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Abstract. We use abelianization of Higgs bundles away from the ramification
divisor and fiducial solutions to analyze the large scale behaviour of Fenchel–

Nielsen co-ordinates on the moduli space of rank 2 Higgs bundles on the Rie-

mann sphere with 5 punctures. We solve the related Hitchin WKB problem
and prove the lowest degree weighted pieces of the P = W conjecture in this

case.

1. Introduction and statement of the main result

In this paper we investigate the moduli spaceMDol of Higgs bundles on CP 1 with
5 logarithmic points in rank 2 and the corresponding character varietyMB, subject
to specific choices of parameters. These spaces are complex varieties of dimension
4. The first aim of the paper is to give a complete answer (Propositions 10, 12, 14)
for these spaces to the Hitchin WKB problem raised in [27]:
Hitchin WKB problem Consider a non-trivial C×-orbit in the Hitchin base and
a family of Higgs bundles lifting this orbit in the Dolbeault moduli space; determine
then the asymptotic behaviour of the transport matrices of the associated family
of representations in the character variety, as the point of C× converges to infinity.

For the classical theory of WKB approximation, see [48], [25, Section 2]. The
second, closely related goal is to use these results in order to obtain for these spaces
one extremal graded piece of the so-called P = W conjecture:

Theorem 1. Let MDol and MB denote the Dolbeault moduli space and character
variety of CP 1 with 5 logarithmic points in rank 2. Then, for every 0 ≤ k ≤ 4
the regular singular Riemann–Hilbert correspondence and the non-abelian Hodge
correspondence induce an isomorphism

Gr−k−2
P Hk(MDol,Q) ∼= GrW2k H

k(MB,Q).

The weights appearing in the theorem represent the lowest (respectively, highest)
possibly non-trivial weights of P (respectively, W ). For our weight conventions, see
Sections 2.3 and 2.7. Notice that sinceMB is a smooth 4-dimensional affine variety,
by virtue of the Andreotti–Frankel theorem [2] the only degrees where it may have
non-trivial cohomology are 0 ≤ k ≤ 4.

Even though this paper contains a detailed study of just one special case of the
P = W conjecture in lowest weight, many of our technical results are valid for an
arbitrary number n ≥ 5 of parabolic points. We expect that it will be possible to
treat more general cases along the same lines. Specifically, our results suggest
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Conjecture 1. The tropical geometry of the composition of the Riemann–Hilbert
and non-abelian Hodge correspondences in the large scale limit is governed by the
central charge function of the corresponding Donaldson–Thomas theory.

By tropical geometry, we mean taking the maximum of the logarithms of the
absolute values of local co-ordinates of a variety, see [36, Section 3.5]. A motivation
for our conjecture is that in the so-called large scale limit, this procedure degenerates
the usual additive structure of R to the tropical one

lim
R→∞

1

R
ln(eRx + eRy) = max(x, y).

Now, according to Propositions 12, 17, some natural co-ordinates on the Betti
side behave precisely as the expression on the left-hand side of this equation, with
x, y, . . . real parts of integrals of the standard Liouville 1-form over some loops on
the spectral curve. Such integrals are in turn called central charge in Donaldson–
Thomas theory, see [4, Section 7.1], [5, Section 10.4], [29, Section 1.2]. We suspect
that a generalization of the methods of the present paper, when combined with
cluster co-ordinates on character varieties defined in [15] and [35], will turn out
to be useful for the study of this question in further cases. For related work, see
also [1, Theorem 1.5].

Let us now give some motivational background for this study. Until very recently,
the P = W conjecture was a major open problem in non-abelian Hodge theory, for-
mulated by M. de Cataldo, T. Hausel and L. Migliorini [7] as a correspondence
between the (decreasing) perverse Leray filtration P induced by the Hitchin map
on the cohomology of a Dolbeault moduli space and the (increasing) weight filtra-
tion W of Deligne’s mixed Hodge structure on the cohomology of the associated
character variety (Betti space). First, in [7] the identity was proved in rank 2 over
compact curves. Then, M. de Cataldo, D. Maulik and J. Shen [8] established it
for curves of genus 2. Later, C. Felisetti and M. Mauri [14] proved it for charac-
ter varieties admitting a symplectic resolution, i.e. in genus 1 and arbitrary rank,
and in genus 2 and rank 2. The author has established the conjecture for complex
2-dimensional moduli spaces of rank 2 Higgs bundles with irregular singularities
over CP 1 corresponding to the Painlevé cases [46]. J. Shen and Z. Zhang [42]
proved it for five infinite families of moduli spaces of parabolic Higgs bundles over
CP 1. Recently, two independent complete proofs using quite different methods have
been announced [32], [22]. Both proofs start by converting the statement to one
about Chern classes of the universal family using the results of Markman [31] and
Shende [43]. Maulik and Shen then use vanishing cycle techniques, global Springer
theory and a support theorem for a certain parabolic Hitchin system to proving it.
On the other hand, Hausel, Mellit, Minets and Schiffmann deduce the claim from
the observation that a polynomial ring over the cohomology ring of the Dolbeault
moduli space carries the action of the algebra of polynomial Hamiltonian vector
fields of the plane; their approach works in parabolic cases with generic stability
parameters too. Our strategy differs from both of these. It is of more direct and
geometrical nature, relying at the same time on recent progress on the asymptotic
decoupling of the Hitchin system.

The P = W conjecture has also been generalized in various interesting contexts.
To name a few generalizations, A. Harder showed a similar statement for elliptic
Lefschetz fibrations using methods coming from toric surfaces [20, Theorem 4.5].
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Z. Zhang [49] found a related phenomenon for the weight filtration of certain 2-
dimensional cluster varieties and the perverse filtration of elliptic fibrations with
constrained singular fibers. A motivation for the P = W conjecture was the so-
called curious hard Lefschetz conjecture of T. Hausel, E. Letellier and F. Rodriguez-
Villegas [21], that has been confirmed by A. Mellit [35]. A stacky version of the P =
W conjecture has been proposed (and proved in genera 0 and 1) by B. Davison [10].

Among the various generalizations and analogues of the P = W conjecture
of particular interest to us is an intriguing geometric counterpart formulated by
L. Katzarkov, A. Noll, P. Pandit and C. Simpson [27, Conjecture 1.1] and C. Simp-
son [45, Conjecture 11.1]; this version is now called Geometric P = W conjecture.
Roughly speaking, the Geometric P = W conjecture asserts the existence of a
certain homotopy commutative diagram involving the Riemann–Hilbert map, non-
abelian Hodge correspondence, the Hitchin map and the natural map from the
character variety to the topological realization of its dual boundary complex. An
immediate consequence of validity of this conjecture is that the homotopy type of
the topological space of the dual boundary complex of the character variety is that
of a sphere of given dimension, therefore finding this homotopy type is a first consis-
tency check of the conjecture. The Geometric P = W conjecture has also attracted
considerable attention in recent times. A. Komyo [28] used an explicit geometric
description to prove that the homotopy type of the dual boundary complex of the
character variety for CP 1 with 5 logarithmic points and group GL(2,C) (that is, the
Betti space we will deal with in this paper) is that of the 3-sphere. C. Simpson [45]
generalized Komyo’s result to the case of arbitrarily many logarithmic points on
CP 1, in rank 2, by proving that the homotopy type of the dual boundary complex
is that of S2n−7; for this purpose, he introduced Fenchel–Nielsen type co-ordinates
that will be widely used in this paper. T. Mochizuki [37] solved the closely related
Hitchin WKB problem for non-critical paths. M. Mauri, E. Mazzon and M. Steven-
son [33, Theorem 6.0.1] used Berkovich space techniques to show that the dual
boundary complex of a log-Calabi–Yau compactification of the GL(n,C) character
variety of a 2-torus is homeomorphic to S2n−1. They also showed that Geometric
P = W conjecture implies the cohomological P = W conjecture in top cohomolog-
ical degree and lowest weight. L. Katzarkov, A. Harder and V. Przyjalkowski have
formulated a version of the cohomological P = W conjecture for log-Calabi–Yau
manifolds and their mirror symmetric pairs, and in [26, Section 4] discussed a geo-
metric version thereof. The author established the Geometric P = W conjecture
in the Painlevé cases in [46] via asymptotic abelianization of solutions of Hitchin’s
equations. In joint work with A. Némethi [40], the author gave a second proof
for the same cases using different techniques, namely plumbing calculus. As far
as the author is aware, up to date these latter articles are the only ones in which
the full assertion of the Geometric P = W conjecture has been confirmed, rather
than just its implication on the homotopy type of the dual boundary complex. It
is remarkable that the geometrical understanding of the moduli spaces developed
in [40, Section 6] is quite reminiscent to the description of the weight filtration
in terms of dual torus fibrations appearing in [26, Section 4] (up to the difference
that the latter paper deals with the case of a smooth elliptic anti-canonical divisor
rather than a singular one).

Previously, F. Loray and M. Saito [30] studied the algebraic geometric structure
of the moduli space that we consider, endowed with its de Rham complex structure.
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R. Donagi and T. Pantev [12] investigated Hecke transforms on this space and
proved the Geometric Langlands correspondence for it. The paths that we need
to consider in Propositions 10, 12, 14 for applications to the character variety
are homologically non-trivial loops that do not satisfy the non-critical condition,
therefore our results do not directly follow from previous study of T. Mochizuki [37]
(though we make use of results of that paper).

We will achieve our goals by refining the approach pioneered in our previous
paper [46]. Namely, using asymptotic abelianization we reduce the study to the
classical abelian Hodge theory and Riemann–Hilbert correspondence treated in
detail for instance in [19]. Specifically, we will make use of technical results of
T. Mochizuki [37] describing the large-scale behaviour of solutions of Hitchin’s
equations away from the ramification divisor, and their extensions by R. Mazzeo,
J. Swoboda, H. Weiss and F. Witt [34] and L. Fredrickson, R. Mazzeo, J. Swoboda
and H. Weiss [16] in a neighbourhood of simple points of the ramification divisor
and parabolic points respectively. As opposed to the non-parabolic case where the
solutions (called fiducial solutions) of [34] give convenient local models, to deal with
the parabolic case one needs the solutions given in [16] that generalize the origi-
nal fiducial solutions of [34]. In this paper, we combine this understanding of the
asymptotic behaviour of solutions of the self-duality equations with C. Simpson’s
Fenchel–Nielsen type co-ordinates of the character variety [45].

The studies in [16] and [34] were inspired by physical considerations pertinent
to the WKB-analysis of Hitchin’s equations given by D. Gaiotto, G. Moore and
A. Neitzke [17], where the authors stated a conjecture about the large scale Rie-
mannian structure of the Hodge moduli spaces. In a certain sense, our work there-
fore points out a connection between two seemingly unrelated circles of ideas: the
P = W conjecture on the algebraic topology of the Hodge moduli spaces on the
one hand, and the Gaiotto–Moore–Neitzke conjecture on their Riemannian geom-
etry on the other hand. This fits nicely into the broader picture of topology and
Riemannian geometry having influence on one another, the bridge between them
being built by geometric analysis.

One feature of the case we study is that the quadratic differentials at play may
have at worst a double zero (see Proposition 3), giving rise to a transverse singular
point of the spectral curve. The metric on the moduli space in a neighbourhood
of the rays along which such singular fibers appear is believed to be approximately
given by the Ooguri–Vafa metric [18], [39, Sections 6,7], [47].
Acknowledgements: The author would like to thank T. Hausel, M. Mauri,
R. Mazzeo, A. Mellit, T. Mochizuki, A. Némethi, C. Simpson and T. Sutherland for
useful discussions. During the preparation of this manuscript, the author was sup-
ported by the Lendület Low Dimensional Topology grant of the Hungarian Academy
of Sciences and by the grants K120697 and KKP126683 of NKFIH.

2. Basic notions and preparatory results

2.1. Moduli spaces of tame harmonic bundles. Consider X = CP 1 with co-
ordinates z and w = z−1, endowed with the standard Riemannian metric. We
denote by O and K the sheaves of holomorphic functions and holomorphic 1-forms
respectively on CP 1. We fix some values

t1 < t2 = −1, t3 = 0, t4 = 1 < t0 (2.1)
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These choices will not be used until Section 6.1, so the results of all preceding
sections are valid for any quintuple of distinct points in CP 1. We consider the
simple effective divisor

D = t0 + t1 + t2 + t3 + t4

and set

L = K(D).

By an abuse of notation, we will also denote by D the support set of D. Finally, we
fix a point x0 ∈ CP 1 \D. Much of the following discussion has a straightforward
generalization to simple effective divisors of higher length too.

For 0 ≤ j ≤ 4 we fix

α−j =
1

4
, α+

j =
3

4
(2.2)

that will serve as parabolic weights in the Dolbeault complex structure. These
choices maximize the distance from the set of integer translates of α−j to those of

α+
j , hence they lie at the center of the Weyl alcove describing the possible para-

bolic weights (in this case, an interval of length 1). Our choices will turn out to
be important in the proof of Propositions (17) and (19); namely, they imply an
unexpected cancellation. Notice that

4∑
j=0

(α−j + α+
j ) = 5.

We will write

α = (α−j , α
+
j )4
j=0.

The basic object of our study will be a certain Hodge moduli space MHod of
tame harmonic bundles [44] of rank 2 and parabolic degree 0 on CP 1 with parabolic
structure at D. We will describe this moduli space from two perspectives called the
Dolbeault and the de Rham moduli spaces. Consider a smooth vector bundle V of
rank 2 and degree −5 over CP 1. Then, the equations defining harmonic bundles
are Hitchin’s equations [24]

∂̄Eθ = 0 (2.3)

Fh + [θ, θ†] = 0 (2.4)

for a (0, 1)-connection ∂̄E on V , a Hermitian metric h on V and a section θ of

End(V )⊗Ω1,0
CP 1 over CP 1\D, where Fh is the curvature of the Chern connection∇+

h

associated to (∂̄E , h) and θ† is the section of End(V )⊗Ω0,1
CP 1 obtained by taking the

adjoint of the endomorphism part of θ with respect to h and the complex conjugate
of its form-part. The reason of the terminology “harmonic bundle” is the fact that
with respect to the de Rham complex structure, the equations imply that the map
h is equivariant harmonic from the universal cover of the Riemann surface to the
Hermitian symmetric space GL(2,C)/U(2). The behaviour of θ and h is assumed
to satisfy the so-called tameness condition at each tj , namely h should admit a lift
along any ray to tj which grows at most polynomially in Euclidean distance.

Hitchin’s equations are presented above from the Dolbeault point of view. Let
us first describe the boundary behaviour of the data from this perspective. Let us
denote by E the holomorphic vector bundle (V, ∂̄E) on CP 1 \D. It turns out that
there exists an extension of the holomorphic bundle E over D such that the Higgs
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field has at most logarithmic poles at D. A parabolic structure on E at D is by
definition a filtration

0 ⊂ `j ⊂ E|tj (2.5)

of the fiber of E at every tj ∈ D that is stabilized by restjθ. We assume that the
Higgs field θ is strongly parabolic, meaning that the action of restjθ both on `j and
on E|tj/`j is trivial. Then, in the Dolbeault complex structureMHod parameterizes
α-stable parabolic Higgs bundles with Higgs field having at most logarithmic poles
at D such that the eigenvalues of the residue of the associated Higgs field at tj
vanish and the parabolic weights of the underlying holomorphic vector bundle in
the Dolbeault picture at tj are equal to α±j . The latter assumption on parabolic
weights encodes a certain growth behaviour of the evaluation of the metric h on
elements of a local holomorphic trivialization. The moduli space of such logarithmic
parabolic Higgs bundles is known to be a C-analytic manifold

MDol(0, α)

called Dolbeault moduli space, whose underlying smooth manifold is MHod.
Let us now turn to the de Rham point of view. It is known that if (∂̄E , h, θ) is a

tame harmonic bundle then the connection

∇ = ∇+
h + θ + θ†

is integrable, and the underlying holomorphic vector bundle admits an extension
over D with respect to which ∇1,0 has regular singularities. The associated de
Rham moduli space parameterizes β-stable parabolic integrable connections on V
with regular singularities near the punctures tj , with eigenvalues of its residue given
by

µ±j = α±j (2.6)

and parabolic weights given by

β±j = α±j . (2.7)

Again, a parabolic structure on the underlying holomorphic vector bundle at D is
defined as a flag of its fiber over tj ∈ D that is stabilized by restj∇1,0 and such

that its action on the first graded piece of the filtration be µ−j . The de Rham
moduli space of such parabolic integrable connections with regular singularities will
be denoted by

MdR(α, α);

it is a C-analytic manifold with underlying smooth manifold MHod.
It follows from the above discussion that there exists a canonical diffeomorphism

ψ : MDol(0, α)→MdR(α, α) (2.8)

called non-abelian Hodge correspondence.

2.2. Character variety, Riemann–Hilbert correspondence, dual boundary
complex. We will need a third point of view of harmonic bundles, called Betti side.
The Betti moduli space (or character variety)MB(c,0) parameterizes filtered local
systems on CP 1\D with prescribed conjugacy class of its monodromy around every
tj and growth order of parallel sections on rays emanating from the punctures, up
to simultaneous conjugation by elements of PGL(2,C). We will now describe the
value and role of parameters c. Namely, the monodromy transformation of an
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integrable connection ∇ in MdR(µ, β) along a positively oriented simple loop in
CP 1 separating tj from the other parabolic points has eigenvalues

c±j = exp(−2π
√
−1µ±j ) = exp(−2π

√
−1α±j ) = ±

√
−1 (2.9)

and all weights of the associated filtration equal to 0. We notice that for any
εj ∈ {±1} for 0 ≤ j ≤ 4 we have

cε00 · · · c
ε4
4 ∈ {±

√
−1},

in particular

cε00 · · · c
ε4
4 /∈ {±1}.

Said differently, the vector c satisfies the condition that Simpson calls Kostov-
genericity (Condition [45, 4.3]).

It is known that the map

RH: MdR(α, α)→MB(c,0) (2.10)

mapping any integrable connection to its (filtered) local system of vector spaces is
a C-analytic isomorphism, called Riemann–Hilbert map.

It is known that MB(c,0) is an affine algebraic variety, which is smooth for
generic choices of the parameters. We will denote byMB(c,0) a smooth compact-
ification by a simple normal crossing divisor DB. Such a compactification exists by
Nagata’s compactification theorem [38] combined with Hironaka’s theorem on the
existence of resolutions of singularities in characteristic 0 [23].

Definition 1. The dual complex of DB is the simplicial complex DDB whose ver-
tices are in bijection with irreducible components of DB, and whose k-faces are
formed by (k + 1)-tuples of vertices such that the intersection of the corresponding
components is non-empty. We will denote the k-skeleton of DDB by DkDB, and
the topological realization of DDB by |DDB|.

We will require DB to be a very simple normal crossing divisor, meaning that any
such non-empty intersection of components is connected. The above procedure may
be applied to any quasi-projective smooth variety X, and an important result due to
Danilov [6] states that the homotopy type of the simplicial complex is independent
of the chosen compactification. We will apply it to MB(c,0), and we will call the
resulting simplicial complex its dual boundary complex, denoted by D∂MB(c,0).
A. Komyo [28] showed that for character varieties of rank 2 representations with
k = 5 parabolic points the homotopy type of the dual boundary complex is that of
the sphere S3. C. Simpson [45] generalized this result to character varieties of the
complement of k ≥ 5 parabolic points, by showing that for X =MB(c,0) the dual
boundary complex is homotopy equivalent to the sphere S2k−7.

2.3. Topological description of the weights in mixed Hodge structure.
Another closely related consequence of the fact thatMB(c,0) is a smooth affine al-
gebraic variety is that its cohomology spaces carry a mixed Hodge structure (MHS),
defined by P. Deligne [11]. Let us recall the topological characterization of the
weights in MHS, following [13, Section 6.5]. In what follows, we will often drop c,0
from the notation and write MB for the character variety.

In this section we adopt the point of view of [13] and consider homology groups
rather than cohomology; application of the standard duality operation is implicitly
meant whenever we compare a homology group with a cohomology group. This
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involves switching the signs of the degrees of the weight filtration. Let MB be a
smooth compactification of MB by a simple normal crossing divisor DB. We spell
out the general construction of the mixed Hodge structure of X \ Y given in [13]
for X =MB and Y = DB.

The filtration is the abutment of the spectral sequence associated to a double
complex A∗∗ endowed with a filtration W . For any p ≥ 1 we denote by D̃p the
disjoint union of the p-fold intersections of the irreducible components of DB, and
set D̃0 = MB. We denote by Ct

t (D̃s) the free abelian group generated by di-

mensionally transverse t-cycles in D̃s, i.e. cycles for the 0-perversity function. We
let

As,t = Ct
t (D̃−s),

where s ≤ 0, t ≥ 0. The filtration W is defined by

Ws =
⊕
p≤s

Ap,t.

There exists a well-defined intersection morphism

∩ : Ct
t (D̃s)→ Ct

t−2(D̃s+1)

compatible with W , turning A∗∗ into a filtered double complex. It is shown in [13,
Theorem 1.5] that the associated spectral sequence Erst degenerates at page r = 2
and abuts to the filtration

E∞st ⊗Q = GrW−tHs+t(MB,Q).

The filtration W on the right-hand side is then equal to Deligne’s weight filtration.
The topological representatives of GrW−2kHk corresponding to the choices t = 2k

and s = −k are generated by classes of the following form (for the similar cases
k = 1 and k = 2 over surfaces see [13, Example 6.9]). Take a generic point Q in
the k-fold intersections of the divisors

Q ∈ D̃k \ D̃k+1.

Let the corresponding divisor components be denoted without loss of generality
Y1, . . . , Yk. The preimage Π−1(Q) of Q in the normal bundle of Y1 ∩ · · · ∩ Yk in
X \Y =MB deformation retracts onto a k-dimensional real torus in the boundary
of a tubular neighbourhood of Y1∩· · ·∩Yk. If one considers all k-tuple intersections
of divisor components, then the classes of these tori generate GrW−2kHk, and the

dual cohomology classes generate GrW2k H
k.

2.4. Hitchin maps and bases. Let us set

B = H0(CP 1,K⊗2 ⊗O(D))

= {q : q(tj) = 0 for all 0 ≤ j ≤ 4}
⊂ H0(CP 1, L⊗2) ∼= C7.

B is a linear subspace of dimension 2 over C.

Proposition 2. (1) For every strongly parabolic α-stable Higgs bundle (E , θ)
with logarithmic singularities at D we have

tr(θ) ≡ 0.
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(2) An α-stable Higgs bundle (E , θ) with logarithmic singularities at D is strongly
parabolic if and only if

det(θ) ∈ B.
(3) The space B may be identified with quadratic differentials of the form

Q(z) =
(az − b)dz⊗2∏4
j=0(z − tj)

. (2.11)

where a, b ∈ C are scalars that do not simultaneously vanish.

Proof. We have

tr(θ) ∈ H0(CP 1, L) ∼= C4

det(θ) ∈ H0(CP 1, L⊗2) ∼= C7.

The requirement on the eigenvalues of the residues of θ together imposes 5 linear
relations on tr(θ); however, one of these conditions expresses that the sum of the
eigenvalues is 0, and is therefore redundant. So, tr(θ) is uniquely determined as
0 ∈ H0(CP 1, L), proving the first assertion.

The generic element of B can thus be denoted as

q ∈ H0(CP 1, L⊗2).

We fix the isomorphism O(3) ∼= L given on the affine open subset w 6= 0 by

s(z, w) =

3∑
i=0

siz
3−iwi 7→ S(z) = s(z, 1)

dz∏4
j=0(z − tj)

. (2.12)

Under this isomorphism, the value s(tj , 1) for 0 ≤ j ≤ 4 is equal to the some non-
zero multiple (only depending on the divisor D and j) of the residue restj (S). The

isomorphism (2.12) induces the isomorphism O(6) ∼= L⊗2 given by

q(z, w) =

6∑
i=0

qiz
6−iwi 7→ Q(z) = q(z, 1)

dz⊗2∏4
j=0(z − tj)2

. (2.13)

The requirements on the eigenvalues of the residue of θ therefore impose 5 inde-
pendent linear relations on det(θ), namely that q(tj) = 0 for all 0 ≤ j ≤ 4. The
second assertion follows.

The section q is a homogeneous polynomial of degree 6, vanishing at the points
of D by part (2), hence is of the form

q(z, w) = (az − bw)

4∏
j=0

(z − tjw)

for some (a, b) ∈ C2 \ {(0, 0)}. Using the isomorphism (2.13), the corresponding
meromorphic quadratic differential reads as in (2.11). �

From now on, we will often let MDol stand for MDol(0, α). It follows from the
Proposition that we have a well-defined map

H : MDol → B (2.14)

(E , θ) 7→ −det(θ)

called the Hitchin map. (The negative sign will simplify our later formulas.) The
target space B of h is called the Hitchin base.
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2.5. Spectral curve, Jacobian variety. We consider the total space Tot(L) of
L with the natural projection

pL : Tot(L)→ CP 1.

We denote by ζ the canonical section of p∗LL. For any

q ∈ H0(CP 1, L⊗2)

we denote for simplicity p∗Lq by q.
We endow B with a scalar product (we will be more precise in (2.23)), pick R > 0

and let S3
R denote the sphere of radius R in B ∼= C2. For q ∈ S3

1 we write ζ±(Rq, z)
for the roots of

ζ2 −Rq = 0,

specifically

ζ±(Rq, z) = ±
√
Rq(z, 1). (2.15)

We denote by

XRq = {([z : w],±
√
Rq(z, w))} ⊂ Tot(L) (2.16)

the Riemann surface of the bivalued function ζ±(Rq, z). For a generic choice of q
this curve is smooth and of genus

g(XRq) = 2.

For generic q ∈ S3
1 , the fiber H−1(q) is smooth, and known to be isomorphic to an

abelian variety of dimension 2 over C, namely (a torsor over) the Jacobian Jac(Xq)
of Xq:

H−1(q) ∼= Jac(Xq) = H0,1(Xq)/Λq (2.17)

for the period lattice Λq ⊂ H0,1(Xq) ∼= C2 of XRq. Recall that

Λq = Im
(
p0,1 ◦ ι

)
where the map

ι : H1(Xq, 2π
√
−1Z)→ H1(Xq,C)

is induced by the coefficient inclusion 2π
√
−1Z→ C and the map

p0,1 : H1(Xq,C)→ H0,1(Xq) (2.18)

is projection of harmonic forms to their antiholomorphic part. Then, for given
µ1, µ2 ∈ H0,1(Xq) the relation

µ1 − µ2 ∈ Λq

is equivalent to the following condition: for every 1-cycle A on Xq with coefficients
in Z we have ∫

A

(µ1 − µ2) ∈ 2π
√
−1Z.

The abelian version of the Hodge correspondence ψ of (2.8) on Xq states that
any class in H0,1(Xq) may be represented by an anti-holomorphic form, i.e. µ ∈
Ω0,1(Xq) satisfying ∂µ = 0, and that then the U(1)-connection on the trivial line
bundle defined by the connection form

B = µ− µ̄ ∈ Ω1(Xq)
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is flat, see [19, Proposition 4.1.5]. With this notation, fixing any basisA1, A2, B1, B2 ∈
H1(Xq,Z), the abelian version of RH ◦ψ (where RH is the Riemann–Hilbert corre-
spondence (2.10)) is then the diffeomorphism between the Jacobian and the 4-torus
given by

Jac(Xq)→ T 4 = (S1)4

µ 7→
(
e
∮
A1

B
, e

∮
A2

B
, e

∮
B1

B
, e

∮
B2

B
)
.

2.6. Ramification of spectral curve. Clearly, XRq is ramified over D. Let D̃

denote the corresponding branch divisor, so D̃ consists of the preimages of the
points of D on XRq, all counted with multiplicity 1. We again let

Z±(Rq, z) (2.19)

stand for the bivalued meromorphic differentials corresponding to (2.15) over the
chart z under the isomorphism (2.12). In concrete terms, we have

Z±(Rq, z) = ±
√
Rq(z, 1)

dz∏4
j=0(z − tj)

(2.20)

We set

∆q = {z ∈ C : q(z) = 0}.
Regardless of the value of R > 0, ∆q is the ramification divisor of the projection
map

pRq : XRq → CP 1 (2.21)

induced by pL. ∆q contains the points of D by Proposition 2, and is of cardinality
6 because deg(L⊗2) = 6. It follows that it is of the form

∆q = {t0, t1, t2, t3, t4, t(q)} (2.22)

for some t(q) ∈ CP 1. In case t(q) = tj0 for some 0 ≤ j0 ≤ 4, we assign multiplicity
2 to tj0 in ∆q. On the other hand, for any fixed t ∈ CP 1\D we denote by ∆t the set

of q ∈ S3
1 such that t ∈ ∆q. We denote by ∆̃q the corresponding ramification points

on Xq, and similarly by t̃(q), D̃ the lifts of t(q) and of the divisor D, respectively.

Proposition 3. For any fixed t ∈ CP 1 \D, the set ∆t is diffeomorphic to S1, and
the map

t : S3
1 → CP 1

q 7→ t(q)

defined by (2.22) is the Hopf fibration.

Proof. The coefficients (a, b) appearing in (2.11) describe natural co-ordinates of
the space B ∼= C2. For any fixed [z0 : w0] ∈ CP 1 the condition az0 − bw0 = 0 is
linear in (a, b), hence ∆t is the link of a line passing through 0 in B. This shows
the first assertion.

The map appearing in the second assertion is

(a, b) 7→ [b : a].

This is just the canonical map from C2 \ {(0, 0)} to CP 1. The result follows. �
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Using the factorization (2.11) we will assume that the norm of B is

|q| =
√
|a|2 + |b|2. (2.23)

We use standard Hopf co-ordinates

a = cos(θ)e
√
−1(ϕ−φ), b = sin(θ)e

√
−1(ϕ+φ) (2.24)

with θ ∈ [0, π2 ] and ϕ ∈ [0, 2π] and φ ∈ [0, π]. Then, on the chart Spec(C[z]) the
map t reads as

t : (a, b) 7→ b

a
= tan(θ)e2

√
−1φ.

The parameter of the Hopf circles is ϕ.

2.7. Perverse Leray filtration. Consider a general quasi-projective variety Y
and denote by Db(Y,Q) the derived category of bounded complexes of Q-vector
spaces K on Y with constructible cohomology sheaves of finite rank. Beilinson,
Bernstein and Deligne [3] defined truncation functors

pτ≤i : Db(Y,Q)→pD≤i(Y,Q)

encoding the support condition for the middle perversity function, giving rise to a
system of truncations

0→ · · · → pτ≤−pK → pτ≤−p+1K → · · · → K.

This gives rise to the perverse filtration

P pH(Y,K) = Im(H(Y,pτ≤−pK)→ H(Y,K)).

We will apply the above results to the following setup. Consider the right derived
direct image functor

RH∗ : Db(MDol,Q)→ Db(B,Q)

and denote by RlH∗ the l’th right derived direct image sheaf. Let H denote hyper-
cohomology of a complex of sheaves and H stand for cohomology of a single sheaf.
(We hope that the two different usages of the symbol H for the Hitchin map and
for cohomology groups will not lead to confusion.) Let QMDol

denote the constant

sheaf with fibers Q on MDol. With these notations, we will be interested in the
perverse filtration on K = RH∗QMDol

over Y = B. We then have

Hn(B,RH∗QMDol
) ∼= Hn(MDol,Q).

We will make use of a geometric characterization of the perverse filtration pro-
vided by M. de Cataldo and L. Migliorini in [9, Theorem 4.1.1] in terms of the flag
filtration F . Namely, let

Y−2 ⊂ Y−1 ⊂ Y = B (2.25)

be a generic full affine flag in B, namely Y−1 a generic line and Y−2 a generic point
within Y−1. We then have the equality

P pHn(Y,RH∗QMDol
) = F p+nHn(Y,RH∗QMDol

)

= Ker(Hn(Y,RH∗QM)→ Hn(Yp+n−1,RH∗QM|Yp+n−1)),

where F • stands to denote the flag filtration. It follows immediately from Y−3 = ∅
that P 1−nHn = 0 and P−n−2Hn = Hn, so the only possibly non-trivial graded
pieces live in degrees −n− 2,−n− 1,−n. Notice that for p = −1− n we get

H∗(Y−2,RH∗QM|Y−2
) ∼= H∗(H−1(Y−2),Q) ∼= Λ∗H1(H−1(Y−2),Q),
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the exterior algebra over H1(T 4,Q) ∼= Q4. Moreover, by the isomorphism theorem

Gr−n−2
P Hn(MDol,Q) ∼= Im(Hn(MDol,Q)→ Hn(H−1(Y−2),Q)).

3. Large scale behaviour of solutions of Hitchin’s equations

3.1. Asymptotic abelianization, limiting configuration. We fix a generic el-
ement q ∈ S3

1 and consider (E , θ) ∈MDol(0, α) such that

H(E , θ) = q. (3.1)

As we have explained in Section 2.5, choosing such a Higgs bundle (E , θ) amounts
to fixing a point in an abelian variety of complex dimension 2. Then, for any t ∈ C×
we have (E , tθ) ∈MDol(0, α), i.e. C× acts on MDol(0, α). Obviously,

H(E , tθ) = t2q ∈ S3
|t|2 .

For any fixed value of t, there exists a unique solution ht of the real Hitchin’s
equation (2.4) associated to the pair (E , tθ). We will summarize some results of [16]
(partly based on [34] and [37]) regarding the asymptotic behaviour of the tame

harmonic bundle associated to (E ,
√
Rθ) (the parameter t > 0 of [16] thus being

replaced by
√
R with R > 0). The analysis in [16] relies on the assumption that

θ is generically regular semisimple. This holds for generic q ∈ S3
1 . Indeed, if θ is

not generically regular semisimple then the curve (2.16) is a section s of pL with
multiplicity 2, which is clearly not the case generically.

Let LE ∈ Jac(Xq) be the line bundle such that

E = pq∗LE (3.2)

(see (2.21)) and for any R > 0 let us denote by

ρ : XRq → XRq

the involution exchanging Z+(Rq, z) and Z−(Rq, z) (see (2.19)). As ρ is the re-
striction to XRq of an algebraic involution defined over all Tot(L), we will omit Rq
from its notation. Then, there exists a short exact sequence of sheaves on XRq

0→ p∗RqE → LE ⊕ ρ∗LE → O∆q → 0. (3.3)

Notice that for any R > 0 there is an isomorphism

XRq
∼= Xq

commuting with pL; we deduce that the restriction of the Hitchin map H to the
R+-orbit of q is canonically isomorphic to a product

R+ ×H−1(q).

Therefore, in the sequel we will often identify H−1(Rq) and H−1(q).
Let t̃(q) ∈ XRq be the preimage of t(q) under pRq.

Proposition 4. Formulas (2.20) define univalued holomorphic differentials on
XRq, vanishing to order 2 at t̃(q).

Proof. The fact that the forms are univalued is clear, as XRq is by definition their
Riemann surface.

For simplicity, let us work on the chart z of CP 1 and set [z : 1] = z, a similar
analysis works over the chart w. Furthermore, in this proof we use the notation

ζi = ζi(Rq, z)
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with i ∈ {±}. A holomorphic chart of XRq near tj is given by ζi, with local equation

ζ2
i = R(z − tj)hj(z)

for some holomorphic function hj (depending on q) such that hj(tj) 6= 0. This
shows that

2ζidζi = Rdzhj(z) +R(z − tj)dhj .
We derive that the 1-form ω defined by

ω =
dz

ζi
=

1

hj

(
2dζi
R
− z − tj

ζi
dhj

)
=

1

hj

(
dζi
R
− ζi

dhj
hj

)
is holomorphic in ζi. The formula shows that ω is holomorphic near z = t(q) too.
At any point away from the ramification divisor ∆q the form ω is obviously regular.

Now, by (2.20) we have

Zi = ±
√
R
√
az − b dz∏4

j=0

√
z − tj

=
√
R(az − b)dz

ζi
= ±
√
R(az − b)ω,

where the root of the polynomial az − b is t(q). The first assertion immediately
follows. For the second assertion, it is sufficient to notice that near z = t(q) we
have

az − b = ζ2
i h(ζi)

for some non-vanishing holomorphic function h. This finishes the proof. �

Fix some q ∈ S3
1 and consider a Higgs bundle (E , θ) satisfying (3.1), and recall

the notation (2.20). Let LE be the line bundle satisfying (3.2). By abelian Hodge
theory, there exists (up to multiplication by a constant) a unique Hermitian metric
hdet(E) on det(E) over CP 1 satisfying:

• the associated unitary connection ∇+
hdet(E)

in det(E) is flat (i.e.,hdet(E) is

Hermitian–Einstein),
• for some local holomorphic trivialization e1 ∧ e2 of det(E) at tj we have

lim
z→tj

|z − tj |−1|e1 ∧ e2|hdet(E) = 1

for every 0 ≤ j ≤ 4.

Notice that the last condition is imposed by the choice of parabolic weights (2.2).
Moreover, there exists (up to a scalar) a unique abelian Hermitian metric hLE

on LE over Xq with parabolic points at ∆̃q such that

• the associated unitary connection ∇+
hLE

in LE is flat (i.e., hLE is Hermitian–

Einstein),
• we have hLE ⊗ ρ∗hLE = p∗qhdet E over CP 1 \∆q (see (3.3)),
• for some trivialization l of LE at each point and some local chart ζ of XRq

centered at t̃j ∈ D̃ we have

lim
ζ→0
|ζ|−1|l|2hLE = 1,
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• for some trivialization l of LE at each point and some local chart ζ of XRq

centered at t̃(q) we have

lim
ζ→0
|ζ||l|2hLE = 1,

Let hE,∞ be the orthogonal push-forward of hLE by pq over CP 1 \∆q multiplied by√
hdet(E), so that in the direct sum decomposition (3.3) the summands LE , ρ∗LE

are orthogonal to each other and the restrictions of hE,∞ to these summands are
respectively √

hdet(E)hLE ,
√
hdet(E)ρ

∗hLE .

Let ∇+
hE,∞

be the flat U(1)×U(1)-connection in E associated to hE,∞ over CP 1\∆q.

Over any simply connected subset of CP 1 \∆q, let pq,∗ stand for the inverse of p∗q
on either branch of Xq. Let

Bdet(E) ∈ Ω1(CP 1 \D,
√
−1R),

1

2
p∗qBdet(E) +BLE ∈ Ω1(Xq \ ∆̃q,

√
−1R)

stand for the connection forms of the flat abelian U(1)-connections ∇+
hdet(E)

,∇+
hLE

with respect to some smooth unitary frames. The action of ρ on the connection
form of ∇+

hLE
with respect to frames corresponding to each other under ρ is given

by
1

2
p∗qBdet(E) +BLE 7→

1

2
p∗qBdet(E) −BLE .

By the above properties, the connection form of ∇+
hE,∞

with respect to a smooth

ρ-equivariant unitary trivialization

(f+, f−) (3.4)

of V compatibe with the decomposition (3.3) reads as

∇+
hE,∞

=

(
1
2Bdet(E) + pq,∗BLE 0

0 1
2Bdet(E) − pq,∗BLE

)
. (3.5)

Moreover, if one denotes by µdet(E),
1
2µdet(E)+µLE the (0, 1)-forms of the ∂̄-operators

of the corresponding line bundles with respect to smooth unitary frames, then we
have

Bdet(E) = µdet(E) − µ̄det(E), (3.6)

BLE = µLE − µ̄LE . (3.7)

We then obviously have p0,1Bdet(E) = µdet(E) and p0,1BLE = µLE , see (2.18). We
call (E , θ, hE,∞) the limiting configuration associated to (E , θ). We introduce the
model integrable connection

∇limiting√
R

= ∇+
hE,∞

+

(
2<Z+(Rq, z) 0

0 2<Z−(Rq, z)

)
(3.8)

with respect to the trivialization (3.4). Notice that the Higgs field θ and the connec-

tion matrix of ∇limiting√
R

are simultaneously diagonal with respect to this frame. On

the other hand, we denote by h√R the solution of (2.4) and ∇√R the Hermitian–

Einstein metric and integrable connection associated to (E ,
√
Rθ).
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Theorem 2 (T. Mochizuki). [37, Corollary 2.13] Over any simply connected com-
pact set K ⊂ C \∆q there exists a gauge transformation g√R such that

g√R · ∇√R −∇
limiting√
R

→ 0

(measured with respect to h√R) as R → ∞, uniformly over K. More precisely,
there exist c2, C2 > 0 (depending on K, q) such that for any z ∈ K we have

|g√R · ∇√R(z)−∇limiting√
R

(z)|h < C2e
−c2
√
R.

3.2. Fiducial solution, approximate solutions. We will equally need the as-
ymptotic form of the solution of Hitchin’s equations near the points of ∆q, where
Theorem 2 does not apply. Such a description is provided by R. Mazzeo, J. Swo-
boda, H. Weiss, F. Witt in [34] over a smooth projective curve X of arbitrary genus.
This decription is extended by L. Fredrickson, R. Mazzeo, J. Swoboda, H. Weiss
in [16] to the case of a smooth projective curve X of arbitrary genus for solutions
of Hitchin’s equations with a finite number of logarithmic singularities and adapted
parabolic structure. In accordance with our notations, we let

√
R be the rescal-

ing parameter of the Higgs field, equal to the parameter t of [34] and [16]. We
denote the standard holomorphic co-ordinate of C by z̃ and work in a fixed disc

Br0(0) = {|z̃| ≤ r0} for some r0 > 0. We write z̃ = r̃e
√
−1ϕ̃ for polar co-ordinates

of a point.
We first describe the solution in the case when a logarithmic singularity of a

harmonic bundle is located at 0, with Dolbeault parabolic weights denoted by
α± ∈ [0, 1) as given in (2.2). Let

m√R : R+ → R
be the unique solution of the Painlevé III type equation(

d2

dr̃2
+

1

r̃

d

dr̃

)
m√R = 8Rr̃−1 sinh(2m√R)

satisfying the boundary behaviours

m√R(r̃) ≈
(

1

2
+ α−j − α

+
j

)
log(r̃) = 0

m√R(r̃) ≈ 1

π
K0(8

√
Rr̃) ≈ 1

2π
√

2 4
√
Rr̃

e−8
√
Rr̃, r̃ →∞ (3.9)

where the sign ≈ stands for complete asymptotic expansion and K0 is the modified
Bessel function (or Bessel function of imaginary argument) of order 0. Furthermore,
let us set

F√R(r̃) = −1

8
+

1

4
r̃∂r̃m√R. (3.10)

We now spell out a one-parameter family parameterized by R > 0 of so-called
fiducial solutions

(∇+
hfid√

R

, hfid√
R
, θfid√

R
)

of Hitchin’s equations (2.4) on Br0(0), introduced in [16, Proposition 3.9]. Here,
hfid√

R
is a Hermitian metric on the rank 2 trivial holomorphic vector bundle over the

disc, ∇+
hfid√

R

is a unitary connection and θfid√
R

is an endomorphism-valued (1, 0)-form.

They are expressed with respect to a fixed unitary frame

(efid
1 , efid

2 ) (3.11)
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called fiducial frame. So, with respect to the fiducial frame the Hermitian metric
hfid√

R
of this solution is given by the identity matrix. We let Afid√

R
stand for the

connection form of ∇+
hfid√

R

, with respect to the fiducial frame. Using the functions

m√R, F
√
R introduced above and the values fixed in (2.2), the fiducial solutions are

then given by the formulas

Afid√
R

=

(
α+ + α−

4

(
1 0
0 1

)
+ F√R(r̃)

(
1 0
0 −1

))
2
√
−1dϕ̃ (3.12)

=

(
1

4

(
1 0
0 1

)
+ F√R(r̃)

(
1 0
0 −1

))
2
√
−1dϕ̃, (3.13)

θfid√
R

=

(
0 r̃−1/2em

√
R(r̃)

z̃−1r̃1/2e−m
√
R(r̃) 0

)
dz̃. (3.14)

There is a similar family of solutions for the ramification point t(q) of the spectral
curve Xq of the Higgs field. We fix a holomorphic chart z̃ centered at t(q) with
associated polar coordinates denoted by r̃, ϕ̃. Then, with respect to a unitary frame
again denoted by

(efid
1 , efid

2 ) (3.15)

one can introduce

Afid√
R

=

(
1

8
+

1

4
r̃∂r̃`√R

)(
1 0
0 −1

)
2
√
−1dϕ̃ (3.16)

θfid√
R

=

(
0 r̃1/2e`

√
R(r̃)

z̃r̃−1/2e−`
√
R(r̃) 0

)
dz̃, (3.17)

where `√R is the solution of the equation(
d2

dr̃2
+

1

r̃

d

dr̃

)
`√R = 8Rr̃ sinh(2`√R)

satisfying the boundary behaviours

`√R(r̃) ≈ −1

2
log(r̃), r̃ → 0+

`√R(r̃) ≈ 1

π
K0

(
8

3

√
Rr̃3

)
≈

√
3

2π
√

2
4
√
Rr̃3

e−
8
3

√
Rr̃3 , r̃ →∞.

The limiting fiducial solution is obtained by letting R→∞ in the above formulas,
specifically

Afid
∞ =

1

8

(
1 0
0 −1

)
2
√
−1dϕ̃

θfid
∞ =

(
0 r̃1/2

r̃1/2e
√
−1ϕ̃ 0

)
dz̃.

In order to assemble the limiting configuration and the fiducial solutions into
a family of approximate solutions happ

Rq , [16] perform a gluing construction. We
describe this construction.

We start by describing normal forms of the solution of Hitchin’s equations near
the points of ∆q. By [16, Proposition 3.4] there exists a unique holomorphic co-
ordinate z̃t defined in a neighbourhood of the ramification point t = t(q) such
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that
q(z̃t) = −z̃t(dz̃t)2. (3.18)

Furthermore, there exists a holomorphic gauge

(gfid
1 ,gfid

2 ) (3.19)

of E near t(q) with respect to which one has

θ =

(
0 1
z̃t 0

)
dz̃t, hE,∞ = Qt(z̃t)

(
|z̃t|

1
2 0

0 |z̃t|−
1
2

)
where Qt is a locally-defined smooth function, completely determined by hdet E and
q. Similarly, for any 0 ≤ j ≤ 4 [16, Proposition 3.5] shows that there exists some
holomorphic co-ordinate z̃j of E near tj such that we have

q(z̃j) = −z̃−1
j (dz̃j)

2. (3.20)

Furthermore, there exists a holomorphic gauge

(gfid
1 ,gfid

2 ) (3.21)

of E near tj with respect to which one has

θ =

(
0 1
z̃−1
j 0

)
dz̃j , hE,∞ = Qj |z̃j |α

+
j +α−j

(
|z̃j |−

1
2 0

0 |z̃j |
1
2

)
= Qj

(
|z̃j |

1
2 0

0 |z̃j |
3
2

)
where Qj is a locally-defined smooth function, completely determined by hdet E and
q. Let us fix r0 > 0 and a cutoff function χ : [0,∞)→ [0, 1] such that χ(r̃) = 1 for
all r̃ ≤ r0 and χ(r̃) = 0 for all r̃ ≥ 2r0. We now take (E , θ) to be exactly as in the
above normal forms with respect to the frames (3.19) and (3.21), and define the
smooth Hermitian metric happ√

R
to be equal

• to

Qt(z̃t)

(
|z̃t|

1
2 e`
√
R(|z̃t|)χ(|z̃t|) 0

0 |z̃t|−
1
2 e−`

√
R(|z̃t|)χ(|z̃t|)

)
on |z̃t| ≤ 2r0 in a holomorphic co-ordinate and gauge (3.19);
• to

Qj(z̃j)

(
|z̃j |

1
2 em

√
R(|z̃j |)χ(|z̃j |) 0

0 |z̃j |
3
2 e−m

√
R(|z̃j |)χ(|z̃j |)

)
on |z̃j | ≤ 2r0 in a holomorphic co-ordinate and gauge (3.21);
• to hE,∞ on the complement of the above discs.

Fix a background Hermitian metric h0 on V and let us denote by H√R, H
app√
R

the h0-Hermitian sections of End(V ) satisfying

h√R(v, w) = h0

(
(H√R)

1
2 v, (H√R)

1
2w
)

(3.22)

and similarly

happ√
R

(v, w) = h0

(
(Happ√

R
)

1
2 v, (Happ√

R
)

1
2w
)
.

Then, for a fixed Higgs bundle (E , θ) one may look for solutions (E ,
√
Rθ, h√R) of

Hitchin’s equations (i.e., the Hermite–Einstein equation for the pair (E ,
√
Rθ)) in

the form
(H√R)

1
2 = eγ

√
R(Happ√

R
)

1
2 (3.23)

for some
√
−1su(V, happ√

R
)-valued section γ√R.
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Theorem 3. [34, Theorem 6.7],[16, Theorem 6.2] Assume that all the zeroes of
q are simple. Then, there exists C, µ > 0 and a unique section γ√R such that the
Hermitian metric (3.22) with (3.23) satisfies the Hermite–Einstein equation, and

‖γ√R‖C2,αb ≤ Ce−(µ/2)
√
R

for an appropriate Hölder norm C2,α
b .

The practical implication of this result for our purpose is that one may perturb
the approximate solution by a term exponentially small in

√
R so as to obtain

the solution of Hitchin’s equations. We will denote by ∇√R the flat connection

associated to the solution (E ,
√
Rθ, h√R), i.e.

∇√R = ∂̄E + ∂h
√
R +
√
Rθ +

√
Rθ†,h

√
R (3.24)

where †, h√R stands for adjoint with respect to h√R. Then, ∇√R is approximated
up to exponentially decreasing error terms in R by

∇app√
R

= ∂̄E + ∂
happ√

R +
√
Rθ +

√
Rθ
†,happ√

R .

4. Simpson’s Fenchel–Nielsen co-ordinates

Simpson has defined in [45, Section 10] co-ordinates ofMB(c, γ). In this section,
we will recall the definition of these co-ordinates. The general element of the Betti
moduli space is a local system V on CP 1 \ D, given by a representation χ of
its fundamental group, with eigenvalues around the punctures tj equal to c±j =

±
√
−1. For each 2 ≤ i ≤ 3 there are two different co-ordinates: li ∈ C and

[pi : qi] ∈ CP 1. By analogy with classical Teichmüller theory, we will call co-
ordinates of the first type li the complex length co-ordinates and those of the second
type [pi : qi] the complex twist co-ordinates. Indeed, the traditional length co-
ordinates in Teichmüller space belong to R and C is its complexification; similarly,
the twist co-ordinates take values in S1, which is the real part RP 1 of CP 1 for the
canonical real structure.

Remark 1. The construction of the co-ordinates depend on some choices, for in-
stance radii of discs and marked points on pairs of pants. However, as we will see
in Subsections 5.2, 5.3, 6.1, the asymptotic behaviour and homotopy type of the
diffeomorphism RH ◦ψ do not depend on these choices.

4.1. Complex length co-ordinates. We fix disjoint open discs Dj around the
points tj for 0 ≤ j ≤ 4; to fix our ideas we pick Dj = Br0(tj)

o = {|z − tj | < r0} for
some 0 < r0 � 1 so that the different discs Dj are disjoint. (Later, from Section 5.3
on, we will allow the radii of these discs to vary independently from one another.)
We then set

Σ = CP 1 \ (D0 ∪ · · · ∪D4). (4.1)

Then Σ is a smooth surface with boundary, inheriting an orientation from CP 1. Let
us denote by ξj the boundary component ∂Dj , taken with the orientation induced
from Σ. Specifically, we let

ξj(ϕ) = tj + r0e
√
−1ϕ for ϕ ∈ [0, 2π]. (4.2)

Thus, the base point of ξj is tj + r0. Fix a simple loop ρ2 in Σ separating the
boundary components ξ1, ξ2 from the remaining boundary components ξ3, ξ4, ξ0,
and a simple loop ρ3 in Σ separating the boundary components ξ4, ξ0 from the
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remaining boundary components ξ1, ξ2, ξ3, so that ρ2 and ρ3 be disjoint from each
other. These curves then decompose Σ into the union

Σ = S2 ∪ S3 ∪ S4 (4.3)

of three pairs of pants:

• S2 with boundary components ξ1, ξ2, ρ2;
• S3 with boundary components ξ3, ρ2, ρ3;
• and S4 with boundary components ξ4, ξ0, ρ3.

This decomposition gives rise to a decomposition of CP 1 into the three closed
connected analytic subsets

X2 = S2 ∪D1 ∪D2 (4.4)

X3 = S3 ∪D3 (4.5)

X4 = S4 ∪D4 ∪D0. (4.6)

Furthermore, we fix

• base points xi ∈ int(Si) and si ∈ ρi;
• paths ψi connecting xi to xi+1 passing through si;
• paths η1, η2 connecting x2 respectively to the base points t1 +r0 and t2 +r0

of ξ1, ξ2;
• a path η3 connecting x3 to the base point of ξ3;
• paths η4, η0 connecting x4 respectively to the base points t4 +r0 and t0 +r0

of ξ4, ξ0.

As the Dj will actually depend on its radius r0, we need to make a coherent choice
for the paths η0, . . . , η4. We achieve this for instance for η1 by first fixing a path
starting at x2 and ending at t1, and then restricting this fixed path to the (uniquely
determined) sub-interval of its domain such that the restriction connects x2 to the
base point of ξ1. We apply a similar procedure to ηj for all 0 ≤ j ≤ 4. We set
ρ1 = ξ1 and ρ4 = ξ0.

Following [45], for 2 ≤ i ≤ 3 we set li(V ) = li(χ) for the trace of χ evaluated on
the class of the loop ρi:

li(V ) = trχ[ρi]

By definition, li is the i’th complex length co-ordinate.

4.2. Complex twist co-ordinates. Twist co-ordinates are only defined over the
partMB(c, γ)′ of the moduli space where we have |li| 6= 2 (equivalently, the eigen-
values of χ[ρi] are distinct) for both 2 ≤ i ≤ 3, for the complex length co-ordinates
li introduced in Section 4.1, and a further stability condition holds (see [45, Defi-
nition 5.1]). It is proven in [45, Corollary 9.2] that the homotopy type of the dual
boundary complex of MB(c, γ) agrees with the one of MB(c, γ)′.

Let us introduce the scalar quantities

l1 = c+1 + c−1

l4 = c+4 + c−4

ui =
li−1 − c−i li
c+i − c

−
i

wi = ui(li − ui)− 1
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x2
x3

x4

s2 s3

ρ1 = ξ1

D1

ξ2 D2

ξ3

D3

ξ0 = ρ4

D0

ξ4

D4

ρ3ρ2

ψ2 ψ3

η1

η2 η3

η0

η4

S2 S3 S4

Figure 1. Decomposition of S into three pairs of pants, indicating
base points and paths. The shaded regions do not belong to S.

for 2 ≤ i ≤ 4, where li are the complex length co-ordinates associated to V as in
Section 4.1. Furthermore, introduce the matrices

Ai =

(
c+i 0
0 c−i

)
Ri =

(
ui 1
wi (li − ui)

)
R′i−1 = AiRi =

(
c+i ui c+i
c−i wi c−i (li − ui)

)
Ti =

(
0 1
−1 li

)
Ui =

(
1 0
ui 1

)
.

These quantities are all determined by the fixed constants c±i and the length co-
ordinates l2, l3.

Let Vi(li−1, li) denote the local system on Si whose monodromy matrices around
ρi−1, ρi and ξi, acting on its fiber over xi, are respectively R′i−1, Ri, Ai. [45, Corol-
lary 10.3] implies that if V |Si is stable then there exists a unique (up to a scalar)
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isomorphism
hi : V |Si → Vi(li−1, li). (4.7)

By an abuse of notation, we denote by

ψi : Vxi → Vxi+1
(4.8)

the parallel transport map of V along the path ψi. Introduce

Pi = hi+1 ◦ ψi ◦ h−1
i : Vi(li−1, li)xi → Vi+1(li, li+1)xi+1

(4.9)

and

Qi−1 = A
− 1

2
i UiPi−1U

−1
i−1, (4.10)

for any choice of the square root of Ai. It turns out that one has

Qi =

(
pi qi
−qi pi + liqi

)
(4.11)

for some [pi : qi] ∈ CP 1 satisfying

p2
i + lipiqi + q2

i 6= 0.

By definition, [pi : qi] ∈ CP 1 for i ∈ {2, 3} is the i’th complex twist co-ordinate.
Notice that a scalar factor on Qi has no impact on [pi : qi]. Let us introduce

Q = {(l, [p : q]) ∈ (C \ {±2})× CP 1 satisfying p2 + lpq + q2 6= 0}.
According to [45, Theorem 10.6], the map

MB(c, γ)′ → Q2

V 7→ ((l2, [p2 : q2]), (l3, [p3 : q3]))

is a diffeomorphism.

4.3. Homotopy type of compactifying divisor. According to [45, Lemma 10.7]
and [41, Lemma 6.2] we have homotopy equivalences

D∂Q ∼ S1 (4.12)

D∂Q2 ∼ S1 ∗ S1 ∼ S3, (4.13)

where X ∗ Y stands for the join of the topological spaces X,Y . Combining these
arguments, [45, Corollary 10.8] shows that

D∂MB(c, γ) ∼ S3.

Let us spell out explicitly the homotopy equivalence (4.12). We now consider
two copies of

Q ⊂ CP 1 × CP 1,

that we will denote by Qi for i ∈ {2, 3}. A compactification of Qi is CP 1×CP 1, an
open affine of the first component being parametrised by li, and the second compo-
nent being parametrised by [pi : qi]. Let us denote by Fi,+, Fi,−, Fi,∞ the fibers of
the first projection over 2,−2 and ∞ respectively. The irreducible decomposition
of the compactifying divisor of Qi in CP 1 × CP 1 reads as

∂Qi = CP 1 × CP 1 \Qi = Ci ∪ Fi,+ ∪ Fi,− ∪ Fi,∞
where Ci is the quadric defined by p2

i + lipiqi + q2
i = 0, see Figure 2. Clearly,

Ci is generically 2 : 1 over CP 1
t , with ramification points in the fibers Fi,+, Fi,−.

Therefore, the compactifying divisor in CP 1 × CP 1 is not normal crossing. To
remedy this failure, we consider the blow up of CP 1 × CP 1 in the intersection
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Fi,− Fi,+Fi,∞

Ci

[0 : 1]

[1 : 0]

Figure 2. Compactifying divisor in CP 1 × CP 1.

Fi,− Fi,+Fi,∞

E1
i,− E1

i,+

Ci

[0 : 1]

[1 : 0]

Figure 3. Compactifying divisor in first blow-up.

points (2, [1 : −1]) and (−2, [1 : 1]), see Figure 3. We continue to denote by
Ci, Fi,+, Fi,−, Fi,∞ the proper transforms in X of the named divisors, and we denote
by E1

i,+, E
1
i,− the exceptional divisors. The compactifying divisor in the blow-up is

Ci ∪ Fi,+ ∪ Fi,− ∪ Fi,∞ ∪ E1
i,+ ∪ E1

i,−.

However, this is still not simple normal crossing, because of the triple intersection
points of Ci, E

1
i,+ and Fi,+ on the one hand, and Ci, E

1
i,− and Fi,− on the other hand.

Therefore, we need to blow up again in these intersection points, see Figure 4. The
compactifying divisor in this surface is of normal crossing. Dropping the subscripts
i for simplicity, its dual complex is
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Fi,− Fi,+Fi,∞

E1
i,− E1

i,+

E2
i,− E2

i,+

Ci

[0 : 1]

[1 : 0]

Figure 4. Compactifying divisor in second blow-up.
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Obviously, this graph deformation retracts to the cycle defined by the vertices
Fi,∞, Ci together with the edges e0, e∞ connecting them. Notice that in CP 1×CP 1,
this cycle reduces to the normal crossing components Fi,∞, Ci.

Next, let us be more precise about the homotopy equivalence (4.13) following [41,
Lemma 6.2]. The compactifying divisor of Q2 = Q2 ×Q3 in

(CP 1)4 = (CP 1)2 × (CP 1)2

can be given as

(∂Q2 × (CP 1)2) ∪ ((CP 1)2 × ∂Q3).

As we have explained above, up to homotopy of D∂Qi we only need to consider the
divisor components Ci and Fi,∞ of ∂Qi and the edges connecting them; in the rest
of this section, we will thus replace D∂Qi by this subcomplex without changing the
notation. Our notation in the dual graph of ∂Qi is that ei,∞ stands for the edge
corresponding to the point

(li, [pi : qi]) = (∞, [1 : 0]) ∈ (CP 1)2,

and ei,0 for the edge corresponding to

(li, [pi : qi]) = (∞, [0 : 1]) ∈ (CP 1)2.
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Now, to each of the four points

(∞, [1 : 0]), (∞, [1 : 0])

(∞, [1 : 0]), (∞, [0 : 1])

(∞, [0 : 1]), (∞, [1 : 0])

(∞, [0 : 1]), (∞, [0 : 1]) (4.14)

of (CP 1)4, there corresponds in D∂Q2 a 3-dimensional simplex, namely the join of
the edges in D∂Qi corresponding to each component. Thus, the natural ∆-complex
structure of D∂Q2 ∼ S3 contains these four 3-simplices, which in order are

e2,∞ ∗ e3,∞

e2,∞ ∗ e3,0

e2,0 ∗ e3,∞

e2,0 ∗ e3,0.

5. Asymptotic behaviour of Fenchel–Nielsen co-ordinates

In this section we will determine the asymptotic behaviour of the co-ordinates
reviewed in Section 4 as R → ∞, for fixed q ∈ S3

1 . The constants we will find in
this section may all depend on the divisor D. On the other hand, their dependence
on q is crucial, hence we will indicate when a constant depends on q.

5.1. Monodromy of diagonalizing frames. For our purpose, we first need to
determine the monodromy transformation of a diagonalizing frame of the solution
to Hitchin’s equations along a loop around a logarithmic point or a ramification
point.

Clearly, the gauge transformation g√R provided by Theorem 2 is unique up to a
reducible transformation, i.e. one preserving the decomposition of (3.8) into abelian
summands. Consider now any simple loop

γ : [0, 1]→ C \∆q.

Definition 5. Let k(γ, q) ∈ Z2 be the number of points of ∆q contained in one of
the connected components of CP 1 \ γ, counted with multiplicity and modulo 2.

Notice that the number of points of ∆q in the two connected components of
CP 1 \ γ add up to 6, so k(γ, q) is independent of the chosen component.

The loop γ may be covered by a finite union of compact discs K1, . . . ,KN as
in Theorem 2, so we get for each Kl a local holomorphic trivialization (f l1, f

l
2) of E

specified by the local gauges g√R provided by Theorem 2. We assume that for each
1 ≤ l ≤ N we have Kl ∩Kl+1 ∩ γ([0, 1]) 6= ∅ (where l = N + 1 is identified with
l = 1), and pick any point γ(τl) ∈ Kl ∩Kl+1. For 1 ≤ l ≤ N − 1, up to applying a
constant gauge transformation over Kl+1 we may assume that

(f l1(γ(τl)), f
l
2(γ(τl))) = (f l+1

1 (γ(τl)), f
l+1
2 (γ(τl))).

Let M(γ,Rq) be the monodromy transformation of the local trivializations, defined
by

(fN1 (γ(τN )), fN2 (γ(τN ))) = (f1
1 (γ(τN )), f1

2 (γ(τN )))M(γ,Rq).

Let T stand for the transposition matrix

T =

(
0 1
1 0

)
.
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Proposition 6. For any simple loop γ we have

M(γ,Rq) =

(
α(γ,Rq) 0

0 δ(γ,Rq)

)
T k(γ,q)

for some α(γ,Rq), δ(γ,Rq) ∈ C×.

Proof. Recall from (2.22) that ∆q = D ∪ {t(q)}. Assume first that t(q) /∈ D. Then
XRq is smooth. Now, since all ramification points of p|L : XRq → CP 1 are of index

2, the lift γ̃ of γ to XRq is a loop if and only if k(γ, q) = 0. Let ζ̃± be a continuous
lift of ζ± to γ̃. Then, we have

ζ̃±(Rq, γ̃(1)) = (−1)k(γ,q)ζ̃±(Rq, γ̃(0)).

Now, f l1 and f l2 belong to the ζ̃+- and ζ̃−-eigenspaces of θ respectively over Kl. In
the case k(γ, q) = 0, eigenvectors f0

1 and fN1 are both eigenvectors of θ for the same

eigenvalue ζ̃+. It follows that they are related by some nonzero multiplicative scalar
α, which shows the result. Similarly, in case k(γ, q) = 1 the vectors f0

1 and fN2 are
eigenvectors of θ for the same eigenvalue, so they only differ by some nonzero scalar.

In case t(q) ∈ D, i.e. t(q) = tj for some 0 ≤ j ≤ 4, the curve XRq has an
ordinary double point at (tj , 0), hence the form ω is unramified over tj . If γ is a
loop enclosing tj and no other point of D then M(γ) = I and k(γ, q) ≡ 0 (mod 2)
(because the points of D are counted with multiplicity), so we conclude by the
equality

T 2 = I.

In the case of an arbitrary loop γ, one concludes by a combination of the above
arguments. �

Now, assume that t(q) /∈ D. Using the notations of (2.11), let us set

τj = τj(q) = resz=tj (∂
⊗2
z ∠Q(z)) =

atj − b∏
0≤k≤4,k 6=j(tj − tk)

∈ C (5.1)

(where ∠ stands for contraction of tensor fields) and introduce the local holomorphic
co-ordinate

z̃j = τj(z − tj). (5.2)

This is indeed a local co-ordinate by the assumption that the root t(q) of the linear
functional az − b does not belong to D, which means τj 6= 0. Notice that as τj
depends continuously on q, there exists some M > 0 only depending on t0, . . . , t4
such that for all q ∈ S3

1(0) and all 0 ≤ j ≤ 4 we have

|τj(q)| ≤M. (5.3)

Then, a simple computation shows that up to holomorphic terms in z− tj we have

dz̃⊗2
j

z̃j
≈ Q(z).

We write z̃j = r̃je
√
−1ϕ̃j for the polar co-ordinates of the local parameter. With

respect to these polar co-ordinates, the circle ξj of radius r0 centered at tj then has
the equation

r̃j = |τj |r0. (5.4)

More precisely, it follows from (5.1) that we have

arg(z̃j) = arg(τj) + arg(z − tj),
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so the parameterization (4.2) of ξj becomes

ξj(ϕ̃j) = tj + r0e
√
−1ϕ̃j for ϕ̃j ∈ [arg(τj), 2π + arg(τj)]. (5.5)

Let γ denote the positively oriented simple loop around tj defined by r̃j = rj
for some fixed 0 < rj � 1 chosen so that one of the connected components of
CP 1 \ γ contains no other point of ∆q than tj . (In the case rj = |τj |r0 we get
γ = ξj , however we are not guaranteed that for a given q this choice of rj satisfies
the above requirement.) Let us define the unit norm trivialization

ffid
1 (z̃j) =

1√
e2m√R(r̃j) + 1

(
em
√
R(r̃j)

e−
√
−1ϕ̃j/2

)
(5.6)

ffid
2 (z̃j) =

1√
e2m√R(r̃j) + 1

(
em
√
R(r̃j)

−e−
√
−1ϕ̃j/2

)
(5.7)

in the disc r̃j ≤ rj with respect to the fiducial frame (3.11).

Proposition 7. Let γ be the positive simple loop defined by r̃j = rj.

(1) We have
hfid√

R
(ffid

1 , ffid
2 )→ 0 (R→∞).

(2) The frame ffid
1 , ffid

2 diagonalizes the fiducial Higgs field (3.14) with eigen-
values

±
√
Rr̃
− 1

2
j e−

√
−1ϕ̃j/2dz̃j , (5.8)

where we take the determination of the angle ϕ̃j ∈ [0, 2π).
(3) The corresponding factors found in Proposition 6 fulfill

α(γ,Rq) = 1 = δ(γ,Rq).

Proof. For part (1), as the vectors ffid
1 , ffid

2 are written in a unitary frame, we simply
compute

hfid√
R

(ffid
1 , ffid

2 ) =
e2m√R(r̃j) − 1

e2m√R(r̃j) + 1
.

Now, observe that by (3.9) we have

em
√
R(rj) ≈ exp

(
1

π
K0(8

√
Rrj)

)
≈ exp

(
1

2π
√

2 4
√
Rrj

e−8
√
Rrj

)
→ 1 (5.9)

as R→∞, since

(Rrj)
− 1

4 e−8
√
Rrj → 0.

For part (2), we first need to determine the eigendirections of the fiducial Higgs

field
√
Rθfid√

R
with respect to the fiducial frame. We need to find the eigenvalues

λ± of

√
R

(
0 r̃

−1/2
j em

√
R(r̃j)

z̃−1
j r̃

1/2
j e−m

√
R(r̃j) 0

)
dz̃j

=
√
R

(
0 r̃

−1/2
j em

√
R(r̃j)

r̃
−1/2
j e−

√
−1ϕ̃j−m√R(r̃j) 0

)
dz̃j .
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A direct computation gives that λ± are given by (5.8), with corresponding eigenspaces
spanned by unit vectors ffid

1 , ffid
2 introduced in (5.6), (5.7).

For part (3), we fix r̃j = rj and let ϕ̃j range over [0, 2π], with a branch cut at
ϕ̃j = 0, and we write

ffid
i (ϕ̃j) = ffid

i (z̃j).

We find

ffid
1 (2π) =

1√
e2m√R(r̃j) + 1

(
em
√
R(r̃j)

−1

)
= ffid

2 (0)

ffid
2 (2π) =

1√
e2m√R(r̃j) + 1

(
em
√
R(r̃j)

1

)
= ffid

1 (0).

�

Finally, let us study the neighbourhood of the ramification point t = t(q) = b
a .

Here, using the notation of (2.11), we introduce the local holomorphic co-ordinate

z̃t =

(
a∏4

j=0(t− tj)

) 1
3 (

z − b

a

)
.

Then, up to at least quadratic terms in z̃t we have

z̃tdz̃
⊗2
t ≈ Q(z).

We then write z̃t = r̃te
√
−1ϕ̃t for polar co-ordinates. Let γ be the simple positive

loop defined by r̃t = r5 for some 0 < r5 � 1 so that γ separates t(q) from the
logarithmic points. Finally, introduce the unit length trivialization

ffid
1 (z̃t) =

1√
e2`√R(r̃t) + 1

(
e`
√
R(r̃t)

e
√
−1ϕ̃t/2

)
,

ffid
2 (z̃t) =

1√
e2`√R(r̃t) + 1

(
e`
√
R(r̃t)

−e
√
−1ϕ̃t/2

)
over the disc r̃t ≤ r5 with respect to the fiducial frame (3.15).

Proposition 8. Let γ be a simple loop enclosing the ramification point t(q) in coun-
terclockwise direction such that the component of CP 1 \ γ containing t(q) contains
no logarithmic point tj. Then the frame ffid

1 , ffid
2 diagonalizes the fiducial Higgs

field (3.17), and the corresponding factors found in Proposition 6 fulfill

α(γ,Rq) = 1 = δ(γ,Rq).

Proof. Similar to Proposition 7, up to the following modifications: the eigenvalues

of the fiducial Higgs field are ±
√
Rr̃te

√
−1ϕ̃t/2dz, with corresponding eigendirections

ffid
1 , ffid

2 . �

5.2. Asymptotics of complex length co-ordinates. Here, we will study the
behaviour of the complex length co-ordinates (l2, l3) of MB(c,0) introduced in
Section 4.1 for the local systems obtained by applying the non-abelian Hodge and
Riemann–Hilbert correspondences to a Higgs bundle in a Hitchin fiber close to
infinity. More precisely, we set

li(E ,
√
Rθ) = tr RH(∇√R)[ρi]. (5.10)
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Notice that the connection∇√R depends on (E ,
√
Rθ), hence it is justified to include

the dependence of li on (E ,
√
Rθ) in the notation. However, to lighten notation

we will sometimes simply write li. With these notations, we will determine the
asymptotic behaviour as R→∞ of l2(E ,

√
Rθ), l3(E ,

√
Rθ) for any (E , θ) ∈ H−1(q),

where q ∈ S3
1 is fixed. Throughout, by the phase of z ∈ C× we will mean its image

under the natural projection

C× → U(1).

According to Theorem 2 for R � 0 and at any point in the complement of ∆q

there exists a 1-parameter family of frames that asymptotically diagonalize θ. The
family is obtained by rescaling a given frame by diagonal elements of SL(2,C). (One
may additionally apply the only non-trivial element T of the Weyl group, with the
effect of exchanging the two trivializations of the frame.) It follows that there exists
(up to permutation and the action of the Cartan subgroup S1 ⊂ SL(2,C)) a unique
such orthonormal frame. For any loop γ in CP 1 \∆q let us write

RH(∇√R)[γ] =

(
a(γ, (E ,

√
Rθ)) b(γ, (E ,

√
Rθ))

c(γ, (E ,
√
Rθ)) d(γ, (E ,

√
Rθ))

)
(5.11)

with respect to this (essentially) unique orthonormal base of the fiber V |γ(0) of the
underlying smooth vector bundle V at γ(0). Notice that the effect of the action
by the Cartan subgroup means that the off-diagonal entries are only defined up
to a common phase factor. Our aim in this section is to study the asymptotic
behaviour of the entries of RH(∇√R)[ρi] for 2 ≤ i ≤ 3, and in particular their
trace. Clearly, the set of eigenvalues (hence the trace) is invariant with respect to
the action of the Weyl group. In order to achieve this, we will decompose the class
of ρi in π1(CP 1 \ ∆q, ρi(0)) into a concatenation of several loops (see Figure 1).
The number of loops appearing in this decomposition will be 2 or 3, depending on
the position of the ramification point t(q) with respect to the decomposition of S
into pairs of pants (4.3). Around each of the loops appearing in the decomposition
we will explicitly determine the monodromy, and the monodromy around ρi is
essentially the product of the monodromies of the constituent loops.

Proposition 9. For any fixed q ∈ S3
1 such that t(q) /∈ Dj, the connection form of

the flat connection associated to the fiducial solution (3.12), (3.14) restricted to the
curve ξj (given by r̃j = rj) with respect to the unit diagonalizing frame (5.6), (5.7)
of the Higgs field reads as 3

4 + 2
√
−1
√
Rrj sin

(
ϕ̃j
2

)
− 1

2rj∂r̃m
√
R(rj)

− 1
2rj∂r̃m

√
R(rj)

3
4 − 2

√
−1
√
Rrj sin

(
ϕ̃j
2

)√−1dϕ̃j .

Proof. This follows from a straightforward computation. Set

F =
1√

e2m√R(rj) + 1

(
em
√
R(rj) em

√
R(rj)

e−
√
−1ϕ̃j/2 −e−

√
−1ϕ̃j/2

)
for the matrix formed by the restrictions of the column vectors (5.6), (5.7) to ξj ,
with determinant

det(F ) = −2em
√
R(rj)−

√
−1ϕ̃j/2

e2m√R(r̃j) + 1
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and inverse matrix given by

F−1 =

√
e2m√R(rj) + 1

2em
√
R(rj)−

√
−1ϕ̃j/2

(
e−
√
−1ϕ̃j/2 em

√
R(rj)

e−
√
−1ϕ̃j/2 −em√R(rj)

)
.

Since on ξj we have dr̃j = 0, we need to compute the dϕ̃j-part of

F−1 · (d +Afid√
R

+ θfid√
R

+ (θfid√
R

)†) = −F−1dF + AdF−1(Afid√
R

+ θfid√
R

+ (θfid√
R

)†).

Note first that AdF−1 acts trivially on the central part of (3.12). On the other
hand, a computation shows that

F−1

(
F√R(rj) 0

0 −F√R(rj)

)
F

=
1

2em
√
R(rj)−

√
−1ϕ̃j/2

(
0 −2em

√
R(rj)−

√
−1ϕ̃j/2F√R(rj)

−2em
√
R(rj)−

√
−1ϕ̃j/2F√R(rj) 0

)

=

(
0 −F√R(rj)

−F√R(rj) 0

)
.

By Proposition 7, AdF−1(θfid√
R

+ (θfid√
R

)†) is diagonal with eigenvalues given by

±
√
Rrj
√
−1(e

√
−1ϕ̃j/2 − e−

√
−1ϕ̃j/2)dϕ̃j = ∓2

√
Rrj sin

(
ϕ̃j
2

)
dϕ̃j .

Lastly, restricted to ξj we find

F−1dF =
1

2em
√
R(rj)−

√
−1ϕ̃j/2

(
e−
√
−1ϕ̃j/2 em

√
R(rj)

e−
√
−1ϕ̃j/2 −em√R(rj)

)
·
(

0 0

−
√
−1
2 e−

√
−1ϕ̃j/2

√
−1
2 e−

√
−1ϕ̃j/2

)
dϕ̃j

=

√
−1

4

(
−1 1
1 −1

)
dϕ̃j .

We conclude combining the above computations and using the identity (see (3.10))

2F√R(rj) +
1

4
=

1

2
rj∂r̃m√R(rj).

�

The behaviour of the entries of the matrix (5.11) for R� 0 and the choice γ = ξj
is given by the following.

Proposition 10. Fix any q ∈ S3
1 and consider the loop γ = ξj.

(1) The behaviour of the diagonal entries of (5.11) as R → ∞ is given by the
limits

a(ξj , (E ,
√
Rθ))→ 0

d(ξj , (E ,
√
Rθ))→ 0

as R→∞, at exponential rate in
√
R.
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(2) The behaviour of the off-diagonal entries of (5.11) as R → ∞ is given by
the limits

b(ξj , (E ,
√
Rθ))e8<√τj

√
Rr0 →

√
−1

c(ξj , (E ,
√
Rθ))e−8<√τj

√
Rr0 →

√
−1

where τj is defined in (5.1) and r0 > 0 is the radius of ξj in the Euclidean
metric.

Proof. Let us set

rj = |τj |r0 ∈ R+

(see (5.4)). Recall the reparameterization (5.5) of ξj with respect to the polar co-
ordinates of the local holomorphic chart (5.2). Integrating the connection form of
the flat connection found in Proposition 9 from arg(τj) to 2π+arg(τj) with respect
to ϕ̃j we find the matrix√−1 3π

2 − 8 cos
(

arg(τj)
2

)√
Rrj −

√
−1πrj∂r̃m√R(rj)

−
√
−1πrj∂r̃m√R(rj)

√
−1 3π

2 + 8 cos
(

arg(τj)
2

)√
Rrj

 . (5.12)

There are two cases to consider depending on whether <√τj = 0 or <√τj 6= 0.
We first treat the case <√τj 6= 0. This condition is equivalent to the pair of

conditions |τj | 6= 0 (equivalently, t(q) /∈ D) and

cos

(
arg(τj)

2

)
6= 0,

equivalently arg(τj) 6= π + 2kπ for k ∈ Z. The matrix (5.12) is then of the form(
A− C B
B A+ C

)
with

A = Aj =
√
−1

3π

2

B = Bj = −
√
−1πrj∂r̃m√R(rj),

C = Cj = 8 cos

(
arg(τj)

2

)√
Rrj = 8<√τj

√
Rr0 6= 0,

where we have used (5.4) in the third line. A straightforward computation shows

that setting D =
√
B2 + C2 the exponential of the negative of the above matrix is

−
√
−1

2D

(
(−C +D)e−D + (C +D)eD −2B sinhD

−2B sinhD (C +D)e−D + (−C +D)eD

)
. (5.13)

According to (3.9) as R→∞ for fixed rj , we have

B
e8
√
Rrj

√
π 4
√
Rrj

→
√
−1 (5.14)

C√
Rrj

→ υj (5.15)

where we have set

υj = 8 cos

(
arg(τj)

2

)
∈ [−8, 8] \ {0}. (5.16)
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As a consequence we find

D ≈ |C|.
Moreover, notice that up to higher order terms we have√

B2 + C2 = C

√
1 +

B2

C2
≈ C

(
1 +

B2

2C2

)
,

implying

−C +
√
B2 + C2

2
√
B2 + C2

e±
√
B2+C2 ≈ B2

4C2
e±C ≈ − π

4υ2
j

e(−16±υj)
√
Rrj√

Rrj
.

We infer that the leading order terms of the matrix (5.13) are equal to

√
−1

(
B2

4C2 e
−C + eC −BC e

|C|

−BC e
|C| e−C + B2

4C2 e
C

)

≈

 −
√
−1π

4υ2
j

√
Rrj

e(−16−υj)
√
Rrj +

√
−1eυj

√
Rrj

√
πe
−(8−|υj |)

√
Rrj

υj 4
√
Rrj

√
πe
−(8−|υj |)

√
Rrj

υj 4
√
Rrj

√
−1e−υj

√
Rrj + −

√
−1π

4υ2
j

√
Rrj

e(−16+υj)
√
Rrj


This matrix describes the action of RH(∇√R)[ξj ] with respect to the bases

ffid
1 (0), ffid

2 (0) and ffid
1 (2π), ffid

2 (2π)

of the fiber V |ξj(0) = V |ξj(1) (recall from the proof of Proposition 7 our convention

that the argument of ffid
i is angular co-ordinate ϕ̃j). In order to find the matrix of

RH(∇√R)[ξj ] with respect to the single basis ffid
1 (0), ffid

2 (0), we need to multiply the
above matrix from the left by the inverse of M(ξj , Rq). By Propositions 6 and 7,
M(ξj , Rq) = T and the product is

RH(∇√R)[ξj ] = (5.17)
√
πe
−(8−|υj |)

√
Rrj

υj 4
√
Rrj

√
−1e−υj

√
Rrj −

√
−1π

4υ2
j

√
Rrj

e(−16+υj)
√
Rrj

−
√
−1π

4υ2
j

√
Rrj

e(−16−υj)
√
Rrj +

√
−1eυj

√
Rrj

√
πe
−(8−|υj |)

√
Rrj

υj 4
√
Rrj

 .

By (5.16) we have 8 − |υj | ≥ 0, whence we immediately get part (1) (in the case

8 − |υj | = 0, the assertion follows from the factor 4
√
R in the denominator). On

the other hand, (5.16) also shows that −16 − υj ≤ υj , with equality if and only if

cos
(

arg(τj)
2

)
= −1. In the case where−16−υj < υj , the first term of c(ξj , (E ,

√
Rθ))

is negligible compared to the second one, and we get (2) for c(ξj , (E ,
√
Rθ)). In case

cos
(

arg(τj)
2

)
= −1, the exponential factors in the two terms of c(ξj , (E ,

√
Rθ))

agree, however the polynomial term in R converges to 0 for the first term, while
is constant for the second term, again implying (2) for c(ξj , (E ,

√
Rθ)). A similar

argument may be applied to get (2) for b(ξj , (E ,
√
Rθ)).

We now turn to the case <√τj = 0. In this case, (5.12) simplifies to

√
−1

(
3π
2 −πrj∂r̃m√R(rj)

−πrj∂r̃m√R(rj)
3π
2

)
.
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The diagonal entries of this matrix are constant, and its off-diagonal ones converge
to 0 as R→∞. By continuity, the matrix exponential of the negative of this matrix
converges to

√
−1

(
1 0
0 1

)
.

In order to obtain the matrix of RH(∇√R)[ξj ] with respect to the single basis
f1(0), f2(0), we again need to multiply by the transposition matrix T , and this gives
the desired formulas. �

Next, we will consider the loop based at x2

ζ2 = η1 ∗ ξ1 ∗ η−1
1 ∗ η2 ∗ ξ2 ∗ η−1

2

enclosing the punctures t1, t2 once in counterclockwise direction. Clearly, the classes

[ρ2] ∈ π1(CP 1 \D, s2) and [ζ2] ∈ π1(CP 1 \D,x2)

are conjugate to each other by ψ2, so that RH(∇√R)[ζ2] is conjugate in SL(2,C)
to RH(∇√R)[ρ2] by the parallel transport map of ∇√R along ψ2. In particular,

this implies that the trace of RH(∇√R)[ζ2] agrees with the trace l2(E ,
√
Rθ) of

RH(∇√R)[ρ2]. Our next aim is to compute the asymptotic behaviour of the co-
efficients of RH(∇√R)[ζ2] as R → ∞. In order to state the result, we need some
preparation. We will consider the part lying between tj and tj + rj of the ray
emanating out from tj with direction parallel to the positive real line, and denote
this path by σj (see Figure 5). We then set for j ∈ {1, 2}

πj = πj(q) =

∫ tj

x2

Z+(q, z), (5.18)

the contour of the line integral being ηj ∗ σ−1
j . Notice that this is a convergent

improper integral; indeed, by (2.20) and (2.11) the integrand grows as |z − tj |−
1
2

near tj . We will indicate the dependence of πj on q whenever we vary it. Notice
that by its definition (2.20), Z+ (hence πj) is only defined up to a sign. We take
Z+ to be the square root that is the continuous extension to ηj of the square root
corresponding to the negative sign in (5.8). We will return to our choice of sign
in (5.25).

Proposition 11. For some choice of the diagonalizing frame at x2, as R → ∞,
for 1 ≤ j ≤ 2 we have

a(ηj ∗ ξj ∗ η−1
j , (E ,

√
Rθ))→ 0

b(ηj ∗ ξj ∗ η−1
j , (E ,

√
Rθ))e4

√
R<πj →

√
−1e

−2
∫
ηj
BLE

c(ηj ∗ ξj ∗ η−1
j , (E ,

√
Rθ))e−4

√
R<πj →

√
−1e

2
∫
ηj
BLE

d(ηj ∗ ξj ∗ η−1
j , (E ,

√
Rθ))→ 0.

Proof. By Theorem 2, parallel transport map of ∇√R along ηj with respect to a
diagonalizing frame of the Higgs field is approximated by the matrix

Pj(E ,
√
Rθ) =

(
e
∫
ηj

1
2Bdet(E)+BLE+

√
R<Z+(q,z)

0

0 e
∫
ηj

1
2Bdet(E)−BLE+

√
R<Z−(q,z)

)
.

(5.19)
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x2

t1

t2

ρ1 = ξ1

ξ2

η1

η2

σ2

σ1

Figure 5. Paths σ1, σ2.

Parallel transport Pj(E ,
√
Rθ) carries a unit length diagonalizing frame

(f+(x2), f−(x2)) (5.20)

of θ√R at ηj(0) to a diagonalizing frame

(f+(ηj(1)), f−(ηj(1))) (5.21)

at ηj(1). This latter, however, is not of unit length; instead, the lengths of its
vectors are given for i ∈ {±} by

|fi(ηj(1))| = e
√
R

∫
ηj
<Zi(q,z)

. (5.22)

On the other hand, the frame (5.6), (5.7) with r̃j = r0, ϕ̃j = 0 is an orthonormal
diagonalizing frame of the fiducial Higgs field at the same point ηj(1).

Lemma 1. For suitable choices of the phases of the vectors (5.20), the matrix
expressing the basis elements of (5.21) with respect to (5.6), (5.7) is given by

Qj(E ,
√
Rθ) ≈

(
e
∫
ηj

√
R<Z+(q,z)

0

0 e
∫
ηj

√
R<Z−(q,z)

)
Proof. With respect to the frames (3.19) and (3.21), θ is in normal form, equal
to the fiducial Higgs field. It follows that the frame (5.6), (5.7) diagonalizes both
θ and the fiducial Higgs field. The same holds for (5.21). Any two diagonalizing
bases of a given semi-simple (but not simple) endomorphism of a 2-dimensional
vector space over C are related to one another by a diagonal automorphism with
some diagonal elements in C×. The norms of the diagonal elements have been
determined in (5.22). We get

Qj(E ,
√
Rθ) ≈

(
aje

∫
ηj

√
R<Z+(q,z)

0

0 dje
∫
ηj

√
R<Z−(q,z)

)
for some aj , dj ∈ U(1).
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Now, the union of sufficiently narrow tubular neighbourhoods of ηj being simply
connected, Theorem 2 may be applied to it. It follows that we may choose the
vectors (5.20) so as to simultaneously get rid of all the phase factors aj , dj . �

It follows that the monodromy matrix of ∇√R along the loop ηj ∗ ξj ∗ η−1
j with

respect to the frame (5.21) is equal to

AdPj(E,
√
Rθ)−1 ◦AdQj(E,

√
Rθ)−1(RH(∇√R)[ξj ]).

In view of Proposition 10 we find

a(ηj ∗ ξj ∗ η−1
j , (E ,

√
Rθ))e(8−υj)

√
Rrjυj

4
√
Rrj →

√
π

b(ηj ∗ ξj ∗ η−1
j , (E ,

√
Rθ))e

√
Rrjυj+4

∫
ηj

√
R<Z+(q,z) →

√
−1e

−2
∫
ηj
BLE (5.23)

c(ηj ∗ ξj ∗ η−1
j , (E ,

√
Rθ))e

−
√
Rrjυj−4

∫
ηj

√
R<Z+(q,z) →

√
−1e

2
∫
ηj
BLE (5.24)

d(ηj ∗ ξj ∗ η−1
j , (E ,

√
Rθ))e(8−υj)

√
Rrjυj

4
√
Rrj →

√
π

with

υj = 8 cos

(
arg(τj)

2

)
,

rj = |τj |r0.

Given that BLE is a
√
−1R-valued 1-form, the above limiting values are of length

1 and
√
π respectively; the phases appearing in (5.23) and (5.24) will play a funda-

mental role in Section 6.
We now make the observation that by (2.20) and (2.11) for 0 < r0 � 1 we have

∫
σj

Z+(q, z) = ±
∫
σj

√
(az − b)∏4
k=0(z − tk)

dz

≈ ±
√

atj − b∏
0≤k≤4,k 6=j(tj − tk)

∫ tj+r0

tj

dz
√
z − tj

= ±2
√
τjr0

where we have used (5.1) in the last line. Notice that we have a freedom of sign in
choosing both Z+(q, z) and

√
τj . We require that the sign of Z+ is chosen so that

the precise form of the above equality be

∫
σj

Z+(q, z) = −2
√
τjr0. (5.25)
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We infer that the integral appearing in the exponent of the off-diagonal terms (5.23)–
(5.24) is of the form√

Rrjυj + 4

∫
ηj

√
R<Z+(q, z) = 8

√
Rr0<

√
τj + 4

√
R

∫
ηj

<Z+(q, z)

= 4
√
R

(
−
∫
σj

<Z+(q, z) +

∫
ηj

<Z+(q, z)

)

= 4
√
R

∫ tj

x2

<Z+(q, z)

= 4
√
R<πj , (5.26)

which allows us to recast the limits (5.23)–(5.24) in the desired form. The assertion
about the diagonal terms follows as in Proposition 10 (see the paragraph following
formula (5.17)). �

Proposition 12. Fix q ∈ S3
1 and consider the loop γ = ρ2. In case <(π1−π2) 6= 0

we have the limit

l2(E ,
√
Rθ)−12 cosh

(
2

∫
η2−η1

BLE + 4
√
R<(π2 − π1)

)
→ −1

as R→∞. In case <(π1− π2) = 0 the limit of l2(E ,
√
Rθ) as R→∞ exists and is

finite.

Proof. As mentioned above, it is sufficient to find the asymptotic behaviour of the
diagonal entries of RH(∇√R)[ζ2]. Now, we have

RH(∇√R)[ζ2] (5.27)

= RH(∇√R)[η1 ∗ ξ1 ∗ η−1
1 ] RH(∇√R)[η2 ∗ ξ2 ∗ η−1

2 ].

By definition, l2(E ,
√
Rθ) is the trace of this matrix, hence we need to compute the

diagonal entries of the product (5.27).

Its entry a(ζ2, (E ,
√
Rθ)) of index (1, 1) is the sum

a(η1∗ξ1∗η−1
1 , (E ,

√
Rθ))a(η2∗ξ2∗η−1

2 , (E ,
√
Rθ))+b(η1∗ξ1∗η−1

1 , (E ,
√
Rθ))c(η2∗ξ2∗η−1

2 , (E ,
√
Rθ)).

According to (5.17) the leading order term of the asymptotic expansion of its first
term as R→∞ is given by

π
e−(8−υ1)

√
Rr1−(8−υ2)

√
Rr2

υ1υ2
4
√
r1r2R2

. (5.28)

The leading order term of the asymptotic expansion of the second term of a(ζ2, (E ,
√
Rθ))

is

− exp

(
2

∫
η2−η1

BLE + 4
√
R<(π2 − π1)

)
. (5.29)

We again emphasize that this formula gives the polar decomposition of the corre-
sponding term, as

∫
η2−η1 BLE is purely imaginary.

The terms of the (2, 2)-entry d(ζ2, (E ,
√
Rθ)) of (5.27) are similar to those of

a(ζ2, (E ,
√
Rθ)), up to exchanging the subscripts j = 1 and j = 2 of υj , rj , ηj .

Namely, the term coming from the product of diagonal entries of the factors has
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leading order term in its asymptotic expansion given by (5.28), and the leading
order term of its other term is

− exp

(
2

∫
η1−η2

BLE + 4
√
R<(π1 − π2)

)
. (5.30)

Notice that the product of (5.29) and (5.30) equals 1.

Now, we observe that by (5.16) the coefficient of
√
R in the exponent of (5.28) is

never positive (as it has already been pointed out in the proof of Proposition 10).

On the other hand, at least one of the coefficients of
√
R in the exponent of (5.29)

and in the exponent of (5.30) is non-negative. In the extreme case where the

coefficients of
√
R in the exponent of all terms (5.28), (5.29) and (5.30) vanish,

then the
√
R in the denominator of (5.28) guarantees that it is negligible compared

to the sum of the other two terms. To sum up, this shows that in the trace,
the leading-order term may not be (5.28), rather it is equal to (5.29) or (5.30)
according as <(π1 − π2) < 0 or <(π1 − π2) > 0, and to the sum of these terms if
<(π1 − π2) = 0. In any case, the term (5.28) converges to 0 as R → ∞, and if
<(π1 − π2) > 0 (respectively, <(π1 − π2) < 0) then the same limit holds for the
term (5.29) (respectively, (5.30)). Finally, we conclude using that for a ray C of the

form te
√
−1φ0 with fixed −π2 < φ0 <

π
2 and variable t > 0 we have

lim
t→∞

2 cosh(te
√
−1φ0)e−te

√
−1φ0

= 1.

�

Recall Hopf co-ordinates (2.24) on S3
1 , ϕ being the co-ordinate along the Hopf

fibers.

Proposition 13. Fix q ∈ S3
1 and assume π1(q) 6= π2(q). Then there exists a unique

ϕ2 ∈ [0, 2π) such that for every LE ∈ Jac(Xq) the co-ordinate l2(E , e
√
−1ϕ2
√
Rθ)

remains bounded as R→∞.

Proof. According to Proposition 12, l2(E , e
√
−1ϕ2
√
Rθ) is bounded as R → ∞ if

and only if the equation

<(π1(e
√
−1ϕq)− π2(e

√
−1ϕq)) = 0

holds for the variable ϕ ∈ [0, 2π). This quantity is the horizontal projection of∫ t1

t2

Z+(e
√
−1ϕq, z),

where the contour of integration is σ1 ∗ η−1
1 ∗ η2 ∗ σ−1

2 . Now, taking into account
the definition (2.20), we have

Z+(e
√
−1ϕq, z) = e

√
−1ϕ/2Z+(q, z).

Clearly, there exists a unique value ϕ2 ∈ [0, 2π) satisfying the property that the non-
zero complex number π1(q)− π2(q) multiplied by the unit length complex number

e
√
−1ϕ2/2 has horizontal projection equal to 0. �

The results of this subsection have been stated for the case of l2(E ,
√
Rθ). We

now proceed to stating the results analogous to Propositions 12 and 13 for the case
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of l3(E ,
√
Rθ), whose proofs are straightforward modifications of the ones proven so

far. For j ∈ {0, 4} introduce

πj = πj(q) =

∫ tj

x4

Z+(q, z)

along some path in S3.

Proposition 14. Fix q ∈ S3
1 .

(1) In case <(π4(q)− π0(q)) 6= 0 we have the limit

l3(E ,
√
Rθ)−12 cosh

(
2

∫
η4−η0

BLE + 4
√
R<(π4 − π0)

)
→ −1

as R→∞.
(2) In case <(π4(q)− π0(q)) = 0 the limit of l3(E ,

√
Rθ) as R→∞ exists and

is finite.
(3) If π4(q) 6= π0(q), then there exists a unique ϕ3 ∈ [0, 2π) such that for

every LE ∈ Jac(Xq) the co-ordinate l3(E , e
√
−1ϕ3
√
Rθ) remains bounded as

R→∞.

5.3. Asymptotic behaviour of complex twist co-ordinates. For i ∈ {2, 3}
we let

[pi(E ,
√
Rθ) : qi(E ,

√
Rθ)]

stand for the complex twist co-ordinates [pi : qi] introduced in Section 4.2 of the

local system RH ◦ψ(E ,
√
Rθ). In this section we will determine the asymptotic

behaviour of these co-ordinates as R → ∞. For this purpose, we first determine
the asymptotic behaviour of the quantities

ui, wi, Ai, Ri, R
′
i−1, Ti, Ui, hi, ψi, Pi, Qi

introduced in Section 4.2. For ease of notation, we will often omit to indicate the
dependence of the co-ordinates on (E ,

√
Rθ).

In what follows, for 2 × 2 matrices A,B with non-vanishing entries depending
on a parameter R ∈ R we write A ≈ B whenever the limit of each entry of A
divided by the corresponding entry of B converges to 1 as R → ∞. Similarly, for
two scalar quantities a, b depending on R ∈ R we write a ≈ b to express that a

b → 1
as R→∞. We say a is negligible compared to b if a

b → 0 as R→∞.
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Recall from Section 2.2 that c±j = ±
√
−1. We start by recording some asymptotic

behaviours as R→∞ ensuing from Sections 4.2 and 5.2 in the case <(π1−π2) 6= 0

l1 = c+1 + c−1 = 0

l2 ≈ −2 cosh

(
4
√
R<(π2 − π1) + 2

∫
η2−η1

BLE

)
(5.31)

u2 =
l1 − c−2 l2
c+2 − c

−
2

≈ − cosh

(
4
√
R<(π2 − π1) + 2

∫
η2−η1

BLE

)
(5.32)

U2 ≈

(
1 0

− cosh
(

4
√
R<(π2 − π1) + 2

∫
η2−η1 BLE

)
1

)
(5.33)

A2 =

(
c+2 0
0 c−2

)
=
√
−1

(
1 0
0 −1

)
(5.34)

R2 ≈

− cosh
(

4
√
R<(π2 − π1) + 2

∫
η2−η1 BLE

)
1

∗ − cosh
(

4
√
R<(π2 − π1) + 2

∫
η2−η1 BLE

)
(5.35)

R′1 ≈

−√−1 cosh
(

4
√
R<(π2 − π1) + 2

∫
η2−η1 BLE

) √
−1

∗
√
−1 cosh

(
4
√
R<(π2 − π1) + 2

∫
η2−η1 BLE

)
(5.36)

where the entries marked by ∗ may be determined by the (known) determinant of
the matrices, but we refrain from spelling them out as they will be irrelevant for
our purposes. We set

π3 = π3(q) =

∫ t3

x3

Z+(q, z).

Proposition 15. For 2 ≤ i ≤ 4 we have the asymptotic behaviours

h−1
i ≈

(
vi wie

−4
√
R<πi−2

∫
ηi
BLE

−vie4
√
R<πi+2

∫
ηi
BLE wi

)

and

hi ≈
1

2viwi

(
wi −wie−4

√
R<πi−2

∫
ηi
BLE

vie
4
√
R<πi+2

∫
ηi
BLE vi

)
for some vi, wi ∈ C×.

Proof. Let us recall from Subsection 4.2 that hi is the constant matrix that identifies
V |Si with the model local system Vi(li−1, li) admitting the same monodromies (up
to conjugacy) around the punctures. These local systems are both given in terms
of their fiber C2 over xi endowed with an action of π1(Si, xi), where we identify
V |xi with C2 using an orthonormal diagonalizing frame (f+(xi), f−(xi)) of θ.

By definition, the monodromy matrix of Vi(li−1, li) around the loop ηi ∗ ξi ∗ η−1
i

centered at xi is the diagonal matrix Ai. On the other hand, by Proposition 11 the
monodromy matrix of V |Si around the same loop with respect to (f+(xi), f−(xi))
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is given by  √
πe−(8−υi)

√
Rri

υi
4
√
Rri

−
√
−1e

−4
√
R<πi−2

∫
ηi
BLE

−
√
−1e

4
√
R<πi+2

∫
ηi
BLE

√
πe−(8−υi)

√
Rri

υi
4
√
Rri

 . (5.37)

Now, in order to determine h−1
i we need to find the eigenvectors of the above

matrix. As we have shown in Proposition 11, the diagonal entries converge to 0
and its determinant obviously converges to 1. Therefore, the eigenvalues are ±

√
−1,

and a direct computation then shows that h−1
i is of the desired form. We conclude

by taking matrix inverse. �

Remark 2. Remember from (5.18) that πi is only defined up to a sign because
the same holds for Z+. In case we change the sign of Z+, the vectors of the frame
(f+(xi), f−(xi)) get interchanged with each other, because the first of these spans the
Z+-eigenspace of θ. Writing the monodromy matrix of V |Si around the loop ηi ∗ξi ∗
η−1
i with respect to the frame (f−(xi), f+(xi)) can be obtained by conjugating (5.37)

by the transposition matrix T . This gives the exact same matrix (5.37) (up to
the change of sign of πi), so the value of its diagonalizing endomorphism hi is
independent of the choice of sign of πi.

Proposition 16. (1) If <(π2 − π1) > 0 then we have

h−1
2 ≈ v2

(
1 −2e

−4
√
R<(π2−π1)−2

∫
η2−η1

BLE

−e4
√
R<π2+2

∫
η2
BLE −2e

4
√
R<π1+2

∫
η1
BLE

)
for some v2 ∈ C×.

(2) If <(π2 − π1) < 0 then we have

h−1
2 ≈ v2

(
1 2e

4
√
R<(π2−π1)+2

∫
η2−η1

BLE

−e4
√
R<π2+2

∫
η2
BLE 2e

4
√
R<(2π2−π1)+2

∫
2η2−η1

BLE

)
for some v2 ∈ C×.

Proof. By Proposition 15, we just need to find the values of v2, w2; for this purpose,
we will use the monodromy around the loop η1 ∗ ξ1 ∗ η−1

1 . Indeed, it is required
that the (1, 2)-entry of

h2 RH(∇√R)[η1 ∗ ξ1 ∗ η−1
1 ]h−1

2

be equal to
√
−1. After elementary algebra, this entry is asymptotic to

−
√
−1

w2

2v2

(
e
−4
√
R<π1−2

∫
η1
BLE − e4

√
R<(π1−2π2)+2

∫
η1−2η2

BLE
)
.

Now, if <(π2−π1) > 0 then the second term in this expression is negligible compared
to the first one, therefore the condition for this entry to be equal to

√
−1 reads as

w2 ≈ −2v2e
4
√
R<π1+2

∫
η1
BLE

(
1 + e

−8
√
R<(π2−π1)−4

∫
η2−η1

BLE + · · ·
)
,

the first term being dominant. Plugging this value into Proposition 15, we find the
desired result.

The second case can be proven similarly. �

Proposition 17. Fix q ∈ S3
1 .

(1) Assume
∫ t2
t1
<Z+ = <(π2 − π1) > 0.
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(a) If

2

∫ t2

t1

<Z+ <

∫ t3

t2

<Z+

then we have
p2

q2
≈ 1

2
e−

∫ t2
t1

(4
√
R<Z++2BLE ) → 0

(b) If ∫ t2

t1

<Z+ <

∫ t3

t2

<Z+ < 2

∫ t2

t1

<Z+

then we have
p2

q2
≈ −e−

∫ t3
t2

(4
√
R<Z++2BLE )+

∫ t2
t1

(4
√
R<Z++2BLE ) → 0

(c) If

0 <

∫ t3

t2

<Z+ <

∫ t2

t1

<Z+

then we have
p2

q2
≈ −e−

∫ t3
t2

(4
√
R<Z++2BLE )+

∫ t2
t1

(4
√
R<Z++2BLE ) →∞

(d) If ∫ t3

t2

<Z+ < 0

then we have
p2

q2
≈ 1

2
e
∫ t2
t1

(4
√
R<Z++2BLE ) →∞

as R→∞.
(2) Assume

∫ t2
t1
<Z+ = <(π2 − π1) < 0.

(a) If ∫ t3

t2

<Z+ < 2

∫ t2

t1

<Z+

then we have
p2

q2
≈ 1

2
e
∫ t2
t1

(4
√
R<Z++2BLE ) → 0

(b) If

2

∫ t2

t1

<Z+ <

∫ t3

t2

<Z+ <

∫ t2

t1

<Z+

then we have
p2

q2
≈ −e

∫ t3
t2

(4
√
R<Z++2BLE )−

∫ t2
t1

(4
√
R<Z++2BLE ) → 0

(c) If ∫ t2

t1

<Z+ <

∫ t3

t2

<Z+ < 0

then we have
p2

q2
≈ −e

∫ t3
t2

(4
√
R<Z++2BLE )−

∫ t2
t1

(4
√
R<Z++2BLE ) →∞
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(d) If

0 <

∫ t3

t2

<Z+

then we have

p2

q2
≈ 1

2
e−

∫ t2
t1

(4
√
R<Z++2BLE ) →∞

as R→∞.

In the above formulas, the contour of
∫ t2
t1

is

σ1 ∗ η−1
1 ∗ η2 ∗ σ−1

2 ,

and the one of
∫ t3
t2

is

σ2 ∗ η−1
2 ∗ ψ2 ∗ η3 ∗ σ−1

3 .

Remark 3. Just as in Remark 2, cases (1) and (2) are symmetric under change
of sign of Z+.

Proof. Our task is to compute

P2 = h3 ◦ ψ2 ◦ h−1
2 , (5.38)

where ψ2 stands for parallel transport map along the path ψ2. Since constant factors
v2, v3 multiplyingQi (or Pi) have no influence on the definition (4.11) of the complex
twist co-ordinates, from now on we will ignore constant factors; said differently, the
formulas of the rest of this section are valid in PGL(2,C). In particular, the exact
value of the constants v3, w3 appearing in Proposition 15 will not be relevant, the
essential information is that their ratio is well-defined. Just as in the proof of
Proposition 11, with respect to suitable diagonalizing bases we have

ψ2 ≈

(
e
∫
ψ2

( 1
2Bdet(E)+BLE+

√
R<Z+(q,z)) 0

0 e
∫
ψ2

( 1
2Bdet(E)−BLE−

√
R<Z+(q,z))

)
.

We take the frame at ψ2(0) = x2 to consist of unit vectors, and then the above
matrix expresses the action of parallel transport with respect to a basis at ψ2(1) =
x3 whose first and second vectors are respectively of length

exp

(
±
√
R

∫ x3

x2

<Z+(q, z)

)
.

It follows that the action of parallel transport along ψ2, written in unit-length
diagonalizing bases both at x2, x3, is described by the matrix(

e
∫
ψ2

( 1
2Bdet(E)+BLE+2

√
R<Z+(q,z)) 0

0 e
∫
ψ2

( 1
2Bdet(E)−BLE−2

√
R<Z+(q,z))

)
.

For ease of notation, from now on we will drop the argument of Z+ and the term
1
2Bdet(E) in the argument of the exponential (which has no effect in PGL(2,C)).

Using Proposition 15, the product h3ψ2 reads as

h3ψ2 ≈
1

2v3w3

(
w3e

2
√
R

∫
ψ2
<Z++

∫
ψ2
BLE −w3e

−4
√
R<π3−2

√
R

∫
ψ2
<Z+−

∫
ψ2+2η3

BLE

v3e
4
√
R<π3+2

√
R

∫
ψ2
<Z++

∫
ψ2+2η3

BLE v3e
−2
√
R

∫
ψ2
<Z+−

∫
ψ2
BLE

)
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We first treat the case (2), i.e. we assume <(π2 − π1) < 0. According to
Proposition 16, the (1, 1)-entry of (5.38) is then of the form

v2

2v3
e
∫
ψ2

(BLE+2
√
R<Z+) +

v2

2v3
e
−

∫
ψ2

(BLE+2
√
R<Z+)+4

√
R<(π2−π3)+2

∫
η2−η3

BLE ,

(5.39)
and its (1, 2)-entry is

q2 =
v2

v3
e
∫
ψ2

(BLE+2
√
R<Z+)+4

√
R<(π2−π1)+2

∫
η2−η1

BLE (5.40)

−v2

v3
e
−

∫
ψ2

(BLE+2
√
R<Z+)+4

√
R<(2π2−π1−π3)+2

∫
2η2−η1−η3

BLE (5.41)

We now turn to computing the ratio of the entries of the first row of the matrix

Q2 = A
− 1

2
3 U3P2U

−1
2 . (5.42)

Since A
− 1

2
3 U3 is lower triangular, left multiplication by this matrix does not affect

the quotient of the entries in the first row, so we may ignore this factor. On the
other hand, since <(π1 − π2) 6= 0, we have by (5.33)

U−1
2 =

(
1 0
−u2 1

)
≈

(
1 0

cosh
(

4
√
R<(π2 − π1) + 2

∫
η2−η1 BLE

)
1

)
.

The (1, 1)-entry of (5.42) reads as

p2 ≈
v2

2v3
e
∫
ψ2

(BLE+2
√
R<Z+) (5.43)

+
v2

2v3
e
−

∫
ψ2

(BLE+2
√
R<Z+)+4

√
R<(π2−π3)+2

∫
η2−η3

BLE (5.44)

+
v2

v3
cosh

(
4
√
R<(π2 − π1) + 2

∫
η2−η1

BLE

)
e
∫
ψ2

(BLE+2
√
R<Z+)+4

√
R<(π2−π1)+2

∫
η2−η1

BLE

(5.45)

− v2

v3
cosh

(
4
√
R<(π2 − π1) + 2

∫
η2−η1

BLE

)
e
−

∫
ψ2

(BLE+2
√
R<Z+)+4

√
R<(2π2−π1−π3)+2

∫
2η2−η1−η3

BLE ,

(5.46)

and its (1, 2)-entry q2 agrees with the one of P2 given in (5.40), (5.41). Expanding
2 cosh(w) = ew+e−w and using <(π1−π2) > 0, we observe that the first (dominant)
term coming from (5.45) is equal to (5.43), and the first term of (5.46) cancels (5.44).
This yields

p2 ≈2e
∫
ψ2

(BLE+2
√
R<Z+) (5.47)

− e−
∫
ψ2

(BLE+2
√
R<Z+)+4

√
R<(3π2−2π1−π3)+2

∫
3η2−2η1−η3

BLE . (5.48)

We note the relations

π2 − π1 =

∫ t2

t1

Z+

π2 −
∫
ψ2

Z+ − π3 =

∫ t2

t3

Z+.

We now separate cases according to the possible relations of dominance of the
terms (5.40), (5.41), (5.47) and (5.48). In case (2a), the term (5.41) dominates (5.40)
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and (5.48) dominates (5.47). In case (2b), the term (5.41) dominates (5.40) and (5.47)
dominates (5.48). In case (2c), the term (5.41) dominates (5.40) and (5.47) dom-
inates (5.48). In case (2a), the term (5.40) dominates (5.41) and (5.47) domi-
nates (5.48). In each case we get the stated result.

The analysis in the case (1) is similar. The (1, 1)-entry of (5.38) reads again as
in (5.39), and its (1, 2)-entry has the form

− v2

v3
e
∫
ψ2

(BLE+2
√
R<Z+)−4

√
R<(π2−π1)−2

∫
η2−η1

BLE (5.49)

+
v2

v3
e
−

∫
ψ2

(BLE+2
√
R<Z+)+4

√
R<(π1−π3)+2

∫
η1−η3

BLE . (5.50)

We then find that the behaviour of the (1, 1)-entry of (5.42) is given by

p2 ≈
v2

2v3
e
∫
ψ2

(BLE+2
√
R<Z+) (5.51)

+
v2

2v3
e
−

∫
ψ2

(BLE+2
√
R<Z+)+4

√
R<(π2−π3)+2

∫
η2−η3

BLE (5.52)

− v2

v3
cosh

(
4
√
R<(π2 − π1) + 2

∫
η2−η1

BLE

)
e
∫
ψ2

(BLE+2
√
R<Z+)−4

√
R<(π2−π1)−2

∫
η2−η1

BLE

(5.53)

+
v2

v3
cosh

(
4
√
R<(π2 − π1) + 2

∫
η2−η1

BLE

)
e
−

∫
ψ2

(BLE+2
√
R<Z+)+4

√
R<(π1−π3)+2

∫
η1−η3

BLE ,

(5.54)

and its (1, 2)-entry q2 agrees with the one of P2 given in (5.49), (5.50). Now,
expanding again 2 cosh(w) = ew + e−w and using <(π2 − π1) > 0, we see that the
dominant term of (5.53) cancels (5.51), and the dominant term of (5.54) is equal
to (5.52). We deduce

p2 ≈
v2

v3
e
−

∫
ψ2

(BLE+2
√
R<Z+)+4

√
R<(π2−π3)+2

∫
η2−η3

BLE (5.55)

− v2

2v3
e
∫
ψ2

(BLE+2
√
R<Z+)−8

√
R<(π2−π1)−4

∫
η2−η1

BLE (5.56)

In case (1a), the dominant term of p2 is (5.56) and the dominant term of q2 is (5.49).
In case (1b), the dominant term of p2 is (5.55) and the dominant term of q2 is (5.49).
In case (1c), the dominant term of p2 is (5.55) and the dominant term of q2 is (5.49).
In case (1d), the dominant term of p2 is (5.55) and the dominant term of q2 is (5.50).
In each case, we get the desired result. �

We also state an analogous statement to Propositions 16 and 17 for the complex
twist co-ordinate [p3 : q3]; their proofs being similar to the case of [p2 : q2], we omit
them.

Proposition 18. (1) If <(π4 − π0) > 0 then we have

h4 ≈ v4

(
2e

4
√
R<π0+2

∫
η0
BLE −2e

−4
√
R<(π4−π0)−2

∫
η4−η0

BLE

e
4
√
R<π4+2

∫
η4
BLE 1

)

for some v4 ∈ C×.
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(2) If <(π4 − π0) < 0 then we have

h4 ≈ v4

(
2e

4
√
R<(2π4−π0)+2

∫
2η4−η0

BLE −2e
4
√
R<(π4−π0)+2

∫
η4−η0

BLE

−e4
√
R<π4+2

∫
η4
BLE 1

)
for some v4 ∈ C×.

Proposition 19. Fix q ∈ S3
1 .

(1) Assume
∫ t4
t0
<Z+ = <(π4 − π0) > 0.

(a) If

2

∫ t4

t0

<Z+ <

∫ t3

t4

<Z+

then we have

p3

q3
≈ 1

2
e−

∫ t4
t0

(4
√
R<Z++2BLE ) → 0

(b) If ∫ t4

t0

<Z+ <

∫ t3

t4

<Z+ < 2

∫ t4

t0

<Z+

then we have

p3

q3
≈ −e

∫ t4
t3

(4
√
R<Z++2BLE )+

∫ t4
t0

(4
√
R<Z++2BLE ) → 0

(c) If

0 <

∫ t3

t4

<Z+ <

∫ t4

t0

<Z+

then we have

p3

q3
≈ −e

∫ t4
t3

(4
√
R<Z++2BLE )+

∫ t4
t0

(4
√
R<Z++2BLE ) →∞

(d) If ∫ t3

t4

<Z+ < 0

then we have

p3

q3
≈ 1

2
e
∫ t4
t0

(4
√
R<Z++2BLE ) →∞

as R→∞.
(2) Similar formulas hold if

∫ t4
t0
<Z+ = <(π4−π0) < 0, up to changing the sign

of all occurring integrals.

In the above formulas, the contour of
∫ t4
t0

is

σ0 ∗ η−1
0 ∗ η4 ∗ σ−1

4 ,

and the one of
∫ t3
t4

is

σ4 ∗ η−1
4 ∗ ψ−1

3 ∗ η3 ∗ σ−1
3 .
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6. Proof of Theorem 1

From this point on the choices made in (2.1) will be in effect, namely we set

x
t1 t2 = −1 t3 = 0 t4 = 1 t0

In addition, we will allow t0, t1 to vary as needed for our purposes. Choices of
continuous parameters do not affect our results on homotopy types of maps, so
these are only made to make our arguments more concrete.

6.1. Geometry of period integrals.

Proposition 20. There exists a nonempty open set of V ⊂ S3
1 consisting of qua-

dratic differentials q for which both conditions (1c) of Proposition 17 and (1c) of
Proposition 19 simultaneously hold.

Proof. It is sufficient to prove that there exists an open subset of the Hopf fiber
t−1(−1) over t2 = −1 satisfying the required conditions. From now on, we assume
t(q) = −1.

By assumption we need to consider homogeneous polynomials q of degree 6 such
that t(q) = −1, i.e. of the form

q(z, w) = a(z + 1)z(z2 − 1)

(
z2 − 1

k2

)

for some coefficients a ∈ S1. The parameter a can be identified with e
√
−1ϕ where

ϕ is the parameter of the Hopf fiber. Using this form and (2.11) we get that the
corresponding quadratic differential reads as

Q(z) =
a(z + 1)z(z2 − 1)

(
z2 − 1

k2

)
dz⊗2

z2(z2 − 1)2
(
z2 − 1

k2

)2 =
adz⊗2

z(z − 1)
(
z2 − 1

k2

) . (6.1)

The square-root of Q is then given by

Z+ =
√
a

dz√
z(z − 1)

(
z2 − 1

k2

) .
Here, we need to be precise about the determination of the square roots: for a = 1
we choose

√
a = 1 and in the denominator we choose

√
z(z − 1)

(
z2 − 1

k2

)
∈



R− if z < − 1
k√

−1R− if − 1
k < z < 0

R+ if 0 < z < 1√
−1R+ if 1 < z < 1

k

R− if 1
k < z.

(6.2)
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With these choices and setting a0 = 1, we have

∫ t3

t4

Z+ = −
∫ 1

0

dz√
z(z − 1)

(
z2 − 1

k2

) ∈ R−

∫ t3

t2

Z+ =

∫ 0

−1

dz√
z(z − 1)

(
z2 − 1

k2

) ∈ √−1R−

∫ t4

t0

Z+ = −
∫ 1

k

1

dz√
z(z − 1)

(
z2 − 1

k2

) ∈ √−1R−

∫ t2

t1

Z+ =

∫ −1

− 1
k

dz√
z(z − 1)

(
z2 − 1

k2

) ∈ √−1R−

Lemma 2. For suitable choices of t0, t1 we have∣∣∣∣∫ t4

t0

Z+

∣∣∣∣ < ∣∣∣∣∫ t3

t2

Z+

∣∣∣∣ < ∣∣∣∣∫ t2

t1

Z+

∣∣∣∣ .
Proof. We have

lim
t1→−∞

∣∣∣∣∫ t2

t1

Z+

∣∣∣∣ =∞

lim
t0→1+

∣∣∣∣∫ t4

t0

Z+

∣∣∣∣ = 0.

�

We may then schematically plot these complex numbers on the complex line as
follows.

y

x

∫ t3
t4
Z+

∫ t3
t2
Z+

∫ t4
t0
Z+

∫ t2
t1
Z+

a0 = 1

Let us set

a1 = e
√
−1ϕ1 ∈ S1 with

π

2
< ϕ1 <

π

2
+ ε

for some tiny ε > 0. With such a choice, the quantities under consideration satisfy
the required properties, as is visible from the next figure.
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y

x

∫ t3
t4
Z+

∫ t3
t2
Z+

∫ t4
t0
Z+

∫ t2
t1
Z+

a1 = e
√
−1ϕ1

�

6.2. Proof of Theorem 1. We are in position to prove our main result Theorem 1.
We fix any q ∈ V , where V ⊂ S3

1 is the open set provided by Proposition 20.
Let us first reformulate a few of our results obtained thus far. According to

Subsection 2.3, the highest graded piece GrW8 H4(MB,C) of the MHS on the coho-

mology of the character variety is spanned by 0-cycles in the union D̃4 of quadruple
intersections of the compactifying divisor components; clearly, D̃4 is a finite union
of points in MB. In addition, these cycles also govern GrW2k H

k for all 0 ≤ k ≤ 4.
Let us denote by D1, D2, D3, D4 the divisor components ofMB\MB given in order
by the equations

l2 =∞, [p2 : q2] = [1 : 0], l3 =∞, [p3 : q3] = [1 : 0].

Let us denote by

Q∗ = D1 ∩D2 ∩D3 ∩D4 ∈ D̃4 ⊂MB

their intersection point and fix a punctured neighbourhood U(Q∗) of Q∗ in MB.
It follows from Propositions 12, 14, 17(1c), 19(1c) that if R is chosen sufficiently
large, then for any (E , θ) ∈ H−1(Rq), the Fenchel–Nielsen co-ordinates

l2(E , θ), [p2(E , θ) : q2(E , θ)], l3(E , θ), [p3(E , θ) : q3(E , θ)]

of RH ◦ψ(E , θ) belong to U(Q∗). Fix R� 0 so that this holds. Moreover, the same
results (and the sign assumptions made on the integrals) also imply that the phase
factors of the Fenchel–Nielsen co-ordinates of RH ◦ψ(E , θ) defining D1, D2, D3, D4

are in this order given by the following expressions:

− exp

(
2

∫ t2

t1

BL(E,θ)

)
,

− exp

(
2

∫ t2

t3

BL(E,θ) + 2

∫ t2

t1

BL(E,θ)

)
,

− exp

(
2

∫ t4

t0

BL(E,θ)

)
,

− exp

(
2

∫ t4

t3

BL(E,θ) + 2

∫ t4

t0

BL(E,θ)

)
,

(along contours as given in the Propositions). Notice that there exists a symplectic
basis A1, A2, B1, B2 of H1(Xq,Z) that is anti-invariant for the involution ρ∗ and
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that satisfies

(pq)∗A1 = σ1 ∗ η−1
1 ∗ η2 ∗ σ−1

2

(pq)∗B1 = σ2 ∗ η−1
2 ∗ ψ2 ∗ η3 ∗ σ−1

3

(pq)∗(A1 +A2) = σ4 ∗ η−1
4 ∗ ψ−1

3 ∗ η3 ∗ σ−1
3

(pq)∗B2 = σ0 ∗ η−1
0 ∗ η4 ∗ σ−1

4 .

It follows that the above quantities can be rewritten as

− exp

(∮
A1

BL(E,θ)

)
, (6.3)

− exp

(∮
A1−B1

BL(E,θ)

)
, (6.4)

− exp

(∮
−B2

BL(E,θ)

)
, (6.5)

− exp

(∮
B2−A1−A2

BL(E,θ)

)
. (6.6)

The cycles of the integrals in the arguments of the exponentiation in these formulas
generate H1(Xq,Z) as an Abelian group. It follows from formulas (6.3)–(6.6) that
the image of the Hitchin fiber H−1(Rq) under RH ◦ψ is homotopic to a torus T 4

generating H4(U(Q∗),Z). Now, recall from Subsection 2.7 that we have

Gr−k−2
P Hk(MDol,Q) ∼= Im(Hk(MDol,Q)→ Hk(H−1(Y−2),Q))

where H−1(Y−2) is the generic Hitchin fiber. We may choose the affine flag so that
Y−2 = {Rq} for q ∈ V . For every 0 ≤ k ≤ 4 and any subset I ⊂ {1, 2, 3, 4} with
|I| = 4− k one may define a k-dimensional subtorus T kI in H−1(Y−2) by fixing the
phases corresponding to the divisor components Di with i ∈ I. Let us assume that
T kI defines a non-trivial homology class in Hk(MDol,Z). Such classes are precisely

the ones that generate Gr−k−2
P Hk(MDol,Q). It is then easy to see that image of T kI

under RH ◦ψ is homotopic to a normal torus at the generic point of the intersection⋂
j∈{1,2,3,4}\I

Dj

of the remaining k divisor components. According to the conventions of Sub-
section 2.3, RH ◦ψ(T kI ) then defines a class in W−2kHk(U(Q∗),Z) (that is non-
trivial by assumption), and the dual cohomology class gives a non-trivial class in
W2kH

k(U(Q∗),Z). Since the map

Hk(MB,C)→ Hk(U(Q∗),C)

preserves W strictly, this finishes the proof.

References

[1] D. G. L. Allegretti, Voros symbols as cluster coordinates, J. Topol. 12 (2019), 1031–1068.

[2] A. Andreotti, T. Frankel, The Lefschetz theorem on hyperplane sections, Annals of Mathe-
matics, Second Series, 69 (1959), 713–717.

[3] A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, Astérisque 100 (1982)
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