit in the Dolbeault moduli space; determine
then the asymptotic behaviour of the transport matrices of the associated family
of representations in the character variety, as the point of C* converges to infinity.

For the classical theory of WKB approximation, see [48], [25, Section 2|. The
second, closely related goal is to use these results in order to obtain for these spaces
one extremal graded piece of the so-called P = W conjecture:

Theorem 1. Let Mp, and Mg denote the Dolbeault moduli space and character
variety of CPY with 5 logarithmic points in rank 2. Then, for every 0 < k < 4
the regular singular Riemann—Hilbert correspondence and the mon-abelian Hodge
correspondence induce an isomorphism

Grp"? H* (Mpo1, Q) = Gryy, H" (Mg, Q).

The weights appearing in the theorem represent the lowest (respectively, highest)
possibly non-trivial weights of P (respectively, W). For our weight conventions, see
Sections 2.3 and 2.7. Notice that since Mp is a smooth 4-dimensional affine variety,
by virtue of the Andreotti—Frankel theorem [2] the only degrees where it may have
non-trivial cohomology are 0 < k < 4.

Even though this paper contains a detailed study of just one special case of the
P =W conjecture in lowest weight, many of our technical results are valid for an
arbitrary number n > 5 of parabolic points. We expect that it will be possible to
treat more general cases along the same lines. Specifically, our results suggest
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Conjecture 1. The tropical geometry of the composition of the Riemann—Hilbert
and non-abelian Hodge correspondences in the large scale limit is governed by the
central charge function of the corresponding Donaldson—Thomas theory.

By tropical geometry, we mean taking the maximum of the logarithms of the
absolute values of local co-ordinates of a variety, see [36, Section 3.5]. A motivation
for our conjecture is that in the so-called large scale limit, this procedure degenerates
the usual additive structure of R to the tropical one

lim 1 In(ef® + ) = max(z,y).

R—o0
Now, according to Propositions 12, 17, some natural co-ordinates on the Betti
side behave precisely as the expression on the left-hand side of this equation, with
x,, ... real parts of integrals of the standard Liouville 1-form over some loops on
the spectral curve. Such integrals are in turn called central charge in Donaldson—
Thomas theory, see [4, Section 7.1], [5, Section 10.4], [29, Section 1.2]. We suspect
that a generalization of the methods of the present paper, when combined with
cluster co-ordinates on character varieties defined in [15] and [35], will turn out
to be useful for the study of this question in further cases. For related work, see
also [1, Theorem 1.5].

Let us now give some motivational background for this study. Until very recently,
the P = W conjecture was a major open problem in non-abelian Hodge theory, for-
mulated by M. de Cataldo, T. Hausel and L. Migliorini [7] as a correspondence
between the (decreasing) perverse Leray filtration P induced by the Hitchin map
on the cohomology of a Dolbeault moduli space and the (increasing) weight filtra-
tion W of Deligne’s mixed Hodge structure on the cohomology of the associated
character variety (Betti space). First, in [7] the identity was proved in rank 2 over
compact curves. Then, M. de Cataldo, D. Maulik and J. Shen [8] established it
for curves of genus 2. Later, C. Felisetti and M. Mauri [14] proved it for charac-
ter varieties admitting a symplectic resolution, i.e. in genus 1 and arbitrary rank,
and in genus 2 and rank 2. The author has established the conjecture for complex
2-dimensional moduli spaces of rank 2 Higgs bundles with irregular singularities
over CP! corresponding to the Painlevé cases [46]. J. Shen and Z. Zhang [42]
proved it for five infinite families of moduli spaces of parabolic Higgs bundles over
CP'. Recently, two independent complete proofs using quite different methods have
been announced [32], [22]. Both proofs start by converting the statement to one
about Chern classes of the universal family using the results of Markman [31] and
Shende [43]. Maulik and Shen then use vanishing cycle techniques, global Springer
theory and a support theorem for a certain parabolic Hitchin system to proving it.
On the other hand, Hausel, Mellit, Minets and Schiffmann deduce the claim from
the observation that a polynomial ring over the cohomology ring of the Dolbeault
moduli space carries the action of the algebra of polynomial Hamiltonian vector
fields of the plane; their approach works in parabolic cases with generic stability
parameters too. Our strategy differs from both of these. It is of more direct and
geometrical nature, relying at the same time on recent progress on the asymptotic
decoupling of the Hitchin system.

The P = W conjecture has also been generalized in various interesting contexts.
To name a few generalizations, A. Harder showed a similar statement for elliptic
Lefschetz fibrations using methods coming from toric surfaces [20, Theorem 4.5].
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Z. Zhang [49] found a related phenomenon for the weight filtration of certain 2-
dimensional cluster varieties and the perverse filtration of elliptic fibrations with
constrained singular fibers. A motivation for the P = W conjecture was the so-
called curious hard Lefschetz conjecture of T. Hausel, E. Letellier and F. Rodriguez-
Villegas [21], that has been confirmed by A. Mellit [35]. A stacky version of the P =
W conjecture has been proposed (and proved in genera 0 and 1) by B. Davison [10].

Among the various generalizations and analogues of the P = W conjecture
of particular interest to us is an intriguing geometric counterpart formulated by
L. Katzarkov, A. Noll, P. Pandit and C. Simpson [27, Conjecture 1.1] and C. Simp-
son [45, Conjecture 11.1]; this version is now called Geometric P = W conjecture.
Roughly speaking, the Geometric P = W conjecture asserts the existence of a
certain homotopy commutative diagram involving the Riemann—-Hilbert map, non-
abelian Hodge correspondence, the Hitchin map and the natural map from the
character variety to the topological realization of its dual boundary complex. An
immediate consequence of validity of this conjecture is that the homotopy type of
the topological space of the dual boundary complex of the character variety is that
of a sphere of given dimension, therefore finding this homotopy type is a first consis-
tency check of the conjecture. The Geometric P = W conjecture has also attracted
considerable attention in recent times. A. Komyo [28] used an explicit geometric
description to prove that the homotopy type of the dual boundary complex of the
character variety for CP! with 5 logarithmic points and group GL(2, C) (that is, the
Betti space we will deal with in this paper) is that of the 3-sphere. C. Simpson [45]
generalized Komyo’s result to the case of arbitrarily many logarithmic points on
CP!', in rank 2, by proving that the homotopy type of the dual boundary complex
is that of S?"~7; for this purpose, he introduced Fenchel-Nielsen type co-ordinates
that will be widely used in this paper. T. Mochizuki [37] solved the closely related
Hitchin WKB problem for non-critical paths. M. Mauri, E. Mazzon and M. Steven-
son [33, Theorem 6.0.1] used Berkovich space techniques to show that the dual
boundary complex of a log-Calabi—Yau compactification of the GL(n, C) character
variety of a 2-torus is homeomorphic to $?"~!. They also showed that Geometric
P =W conjecture implies the cohomological P = W conjecture in top cohomolog-
ical degree and lowest weight. L. Katzarkov, A. Harder and V. Przyjalkowski have
formulated a version of the cohomological P = W conjecture for log-Calabi—Yau
manifolds and their mirror symmetric pairs, and in [26, Section 4] discussed a geo-
metric version thereof. The author established the Geometric P = W conjecture
in the Painlevé cases in [46] via asymptotic abelianization of solutions of Hitchin’s
equations. In joint work with A. Némethi [40], the author gave a second proof
for the same cases using different techniques, namely plumbing calculus. As far
as the author is aware, up to date these latter articles are the only ones in which
the full assertion of the Geometric P = W conjecture has been confirmed, rather
than just its implication on the homotopy type of the dual boundary complex. It
is remarkable that the geometrical understanding of the moduli spaces developed
in [40, Section 6] is quite reminiscent to the description of the weight filtration
in terms of dual torus fibrations appearing in [26, Section 4] (up to the difference
that the latter paper deals with the case of a smooth elliptic anti-canonical divisor
rather than a singular one).

Previously, F. Loray and M. Saito [30] studied the algebraic geometric structure
of the moduli space that we consider, endowed with its de Rham complex structure.
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R. Donagi and T. Pantev [12] investigated Hecke transforms on this space and
proved the Geometric Langlands correspondence for it. The paths that we need
to consider in Propositions 10, 12, 14 for applications to the character variety
are homologically non-trivial loops that do not satisfy the non-critical condition,
therefore our results do not directly follow from previous study of T. Mochizuki [37]
(though we make use of results of that paper).

We will achieve our goals by refining the approach pioneered in our previous
paper [46]. Namely, using asymptotic abelianization we reduce the study to the
classical abelian Hodge theory and Riemann-Hilbert correspondence treated in
detail for instance in [19]. Specifically, we will make use of technical results of
T. Mochizuki [37] describing the large-scale behaviour of solutions of Hitchin’s
equations away from the ramification divisor, and their extensions by R. Mazzeo,
J. Swoboda, H. Weiss and F. Witt [34] and L. Fredrickson, R. Mazzeo, J. Swoboda
and H. Weiss [16] in a neighbourhood of simple points of the ramification divisor
and parabolic points respectively. As opposed to the non-parabolic case where the
solutions (called fiducial solutions) of [34] give convenient local models, to deal with
the parabolic case one needs the solutions given in [16] that generalize the origi-
nal fiducial solutions of [34]. In this paper, we combine this understanding of the
asymptotic behaviour of solutions of the self-duality equations with C. Simpson’s
Fenchel-Nielsen type co-ordinates of the character variety [45].

The studies in [16] and [34] were inspired by physical considerations pertinent
to the WKB-analysis of Hitchin’s equations given by D. Gaiotto, G. Moore and
A. Neitzke [17], where the authors stated a conjecture about the large scale Rie-
mannian structure of the Hodge moduli spaces. In a certain sense, our work there-
fore points out a connection between two seemingly unrelated circles of ideas: the
P = W conjecture on the algebraic topology of the Hodge moduli spaces on the
one hand, and the Gaiotto-Moore—Neitzke conjecture on their Riemannian geom-
etry on the other hand. This fits nicely into the broader picture of topology and
Riemannian geometry having influence on one another, the bridge between them
being built by geometric analysis.

One feature of the case we study is that the quadratic differentials at play may
have at worst a double zero (see Proposition 3), giving rise to a transverse singular
point of the spectral curve. The metric on the moduli space in a neighbourhood
of the rays along which such singular fibers appear is believed to be approximately
given by the Ooguri-Vafa metric [18], [39, Sections 6,7], [47].
Acknowledgements: The author would like to thank T. Hausel, M. Mauri,
R. Mazzeo, A. Mellit, T. Mochizuki, A. Némethi, C. Simpson and T. Sutherland for
useful discussions. During the preparation of this manuscript, the author was sup-
ported by the Lendilet Low Dimensional Topology grant of the Hungarian Academy
of Sciences and by the grants K120697 and KKP126683 of NKFIH.

2. BASIC NOTIONS AND PREPARATORY RESULTS

2.1. Moduli spaces of tame harmonic bundles. Consider X = CP! with co-
ordinates z and w = 2z~ !, endowed with the standard Riemannian metric. We
denote by O and K the sheaves of holomorphic functions and holomorphic 1-forms
respectively on CP!. We fix some values

t1<ta=-—1, t3=0, t4=1<t (21)
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These choices will not be used until Section 6.1, so the results of all preceding
sections are valid for any quintuple of distinct points in CP!. We consider the
simple effective divisor

D=ty+t1+ta+1t3+14
and set
L=K(D).

By an abuse of notation, we will also denote by D the support set of D. Finally, we
fix a point 2y € CP'\ D. Much of the following discussion has a straightforward
generalization to simple effective divisors of higher length too.
For 0 < j <4 we fix
1

a; = T ozj' = 2 (2.2)
that will serve as parabolic weights in the Dolbeault complex structure. These
choices maximize the distance from the set of integer translates of a; to those of
oz;', hence they lie at the center of the Weyl alcove describing the possible para-
bolic weights (in this case, an interval of length 1). Our choices will turn out to
be important in the proof of Propositions (17) and (19); namely, they imply an
unexpected cancellation. Notice that

4
> (a; +af) =5.
j=0
We will write
a=(aj, 0‘;)?:0-

The basic object of our study will be a certain Hodge moduli space Myoq of
tame harmonic bundles [44] of rank 2 and parabolic degree 0 on CP! with parabolic
structure at D. We will describe this moduli space from two perspectives called the
Dolbeault and the de Rham moduli spaces. Consider a smooth vector bundle V' of
rank 2 and degree —5 over CP'. Then, the equations defining harmonic bundles
are Hitchin’s equations [24]

g =0 (2.3)
Fn+10,011=0 (2.4)

for a (0,1)-connection Js on V, a Hermitian metric h on V and a section 6 of
Emi(V)(X)Q(lc’jg1 over CP*\ D, where F, is the curvature of the Chern connection V7
associated to (Jg, h) and 01 is the section of End(V) ®Q%}31 obtained by taking the
adjoint of the endomorphism part of 8 with respect to h and the complex conjugate
of its form-part. The reason of the terminology “harmonic bundle” is the fact that
with respect to the de Rham complex structure, the equations imply that the map
h is equivariant harmonic from the universal cover of the Riemann surface to the
Hermitian symmetric space GL(2,C)/U(2). The behaviour of § and h is assumed
to satisfy the so-called tameness condition at each t;, namely h should admit a lift
along any ray to t; which grows at most polynomially in Euclidean distance.
Hitchin’s equations are presented above from the Dolbeault point of view. Let
us first describe the boundary behaviour of the data from this perspective. Let us
denote by £ the holomorphic vector bundle (V,dg) on CP'\ D. It turns out that
there exists an extension of the holomorphic bundle £ over D such that the Higgs
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field has at most logarithmic poles at D. A parabolic structure on £ at D is by
definition a filtration

0Cl; CE&ly (2.5)

of the fiber of £ at every t; € D that is stabilized by res; 6. We assume that the
Higgs field 0 is strongly parabolic, meaning that the action of res;, 6 both on ¢; and
oné& |tj /4; is trivial. Then, in the Dolbeault complex structure Mioq parameterizes
a-stable parabolic Higgs bundles with Higgs field having at most logarithmic poles
at D such that the eigenvalues of the residue of the associated Higgs field at ¢,
vanish and the parabolic weights of the underlying holomorphic vector bundle in
the Dolbeault picture at ¢; are equal to oz;t. The latter assumption on parabolic
weights encodes a certain growth behaviour of the evaluation of the metric h on
elements of a local holomorphic trivialization. The moduli space of such logarithmic
parabolic Higgs bundles is known to be a C-analytic manifold

MDOI(O) a)

called Dolbeault moduli space, whose underlying smooth manifold is Mpod-
Let us now turn to the de Rham point of view. It is known that if (Jg, b, 0) is a
tame harmonic bundle then the connection

V=V/+0+06

is integrable, and the underlying holomorphic vector bundle admits an extension
over D with respect to which V!:® has regular singularities. The associated de
Rham moduli space parameterizes [3-stable parabolic integrable connections on V'
with regular singularities near the punctures ¢;, with eigenvalues of its residue given
by
+ +

B = aj (2.6)
and parabolic weights given by

B =a; (2.7)

-
Again, a parabolic structure on the underlying holomorphic vector bundle at D is
defined as a flag of its fiber over t; € D that is stabilized by restjvl’o and such
that its action on the first graded piece of the filtration be p; . The de Rham
moduli space of such parabolic integrable connections with regular singularities will
be denoted by

Mar (e, @);

it is a C-analytic manifold with underlying smooth manifold Myq.
It follows from the above discussion that there exists a canonical diffeomorphism

¥ Mpai(0, @) = Mar (o, @) (2.8)

called non-abelian Hodge correspondence.

2.2. Character variety, Riemann—Hilbert correspondence, dual boundary
complex. We will need a third point of view of harmonic bundles, called Betti side.
The Betti moduli space (or character variety) Mp(c, 0) parameterizes filtered local
systems on CP'\ D with prescribed conjugacy class of its monodromy around every
t; and growth order of parallel sections on rays emanating from the punctures, up
to simultaneous conjugation by elements of PGL(2,C). We will now describe the
value and role of parameters c. Namely, the monodromy transformation of an
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integrable connection V in Mggr(u, ) along a positively oriented simple loop in
CP! separating ¢; from the other parabolic points has eigenvalues

¢ = exp(=2mv/=14f") = exp(—2mV—1a}) = £v—1 (2.9)

and all weights of the associated filtration equal to 0. We notice that for any
€j € {£1} for 0 < j <4 we have

e’ et e {£2V—-1},
in particular
o oe ¢ {£1).
Said differently, the vector c satisfies the condition that Simpson calls Kostov-

genericity (Condition [45, 4.3]).
It is known that the map

RH: Myg(a, o) = Mg(c,0) (2.10)

mapping any integrable connection to its (filtered) local system of vector spaces is
a C-analytic isomorphism, called Riemann—Hilbert map.

It is known that Mp(c,0) is an affine algebraic variety, which is smooth for
generic choices of the parameters. We will denote by Mg (c,0) a smooth compact-
ification by a simple normal crossing divisor Dg. Such a compactification exists by
Nagata’s compactification theorem [38] combined with Hironaka’s theorem on the
existence of resolutions of singularities in characteristic 0 [23].

Definition 1. The dual complex of Dy is the simplicial complex DDy whose ver-
tices are in bijection with irreducible components of Dy, and whose k-faces are
formed by (k + 1)-tuples of vertices such that the intersection of the corresponding
components is non-empty. We will denote the k-skeleton of DDg by Dy Dg, and
the topological realization of DDg by |DDg|.

We will require Dg to be a very simple normal crossing divisor, meaning that any
such non-empty intersection of components is connected. The above procedure may
be applied to any quasi-projective smooth variety X, and an important result due to
Danilov [6] states that the homotopy type of the simplicial complex is independent
of the chosen compactification. We will apply it to Mg(c,0), and we will call the
resulting simplicial complex its dual boundary complex, denoted by DOMsz(c,0).
A. Komyo [28] showed that for character varieties of rank 2 representations with
k = 5 parabolic points the homotopy type of the dual boundary complex is that of
the sphere S3. C. Simpson [45] generalized this result to character varieties of the
complement of k > 5 parabolic points, by showing that for X = Mg(c, 0) the dual
boundary complex is homotopy equivalent to the sphere S?*~7.

2.3. Topological description of the weights in mixed Hodge structure.
Another closely related consequence of the fact that Mg(c, 0) is a smooth affine al-
gebraic variety is that its cohomology spaces carry a mixed Hodge structure (MHS),
defined by P. Deligne [11]. Let us recall the topological characterization of the
weights in MHS, following [13, Section 6.5]. In what follows, we will often drop ¢, 0
from the notation and write Mg for the character variety.

In this section we adopt the point of view of [13] and consider homology groups
rather than cohomology; application of the standard duality operation is implicitly
meant whenever we compare a homology group with a cohomology group. This



8 SZILARD SZABO

involves switching the signs of the degrees of the weight filtration. Let Mgy be a
smooth compactification of Mp by a simple normal crossing divisor Dg. We spell
out the general construction of the mixed Hodge structure of X \ Y given in [13]
for X = Mg and Y = Dg.

The filtration is the abutment of the spectral sequence associated to a double
complex A,, endowed with a filtration W. For any p > 1 we denote by DP the
disjoint union of the p-fold intersections of the irreducible components of Dg, and
set D° = Mp. We denote by Ctm(f)s) the free abelian group generated by di-
mensionally transverse t-cycles in D*, i.e. cycles for the O-perversity function. We
let

A =CP(D™*),
where s < 0,t > 0. The filtration W is defined by
Ws == @Ap,t~
p<s

There exists a well-defined intersection morphism
N: CI(D*) — G (D)

compatible with W, turning A.. into a filtered double complex. It is shown in [13,
Theorem 1.5] that the associated spectral sequence E7, degenerates at page r = 2
and abuts to the filtration

E;)? & Q = Grlj/t Hs+t(MBa Q)

The filtration W on the right-hand side is then equal to Deligne’s weight filtration.
The topological representatives of Gr‘ivz  Hi; corresponding to the choices ¢ = 2k
and s = —k are generated by classes of the following form (for the similar cases
k =1 and k = 2 over surfaces see [13, Example 6.9]). Take a generic point @ in
the k-fold intersections of the divisors
Q € DF\ DF+L,

Let the corresponding divisor components be denoted without loss of generality
Y1,..., Y% The preimage II71(Q) of @Q in the normal bundle of Y; N--- N Y} in
X\ Y = Mg deformation retracts onto a k-dimensional real torus in the boundary
of a tubular neighbourhood of Y1 N---NY}. If one considers all k-tuple intersections
of divisor components, then the classes of these tori generate Gr'V,, Hy, and the
dual cohomology classes generate Grgg HE.

2.4. Hitchin maps and bases. Let us set
B = H°(CP', K®? ® O(D))
={q: q(t;) =0 forall 0<j <4}
C H°(CPY, L®?) = (7.
B is a linear subspace of dimension 2 over C.

Proposition 2. (1) For every strongly parabolic a-stable Higgs bundle (€,0)
with logarithmic singularities at D we have

tr(6) = 0.
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(2) An a-stable Higgs bundle (€, 0) with logarithmic singularities at D is strongly
parabolic if and only if

det(0) € B.
(3) The space B may be identified with quadratic differentials of the form
az — b)dz®?
Q) = 20 (2.11)

—_—
[[i—o(z —15)

where a,b € C are scalars that do not simultaneously vanish.
Proof. We have

tr(9) € H°(CP', L) = C*
det(9) € H(CP', L®?) = C".
The requirement on the eigenvalues of the residues of 6 together imposes 5 linear
relations on tr(6); however, one of these conditions expresses that the sum of the
eigenvalues is 0, and is therefore redundant. So, tr(6) is uniquely determined as
0 € H°(CP', L), proving the first assertion.
The generic element of B can thus be denoted as
q € H°(CP', L®?).

We fix the isomorphism O(3) = L given on the affine open subset w # 0 by

3
o dz
w) = $i2° 7w’ S(2) = s(z,1) = ———. (2.12)
Z szo(z —tj)
Under this isomorphism, the value s(t;,1) for 0 < j < 4 is equal to the some non-
zero multiple (only depending on the divisor D and j) of the residue res, (S). The
isomorphism (2.12) induces the isomorphism O(6) = L®? given by

- 6, i dz®2
w) = ;qz w' > Q(2) = q(z, 1)m. (2.13)

The requirements on the eigenvalues of the residue of # therefore impose 5 inde-
pendent linear relations on det(6), namely that ¢(¢;) = 0 for all 0 < j < 4. The
second assertion follows.

The section g is a homogeneous polynomial of degree 6, vanishing at the points
of D by part (2), hence is of the form

4
q(z,w) = (az — bw) Hz—tw

for some (a,b) € C?\ {(0,0)}. Using the 1somorphlsm (2.13), the corresponding
meromorphic quadratic differential reads as in (2.11). O

From now on, we will often let Mp, stand for Mpe(0, @). It follows from the
Proposition that we have a well-defined map

H: Mpog — B (2.14)
(€,6) — — det(8)

called the Hitchin map. (The negative sign will simplify our later formulas.) The
target space B of h is called the Hitchin base.
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2.5. Spectral curve, Jacobian variety. We consider the total space Tot(L) of
L with the natural projection

pr: Tot(L) — CP!.
We denote by ¢ the canonical section of pj L. For any
q € H°(CP*, L®?)

we denote for simplicity pj ¢ by g.

We endow B with a scalar product (we will be more precise in (2.23)), pick R > 0
and let S% denote the sphere of radius R in B = C?. For ¢ € S} we write (1 (Rq, 2)
for the roots of

¢* = Rq =0,
specifically
(+(Rq,2) = +y/Rq(z,1). (2.15)
We denote by
Xrq ={([z : w], £/ Rq(z,w))} C Tot(L) (2.16)

the Riemann surface of the bivalued function (4 (Rgq,z). For a generic choice of ¢
this curve is smooth and of genus

9(XRrq) = 2.
For generic ¢ € S3, the fiber H~!(g) is smooth, and known to be isomorphic to an
abelian variety of dimension 2 over C, namely (a torsor over) the Jacobian Jac(X,)
of Xg:
H™H(q) = Jac(X,) = H*'(X,)/A, (2.17)
for the period lattice A, € H%(X,) 22 C? of Xg,. Recall that
Ay =Im (po’l o L)
where the map
v HY (X, 2mv/—12) — H*(X,,C)
is induced by the coefficient inclusion 27y/—1Z — C and the map
p>t: HY(X,,C) — H"'(X,) (2.18)
is projection of harmonic forms to their antiholomorphic part. Then, for given
pa, po € HY1(X,) the relation
= p2 € Ag

is equivalent to the following condition: for every 1-cycle A on X, with coefficients
in Z we have

/A(ul — l2) € 21/ —17Z.

The abelian version of the Hodge correspondence ¢ of (2.8) on X, states that
any class in H%!(X,) may be represented by an anti-holomorphic form, i.e. p €
Q01 (X,) satisfying Op = 0, and that then the U(1)-connection on the trivial line
bundle defined by the connection form

B=p—je (X,
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is flat, see [19, Proposition 4.1.5]. With this notation, fixing any basis A, As, By, By €
H,(X4,Z), the abelian version of RH ot (where RH is the Riemann-Hilbert corre-
spondence (2.10)) is then the diffeomorphism between the Jacobian and the 4-torus
given by

Jac(X,) — T* = (S1)*

s (efn B, efan B, e B o)

2.6. Ramification of spectral curve. Clearly, Xr, is ramified over D. Let D
denote the corresponding branch divisor, so D consists of the preimages of the
points of D on Xg,, all counted with multiplicity 1. We again let

Z+(Rq, 2) (2.19)

stand for the bivalued meromorphic differentials corresponding to (2.15) over the
chart z under the isomorphism (2.12). In concrete terms, we have

dz
Z1(Rq,z) = £/ Rq(z, l)m (2.20)
We set
Ay ={2€C: q(z2) =0}

Regardless of the value of R > 0, A, is the ramification divisor of the projection
map

PRy Xpg — CP! (2.21)

induced by pr. A4 contains the points of D by Proposition 2, and is of cardinality
6 because deg(L®?) = 6. It follows that it is of the form

Aq = {tht1,t2>t3,t47t(Q)} (222)

for some t(q) € CP'. In case t(q) = t;, for some 0 < jy < 4, we assign multiplicity
2 to tj, in A,. On the other hand, for any fixed t € CP'\ D we denote by A; the set
of ¢ € S} such that t € A,. We denote by Aq the corresponding ramification points
on X,, and similarly by #(q), D the lifts of t(q) and of the divisor D, respectively.

Proposition 3. For any firedt € CP\ D, the set A, is diffeomorphic to S*, and
the map

t: 83 — Cp!
q—t(q)
defined by (2.22) is the Hopf fibration.

Proof. The coefficients (a,b) appearing in (2.11) describe natural co-ordinates of
the space B = C2. For any fixed [zg : wo] € CP! the condition azg — bwy = 0 is
linear in (a,b), hence A; is the link of a line passing through 0 in B. This shows
the first assertion.

The map appearing in the second assertion is

(a,b) — [b: a).
This is just the canonical map from C2\ {(0,0)} to CP!. The result follows. O
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Using the factorization (2.11) we will assume that the norm of B is

lgl = V/lal* + [b]>. (2.23)
We use standard Hopf co-ordinates
a = cos(f)eV 1= b =sin(g)eV 1 ¥t?) (2.24)
with 6 € [0, %] and ¢ € [0,27] and ¢ € [0,7]. Then, on the chart Spec(C[z]) the
map t reads as
t: (a,b) — g = tan(f)e>V 1%,
The parameter of the Hopf circles is ¢.

2.7. Perverse Leray filtration. Consider a general quasi-projective variety Y
and denote by D®(Y,Q) the derived category of bounded complexes of Q-vector
spaces K on Y with constructible cohomology sheaves of finite rank. Beilinson,
Bernstein and Deligne [3] defined truncation functors

Prei 1 D*(Y,Q) ="D='(Y,Q)
encoding the support condition for the middle perversity function, giving rise to a
system of truncations
0—---— pTS,pK—> pTS,p+1K—>--- — K.
This gives rise to the perverse filtration
PPH(Y,K) =Im(H(Y,’7<_,K) — H(Y, K)).

We will apply the above results to the following setup. Consider the right derived

direct image functor
RH,: D"(Mpo,Q) = D*(B,Q)

and denote by R'H, the [’th right derived direct image sheaf. Let H denote hyper-
cohomology of a complex of sheaves and H stand for cohomology of a single sheaf.
(We hope that the two different usages of the symbol H for the Hitchin map and
for cohomology groups will not lead to confusion.) Let Q Mo denote the constant
sheaf with fibers Q on Mp,. With these notations, we will be interested in the
perverse filtration on K = RH,Q Moy, OVer Y = B. We then have

ol

H"(B,RH.Q,, )= H"(Mpo,Q).

We will make use of a geometric characterization of the perverse filtration pro-
vided by M. de Cataldo and L. Migliorini in [9, Theorem 4.1.1] in terms of the flag
filtration F. Namely, let

Yo,CY CY=B (2.25)

be a generic full affine flag in B, namely Y_; a generic line and Y_o a generic point
within Y_;. We then have the equality

PPH"(Y,RH.Q,, )=F""H"(Y,RHQ,, )
= Ker(H"(Y, RH*QM) — H7L(}/;;+n—1; RH*@M|YP+7L71))>

where F'* stands to denote the flag filtration. It follows immediately from Y_3 = @
that P'~"H" = 0 and P~ 2H" = H", so the only possibly non-trivial graded
pieces live in degrees —n — 2, —n — 1, —n. Notice that for p = —1 — n we get

H* (Yoo, RH.Q, |y ,) = H (H 1 (Y_2),Q) 2 A*H' (H™'(Y-2),Q),
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the exterior algebra over H!(T%, Q) = Q*. Moreover, by the isomorphism theorem
Grp" ™ H"(Mpor, Q) = Im(H" (Mpor, Q) — H" (H ' (Y-2),Q)).

3. LARGE SCALE BEHAVIOUR OF SOLUTIONS OF HITCHIN’S EQUATIONS

3.1. Asymptotic abelianization, limiting configuration. We fix a generic el-
ement g € S} and consider (€,6) € Mpe (0, @) such that

H(E,0) =q. (3.1)

As we have explained in Section 2.5, choosing such a Higgs bundle (£, ) amounts
to fixing a point in an abelian variety of complex dimension 2. Then, for any ¢t € C*
we have (£,t0) € Mpei(0, a), i.e. C* acts on Mpe (0, ). Obviously,

H(E,10) = t°q € Sjjpo.

For any fixed value of ¢, there exists a unique solution h; of the real Hitchin’s
equation (2.4) associated to the pair (£,t6). We will summarize some results of [16]
(partly based on [34] and [37]) regarding the asymptotic behaviour of the tame
harmonic bundle associated to (£,v/Rf) (the parameter ¢t > 0 of [16] thus being
replaced by v/ R with R > 0). The analysis in [16] relies on the assumption that
6 is generically regular semisimple. This holds for generic ¢ € S3. Indeed, if 6 is
not generically regular semisimple then the curve (2.16) is a section s of p, with
multiplicity 2, which is clearly not the case generically.
Let L¢ € Jac(X,) be the line bundle such that

E =pgLe (3.2)
(see (2.21)) and for any R > 0 let us denote by
p: XRq — XRq
the involution exchanging Z,(Rq,z) and Z_(Rq, z) (see (2.19)). As p is the re-
striction to X g, of an algebraic involution defined over all Tot(L), we will omit Rg
from its notation. Then, there exists a short exact sequence of sheaves on Xpg,
0= pr,€ — Le®p'Le— On, — 0. (3.3)
Notice that for any R > 0 there is an isomorphism
Xrq = Xq
commuting with pr; we deduce that the restriction of the Hitchin map H to the
R*-orbit of ¢ is canonically isomorphic to a product
RT x H'(q).

Therefore, in the sequel we will often identify H~'(Rq) and H1(q).
Let t(q) € Xgrq be the preimage of t(g) under pgy.

Proposition 4. Formulas (2.20) define univalued holomorphic differentials on
XRry, vanishing to order 2 at t(q).

Proof. The fact that the forms are univalued is clear, as X g, is by definition their
Riemann surface.

For simplicity, let us work on the chart z of CP! and set [z : 1] = 2, a similar
analysis works over the chart w. Furthermore, in this proof we use the notation

G = Ci(Rq, 2)
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with ¢ € {£}. A holomorphic chart of X, near ¢; is given by ¢;, with local equation
i = R(z — tj)h;(2)
for some holomorphic function h; (depending on ¢) such that h;(¢;) # 0. This
shows that
2¢,d¢; = Rdzh;(z) + R(z — t;)dh,.
We derive that the 1-form w defined by

dz 1 2dCz zZ— tj )
G hy ( R Gi ’

_i dgi_g.%
hy LR Ay

is holomorphic in ¢;. The formula shows that w is holomorphic near z = t(q) too.
At any point away from the ramification divisor A, the form w is obviously regular.
Now, by (2.20) we have

Z; = +vVRVaz — b#
Hj:O z =1
= VR(az — b)% = +VR(az — b)w,

where the root of the polynomial az — b is t(g). The first assertion immediately
follows. For the second assertion, it is sufficient to notice that near z = t(g) we
have

az —b=(h(G)
for some non-vanishing holomorphic function h. This finishes the proof. U

Fix some ¢ € S} and consider a Higgs bundle (&, 6) satisfying (3.1), and recall
the notation (2.20). Let Lg be the line bundle satisfying (3.2). By abelian Hodge
theory, there exists (up to multiplication by a constant) a unique Hermitian metric
et () on det(€) over CP! satisfying:

e the associated unitary connection V;{det ) in det(€) is flat (i.e.,hget(e) is

(&
Hermitian-Einstein),

e for some local holomorphic trivialization e; A e of det(£) at t; we have

. —1 —
211_)11%_ |z —t;| ler A e2|hdet(5) =1

for every 0 < j < 4.

Notice that the last condition is imposed by the choice of parabolic weights (2.2).
Moreover, there exists (up to a scalar) a unique abelian Hermitian metric hg,

on Lg over X, with parabolic points at A, such that
e the associated unitary connection VZLE in L¢ is flat (i.e., hez, is Hermitian—
Einstein),
e we have hy, ® p*hee = pihaete over CPT\ Ay (see (3.3)),
o for some trivialization 1 of L¢ at each point and some local chart ¢ of Xp,
centered at fj € D we have

li “nEo=1
lim ¢, =1,
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o for some trivialization 1 of L¢ at each point and some local chart ¢ of Xg,
centered at t(q) we have

li 12 =1
Jim [C[J1, =1,

Let hg oo be the orthogonal push-forward of hez, by p, over CP'\ A, multiplied by
\/Ndet(g), s0 that in the direct sum decomposition (3.3) the summands Lg, p*Le
are orthogonal to each other and the restrictions of hg oo to these summands are

respectively

Let Vzg __ be the flat U(1) x U(1)-connection in £ associated to hg oo over CPM\A,.

Over any simply connected subset of CP! \ A, let p, . stand for the inverse of Dy
on either branch of X,. Let

1
2

stand for the connection forms of the flat abelian U(1)-connections V

Baey(e) € Q(CP'\ D, V—1R), P Baer(e) + Bre € Q'(X,\ Ay, V-1IR)

+ +
haet(g)? ¥ heg
with respect to some smooth unitary frames. The action of p on the connection

form of VZC with respect to frames corresponding to each other under p is given
£
by

1, 1,
iqudet(é') + BLS — iqudEt(E) - Bﬁg.

By the above properties, the connection form of VL _ with respect to a smooth
p-equivariant unitary trivialization

(£.8) (3.4
of V' compatibe with the decomposition (3.3) reads as
iB + pg.«B 0
Vi = (27 mlaxble : 3.5
he ( 0 %Bdet(f) - pq,*Bﬁg ( )

Moreover, if one denotes by fiqet(e), %udet(g)—i—y[;g the (0, 1)-forms of the d-operators
of the corresponding line bundles with respect to smooth unitary frames, then we
have

Baet(e) = Hdet(€) — Hdet(€) (3.6)
Bre = pre — e (37)
We then obviously have po’leCt(g) = ldet(g) and p"1Br, = pc., see (2.18). We

call (£,0, he o) the limiting configuration associated to (€,6). We introduce the
model integrable connection

limiting _ o+ 2§RZ+ (Rq, Z) 0
VR T Vheo T ( 0 9RZ_(Rq, 2) (3.8)

with respect to the trivialization (3.4). Notice that the Higgs field 6§ and the connec-
limiting

tion matrix of V = are simultaneously diagonal with respect to this frame. On

the other hand, we denote by h 7 the solution of (2.4) and V7 the Hermitian—
Einstein metric and integrable connection associated to (€, vV R0).
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Theorem 2 (T. Mochizuki). [37, Corollary 2.13] Over any simply connected com-
pact set K C C\ A, there exists a gauge transformation 9y such that

NG V\/ﬁ — Vhl\;mng —0

(measured with respect to h\/ﬁ) as R — oo, uniformly over K. More precisely,
there exist co,Cy > 0 (depending on K, q) such that for any z € K we have

97 Vym(e) = VEE ) < CoemVE.

3.2. Fiducial solution, approximate solutions. We will equally need the as-
ymptotic form of the solution of Hitchin’s equations near the points of A,, where
Theorem 2 does not apply. Such a description is provided by R. Mazzeo, J. Swo-
boda, H. Weiss, F. Witt in [34] over a smooth projective curve X of arbitrary genus.
This decription is extended by L. Fredrickson, R. Mazzeo, J. Swoboda, H. Weiss
in [16] to the case of a smooth projective curve X of arbitrary genus for solutions
of Hitchin’s equations with a finite number of logarithmic singularities and adapted
parabolic structure. In accordance with our notations, we let VR be the rescal-
ing parameter of the Higgs field, equal to the parameter ¢ of [34] and [16]. We
denote the standard holomorphic co-ordinate of C by z and work in a fixed disc
B,,(0) = {|Z| < 7o} for some 1o > 0. We write Z = 7eV~1? for polar co-ordinates
of a point.

We first describe the solution in the case when a logarithmic singularity of a
harmonic bundle is located at 0, with Dolbeault parabolic weights denoted by
a* €10,1) as given in (2.2). Let

m\/ﬁl RJ’_ — R
be the unique solution of the Painlevé III type equation
? 1d
(de + = = dr) m g =8Rr™ Slnh(2m\/§)

satisfying the boundary behaviours

m () ~ (;m o >log() 0

1 1 <
m 5 (T) ~ ;KO(S\/RF) ~ mefgm, 7 — 00 (3.9)

where the sign = stands for complete asymptotic expansion and Ky is the modified
Bessel function (or Bessel function of imaginary argument) of order 0. Furthermore,
let us set

- 1.
We now spell out a one-parameter family parameterized by R > 0 of so-called

fiducial solutions

(Vs 5 O)

of Hitchin’s equations (2.4) on B, (O), introduced in [16, Proposition 3.9]. Here,
hﬁd

VR is a Hermitian metric on the rank 2 trivial holomorphic vector bundle over the

disc, VZM is a unitary connection and Qﬁd is an endomorphism-valued (1, 0)-form.
VE

They are expressed with respect to a ﬁxed unitary frame

(ei, e5?) (3.11)
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called fiducial frame. So, with respect to the fiducial frame the Hermitian metric
hf\i/dﬁ of this solution is given by the identity matrix. We let Af‘/dﬁ stand for the

connection form of V;:ﬁd , with respect to the fiducial frame. Using the functions
VE

m /g, F /g introduced above and the values fixed in (2.2), the fiducial solutions are
then given by the formulas

Al — (Oﬁzo‘ (é ?) + F /5 (7) <(1) _01>> 2/=1dg  (3.12)
_ (i ((1) ?) +F () (é _01>> 2v/~1dp, (3.13)

fid 0 f_l/zem\/E(F) ~
ol = (g—lfl/%—mm(f) 0 dz. (3.14)

There is a similar family of solutions for the ramification point ¢(g) of the spectral
curve X, of the Higgs field. We fix a holomorphic chart Z centered at t(g) with
associated polar coordinates denoted by 7, ¢. Then, with respect to a unitary frame
again denoted by

(e, ef?) (3.15)
one can introduce
asa (L gy L0 o/ Tag (3.16)
VET\8 T4 TVEJ\O -1 A :
fd 0 Fl/2efvr(MY
9\/5 = <g7zl/2e—€m(f) 0 dz, (3.17)

where ¢ /7 is the solution of the equation

@ 1d .
ﬁ + ;5 (\/E = 8Rr Slnh(QE\/R)
satisfying the boundary behaviours

. 1 S
b p(T) =~ 3 log(7), 7 — 0+

1 8 o= V3 W,
L ()~ —K er3)%eSR’”, T — Q.
val) = Ko (3 21/2V/Ri3
The limiting fiducial solution is obtained by letting R — oo in the above formulas,
specifically

1/1 0 .
Al = 3 (0 1) 2v/-1d¢

0 Pt/
fid __ s
05 = (7:1/26 S CIIN )dz.

In order to assemble the limiting configuration and the fiducial solutions into
a family of approximate solutions h?glp, [16] perform a gluing construction. We
describe this construction.

We start by describing normal forms of the solution of Hitchin’s equations near
the points of A,. By [16, Proposition 3.4] there exists a unique holomorphic co-
ordinate Z; defined in a neighbourhood of the ramification point ¢ = t(q) such



18 SZILARD SZABO

that
q(Z) = —Z(dz)* (3.18)
Furthermore, there exists a holomorphic gauge
(219, 857) (3.19)

of £ near t(g) with respect to which one has

0 1\ . N AEA -
o= A%, heoo = ,
(Zt O) Zt,  he, Qt(Zt)( 0 |2t|_2)

where Q; is a locally-defined smooth function, completely determined by hqet ¢ and
q. Similarly, for any 0 < j < 4 [16, Proposition 3.5] shows that there exists some
holomorphic co-ordinate Z; of £ near ¢; such that we have

(%) = =%, 1 (dz;)>. (3.20)
Furthermore, there exists a holomorphic gauge
(g1, g5%) (3.21)

of £ near t; with respect to which one has

_ (0 1) _ogsqettar (1B 0N (520
1= o)am ew et (B0 ) e (7

where @); is a locally-defined smooth function, completely determined by hget ¢ and
q. Let us fix rg > 0 and a cutoff function x: [0,00) — [0, 1] such that x(7) = 1 for
all 7 < rg and x(7) = 0 for all 7 > 2ry. We now take (£,6) to be exactly as in the
above normal forms with respect to the frames (3.19) and (3.21), and define the
smooth Hermitian metric h?}% to be equal

s 13 Uz x(1Z)
2 [1Z]zevE !
Qt(zt) <| t| >

0 |§t|_%efzﬁ(\stl)x(\5tl)

e to

on || < 2r¢ in a holomorphic co-ordinate and gauge (3.19);

e to
. - i
_ 3.3 emvr(ZiDx(1Z5]) 0
Qj(%;) 1l =18 —m =% )x(1Z])
O |Zj|2€ vEUZi1)X ‘ J

on |Z;| < 27y in a holomorphic co-ordinate and gauge (3.21);
e to hg o on the complement of the above discs.

Fix a background Hermitian metric hg on V' and let us denote by H /g, Hf‘/%’
the ho-Hermitian sections of End(V') satisfying
1 1
h (v, w) = ho ((H\/E)w, (Hﬁ)zw) (3.22)
and similarly
BEPE (v, w) = hy ((Hyg)m, (ng)aw) .
Then, for a fixed Higgs bundle (£, ) one may look for solutions (£, v/R6, h ) of
Hitchin’s equations (i.e., the Hermite-Einstein equation for the pair (£,v/R#)) in
the form ) )
(H/g)? = e”x/ﬁ(Hf‘/%’)f (3.23)

for some v/ —Lsu(V, h%)—valued section v, /7.



P =W CONJECTURE FOR THE 5-PUNCTURED SPHERE 19

Theorem 3. [34, Theorem 6.7],[16, Theorem 6.2] Assume that all the zeroes of
q are simple. Then, there exists C,pu > 0 and a unique section 7y 5 such that the
Hermitian metric (3.22) with (3.23) satisfies the Hermite—FEinstein equation, and

Ivygllcze < CeW/2VE

, . 2,
for an appropriate Holder norm Cp“.

The practical implication of this result for our purpose is that one may perturb
the approximate solution by a term exponentially small in VR so as to obtain
the solution of Hitchin’s equations. We will denote by V /7 the flat connection

associated to the solution (€, v/R6, hg)s ie.

V5 = 0c + 0"vE + VRO + VRO VR (3.24)

where {, h 7z stands for adjoint with respect to h 7. Then, V 5 is approximated
up to exponentially decreasing error terms in R by

VL = g +0"Vi + VRO + VRV,
4. SIMPSON’S FENCHEL—NIELSEN CO-ORDINATES

Simpson has defined in [45, Section 10] co-ordinates of Mp(c, ). In this section,
we will recall the definition of these co-ordinates. The general element of the Betti
moduli space is a local system V on CP!\ D, given by a representation y of
its fundamental group, with eigenvalues around the punctures t; equal to c?[ =
+4/—1. For each 2 < i < 3 there are two different co-ordinates: I; € C and
[pi : ¢;] € CP'. By analogy with classical Teichmiiller theory, we will call co-
ordinates of the first type l; the complex length co-ordinates and those of the second
type [pi : ¢;] the complex twist co-ordinates. Indeed, the traditional length co-
ordinates in Teichmiiller space belong to R and C is its complexification; similarly,
the twist co-ordinates take values in S', which is the real part RP! of CP! for the
canonical real structure.

Remark 1. The construction of the co-ordinates depend on some choices, for in-
stance radii of discs and marked points on pairs of pants. However, as we will see
in Subsections 5.2, 5.3, 6.1, the asymptotic behaviour and homotopy type of the
diffeomorphism RH ot do not depend on these choices.

4.1. Complex length co-ordinates. We fix disjoint open discs D; around the
points ¢; for 0 < j < 4; to fix our ideas we pick D; = B, (¢;)° = {|z — t;| < ro} for
some 0 < 79 < 1 so that the different discs D, are disjoint. (Later, from Section 5.3
on, we will allow the radii of these discs to vary independently from one another.)
We then set

Y =CP'\ (DyU---UDy). (4.1)
Then ¥ is a smooth surface with boundary, inheriting an orientation from CP!. Let
us denote by £; the boundary component dD;, taken with the orientation induced
from Y. Specifically, we let

&i(p) =t + roe¥ =1 for ¢ € [0, 2. (4.2)

Thus, the base point of &; is t; + rg. Fix a simple loop ps in ¥ separating the
boundary components £1,&; from the remaining boundary components &3, &4, &,
and a simple loop p3 in % separating the boundary components &4,&y from the
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remaining boundary components &7, &a, €3, so that ps and p3 be disjoint from each
other. These curves then decompose ¥ into the union

Y =5 US3US;, (43)

of three pairs of pants:

e Sy with boundary components &1, &2, po2;
e S3 with boundary components &3, pa2, p3;
e and Sy with boundary components &g, &g, p3.

This decomposition gives rise to a decomposition of CP! into the three closed
connected analytic subsets

Xo=5SyUDyUDy (44)
X3 =53UD3 (45)
X4 =S1UD4U Dy.

Furthermore, we fix

e base points z; € int(S;) and s; € py;

e paths ¢; connecting z; to z;1 passing through s;;

e paths 71, 72 connecting x5 respectively to the base points t1 +r¢ and to +17g
of &1, &a;

e a path 73 connecting x3 to the base point of s;

e paths n4,no connecting x4 respectively to the base points t4 479 and tg+7rg

of &4, &o.

As the D; will actually depend on its radius 79, we need to make a coherent choice
for the paths ng,...,n4. We achieve this for instance for 7; by first fixing a path
starting at x5 and ending at 1, and then restricting this fixed path to the (uniquely
determined) sub-interval of its domain such that the restriction connects xs to the
base point of £. We apply a similar procedure to 7; for all 0 < j < 4. We set
p1 =& and pg = &p.

Following [45], for 2 < < 3 we set [;(V)) = [;() for the trace of x evaluated on
the class of the loop p;:

li(V) = trx[pi]
By definition, [; is the i’th complex length co-ordinate.

4.2. Complex twist co-ordinates. Twist co-ordinates are only defined over the

part Mg(c,~)" of the moduli space where we have |l;| # 2 (equivalently, the eigen-

values of x[p;] are distinct) for both 2 <4 < 3, for the complex length co-ordinates

l; introduced in Section 4.1, and a further stability condition holds (see [45, Defi-

nition 5.1]). It is proven in [45, Corollary 9.2] that the homotopy type of the dual

boundary complex of Mg(c,~) agrees with the one of Mg(c,v)’.
Let us introduce the scalar quantities

lh=cf +cf

ly=cf +c;

li—l —C;li
+

G — G

U; =

w; = ul(h — ’U,l) -1
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~v- ~

FIGURE 1. Decomposition of S into three pairs of pants, indicating
base points and paths. The shaded regions do not belong to S.

for 2 <4 < 4, where [; are the complex length co-ordinates associated to V as in
Section 4.1. Furthermore, introduce the matrices

N
a=(5 )

Ri= <ZZ (li_lui))

i1 = AR = (E;Z;i c[(lic;r— u,))
T; = <_01 llz)

These quantities are all determined by the fixed constants cgt and the length co-
ordinates s, [3.

Let V;(l;_1,1;) denote the local system on S; whose monodromy matrices around
pi—1, pi and &;, acting on its fiber over z;, are respectively R._;, R;, A;. [45, Corol-
lary 10.3] implies that if Vg, is stable then there exists a unique (up to a scalar)
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isomorphism
hil V|Si — Vi(li—l, ll) (47)
By an abuse of notation, we denote by
it Vi, = Vi, (4.8)
the parallel transport map of V' along the path ;. Introduce
Pi=hiprotioh i Villici, 1wy = Vier (L lis1)wigs (4.9)
and )
Qi1 = A, PUP,_ U, (4.10)

for any choice of the square root of A;. It turns out that one has

@i = (p;z i Elli‘]i) (4-11)
for some [p; : ¢;] € CP? satisfying

P+ lipigi + 47 # 0.
By definition, [p; : ¢;] € CP* for i € {2,3} is the i’th complex twist co-ordinate.
Notice that a scalar factor on @; has no impact on [p; : ¢;]. Let us introduce
Q={(L[p: ) € (C\ {£2}) x CP" satisfying p* + Ipq + ¢* £ 0}.
According to [45, Theorem 10.6], the map
Mzg(c,y) — Q2

Vi ((l2, [p2 : 2]), (s, [ps : g3]))

is a diffeomorphism.

4.3. Homotopy type of compactifying divisor. According to [45, Lemma 10.7]
and [41, Lemma 6.2] we have homotopy equivalences

DoQ ~ S* (4.12)
DOQ? ~ St x St ~ S (4.13)

where X %Y stands for the join of the topological spaces X,Y. Combining these
arguments, [45, Corollary 10.8] shows that

DOMsz(c, ) ~ S3.

Let us spell out explicitly the homotopy equivalence (4.12). We now consider

two copies of
QccpP' xcCP,

that we will denote by Q; for i € {2,3}. A compactification of Q; is CP! x CP!, an
open affine of the first component being parametrised by [;, and the second compo-
nent being parametrised by [p; : ¢;]. Let us denote by F; 4, F; _, F; o the fibers of
the first projection over 2, —2 and oo respectively. The irreducible decomposition
of the compactifying divisor of Q; in CP! x CP* reads as

0Q; =CP'xCP'\Q,=C;UF,, UF;, _UF;
where C; is the quadric defined by p? + I;p;qg; + ¢2 = 0, see Figure 2. Clearly,
C; is generically 2 : 1 over CP}, with ramification points in the fibers F; , F; _.
Therefore, the compactifying divisor in CP! x CP! is not normal crossing. To
remedy this failure, we consider the blow up of CP! x CP! in the intersection
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Fi1GURE 3. Compactifying divisor in first blow-up.

points (2,[1 : —1]) and (—2,[1 : 1]), see Figure 3. We continue to denote by
Ci, F; 4, F;_, F; « the proper transforms in X of the named divisors, and we denote
by El1 T Eil)_ the exceptional divisors. The compactifying divisor in the blow-up is

CiUF, {UF, _UF,UE] UE] _.

However, this is still not simple normal crossing, because of the triple intersection
points of C;, E}+ and F;  on the one hand, and Cj, E}’_ and F; _ on the other hand.
Therefore, we need to blow up again in these intersection points, see Figure 4. The
compactifying divisor in this surface is of normal crossing. Dropping the subscripts
1 for simplicity, its dual complex is
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F_ F Fy
E? ) Ei
€0
E! C EY

Obviously, this graph deformation retracts to the cycle defined by the vertices
F} o, C; together with the edges eq, eo, connecting them. Notice that in CP'xCP!,
this cycle reduces to the normal crossing components F; o, C;.

Next, let us be more precise about the homotopy equivalence (4.13) following [41,
Lemma 6.2]. The compactifying divisor of Q% = Q, x Q3 in

(CP")* = (CP")* x (CP')?
can be given as
(0Q2 x (CP)?*) U ((CP')? x 0Qs).

As we have explained above, up to homotopy of DOQ; we only need to consider the
divisor components C; and F; o, of 0Q; and the edges connecting them; in the rest
of this section, we will thus replace DOQ; by this subcomplex without changing the
notation. Our notation in the dual graph of 0Q; is that e; o stands for the edge
corresponding to the point

(Li, [pi = ¢i]) = (00, [1:0]) € (CP")?,
and e; o for the edge corresponding to

(lis [pi = @il) = (00, [0+ 1)) € (CP')?.
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Now, to each of the four points

(00, [1: 0]), (00, [1:0])
(00, [1:0]), (00,[0:1])
(00, [0 : 1]), (00, [1: 0])
(00, [0 : 1]), (00, [0 : 1]) (4.14)

of (CPY)*, there corresponds in DAQ? a 3-dimensional simplex, namely the join of
the edges in DOQ; corresponding to each component. Thus, the natural A-complex
structure of DOQ? ~ S? contains these four 3-simplices, which in order are

€2 00 * €3 00
€2,00 * €30
€2,0 * €3,00

€2,0 * €3,0-
5. ASYMPTOTIC BEHAVIOUR OF FENCHEL—NIELSEN CO-ORDINATES

In this section we will determine the asymptotic behaviour of the co-ordinates
reviewed in Section 4 as R — oo, for fixed ¢ € S7. The constants we will find in
this section may all depend on the divisor D. On the other hand, their dependence
on ¢ is crucial, hence we will indicate when a constant depends on q.

5.1. Monodromy of diagonalizing frames. For our purpose, we first need to
determine the monodromy transformation of a diagonalizing frame of the solution
to Hitchin’s equations along a loop around a logarithmic point or a ramification
point.

Clearly, the gauge transformation g 7 provided by Theorem 2 is unique up to a
reducible transformation, i.e. one preserving the decomposition of (3.8) into abelian
summands. Consider now any simple loop

v:[0,1] = C\ A,.

Definition 5. Let k(v,q) € Zo be the number of points of A, contained in one of
the connected components of CP! \ 7y, counted with multiplicity and modulo 2.

Notice that the number of points of A, in the two connected components of
CP'\ v add up to 6, so k(v, q) is independent of the chosen component.

The loop v may be covered by a finite union of compact discs Ki,..., Ky as
in Theorem 2, so we get for each K; a local holomorphic trivialization (f!, f}) of £
specified by the local gauges g, 7 provided by Theorem 2. We assume that for each
1 <1< N we have K; N K11 N~([0,1]) # @ (where I = N + 1 is identified with
[ =1), and pick any point (1) € K; N Kj41. For 1 <1< N — 1, up to applying a
constant gauge transformation over K;; we may assume that

(Fi(v(n)), £(v(m))) = (B (v(). &5 (v(7))).
Let M (v, Rq) be the monodromy transformation of the local trivializations, defined
by
(£ (v(r)), 5 (v(7w))) = (£ (v(7)), £3 (v(78))) M (7, Rq).
Let T stand for the transposition matrix

(0 D).
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Proposition 6. For any simple loop v we have

_ a(rY» Rq) 0 k(v,q)
M('V»RQ) = ( 0 5(7,Rq)) T

for some a(~, Rq), (v, Rq) € C*.

Proof. Recall from (2.22) that A, = DU {t(¢)}. Assume first that ¢(¢) ¢ D. Then
X gy is smooth. Now, since all ramification points of p|;: X, — CP! are of index
2, the lift 7 of v to X g, is a loop if and only if k(vy,q) = 0. Let C+ be a continuous
lift of (+ to 4. Then, we have

Cx(Rg,5(1)) = (-1)*0¢x(Rg, 5(0)).

Now, f{ and f} belong to the (~+— and E;eigenspaees of 0 respectively over K;. In
the case k(7, q) = 0, eigenvectors f{ and f{¥ are both eigenvectors of § for the same
eigenvalue §+. It follows that they are related by some nonzero multiplicative scalar
«, which shows the result. Similarly, in case k(7,q) = 1 the vectors Y and ¥ are
eigenvectors of € for the same eigenvalue, so they only differ by some nonzero scalar.

In case t(q) € D, ie. t(q) = t; for some 0 < j < 4, the curve X, has an
ordinary double point at (¢;,0), hence the form w is unramified over ¢;. If v is a
loop enclosing ¢; and no other point of D then M (vy) =1 and k(7,q) =0 (mod 2)
(because the points of D are counted with multiplicity), so we conclude by the
equality

T° =1

In the case of an arbitrary loop -y, one concludes by a combination of the above
arguments. O

Now, assume that t(q) ¢ D. Using the notations of (2.11), let us set

at; — b
U=TK®=T%FMQ?4Q@»:II j(t_tw
0<k<d,k#j\Lj

eC (5.1)

(where Z stands for contraction of tensor fields) and introduce the local holomorphic
co-ordinate

éj :Tj(Z—tj). (52)
This is indeed a local co-ordinate by the assumption that the root ¢(q) of the linear
functional az — b does not belong to D, which means 7; # 0. Notice that as 7;
depends continuously on ¢, there exists some M > 0 only depending on tg, ...,
such that for all ¢ € S3(0) and all 0 < j < 4 we have

7i(q)] < M. (5.3)
Then, a simple computation shows that up to holomorphic terms in z —¢; we have
dz®?

L~ Q(2).

Zj

We write z; = #;e¥ 1% for the polar co-ordinates of the local parameter. With
respect to these polar co-ordinates, the circle {; of radius 7y centered at ¢; then has
the equation

fj = |Tj|’l“0. (54)
More precisely, it follows from (5.1) that we have

arg(Z;) = arg(7;) + arg(z — t;),
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so the parameterization (4.2) of ; becomes
§(8)) =t +roe¥™1%  for §; € ara(7y), 27 + arg(7y)]. (5.5)
Let v denote the positively oriented simple loop around t; defined by 7; = r;
for some fixed 0 < r; < 1 chosen so that one of the connected components of
CP! \ v contains no other point of A, than t;. (In the case r; = |7;|ro we get

v = &;, however we are not guaranteed that for a given ¢ this choice of r; satisfies
the above requirement.) Let us define the unit norm trivialization

1 e VvE(T5)
£ (2,) = ( : ) 5.6
M) = e (e (56)
1 eMmvE(T5)
£59(2,) = ( ; ) 5.7
M) = s (Ve 6.7

in the disc 7; < r; with respect to the fiducial frame (3.11).
Proposition 7. Let y be the positive simple loop defined by 7j = r;.
(1) We have
WY £ = 0 (R — o0).
(2) The frame £i4 £id diagonalizes the fiducial Higgs field (3.14) with eigen-
values )
£VR; eV Iz, (5.8)
where we take the determination of the angle ¢; € [0,2m).
(3) The corresponding factors found in Proposition 6 fulfill

a(y, Rq) =1 =4(v, Rg).

Proof. For part (1), as the vectors £ ffd are written in a unitary frame, we simply

compute
fd eQm\/ﬁ(Fj) -1
hm

Now, observe that by (3.9) we have

™A ~ exp <1K0(8\/Rrj)>
T

fid pfidy _
(fl 7f2 )_ €2m\/§(fj)+1’

A exp _ e 8V ET
271'\/5 \4/ R?"j

-1 (5.9)
as R — oo, since

(Rrj)_%efg\/ Rri 0.

For part (2), we first need to determine the eigendirections of the fiducial Higgs

field \/ﬁ@fi/dﬁ with respect to the fiducial frame. We need to find the eigenvalues
>\:|: of

0 P 2emym()\
VR (2'1 ? Zj

’ fjl,/%—mm(f‘j) 0

==1/2 m 5 (7))
- \/R ( 0 TJ € " ) dgj

Fj_l/ze_m@j—mﬁ(fj) 0
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A direct computation gives that A+ are given by (5.8), with corresponding eigenspaces
spanned by unit vectors fiid, ffid introduced in (5.6), (5.7).

For part (3), we fix #; = r; and let ¢, range over [0,27], with a branch cut at
¢; = 0, and we write

£i4(3;) = £14(2)).

We find
1 m 5 (75)
fony = L ( v ) — £54(0)
/BQmVE(Tj) +1 -1
) 1 m 5 (75) X
lr S P — ( ’n ) — £54(0).
VA i\ 1

O

Finally, let us study the neighbourhood of the ramification point ¢t = t(q) = Ly

a
Here, using the notation of (2.11), we introduce the local holomorphic co-ordinate

(aiea) (-0

Then, up to at least quadratic terms in z; we have
7,d72? =~ Q(2).

We then write z, = 7V~ 1t for polar co-ordinates. Let v be the simple positive
loop defined by 7; = r5 for some 0 < r5 < 1 so that v separates t(q) from the
logarithmic points. Finally, introduce the unit length trivialization

1 etva(mt)
gz - 1 ( ~ ) |
1 () 2 ) 41 \eV1e/?

1 elva(T)
fﬁd ) — R
2 (zt) 622\/§(Ft) +1 (_e\/jltpt/2>

over the disc 7, < 15 with respect to the fiducial frame (3.15).

Proposition 8. Let~y be a simple loop enclosing the ramification point t(q) in coun-
terclockwise direction such that the component of CP' \ v containing t(q) contains
no logarithmic point t;. Then the frame hid 84 diagonalizes the fiducial Higgs
field (3.17), and the corresponding factors found in Proposition 6 fulfill

a(y, Rq) = 1= 4(v, Rq).

Proof. Similar to Proposition 7, up to the following modifications: the eigenvalues
of the fiducial Higgs field are ++/ RipeV 10t/ 2dz, with corresponding eigendirections
phid_phid 0

5.2. Asymptotics of complex length co-ordinates. Here, we will study the
behaviour of the complex length co-ordinates (l2,l3) of Mp(c,0) introduced in
Section 4.1 for the local systems obtained by applying the non-abelian Hodge and
Riemann-Hilbert correspondences to a Higgs bundle in a Hitchin fiber close to
infinity. More precisely, we set

1i(€,VRO) = tr RH(V ) [ps]. (5.10)
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Notice that the connection V7 depends on (€, V/RB), hence it is justified to include
the dependence of I; on (€, \/E@) in the notation. However, to lighten notation
we will sometimes simply write /;. With these notations, we will determine the
asymptotic behaviour as R — oo of Io(£,v/RA),13(E, vV RH) for any (£,0) € H'(q),
where g € S} is fixed. Throughout, by the phase of z € C* we will mean its image
under the natural projection

C* — U(1).

According to Theorem 2 for R >> 0 and at any point in the complement of A,
there exists a 1-parameter family of frames that asymptotically diagonalize . The
family is obtained by rescaling a given frame by diagonal elements of SL(2,C). (One
may additionally apply the only non-trivial element T" of the Weyl group, with the
effect of exchanging the two trivializations of the frame.) It follows that there exists
(up to permutation and the action of the Cartan subgroup S* C SL(2,C)) a unique
such orthonormal frame. For any loop v in CP! \ A, let us write

(ol (EVTD) b, (€. VEH))
RV R)h] = (cm (EVRE) dlv (€, m»)

with respect to this (essentially) unique orthonormal base of the fiber V|, (o) of the
underlying smooth vector bundle V' at «(0). Notice that the effect of the action
by the Cartan subgroup means that the off-diagonal entries are only defined up
to a common phase factor. Our aim in this section is to study the asymptotic
behaviour of the entries of RH(V ,z)[p:] for 2 < i < 3, and in particular their
trace. Clearly, the set of eigenvalues (hence the trace) is invariant with respect to
the action of the Weyl group. In order to achieve this, we will decompose the class
of p; in m (CP'\ A, pi(0)) into a concatenation of several loops (see Figure 1).
The number of loops appearing in this decomposition will be 2 or 3, depending on
the position of the ramification point t(q) with respect to the decomposition of S
into pairs of pants (4.3). Around each of the loops appearing in the decomposition
we will explicitly determine the monodromy, and the monodromy around p; is
essentially the product of the monodromies of the constituent loops.

(5.11)

Proposition 9. For any fized ¢ € S} such that t(q) ¢ Dj, the connection form of
the flat connection associated to the fiducial solution (3.12), (3.14) restricted to the
curve &; (given by 7; = r;) with respect to the unit diagonalizing frame (5.6), (5.7)
of the Higgs field reads as

3 +2/-1,/Rrjsin (%) —57i0-m /g (r;)
—%rjﬁgm\/ﬁ(rj) % — 2\/—71\/R77“jsin (%)
Proof. This follows from a straightforward computation. Set

1 < eMVvE(T5) emvE(Ts) >

V—=1dp;.

F=———— - -
2mym(i) 1 1 e~ V-18;/2  _o—V—18;/2

for the matrix formed by the restrictions of the column vectors (5.6), (5.7) to &;,

with determinant

2emvE(T)—V=18;/2

det(F) - e2myr(Ti) 41
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and inverse matrix given by

2myr(r) 1 1 <e_\/jl¢f/2 emmm))

:2677l\/ﬁ(rj)_\/jl¢j/2 e—V=18;/2  _emyr(rs)

F71

Since on {; we have d7; = 0, we need to compute the d@;-part of
-1 fid fid fid \iy _ _ -1 fid fid fid \f
Foro(d+ A+ 075+ (005)") = —FdF + Adp-1 (A5 + 0 75 + (075)").

Note first that Adg-1 acts trivially on the central part of (3.12). On the other
hand, a computation shows that

0 —F /5(r;5)
_ 1 0 —2e™VR() VISR ()
N 2e™VvE(ri)—V=18;/2 —Qemx/ﬁ(Tj)—\/jlﬁj/QF\/E(rj) 0
_ ( 0 _F\/E(Tj)> .
_F\/E(Tj) 0

By Proposition 7, Adp—1 (9% + (9%)” is diagonal with eigenvalues given by

:|:\/Ri7,j1 /_l(e\/jhﬁj/Q _ 67\/51551‘/2)(1@], = F2y/Rr;sin (?) dg;.
Lastly, restricted to £; we find

FdF =

1 67ﬁ¢j/2 em\/ﬁ(rj)
2emyR(ri)—vV=18;/2 e~ V—1¢;/2  _omyg(rs)
0 0 -
Tt T vTs 2 ) 9
2 2

V(-1 1 €.
T4 1 —1) 9%

We conclude combining the above computations and using the identity (see (3.10))

1 1
2F 5 (rs) + v §rj3fm\/§(rj).
g

The behaviour of the entries of the matrix (5.11) for R >> 0 and the choice v = §;
is given by the following.

Proposition 10. Fiz any g € S? and consider the loop v = &;.

(1) The behaviour of the diagonal entries of (5.11) as R — oo is given by the
limits

a(&;, (E,VR)) = 0
d(&;,(E,VR)) = 0

as R — oo, at exponential rate in V/R.
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(2) The behaviour of the off-diagonal entries of (5.11) as R — oo is given by
the limits

b(g;, (£, VRO))SWTVED /T
c(&;, (€, VRO))e SPVTVE _, /7]

where T; is defined in (5.1) and ro > 0 is the radius of &; in the Fuclidean
metric.

Proof. Let us set

T = |Tj‘7’0 € RJr
(see (5.4)). Recall the reparameterization (5.5) of £; with respect to the polar co-
ordinates of the local holomorphic chart (5.2). Integrating the connection form of
the flat connection found in Proposition 9 from arg(7;) to 2 + arg(7;) with respect
to ¢; we find the matrix

V=12 — 8cos (Lgén)) V/Rrj —V=1mr;0zm 5 (r))
—V/=1mr;0xm s5(r;) V=12 + 8cos (arg = ) /Br;

There are two cases to consider depending on whether ®,/7; = 0 or R,/7; # 0.
We first treat the case ®,/7; # 0. This condition is equivalent to the pair of
conditions |7;| # 0 (equivalently, ¢(q) ¢ D) and

cos (arg(n)) 20,

equivalently arg(7;) # 7 + 2k for k € Z. The matrix (5.12) is then of the form
A-C B
B A+C
A== 13;
Bj = —v—=17r;0rm /5 (rj),
C; =

(arg” )F 8RR # 0,

where we have used (5.4) in the third line. A straightforward computation shows
that Setting D = +/B? + C? the exponential of the negative of the above matrix is

—V/—1 ((=C + D)e=P + (C + D)e” —2Bsinh D (5.13)
2D —2Bsinh D (C+D)e P 4+ (=C+ D))" '

According to (3.9) as R — oo for fixed r;, we have
v eS«/Rr]

VT Rr;
C

R’I“j

(5.12)

with

Q W =
|

— /=1 (5.14)

— Uy (515)

where we have set

v; = 8cos <arg2(”)> e [-8,8]\ {0}. (5.16)
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As a consequence we find
D =~ |C|.

Moreover, notice that up to higher order terms we have

B2 B?
2 2 = —_— ) —_—
VB2+C cw/1+o2 C(1+202>,

—C ++vVB2?2+(C? i\/m B2 eiCN_ie(fl(i:tvj)\/Rrj
oV/B2 1 (2 Tacrt T a2 Rr;

We infer that the leading order terms of the matrix (5.13) are equal to

(et B
—5€|CI _C + 4C2 ec
/= In_ 167uj),/Rrj_~_\/j1€uj./Rrj ﬁe—(g—\“j\)\/TTj
- 1/R7‘] R7]
o~ Jre~ 810D VET V=T~ /R”_'_ o(—16+v;)/Rr;

4 :
vj v/ Rr;

implying

This matrix describes the action of RH(V z)[¢;] with respect to the bases
£79(0), £74(0) and f(2m), £3(27)

of the fiber V¢, (o) = V¢, (1) (recall from the proof of Proposition 7 our convention
that the argument of 114 is angular co-ordinate @;). In order to find the matrix of
RH(V z)[€;] with respect to the single basis £iid(0), £54(0), we need to multiply the
above matrix from the left by the inverse of M (&;, Rq). By Propositions 6 and 7,
M (&, Rq) =T and the product is
RH(V z)[&] = (5.17)
ﬁe*(sf\vjl),/Rrj —wi /R (—164v,) /Rr.
v; ¥/ Rr; —lem® ’ \/Rrj T2 JRr, - ’ ’
_ F];FTJ ( 16—v;)4/Rr; +\/7@1)],/1-37"] ﬁev(jil;;‘;\/Rr'
By (5.16) we have 8 — |v;| > 0, whence we immediately get part (1) (in the case
8 — |vj| = 0, the assertion follows from the factor /R in the denominator). On
the other hand, (5.16) also shows that —16 — v; < v;, with equality if and only if

cos (arg(Tg)) —1. In the case where —16—v; < v;, the first term of ¢(¢;, (£, VR0))
is negligible compared to the second one, and we get (2) for ¢(¢;, (€, VRH)). In case
cos (%(TJ)) = —1, the exponential factors in the two terms of c(¢;, (€, VR0))
agree, however the polynomial term in R converges to 0 for the first term, while
is constant for the second term, again implying (2) for ¢(¢;, (£,VRA)). A similar
argument may be applied to get (2) for b(¢;, (£, VRH)).

We now turn to the case R,/7; = 0. In this case, (5.12) simplifies to

2

3m ﬂrjﬁfmﬁ(rj)>
3 .

2
—wrjﬁgm\/ﬁ(rj) 771—
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The diagonal entries of this matrix are constant, and its off-diagonal ones converge
to 0 as R — co. By continuity, the matrix exponential of the negative of this matrix

converges to
0 1)°

In order to obtain the matrix of RH(V ,z)[¢;] with respect to the single basis
f1(0), £2(0), we again need to multiply by the transposition matrix 7', and this gives
the desired formulas. O

Next, we will consider the loop based at xo

Co=mx&xn xnpxboxny
enclosing the punctures ¢, t2 once in counterclockwise direction. Clearly, the classes
[p2] € 1 (CP'\ D,sy) and [(o] € m(CP'\ D, xs)
are conjugate to each other by 1, so that RH(V 3)[C2] is conjugate in SL(2,C)

to RH(V z)[p2] by the parallel transport map of V_ along 9. In particular,

this implies that the trace of RH(V 3)[(2] agrees with the trace l3(€, VRO) of
RH(V /5)[p2]. Our next aim is to compute the asymptotic behaviour of the co-
efficients of RH(V /)[C2] as R — oo. In order to state the result, we need some
preparation. We will consider the part lying between t; and t; + r; of the ray
emanating out from ¢; with direction parallel to the positive real line, and denote
this path by o; (see Figure 5). We then set for j € {1,2}

T =m;i(q) = / j Z4(q, %), (5.18)

2
the contour of the line integral being n; * O’;l. Notice that this is a convergent
improper integral; indeed, by (2.20) and (2.11) the integrand grows as |z — tj|*%
near ¢;. We will indicate the dependence of 7; on ¢ whenever we vary it. Notice
that by its definition (2.20), Z; (hence 7;) is only defined up to a sign. We take
Z to be the square root that is the continuous extension to n; of the square root

corresponding to the negative sign in (5.8). We will return to our choice of sign
in (5.25).

Proposition 11. For some choice of the diagonalizing frame at x2, as R — oo,
for 1 < j <2 we have

a(n; & =n; ', (E,VRE)) = 0
b(n; * & 0y ", (€,VRE))eVERT =Te 2, Bee
c(nj =& =m; ', (€, VRO))e VR _y =1 Bee
d(nj * & *n; ', (E,VRO)) — 0.

Proof. By Theorem 2, parallel transport map of V /7 along n; with respect to a
diagonalizing frame of the Higgs field is approximated by the matrix
ef”f L Byet(e)+Beg +VRRZ(q,2) 0
P;(€, \/EO) = J; 3 Bacsey=Bee +VRRZ_(q.2) | -

(5.19)

0 e
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X2
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)

FIGURE 5. Paths o1, 09.

Parallel transport P;(&, V/RH) carries a unit length diagonalizing frame

(£ (22), £ (22)) (5.20)
of 0 7 at 1;(0) to a diagonalizing frame
(£4(n; (1)), £-(n;(1))) (5.21)

at n;(1). This latter, however, is not of unit length; instead, the lengths of its
vectors are given for i € {+} by

Ifi(n; (1))] = (5.22)
On the other hand, the frame (5.6), (5.7) with 7; = r¢,®; = 0 is an orthonormal
diagonalizing frame of the fiducial Higgs field at the same point 7;(1).

e\/ﬁfnj 8%Zi(q,fr).

Lemma 1. For suitable choices of the phases of the vectors (5.20), the matriz

expressing the basis elements of (5.21) with respect to (5.6), (5.7) is given by
ef"f VRRZ4(q,2) 0
Qj (67 \/Re) ~ 0 ef"f VRRZ_(q,2)

Proof. With respect to the frames (3.19) and (3.21), # is in normal form, equal
to the fiducial Higgs field. It follows that the frame (5.6), (5.7) diagonalizes both
6 and the fiducial Higgs field. The same holds for (5.21). Any two diagonalizing
bases of a given semi-simple (but not simple) endomorphism of a 2-dimensional
vector space over C are related to one another by a diagonal automorphism with
some diagonal elements in C*. The norms of the diagonal elements have been
determined in (5.22). We get

. ‘fﬂj \/E%Z+(q,z)
Q;(6,VRO) ~ (“Je 0 )

0 dj@f"j \/E%Z_(q,z)

for some a;,d; € U(1).
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Now, the union of sufficiently narrow tubular neighbourhoods of n; being simply

connected, Theorem 2 may be applied to it. It follows that we may choose the
vectors (5.20) so as to simultaneously get rid of all the phase factors a;, d;. O

It follows that the monodromy matrix of V /7 along the loop n; * §; * nj_l with
respect to the frame (5.21) is equal to

Adpj(s,ﬁe)fl OAde(s,Vﬁe)fl(RH(VVE)[@])'
In view of Proposition 10 we find
a(n; =& * 17;1, (£,VRO))eE—vIVE i 8/ Rl — /1
b(ny & + 1, (€, VROV Ty VIR @) g 2 Pee (5 93

c(ny * & *ny ", (€, \/17%9))6_\/}?””_4 Jog VERZ @)y g2 Ty Pee(5.04)
d(n; * & * nj_l, (&, \/E@))e@_va‘) Rm'Uj Y/ Rrj — /T

with
v; = 8cos (arg2(7'j)) )
Ty = ‘Tj"l“().

Given that B, is a v/—1R-valued 1-form, the above limiting values are of length
1 and /7 respectively; the phases appearing in (5.23) and (5.24) will play a funda-
mental role in Section 6.

We now make the observation that by (2.20) and (2.11) for 0 < ro < 1 we have

(az =)
Zi(q,z) == — < dz
/U* #0:2) /Uj Hi:o(z — tk)

J
~ + atj —b /tj+r0 dz
[o<k<ane;(ti —te) Jy, Z—1;

= :|:2, /TjT’Q

where we have used (5.1) in the last line. Notice that we have a freedom of sign in
choosing both Z, (¢, z) and \/Tj- We require that the sign of Z, is chosen so that
the precise form of the above equality be

[ 2409 = -2ymm. (5.25)

J
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We infer that the integral appearing in the exponent of the off-diagonal terms (5.23)—
(5.24) is of the form

VERrjvi +4 | VRRZ,(q,2) =8/ RroRy7 + 4VR | RZi(q,2)
Ui M35

i

=4VR <—/ RZ,(¢,2)+ | RZ,(q, Z)>

tj
=4VR / RZ. (q,2)

= 4V RRr;, (5.26)

which allows us to recast the limits (5.23)—(5.24) in the desired form. The assertion

about the diagonal terms follows as in Proposition 10 (see the paragraph following
formula (5.17)). O

Proposition 12. Fiz q € S{ and consider the loop v = ps. In case R(my —73) # 0
we have the limit

I5(€&, \/EG)*IQ cosh (2/ B, + 4\/@%(7@ - 7T1)> —-—1
n:

2=
as R — oo. In case R(my —m2) = 0 the limit of 12(£,V/R6) as R — oo exists and is
finite.

Proof. As mentioned above, it is sufficient to find the asymptotic behaviour of the
diagonal entries of RH(V /7)[C2]. Now, we have

RH(V 7)[¢] (5.27)
= RH(V ) [m & 0y TRH(V yg) 2 * Sa %15 ).

By definition, I3(£, v/RA) is the trace of this matrix, hence we need to compute the
diagonal entries of the product (5.27).
Its entry a(Ca, (£,V/RH)) of index (1,1) is the sum

a(muxérny ', (€,VRE))a(noxéaxny (€, VRE))+b(muxérsny ', (€,VRE))e(naxbaxny *, (€, VRE)).
According to (5.17) the leading order term of the asymptotic expansion of its first
term as R — oo is given by

ef (871}1)\/ R’l’l - (871}2)\/ R’I"Q
™ - . (5.28)
V12V 7"17’2R2
The leading order term of the asymptotic expansion of the second term of a((s, (€, VR6))
is

exp (2 / | B +4VRR(m - m)) . (5.29)

We again emphasize that this formula gives the polar decomposition of the corre-
sponding term, as fnrm B, is purely imaginary.

The terms of the (2,2)-entry d(C2, (€,VRH)) of (5.27) are similar to those of
a(Ca, (£,v/RH)), up to exchanging the subscripts j = 1 and j = 2 of Vj, 75,15
Namely, the term coming from the product of diagonal entries of the factors has
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leading order term in its asymptotic expansion given by (5.28), and the leading
order term of its other term is

—exp (2 /mw Br, + 4VRR(m — m)) . (5.30)

Notice that the product of (5.29) and (5.30) equals 1.

Now, we observe that by (5.16) the coefficient of v/R in the exponent of (5.28) is
never positive (as it has already been pointed out in the proof of Proposition 10).
On the other hand, at least one of the coefficients of v/R in the exponent of (5.29)
and in the exponent of (5.30) is non-negative. In the extreme case where the
coefficients of VR in the exponent of all terms (5.28), (5.29) and (5.30) vanish,
then the v/R in the denominator of (5.28) guarantees that it is negligible compared
to the sum of the other two terms. To sum up, this shows that in the trace,
the leading-order term may not be (5.28), rather it is equal to (5.29) or (5.30)
according as R(m; — m3) < 0 or R(m — m2) > 0, and to the sum of these terms if
R(my — m2) = 0. In any case, the term (5.28) converges to 0 as R — oo, and if
R(m — m2) > 0 (respectively, R(m1 — m2) < 0) then the same limit holds for the
term (5.29) (respectively, (5.30)). Finally, we conclude using that for a ray C of the
form teV~1%0 with fixed —5 < ¢o < 5 and variable ¢ > 0 we have

—teV—1%0

lim 2cosh(te¥~1%)e =1.
t—o0

O

Recall Hopf co-ordinates (2.24) on S3, ¢ being the co-ordinate along the Hopf
fibers.

Proposition 13. Fizq € S? and assume m1(q) # m2(q). Then there exists a unique
@2 € [0,27) such that for every Le € Jac(X,) the co-ordinate l3(E,e¥~12\/RH)
remains bounded as R — oo.

Proof. According to Proposition 12, b(é’,eﬁw VRf) is bounded as R — oo if
and only if the equation

R(mi (e 1%g) — ma(e¥19g)) =0
holds for the variable ¢ € [0,27). This quantity is the horizontal projection of
t1
/ Z+ (e\/jhpq’ 2)7
to

where the contour of integration is oy * 1y L oy 1. Now, taking into account
the definition (2.20), we have

Zi(eVT1%q,2) = e/ 1927, (q,2).

Clearly, there exists a unique value @ € [0, 27) satisfying the property that the non-
zero complex number 7 (¢) — 72(q) multiplied by the unit length complex number
eV=1#2/2 hag horizontal projection equal to 0. (]

The results of this subsection have been stated for the case of Io(£,v/Rf). We
now proceed to stating the results analogous to Propositions 12 and 13 for the case
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of I3(€, v RH), whose proofs are straightforward modifications of the ones proven so
far. For j € {0,4} introduce

along some path in Ss.

Proposition 14. Fir q € S}.

(1) In case R(ma(q) — m0(q)) # 0 we have the limit

I5(€,VRO) 2 cosh (2/ Br, + 4VRR(my — 7T0)> ——1
n.

4—10

as R — oo.

(2) In case R(m4(q) — m0(q)) = 0 the limit of I3(€,V/RO) as R — oo exists and
is finite.

(3) If ma(q) # mo(q), then there exists a unique @3 € [0,27) such that for
every Le € Jac(X,) the co-ordinate I3(E, eV =193/ RA) remains bounded as
R — 0.

5.3. Asymptotic behaviour of complex twist co-ordinates. For i € {2, 3}
we let

[pz((‘;'? \/Ee) : Qi(g’ \/E@)]

stand for the complex twist co-ordinates [p; : ¢;] introduced in Section 4.2 of the
local system RHot(E,v/RA). In this section we will determine the asymptotic
behaviour of these co-ordinates as R — oo. For this purpose, we first determine
the asymptotic behaviour of the quantities

Ui, Wy, Ai7Ri) Ré—l,ﬂa Uia hivwia 131'3 Q’L

introduced in Section 4.2. For ease of notation, we will often omit to indicate the
dependence of the co-ordinates on (£,v/Rf).

In what follows, for 2 x 2 matrices A, B with non-vanishing entries depending
on a parameter R € R we write A ~ B whenever the limit of each entry of A
divided by the corresponding entry of B converges to 1 as R — oo. Similarly, for
two scalar quantities a, b depending on R € R we write a ~ b to express that § — 1
as R — co. We say a is negligible compared to b if § — 0 as & — oo.
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Recall from Section 2.2 that c;: = ++/—1. We start by recording some asymptotic
behaviours as R — oo ensuing from Sections 4.2 and 5.2 in the case R(m — m3) # 0

llch—i—cf:()

o~

5 ~ —2cosh (4@8?(7@ —m) + 2/ Bcg) (5.31)
N2—"n1

Uy = h:i? ~ — cosh (4\/?3?(#2 —m) + 2/ B£5> (5.32)
Cy — Cy n2—"m
1 0
Us = ( cosh (4\/@%(7& — 1)+ 2]772_171 Bﬂg) 1) (5.33)
+
(e 0 o 1 0
@_(ch_wlg 1) (5.34)
" — cosh (4\/17%%(772 —71) +2 fnrm BLg) 1
2
* — cosh (4\/@]?(7@ —m)+2 fnrm Bﬂg)
(5.35)
” —+/—1cosh (4\/§§R(7r2 —m) + Qfm_m Bﬁg) V-1
1=

* v/—1cosh (4\/?3?(7@ —71)+2 fnrm B££>
(5.36)
where the entries marked by * may be determined by the (known) determinant of

the matrices, but we refrain from spelling them out as they will be irrelevant for
our purposes. We set

t3
m=ml) = [ Z:(0.2)
xrs3
Proposition 15. For 2 < i < 4 we have the asymptotic behaviours

—4VRR7;—2 [ B
Bl o~ v; w;e mi=2 [y, Bee
7 —’Ui64\/E§Rm+2 fm Beg

wi
and
h 1 w; _we YERTi=2 [, Beg
T _
20;w; vie4\/EéR7r,L+2 I, Bee i

for some v;, w; € C*.

Proof. Let us recall from Subsection 4.2 that h; is the constant matrix that identifies
Vs, with the model local system V;(l;_1,1;) admitting the same monodromies (up
to conjugacy) around the punctures. These local systems are both given in terms
of their fiber C? over z; endowed with an action of 1 (S;,x;), where we identify
V|, with C? using an orthonormal diagonalizing frame (fy (x;), f_(z;)) of 6.

By definition, the monodromy matrix of V;(I;_1,1;) around the loop n; * &; *n;
centered at z; is the diagonal matrix A;. On the other hand, by Proposition 11 the
monodromy matrix of Vg, around the same loop with respect to (f4(z;),f_(x;))

1
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is given by
—(8—wv;)\/Rr; _ L
— vi84/R7‘i - _\/jle 4V/RRm—2 f"i Bee 5.37
\/71 4V RRm;+2 f7]_ Brg \/;ef(vai)\/Rv-i ( . )
—v—le ‘ v; \4/Rri

Now, in order to determine h; 1 we need to find the eigenvectors of the above
matrix. As we have shown in Proposition 11, the diagonal entries converge to 0
and its determinant obviously converges to 1. Therefore, the eigenvalues are ++/—1,
and a direct computation then shows that h;l is of the desired form. We conclude
by taking matrix inverse. ([l

Remark 2. Remember from (5.18) that m; is only defined up to a sign because
the same holds for Z. In case we change the sign of Zy, the vectors of the frame
(f(x;),f_(z;)) get interchanged with each other, because the first of these spans the
Z-eigenspace of . Writing the monodromy matriz of V|s, around the loop n; x&; *
n;t with respect to the frame (£ (x;),fy (z;)) can be obtained by conjugating (5.37)
by the transposition matrix T. This gives the exact same matriz (5.37) (up to
the change of sign of m;), so the value of its diagonalizing endomorphism h; is
independent of the choice of sign of m;.

Proposition 16. (1) If R(mq — m1) > 0 then we have

h_l 1 *26_4 RR(my—m) =2 fnz—m Beg
~ V2
2 _ AV RRT2+2 Jop Bee 9V RRm+2 Joy Bee

for some vy € C*.
(2) If R(me —m1) < 0 then we have

Wl aw 1 9 VER(Ta—m)+2 [, ., Bee
2 R U2 _64\/§§}ew2+2 Jo, Bee 264\/§§R(27r2—7r1)+2 Sony—n, Bee

for some vy € C*.

Proof. By Proposition 15, we just need to find the values of v, wo; for this purpose,
we will use the monodromy around the loop ny * & * 1y ! Indeed, it is required
that the (1,2)-entry of

ha RH(V /) [m = &« my 'hy
be equal to v/—1. After elementary algebra, this entry is asymptotic to

_ /1w (674\@%172 Sy Bee _ AVER(m—2m0)+2[, . BLg) )
2’02

Now, if R(7me—m1) > 0 then the second term in this expression is negligible compared
to the first one, therefore the condition for this entry to be equal to v/—1 reads as

wo A _21}264\/ﬁmm+2 I, Bce (1 n 678\/§%(sz#1)*4&2,,71 Bre 4 . ) ’

the first term being dominant. Plugging this value into Proposition 15, we find the
desired result.
The second case can be proven similarly. O
Proposition 17. Fiz q € S}.
(1) Assume fttlz RZ; = R(mg —m1) > 0.
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(a) If

to t3
2 RZ, < RZ,

t1 to
then we have
P2 1 2avRRZ 2B,
q2

—0

(b) If

to i3 to
RZ, < RZ, <2 RZ,

t1 to t1
then we have
P2~ [ (4VRRZ,42Be )+ {2 (4VRRZ, +2Bc, )

2 — 0
q2
(c) If
i3 to
0< / RZ, < / RZ,
to t1
then we have
P2 ~—e” :23 (4\/§%Z++23L5)+Iff (4VRRZ+2Bc,) - 50
q2
(d) If

t3
RZy <0

to
then we have
P2 Loz avERz, s2n.,)
q2

— 00

as R — oo.
(2) Assume fttf RZ, = R(ma — 1) < 0.

(a) If
t3 to
/ §RZ+ < 2/ §RZ+
ta t1
then we have

b2 lefttf (4VRRZ+2Bcr)
2 2

ta t3 ta
2 / RZ, < / RZ, < / RZ,
t1 to t1

then we have
b2 ~ _ef;‘23(4\/§§RZ++ZBL£)—fttf(4\/§§RZ++QB££) N
q2

—0

(b) If

(c) If

to ts
RZ, < RZy <0
ty1 to

then we have
b2 e WBAVRRZy +2Be,)— [ (4VRRZ, +2B,,)
q2

— 0
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(d) If

0< RZ,

ta
then we have
P2 le— J/2@VRRZ4+2Be,)
q2

— 00

as R — oo.

In the above formulas, the contour of fttf is

guen emp kg

ts .
and the one of [,* is
Ug*ngl*wg*r]g*U;l.

Remark 3. Just as in Remark 2, cases (1) and (2) are symmetric under change
of sign of Z4.
Proof. Our task is to compute

Py =hzotyohyt, (5.38)

where 1 stands for parallel transport map along the path 5. Since constant factors
vg, v3 multiplying @; (or P;) have no influence on the definition (4.11) of the complex
twist co-ordinates, from now on we will ignore constant factors; said differently, the
formulas of the rest of this section are valid in PGL(2,C). In particular, the exact
value of the constants vs,ws appearing in Proposition 15 will not be relevant, the
essential information is that their ratio is well-defined. Just as in the proof of
Proposition 11, with respect to suitable diagonalizing bases we have

<ef¢2(§Bdet(5)+BLg +VRRZ,(q,2)) 0 >
2 = .

0 efd,z(%Bdcus)—Bﬁg—\/ﬁ%ZJr(%Z))

We take the frame at 12(0) = z2 to consist of unit vectors, and then the above
matrix expresses the action of parallel transport with respect to a basis at ¥9(1) =
x3 whose first and second vectors are respectively of length

exp (i\/ﬁ/ §RZ+(q,z)> .

It follows that the action of parallel transport along s, written in unit-length
diagonalizing bases both at xo, x3, is described by the matrix

s (3 Bacwe) +Bee +2VRRZ, (1.2)) 0
0 efwz(%Bdct(é‘)_BLS —2vVRRZ1(q,2)) |

For ease of notation, from now on we will drop the argument of Z, and the term
1 Byet(g) in the argument of the exponential (which has no effect in PGL(2,C)).
Using Proposition 15, the product h3ys reads as
1 ’LU362\/EI"”2 RZ++[y, Bee
U3€4\/§§Rﬂ'3+2\/§fw2 RZ4+ [y omy Bre

—w

3674\@9%77372@[% RZ4— [y 120 Bre
h3tpg ~ ——
2v3ws3 vgefz\/ﬁfwz RZ+— [y, Bee



P =W CONJECTURE FOR THE 5-PUNCTURED SPHERE 43

We first treat the case (2), i.e. we assume R(my — m) < 0. According to
Proposition 16, the (1,1)-entry of (5.38) is then of the form

Uiefwz (BLS +2\/E§RZ+) + 2@7 fwz (BLS +2\/§§RZ+)+4\/E§R(TF277T3)+2 fﬂ2*n3 Beg
2'[}3 2’[]3 ’
(5.39)
and its (1, 2)-entry is
o = %2 ooy (Bee +2VRRZ ) +4VRR(ma—m1)+2 [, Bee (5.40)
3
_ 267 wa (BLS +2\/§§)‘€Z+)+4\/E%(27r277r1 —m3)+2 f2n27r,,1 —n3 Bee (541)

U3

We now turn to computing the ratio of the entries of the first row of the matrix
1
Qs = Ay 2UsPU; . (5.42)

1
Since A5 ?Us is lower triangular, left multiplication by this matrix does not affect
the quotient of the entries in the first row, so we may ignore this factor. On the
other hand, since R(m; — m2) # 0, we have by (5.33)

1 0
Uy' = (22 (1)> ~ <Cosh (4\/R§R(772 —m)+2 [ BLS) 1> .

n2—m
The (1,1)-entry of (5.42) reads as

Py 2 odu (Bee+2VERZ:) (5.43)
2’03
+ Uie_ o (Bee +2\/E§RZ+)+4\/R§R(”2_W3)+2 oz —ng Bee (5.44)
2’[)3
+ % cosh (4@%(7@ - 7T1) + 2/ B[jf) efwz (BCE +2\/§%Z+)+4\/ﬁ§ﬁ(ﬂ—27ﬂl)+2 fnz*m Bee
3 n2—"m

(5.45)

Bﬁg) o Ly (Beg +2VRRZ, ) +4VRR(2ma—m1—m3)+2 [, ng’

_2 cosh (4\/?3‘%(#2 —71) + 2/

U3 n2—"n1

(5.46)

and its (1,2)-entry g2 agrees with the one of P, given in (5.40), (5.41). Expanding
2 cosh(w) = ¥ +e~* and using R(m; —m2) > 0, we observe that the first (dominant)
term coming from (5.45) is equal to (5.43), and the first term of (5.46) cancels (5.44).
This yields
g ~2e vy (Bee T2VERZ,) (5.47)

e fwz (BLS +2\/§§RZ+)+4\/§§R(37‘(2—27‘!‘1—71'3)"1‘2 f3772*2771*773 Beg ) (548)

to
7T2—7T1:/ ZJr
t1
ta
7T2—/ Z+—7T3:/ Z+.
2 ts

We now separate cases according to the possible relations of dominance of the
terms (5.40), (5.41), (5.47) and (5.48). In case (2a), the term (5.41) dominates (5.40)

‘We note the relations
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and (5.48) dominates (5.47). In case (2b), the term (5.41) dominates (5.40) and (5.47)
dominates (5.48). In case (2c), the term (5.41) dominates (5.40) and (5.47) dom-
inates (5.48). In case (2a), the term (5.40) dominates (5.41) and (5.47) domi-
nates (5.48). In each case we get the stated result.

The analysis in the case (1) is similar. The (1, 1)-entry of (5.38) reads again as
n (5.39), and its (1, 2)-entry has the form

_ Uiefqg (BLS +2\/§5RZ+)—4\/E§R(7r277r1)72 fﬂ2*711 Beg (549)
U3

+ Ujei Sy, (Bre+2VRRZ )+4VER(m1 —75)+2 Jor—ns Bee . (5.50)
U3

We then find that the behaviour of the (1,1)-entry of (5.42) is given by

b2 %’Uiefﬂ,q (BLS+2\/E§RZ+) (5.51)
2’03
L2 -y, (Beg +2VRRZ 4 )+4VRR(r2—m3)+2 [, Br, (5.52)
2113
_ @ cosh (4@%(7@ _ 7T1) + 2/ B,cg) EIW (BLg +2\/§§RZ+) —4VRR (12 —71)— 2f7,2 771 Lg
v3 N2—"mN1
(5.53)
+ v2 cosh (4@%(7@ _ 7T1) + 2/ B[:g) e~ f¢2 (BLg +2\/E¥QZ+)+4\/EW(7M*773)+2 fnl,% B£57
vs3 n2—"m
(5.54)

and its (1,2)-entry g2 agrees with the one of P» given in (5.49), (5.50). Now,
expanding again 2 cosh(w) = e® + e~ and using R(me — 1) > 0, we see that the
dominant term of (5.53) cancels (5.51), and the dominant term of (5.54) is equal
o (5.52). We deduce

. 220 My, (Bg +2VRRZ 4 )+4VRR (w2 —m3)+2 [, Br, (5.55)

U3
— Eefwz (Bee+2VRRZ, ) —8VRR(m2—m1)— 4y Bee (556)

2’1)3

In case (1a), the dominant term of ps is (5.56) and the dominant term of go is (5.49).
In case (1b), the dominant term of ps is (5.55) and the dominant term of ¢s is (5.49).
In case (1c), the dominant term of po is (5.55) and the dominant term of go is (5.49).
In case (1d), the dominant term of ps is (5.55) and the dominant term of g is (5. 50)

In each case, we get the desired result.

We also state an analogous statement to Propositions 16 and 17 for the complex
twist co-ordinate [ps : g3]; their proofs being similar to the case of [p3 : g2], we omit
them.

Proposition 18. (1) If R(my — mo) > 0 then we have
, 264\/§§Rﬂ0+2 [yo Bee 74\F§R(ﬂ'4 70)=2 [, o Bre
4 R Uy 64\/§§Rm+2 Joa Bee 1

for some vy € C*.
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(2) If R(my — mp) < 0 then we have

h 264\/?%(27\'4771‘0)%*2 f2T/4*TIo BCE _264@%(7&177\'0)4»2 f’l4*710 B[;g
4 = Vy
_64\/E§ew4+2 [, Bee 1

for some vy € C*.

Proposition 19. Fiz q € S}.
(1) Assume j;t: RZ, = R(my — ) > 0.
(a) If

ta t3
2 RZy < RZ,

to ty

then we have

ps Lo igavERz, s2me,)

—0
q3
(b) If
ta i3 ta
RZ, < RZy <2 RZ,
to ta to

then we have

ps e P (AVRRZ +2Beg )+ [1 (AW RRZ 4 +2Be)

g3
t3 tq
0< / RZ, < / RZ,
tq to

P3| S AVRRZL 2B )+ [ (AWRRZ4 +2B,)
q3

(d) If

—0

(c) If

then we have

— 00

ts
RZy <0
ta

then we have

b3 }eftt;(4\/ﬁ§RZ++QBﬁg)
a3

— 0

as R — oo.
(2) Similar formulas hold if L? RZ, = R(my—my) < 0, up to changing the sign
of all occurring integrals.

In the above formulas, the contour of ftt(:l is
Uo*nal *174*0'4717
ts .
and the one of ft4 is

-1 -1 -1
o4 x1My kg kM3 *x 04 .
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6. PROOF OF THEOREM 1

From this point on the choices made in (2.1) will be in effect, namely we set

. 2 L 2 @ Xz
1 ty =0 th=1 to

t1 to =

In addition, we will allow tg,%; to vary as needed for our purposes. Choices of
continuous parameters do not affect our results on homotopy types of maps, so
these are only made to make our arguments more concrete.

6.1. Geometry of period integrals.

Proposition 20. There exists a nonempty open set of V.C S} consisting of qua-
dratic differentials q for which both conditions (1c) of Proposition 17 and (1c) of
Proposition 19 simultaneously hold.

Proof. Tt is sufficient to prove that there exists an open subset of the Hopf fiber
t=1(—1) over t, = —1 satisfying the required conditions. From now on, we assume
t(q) = -1

By assumption we need to consider homogeneous polynomials ¢ of degree 6 such
that ¢(q) = —1, i.e. of the form

qmw)zdz+mdf—4)G2—;J

for some coefficients a € S'. The parameter a can be identified with eV=1¢ where
© is the parameter of the Hopf fiber. Using this form and (2.11) we get that the
corresponding quadratic differential reads as

G (P ) as 61
Q() 22(2271)2(227?12)2 Z(Z—l)(zg—k%> ()

The square-root of @ is then given by
dz

\/z(zf 1) (22 — %)

Here, we need to be precise about the determination of the square roots: for a =1
we choose v/a = 1 and in the denominator we choose

Zy=va

R_ ifz<—%

; VIR i — 1 <2<0
\/z(z—l) (22—) eE(R, ifo<z<1 (6.2)
VIR, ifl<z< g
R_ if%<z.
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With these choices and setting ag = 1, we have

/tt #= _/o1 VoG- 1(1Z(22 — -

W
/t:S Zi = /01 \/Z<Z = 1(12(% — € vV—1R_
/t: Zy = —/f \/Z(Z = 32(22 = k%) € vV—-1R_

/t &= /__1 Joe- Sz(zz — VIR

Lemma 2. For suitable choices of tg,t1 we have

ta t3 to
/ Z+ < / Z+ < / Z+ .
to ta t1
Proof. We have
to
lim / Zi| =00
t1——0o0 th
ty
lim Z,| =
to—1+ /tvo +

O

We may then schematically plot these complex numbers on the complex line as
follows.

p—
| | | Z+
aw=1 b |
3

Rt A0 EEEE
| | | t |
I £
U PR
Let us set

for some tiny € > 0. With such a choice, the quantities under consideration satisfy
the required properties, as is visible from the next figure.
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O

6.2. Proof of Theorem 1. We are in position to prove our main result Theorem 1.
We fix any ¢ € V, where V C S is the open set provided by Proposition 20.

Let us first reformulate a few of our results obtained thus far. According to
Subsection 2.3, the highest graded piece Gry H*(Mg, C) of the MHS on the coho-
mology of the character variety is spanned by 0-cycles in the union D* of quadruple
intersections of the compactifying divisor components; clearly, D* is a finite union
of points in Mg. In addition, these cycles also govern Grzwk HF for all 0 < k < 4.
Let us denote by D1, Do, D3, D4 the divisor components of Mg\ Mg given in order
by the equations

lo =00, [p2:qa]=[1:0], Il3=o00, [p3:qs]=][1:0].
Let us denote by
Q*ZDlﬂD20D3HD4€ﬁ4CMB

their intersection point and fix a punctured neighbourhood U(Q*) of @Q* in Mp.
It follows from Propositions 12, 14, 17(1c), 19(1c) that if R is chosen sufficiently
large, then for any (£,0) € H~!(Rq), the Fenchel-Nielsen co-ordinates

12(5,9)7 [pg((‘:,e)i q2(8,9)], 13(579), [p3(579) q3(5,9)]

of RHoy(€,6) belong to U(Q™*). Fix R >> 0 so that this holds. Moreover, the same
results (and the sign assumptions made on the integrals) also imply that the phase
factors of the Fenchel-Nielsen co-ordinates of RHoty)(&, 6) defining Dy, Do, D3, Dy
are in this order given by the following expressions:

ta
— exp (2/ B£(£y9)> ,
t1
t2 t2
— exp (2 Berie g + 2/ B£<5,9>> )
t3 tl
ty
—exp (2 B£(£’9)> ,
to

ta tq
— exp (2/ Bg(&@) + 2/ B[,(g,e)) ,
i3 to

(along contours as given in the Propositions). Notice that there exists a symplectic
basis A1, A, B1, By of H1(Xy,Z) that is anti-invariant for the involution p* and
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that satisfies
(pg)s A1 = o1 5y " Hmpxoy
(pg)«B1 = 2%y " % by kM3 05 "
(pg) (A1 + As) = aaxny x5 kg x o5’
(pg)«B2 = 0 * 1761 * My % 0;1.

It follows that the above quantities can be rewritten as

—exp (f Bg(&g)) , (6.3)
Ay

—exp (% Bﬁ(s,e)) , (6.4)
A1—B;

_exp ( f Bﬁ(&g)) , (6.5)
—B»

exp ( f Bﬁw)) | (6.6)
By—A1—A>

The cycles of the integrals in the arguments of the exponentiation in these formulas
generate Hq(X,,7Z) as an Abelian group. It follows from formulas (6.3)-(6.6) that
the image of the Hitchin fiber H~!(Rq) under RH o1 is homotopic to a torus 7%
generating Hy(U(Q*),Z). Now, recall from Subsection 2.7 that we have

Grp*™? HY(Mpo1, Q) = Tm(H* (Mpel, Q) — HF(H(Y_5),Q))

where H~1(Y_5) is the generic Hitchin fiber. We may choose the affine flag so that
Y_o = {Rq} for ¢ € V. For every 0 < k < 4 and any subset I C {1,2,3,4} with
|I| = 4 — k one may define a k-dimensional subtorus TF in H~1(Y_5) by fixing the
phases corresponding to the divisor components D; with ¢ € I. Let us assume that
T¥ defines a non-trivial homology class in Hy(Mpo, Z). Such classes are precisely
the ones that generate Grp" "2 H*(Mpe, Q). It is then easy to see that image of T
under RH o9 is homotopic to a normal torus at the generic point of the intersection

D

J€{1,2,3,4}\I
of the remaining k divisor components. According to the conventions of Sub-
section 2.3, RHot)(TF) then defines a class in W_o, Hy(U(Q*),Z) (that is non-

trivial by assumption), and the dual cohomology class gives a non-trivial class in
Wor, H*(U(Q*),Z). Since the map

H*(Mg,C) - H*(U(Q"),C)
preserves W strictly, this finishes the proof.
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