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Abstract. In this paper, the nilspace approach to higher-order Fourier analysis is de-

veloped in the setting of vector spaces over a prime field Fp, with applications mainly in

ergodic theory. A key requisite for this development is to identify a class of nilspaces ade-

quate for this setting. We introduce such a class, whose members we call p-homogeneous

nilspaces. One of our main results characterizes these objects in terms of a simple al-

gebraic property. We then prove various further results on these nilspaces, leading to

a structure theorem describing every finite p-homogeneous nilspace as the image, under

a nilspace fibration, of a member of a simple family of filtered finite abelian p-groups.

The applications include a description of the Host-Kra factors of ergodic Fω
p -systems as

p-homogeneous nilspace systems. This enables the analysis of these factors to be re-

duced to the study of such nilspace systems, with central questions on the factors thus

becoming purely algebraic problems on finite nilspaces. We illustrate this approach by

proving that for k ≤ p + 1 the k-th Host–Kra factor is an Abramov system of order

≤ k, extending a result of Bergelson–Tao–Ziegler that holds for k < p. We illustrate the

utility of p-homogeneous nilspaces also by showing that the above-mentioned structure

theorem yields a new proof of the Tao–Ziegler inverse theorem for Gowers norms on Fn
p .

1. Introduction

The theory of higher-order Fourier analysis, initiated by Gowers in his celebrated work on

Szemerédi’s theorem [14], has generated various fascinating developments in analysis and

combinatorics in the last two decades. Many of these developments aim to understand

the relation between the central objects in this theory, namely the uniformity norms (or

Gowers norms), and structures involving nilpotent groups. This relation emerged early

on, especially in the work [27] of Host and Kra which introduced seminorms in ergodic

theory analogous to the uniformity norms, and proved the Ergodic Structure Theorem,

establishing a deep connection between these seminorms and nilmanifolds [27, Theorem

10.1] (see also [29, Ch. 16]). This inspired further progress, notably in the work of Green

and Tao [17] and Green–Tao–Ziegler [19] in arithmetic combinatorics, developing this

connection between Gowers norms and nilmanifolds, leading to the proof by Green, Tao

and Ziegler of the inverse theorem for Gowers norms on finite cyclic groups [20].

The search for further conceptual clarification of the above-mentioned connection

also led to the discovery of interesting structures closely related to the uniformity norms,

starting with the parallelepiped structures introduced by Host and Kra [28], leading to

the concept of nilspaces defined by Antoĺın Camarena and the third named author in [6].
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Nilspace related topics have now grown into an active research area, including detailed

treatments by the first named author [7, 8] and by Gutman, Manners and Varjú [23, 24,

25], as well as further applications in arithmetic combinatorics, ergodic theory, probability

theory, and topological dynamics [9, 12, 21, 23, 24, 25].

Initial applications of nilspaces in higher-order Fourier analysis were obtained in [35],

where they were combined with analysis on ultraproducts to prove regularity and inverse

theorems for the Gowers norms on various families of compact abelian groups. In [29, end

of Ch. 17], Host and Kra suggested that the nilspace approach from [35] might be unified

with the analysis of characteristic factors for uniformity seminorms from [27]. A measure-

theoretic framework enabling such a unification was introduced in [12], based on the

notion of cubic couplings, inspired by the Host–Kra measures from [27, §3]. Applications

of this framework included an extension of the Ergodic Structure Theorem to nilpotent

group actions (see [12, Theorem 5.12] and [9, Theorem 5.1]), and an extension of the

inverse theorem to all compact abelian groups and also to nilmanifolds [13].

In this paper we aim to demonstrate the utility of the above-mentioned framework in

another principal setting for higher-order Fourier analysis, in which this approach had not

been applied previously, namely the characteristic-p setting. Here, the uniformity norms

are studied on vector spaces Fnp over a field Fp of fixed prime order p, with dimension n al-

lowed to tend to infinity. This direction was fostered notably by Green [16], who promoted

these vector spaces as useful models for various problems in arithmetic combinatorics that

were originally posed in the integer setting, the latter setting being usually modeled by

cyclic groups ZN of large prime order N allowed to tend to infinity. The usefulness of

the vector space models relies mainly on the fact that they provide much richer algebraic

structure than is available in the integer setting. The characteristic-p setting has been

very fruitful for higher-order Fourier analysis, with many interesting results in arithmetic

combinatorics and in ergodic theory (for more background on this setting, see for instance

the survey [39]). Among these results, the present paper is related mainly to the work of

Bergelson, Tao and Ziegler on ergodic actions of the (additive group of the) vector space

Fωp =
⊕

i∈N Fp [2, 3], and the related inverse theorems for Gowers norms proved by Tao

and Ziegler in [37, 38]. Let us now describe the approach to these topics in this paper.

In the integer setting, a decisive conceptual step was to identify nilmanifolds as ade-

quate spaces with which to define basic harmonics (nilsequences) that could yield a useful

inverse theorem for the Gowers norms. In characteristic p, the greater algebraic richness

of this setting made it possible to obtain an inverse theorem with the corresponding har-

monics being global phase polynomials, easily definable directly on the initial spaces Fnp .

Thus, inverse theorems in characteristic p have hitherto been obtained without a concep-

tual step similar to the above-mentioned one involving nilmanifolds. On the other hand,
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this has left open several questions that are relevant in order to clarify and strengthen the

connections between the integer setting and the characteristic-p setting. These questions

also lead to new results in the latter setting in itself, and can be subsumed under the

following initial and more general question.

Question 1.1. Which class of spaces analogous to compact nilmanifolds is adequate for

higher-order Fourier analysis in characteristic p?

In this paper we show that the nilspace approach offers a useful answer to this question.

More precisely, we identify and study the class of compact nilspaces that emerges when

the above-mentioned framework from [12, 13] is applied in the characteristic-p setting.

We call these structures p-homogeneous nilspaces. We show that these nilspaces yield a

description of the characteristic factors for uniformity seminorms which is strong enough

to give new proofs of central results in higher-order Fourier analysis in this setting, such as

the inverse theorem for the Gowers norms from [37, 38], and also new results concerning

the Host–Kra factors of ergodic Fωp -systems.

To explain our results, first let us briefly recall the strategy used in [12, 13] to prove

the inverse theorem for Gowers norms in the integer setting, as it is overall the same

process that will lead to p-homogeneous nilspaces in characteristic p. To this end, let us

recall that a nilspace is a set X equipped with a sequence of cube sets Cn(X) ⊂ X{0,1}
n

,

n ≥ 0, whose elements are called the n-cubes on X, satisfying three axioms, the most

subtle of which is the completion axiom, which states that any n-corner on X (roughly

speaking, an n-cube missing one vertex) can always be completed to an n-cube. We say

that X is a k-step nilspace if every (k+1)-corner on X has a unique completion. Instead of

recalling these definitions in detail, it is more helpful intuitively at this point just to recall

the standard example of how any abelian group Z can be viewed as a 1-step nilspace,

denoted by D1(Z): for each n, the cube set Cn(D1(Z)) consists of the standard n-cubes,

of the form (x+ v(1)h1 + · · ·+ v(n)hn)v∈{0,1}n ∈ Z{0,1}
n

, for any elements x, hi ∈ Z. Given

nilspaces X, Y, a nilspace morphism from X to Y is a cube-preserving map X→ Y, and

the set of all such morphisms is denoted by hom(X,Y). A nilspace X is compact if the set

X is equipped with a compact second-countable Hausdorff topology which is compatible

with the cubic structure in the sense that each cube set Cn(X) is compact in the product

topology on X{0,1}
n

. We refer to [7, 8] for more background on nilspaces.

The main result in [12] is a structure theorem describing the characteristic factors,

for a general type of uniformity seminorms, in terms of compact nilspaces [12, Theorem

4.2]. The strategy in [13] is based on the fact that when this structure theorem is applied

to the uniformity seminorms on ultraproducts of cyclic groups ZN (for increasing primes

N), the resulting characteristic factors are completely described by the class of compact

nilspaces X admitting morphisms D1(ZN)→ X that are increasingly balanced as N grows
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(the notion of balanced morphism, recalled in detail in Section 2, involves a quantitative

form of equidistribution which also requires the n-cubic power of the morphism to be

equidistributed in Cn(X) for large n). A key step in this proof of the inverse theorem

on ZN is then to show that the relevant nilspaces arising this way are all connected

nilmanifolds, more precisely, toral nilspaces [13, Theorem 6.1].

As signalled by Question 1.1, previously there was no class of compact nilspaces

clearly identified as playing a role in characteristic p similar to the role of nilmanifolds

in the integer setting. However, the above strategy indicates such a class in a natural

way, namely, the class of compact nilspaces X with the property of admitting increasingly

balanced morphisms from (the additive group of) Fnp into X as n grows. As we shall see,

this property yields one of various equivalent ways of defining p-homogeneous compact

nilspaces. Moreover, one of the main results in this paper shows that these nilspaces

can also be identified by a much simpler and purely algebraic property. Because of its

simplicity, we use this property to define p-homogeneous nilspaces, as follows.

Definition 1.2. Let X be a nilspace and let p be a prime. We say that X is a p-

homogeneous nilspace if for every positive integer n, for every f ∈ hom(D1(Zn),X) the

restriction f |[0,p−1]n is in hom(D1(Znp ),X). 1

To state the announced result linking Definition 1.2 to balanced morphisms from Fnp , we

need the notion of a finite-rank nilspace. This involves the fact that a k-step compact

nilspace X can always be decomposed as a k-fold compact abelian bundle [8, Definition

2.1.8], where for each i ∈ [k] the nilspace factor Xi is an extension (in the sense of [7,

Definition 3.3.13]) of Xi−1 by a compact abelian group, called the i-th structure group of

X and denoted by Zi or Zi(X); see [8, Proposition 2.1.9]. If every structure group has

finite rank then X is called a compact finite-rank nilspace, which we abbreviate to “cfr

nilspace”. The inverse limit theorem for nilspaces [6] states that every compact nilspace

can be decomposed as an inverse limit of cfr nilspaces (see also [8, Theorem 2.7.3]). This

often enables the study of a class of compact nilspaces to be reduced in a very useful way

to the study of the cfr members of the class. We can now state the announced result.

Theorem 1.3. Let X be a k-step cfr nilspace, let d be a metric2 generating the topology

on X, and let p be a prime. There exists b = b(X, d, p) > 0 such that the following holds:

if for some D there is a b-balanced morphism ϕ : D1(ZDp )→ X, then X is p-homogeneous.

The proof of Theorem 1.3 occupies Section 2 and involves several steps, using in particular

a recent refinement of the Generalized Von Neumann Theorem [10, 11] (see also the recent

work of Manners [32]).

1Here Zn
p is identified with [0, p− 1]n equipped with addition mod p, the usual way.

2The metric underlies the notion of balance for morphisms, see Remark 2.2.
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With Theorem 1.3, the theory of p-homogeneous nilspaces can be developed using

the property in Definition 1.2, a property that has rather strong consequences, which we

begin to develop in Section 3. The simplest examples of p-homogeneous nilspaces are the

1-step nilspaces based on finite elementary abelian p-groups, i.e. the nilspaces D1(Znp ).

In Section 3, the property in Definition 1.2 is used in particular to identify a larger

family of examples of p-homogeneous nilspaces, within the standard class of so-called

group nilspaces. Recall that a k-step group nilspace is constructed by taking any group

G equipped with a filtration G• of finite degree k, and equipping G with the associated

Host–Kra cube sets Cn(G•), n ≥ 0; we call this nilspace the group nilspace associated with

the filtered group (G,G•) (see for instance [29, Ch. 6] for more background on Host–Kra

cubes, and [7, §2.2.1] for the group nilspace construction).

We say that a filtration G• = (Gi)i≥0 is p-homogeneous if for all i, for all g ∈ Gi we

have gp ∈ Gi+p−1. We obtain the following description of p-homogeneous group nilspaces.

Theorem 1.4. Let p be a prime and let (G,G•) be a filtered group. The associated group

nilspace is a p-homogeneous nilspace if and only if G• is a p-homogeneous filtration.

In particular, since morphisms between group nilspaces are the same thing as polynomial

maps between the corresponding filtered groups (see e.g. [7, Section §2.2.2]), Theorem 1.4

implies that given any filtered group (G,G•), the filtrationG• is p-homogeneous if and only

if for every polynomial f ∈ poly(Zn, G•) the restriction f |[0,p−1]n yields a polynomial map

in poly(Znp , G•). Theorem 1.4 also implies in a simple way that for every p-homogeneous

k-step nilspace defined on a finite cyclic group, the group must in fact be isomorphic to

a subgroup of Zpr for r = bk−1
p−1c + 1; see Proposition 3.9. These groups Zpr underlie

the non-classical polynomials of degree k on Fnp , identified by Tao and Ziegler in [38] as

adequate harmonics for an inverse theorem in characteristic p that is valid even in the

so-called low-characteristic setting, i.e. for p ≤ k. In the present approach, these cyclic

groups also play a key role, but rather as basic objects used to describe more general

p-homogeneous nilspaces. Using these general descriptions (detailed below), the inverse

theorem can be deduced relatively easily, as explained at the end of this introduction.

Concerning more general p-homogeneous nilspaces (not necessarily group nilspaces),

our main results in Section 3 include the following proposition. In particular, this indicates

that p-homogeneous nilspaces are natural generalizations of elementary abelian p-groups.

Proposition 1.5. Let X be a k-step p-homogeneous nilspace. Then for every i ∈ [k], the

structure group Zi(X) is an elementary abelian p-group. In particular, a p-homogeneous

nilspace is cfr if and only if it is a finite nilspace.3

3We say that a nilspace is finite if its underlying set is finite.
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When the property of structure groups in this proposition is combined with a certain

lifting property for morphisms from elementary abelian p-groups into X, we obtain a

useful sufficient condition for X to be p-homogeneous; see Proposition 3.12.

In Section 4, we prove a structure theorem for p-homogeneous nilspaces, which is also

a key ingredient in our applications. The theorem describes general finite p-homogeneous

nilspaces as images, under nilspace fibrations, of members of a much simpler class of p-

homogeneous nilspaces, defined as follows. (To recall the notion of nilspace fibrations,

also known by the original term fiber surjective morphisms, see [23, Definition 7.1], [7,

Definition 3.3.7]; essentially, the role of fibrations for compact nilspaces generalizes the

role of continuous surjective homomorphisms for compact abelian groups.)

Definition 1.6. Let p be a prime, let k, ` ∈ N with k ≥ `, and let r = r(k, `, p) :=

b k−`
p−1c + 1. We define Uk,` to be the k-step p-homogeneous group nilspace4 consisting of

the cyclic group G = Zpr equipped with the p-homogeneous degree-k filtration (Gi)i≥0

where Gi = Zpr for i ∈ [0, `] and Gi = pb
i−`−1
p−1

c+1Zpr for i ≥ `+ 1, that is, the filtration

G1 G` G`+1 G`+p−1 G`+p

‖ ‖ ‖ ‖ ‖
Zpr = · · · = Zpr ≥ pZpr = · · · = pZpr ≥ p2Zpr · · ·

.

We define Qp,k to be the set of all p-homogeneous nilspaces Y such that for some integers

a` ≥ 0 (` ∈ [k]) we have that Y is isomorphic to the product5 nilspace
∏k

`=1 U
a`
k,`.

The cyclic groups underlying the nilspaces Uk,` agree with those underlying the non-

classical polynomials in [38, Lemma 1.6 (vi)], as mentioned above.

We can now state the structure theorem, which establishes that the abelian group

nilspaces in Qp,k suffice to describe all p-homogeneous cfr nilspaces via fibrations.

Theorem 1.7. Let X be a k-step p-homogeneous finite nilspace. Then there exists Y ∈
Qp,k and a fibration ψ : Y → X with the following property: for every morphism f ∈
hom(D1(Znp ),X) there is a morphism g ∈ hom(D1(Znp ),Y) such that ψ ◦g = f .

This theorem is a refinement of (and was inspired by) results on finite nilspaces that were

obtained by the third named author in [36], especially [36, Theorem 6]. It is a central

ingredient in our proofs of the regularity and inverse theorems, discussed below.

The second main result in Section 4 refines Theorem 1.7 for k ≤ p, as follows. This

uses the so-called degree-` nilspace structure on any abelian group Z, denoted by D`(Z),

which is a standard way to turn Z into an `-step nilspace; see [7, Definition 2.2.30].

4When the prime p needs to be specified we will write U (p)
k,`, but usually we omit this superscript.

5The definition of product nilspaces (or of powers Xa of a nilspace X) is the natural one; see [7, §3.1.1].
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Theorem 1.8. Let p be a prime and let k ∈ N with k ≤ p. Let X be a k-step p-

homogeneous compact nilspace. Then for every ` ∈ [k] there exists a` ∈ N ∪ {∞} such

that X is isomorphic to the product nilspace6
∏k

`=1D`(Za`p ).

Theorem 1.8 is a key tool in our applications in ergodic theory. Note that the theorem

covers the high-characteristic case k < p but also the additional case k = p. For k > p,

we do not yet know what would be a corresponding qualitatively optimal refinement of

Theorem 1.7. This leads to questions that we leave open in this paper; see Remark 4.12.

We close this introduction with a summary of the main applications.

In Section 5 we treat the applications in ergodic theory. Our results here concern the

ergodic measure-preserving actions of Fωp studied by Bergelson, Tao and Ziegler in [2, 3],

and specifically the Host–Kra factors of such Fωp -systems, i.e. the characteristic factors

for uniformity seminorms on these systems.7 In the setting of Z-systems, the Ergodic

Structure Theorem from [27] describes the Host–Kra factors as inverse limits of nilsystems.

In the characteristic-p setting, the Host–Kra factors have hitherto been described in terms

of Weyl systems, which were defined in [3, Definition 1.5, Theorem 1.6] specifically for this

setting (see also [2, Theorem 4.8]). The different approach in the present paper unifies the

descriptions of Host–Kra factors in these two settings via the common notion of a nilspace

system, introduced in [12]. Let us recall that a (k-step) nilspace system (X, G) is a specific

type of G-system, consisting of a compact (k-step) nilspace X, and a topological group

G acting continuously on X via a group homomorphism G → Θ(X), where Θ(X) is the

translation group8 of X. (The nilspace system can also be specified as a triple (X, G, φ), if

the homomorphism φ : G→ Θ(X) needs to be emphasized; we can also add to the data an

explicit filtration on G, preserved by φ, writing (X, (G,G•), φ) and calling this a filtered

nilspace system; see [12, Definition 5.10].) Such a system can be viewed as a topological

dynamical system, and if we equip X with its Haar probability measure then the nilspace

system becomes a measure-preserving G-system. Nilspace systems were shown in [9, 12]

to yield extensions of the Ergodic Structure Theorem (in particular, ergodic nilspace Z-

systems are inverse limits of nilsystems [9, Theorem 5.1]). Let us mention that there are

other descriptions of the characteristic factors of ergodic G-systems. There is for instance

the concept of nilpotent system introduced in [33, Definition 1.29] for the 2-step case with

G =
⊕

p∈P Fp (where P is a multiset of primes), and more generally, for any countable

abelian group G in the 2-step case, there is a description of the 2-factor as a double coset

space [34, Theorem 1.21].

6Here Z∞
p denotes the direct product ZN

p .
7Recall from [2, Definition 1.1] the notion of a G-system for a locally compact abelian group G; see also

[12, Definition 5.9] for a definition of Host–Kra factors valid for G-systems more generally.
8The translation group Θ(X) is a group of automorphisms naturally defined on any nilspace X, which

can be viewed as a generalization of the regular action of abelian groups on themselves; see [7, §3.2.4].
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Let us say that a nilspace system is p-homogeneous if the underlying compact nilspace

is p-homogeneous. We then have the following result.

Theorem 1.9. For every k ∈ N, the k-th Host–Kra factor of every ergodic Fωp -system is

isomorphic to a p-homogeneous k-step ergodic nilspace system (X,Fωp ).

In fact, a property markedly stronger than ergodicity holds here: the action of Fωp on X

is uniquely ergodic,9 and for every n the standard cube-set Cn(Fωp ) also has a uniquely

ergodic action on Cn(X); see Theorem 5.3. This stronger form of ergodicity follows from

the main results in [12], which we combine with Theorem 1.3 to prove Theorem 1.9.

With Theorem 1.9, the study of these Host–Kra factors can be reduced to the study

of p-homogeneous nilspace systems. Focusing on the latter systems, we then obtain more

precise descriptions of the factors. In particular, for k ≤ p we have the following result,

showing that the k-th factor consists of an elementary abelian p-group equipped with a

specific degree-k filtration.

Theorem 1.10. Let (X,Fωp ) be an ergodic p-homogeneous k-step nilspace system with

k ≤ p. Then this system is isomorphic to a nilspace system
(∏k

`=1D`(Za`p ),Fωp
)

where

a` ∈ N ∪ {∞} for each ` ∈ [k].

This relates to previous work as follows. In the high-characteristic case k < p, the results of

[2] describe the k-th Host–Kra factor as a k-fold iterated abelian extension by elementary

abelian p-groups, with the cocycle for the j-th extension being polynomial of degree ≤ j;

see [2, Corollary 8.7]. Theorem 1.10 instead describes the factor as a nilspace system

on the explicit product nilspace
∏k

`=1D`(Za`p ), which is a k-fold abelian bundle where

the i-th factor
∏i

`=1D`(Za`p ) is a splitting extension of degree i (in the nilspace sense) of

the previous factor
∏i−1

`=1D`(Za`p ) by the group Zaip , and this description holds even for

k = p. We note that the translation group of this product nilspace can be described more

explicitly, thus obtaining a complete description of the transformations in this factor in

terms of polynomial maps between filtered elementary abelian p-groups; see Theorem 5.9.

Theorem 1.9 also enables progress in a closely related direction for these applications

in ergodic theory, namely the direction concerning Abramov systems. Recall that an

ergodic Fωp -system is an Abramov system of order ≤ k if its L2-space is the closure of the

linear span of phase polynomials of degree at most k; see Definition 5.11. The following

interesting question arose in the work of Bergelson, Tao and Ziegler [2].

Question 1.11. Is the k-th Host–Kra factor of an ergodic Fωp -system always an Abramov

system of order ≤ k, for every k ∈ N?

9The notion of unique ergodicity may be recalled from [26, p. 87, §4.3.a.].
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In [2], an affirmative answer is given in the case k < p ([2, Theorem 1.19]), and this is

believed to hold also for k ≥ p; see [2, Remark 1.21]. For k ≥ p, a partial affirmative

answer is given in [2, Theorem 1.20], showing that the factor is Abramov of order Ok(1).

We extend the affirmative answer to Question 1.11 as follows.

Theorem 1.12. For every ergodic Fωp -system and every k ≤ p + 1, the k-th Host–Kra

factor of the system is Abramov of order ≤ k.

The proof of this theorem uses a reformulation of Question 1.11 as a problem purely

about nilspaces, which we discuss in Section 5 (see Proposition 5.14 and Question 5.18)

and which seems of interest as a possible way to make further progress on this question.

Finally, Section 6 contains applications concerning arithmetic combinatorics, which

further illustrate the relevance of p-homogeneous nilspaces to higher-order Fourier analysis

in characteristic p. In particular, we use these nilspaces to give a new proof of the inverse

theorem for Gowers norms on Fnp from [38], as well as regularity theorems in this setting.

The idea of the proof is to start from the more general inverse theorem in the nilspace

approach from [12, 13], which tells us that a function f with non-trivial Gowers Uk+1 norm

on Fnp correlates with a complex-valued function which factors through a highly-balanced

morphism φ from Fnp to a cfr k-step nilspace X. Thanks to Theorem 1.4, we deduce

that X is p-homogeneous. Then Theorem 1.7 enables us to lift the morphism φ through

a simpler finite abelian group nilspace, belonging to the class Qp,k. This, combined with

a standard Fourier decomposition on the abelian group underlying this nilspace, yields a

non-classical phase polynomial of degree ≤ k correlating non-trivially with the original

function f , as required. Moreover, for k ≤ p, using Theorem 1.8 instead of Theorem 1.7

we obtain the inverse theorem with classical polynomials; see Theorem 6.6. Note that

the case k = p of this result was obtained only recently, independently, in [4].

The proof strategy on Fnp outlined above is similar to the one used in the integer setting

in [13]; both are rooted in the general inverse theorem from [13], and the differences arise

only once we have to deal with p-homogeneous nilspaces here, instead of toral nilspaces in

the integer setting. So far, this general strategy does not yield effective bounds. Currently,

the proofs of inverse theorems for Gowers norms with the best effective bounds work with

much more specific strategies in each setting; see the recent breakthroughs of Manners in

the integer setting [31], and of Gowers and Milićević in the characteristic-p setting [15].

It would be very interesting to know if a more general strategy can also yield effective

bounds, perhaps even an effective inverse theorem for general finite abelian groups.

2. p-homogeneous nilspaces as images of highly balanced morphisms on Znp

The goal of this section is to prove Theorem 1.3. We first summarize the strategy, by

formulating its main ingredients in the three propositions below and then explaining
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how these are combined to prove the theorem. Then the work divides into subsections

dedicated to proving each of the propositions.

Before we state the three main propositions, we need to recall some terminology and

an important initial assumption related to the notion of balanced morphisms. For any

compact metrizable topological space X, we denote by P(X) the space of Borel probability

measures on X equipped with the weak topology, which is then also compact metrizable

[30, Theorem (17.22)]. We can then recall the notion of balanced morphism used in [13].

Definition 2.1 (Balance). Let Y be a k-step compact nilspace. For each n ∈ N fix

a metric dn on P(Cn(Y)). Let X be a compact nilspace, and let φ : X → Y be a

(continuous) morphism. Then for b > 0 we say that φ is b-balanced if for every n ≤ 1/b

we have dn
(
µCn(X) ◦(φJnK)−1, µCn(Y)

)
≤ b.

Remark 2.2. The notion of balance thus depends on the choice of metrics dn. Through-

out this paper we adopt the following convention: once we have fixed a metric d on a

compact nilspace Y, this automatically induces a metric on each cube set Cn(Y), n ∈ N
(we choose the `∞-metric (c, c′) 7→ maxv∈JnK d(c(v), c′(v))), and this in turn induces a

metric dn on P(Cn(Y)) for each n in a standard way (e.g. the Lévy-Prokhorov metric).

Thus, fixing a metric on Y is enough to fix the notion of balanced morphisms into Y.

Let us now state the main propositions.

Proposition 2.3. Let Y be a k-step cfr nilspace, let d be a metric generating the topology

on Y, and let p be a prime. There exists b = b(Y, d, p) > 0 such that the following holds:

if for some D there is a b-balanced morphism ϕ : D1(ZDp )→ Y, then every structure group

of Y is a finite elementary abelian p-group, and in particular Y is a finite set.

The second proposition gives a sufficient condition for a nilspace to be p-homogeneous.

Proposition 2.4. Let p be a prime and k ∈ N. Then there exists M ∈ N such that the

following holds. A k-step nilspace X is p-homogeneous if it satisfies the following property:

Every structure group of X is an elementary abelian p-group, and for all i ∈ [k], (1)

for every f ∈ hom
(
D1(ZMp ),Xi) there exists f̃ ∈ hom

(
D1(ZMp ),X) such that πi ◦ f̃ = f .

In the next section we will see with additional tools that, in fact, a converse to this

proposition holds as well, so that property (1) for M sufficiently large can be used as an

equivalent definition of p-homogeneous nilspaces; see Proposition 3.12.

The last ingredient for Theorem 1.3 tells us that if X′ is p-homogeneous and ϕ′ ∈
hom(D1(ZDp ),X′) is sufficiently balanced, then any nilspace morphism D1(ZMp )→ X′ can

be factored through a much simpler morphism D1(ZMp )→ D1(ZDp ) (this latter morphism

is thus an affine linear map FMp → FDp ).



ON HIGHER-ORDER FOURIER ANALYSIS IN CHARACTERISTIC p 11

Proposition 2.5. Let X′ be a k-step cfr p-homogeneous nilspace and let M ∈ N. Then

there exists b′ = b′(X′,M) > 0 such that the following holds. If for some D ∈ N
there is a b′-balanced morphism ϕ′ ∈ hom(D1(ZDp ),X′), then for every morphism f ∈
hom(D1(ZMp ),X′) there exists a morphism g ∈ hom(D1(ZMp ),D1(ZDp )) such that f = ϕ′ ◦g.

Before we go into the proofs of the above three propositions, let us explain how these

results imply Theorem 1.3. The following diagram helps to visualize the argument.

D1(ZMp )

D1(ZDp ) X

X′ = Xk−1

ϕ

g

f̃

ϕ′ = πk−1 ◦ϕ

f

πk−1

Proof of Theorem 1.3. We argue by induction on k. The case k = 1 is clear since then

by Proposition 2.3 we have X = D1(Zmp ) for some m ∈ N, a p-homogeneous nilspace. For

k > 1, letting ϕ be the supposed b-balanced morphism D1(ZDp )→ X, let ϕ′ = πk−1 ◦ϕ ∈
hom(D1(ZDp ),X′), where X′ is the (k − 1)-step nilspace factor, i.e. X′ = Xk−1 = πk−1(X).

Note that, whatever compatible metric d′ we may have fixed on Xk−1, we have that

for every b∗ > 0, if b > 0 is sufficiently small then ϕ′ is b∗-balanced (relative to the

metrics d′n on P(Cn(X′)) induced by d′ as per Remark 2.2). To see this, note that the

pushforward map P(Cn(X)) → P(Cn(Xk−1)), ν 7→ ν ◦(πJnK
k−1)

−1 is continuous, by defi-

nition of the weak topology and the continuity of πk−1. Thus, for every ε > 0 there

is δn > 0 such that the cube-set Haar measures µCn(X), µCn(Xk−1) satisfy that for every

ν ∈ P(Cn(X)), if dn(ν, µCn(X)) < δn then d′n(ν ◦(πJnK
k−1)

−1, µCn(Xk−1)) < ε (where we use

that µCn(Xk−1) = µCn(X) ◦(πJnK
k−1)

−1). Applying this with ν = µCn(ZD
p ) ◦(ϕJnK)−1, we deduce

that if b < minn≤1/b∗ δn(b∗), then d′n(µCn(ZD
p ) ◦(ϕ′JnK)−1, µCn(Xk−1)) ≤ b∗ for all n ≤ 1/b∗.

Hence, if b is sufficiently small (depending on X and in particular on the metric on

Xk−1) then by induction X′ is p-homogeneous. By Proposition 2.3, if b is small enough then

the structure groups of X are all finite elementary abelian p-groups. Then, by Proposition

2.4 it suffices to prove that the lifting property in (1) holds. We claim that, since Xk−1

is p-homogeneous, the lifting property already holds for i ≤ k − 1. Indeed, for any

f ∈ hom(D1(ZMp ),Xi), letting q : ZM → ZMp be the natural quotient map, we have f ◦q ∈
hom(D1(ZM),Xi). By Corollary A.6 applied with the fibration ψ = πi : Xk−1 → Xi,

there exists f ′ ∈ hom(D1(ZM),Xk−1) such that f ◦q = πi ◦f ′. As Xk−1 is p-homogeneous,



12 PABLO CANDELA, DIEGO GONZÁLEZ-SÁNCHEZ, AND BALÁZS SZEGEDY

the restriction f ′|[0,p−1]n is a morphism f̃ ∈ hom(D1(ZMp ),Xk−1), and this morphism is

a lift which proves our claim. Hence it now suffices to prove the lifting property for

i = k− 1, that is, that for some M = M(k, p), for every f ∈ hom
(
D1(ZMp ),Xk−1) there is

f̃ ∈ hom
(
D1(ZMp ),X) such that πk−1 ◦ f̃ = f . Fix any such f . Applying Proposition 2.5

to f with X′ = Xk−1 and ϕ′ = πk−1 ◦ϕ (with b small so that b∗ is less than the parameter

b′(X′,M) given by that proposition), we obtain g ∈ hom(D1(ZMp ),D1(ZDp )) such that

f = ϕ′ ◦g. Letting f̃ = ϕ ◦g, we have πk−1 ◦ f̃ = πk−1 ◦ϕ ◦g = ϕ′ ◦g = f . �

2.1. Proof of Proposition 2.3.

We argue by induction on k. The base case k = 0 is trivial (Y is then the 1-point nilspace).

Throughout this subsection let us denote D1(ZDp ) simply by ZDp (the nilspace structure

used on this group is D1(ZDp ) throughout the proof).

First, by the same argument as in the above proof of Theorem 1.3, for every b∗ > 0, if

b > 0 is sufficiently small then πk−1 ◦ϕ ∈ hom(ZDp ,Yk−1) is b∗-balanced. Hence, if b is less

than the constant b(Yk−1, d
′, p) (given by Proposition 2.3 for Yk−1), then by induction

all the structure groups Zi(Y) with i < k are finite elementary abelian p-groups. In

particular Yk−1 is a finite set. The proof thus reduces to showing that the last structure

group Zk = Zk(Y) is also a finite elementary p-group. As Zk is a (compact abelian) Lie

group, by the no-small-subgroups property there is an open neighbourhood U0 of 0 ∈ Zk

such that the only subgroup of Zk included in U0 is {0}. It suffices to show that for b > 0

sufficiently small we have pz ∈ U0 for all z ∈ Zk, as then the subgroup p · Zk is {0}.
For ε > 0 and c ∈ Ck(Y) let B(c, ε) := {c′ ∈ Ck(Y) : ∀ v ∈ JkK, dY(c′(v), c(v)) < ε}.
Fix any y ∈ Y. For every z ∈ Zk, let cz denote the cube in Ck(Y) such that cz(1

k) =

y + z and cz(v) = y for all v 6= 1k. Let ε > 0 be a parameter to be fixed later.

Our first step in this proof is to use the balance property of ϕ to show that

∀ z ∈ Zk, ∃ c∗ ∈ Ck(ZDp ) such that ϕ ◦c∗ ∈ B(cz, ε). (2)

This will be a straightforward application of the following basic result.

Lemma 2.6. Let V be a finite set and let (W,d) be a compact metric space. Let µ be the

uniform probability measure on V and let ν be a strictly positive measure in P(W ). Let r

be a metric on P(W ). Then for every ε > 0 there exists δ = δ(W,d, r, ε) > 0 such that if

f : V → W is a map satisfying r(µ ◦f−1, ν) ≤ δ, then for every y ∈ W there exists x ∈ V
such that d(f(x), y) < ε.

Proof. By compactness there is a finite set F ⊂ W such that
⋃
t∈F Bε/2(t) = W , where

Bε/2(t) denotes the open ball of radius ε/2 and center t. For each t ∈ F let gt denote the

continuous function y 7→ max{0, ε/2− d(t, y)} on W . Since ν is strictly positive, we have∫
W
gt dν > 0 for every t ∈ F . Hence, for some δ > 0, if κ ∈ P(W ) satisfies r(κ, ν) ≤ δ,
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then
∫
W
gt dκ > 0 for every t ∈ F . In particular, if f : V → W satisfies r(µ ◦f−1, ν) ≤ δ,

then with κ = µ ◦f−1 we have
∫
W
gt dκ = |V |−1

∑
x∈V gt(f(x)) > 0, so there exists x ∈ V

with d(f(x), t) < ε/2. Now let y ∈ W be arbitrary. We have that some t ∈ F satisfies

d(t, y) < ε/2 and some x ∈ V satisfies d(f(x), t) < ε/2, so d(f(x), y) < ε. �

Applying Lemma 2.6 with V = Ck(ZDp ), W = Ck(Y), and f = ϕJkK, we deduce that there

exists b̃ = b̃(Y, ε) > 0 (having fixed the metrics as per Remark 2.2) such that if ϕ is

b-balanced for b < b̃, then (2) holds. Since Yk−1 is a finite set and each fiber π−1k−1(y),

y ∈ Yk−1 is compact, we have min{dY(x, y) : πk−1(x) 6= πk−1(y)} > 0. Using this and the

fact that each fiber π−1k−1(y) is homeomorphic to Zk, for any open neighbourhood U1 of 0 in

Zk we can choose ε > 0 small enough to ensure that, for each z ∈ Zk, the cube ϕ ◦c∗ given

by (2) equals v 7→ cz(v) + qz(v), for some map qz : JkK→ Zk such that qz(v) ∈ U1 for all

v ∈ JkK. Also, since the map qz is a difference of two cubes on Y, we have qz ∈ Ck(Dk(Zk))
[7, Definition 3.2.18 and Theorem 3.2.19].

In the second main step of the proof, we shall now extend the cube ϕ ◦c∗ in two

different ways, thus producing two morphisms that will be used in the final step below

(the combinatorial core of the proof) to deduce that pz ∈ U0 as required.

Our first extension of ϕ ◦c∗ is to a morphism g ∈ hom(D1(Zk),Y). Recall from [7,

Corollary 2.2.17] that the cube qz can be extended to a morphism (polynomial map) f ∈
hom(D1(Zk),Dk(Zk)) of the form f(t) =

∑
w∈JkK aw

(
t
w

)
for t ∈ Zk, where the coefficients

aw ∈ Zk are determined as finite sums and differences of the values of qz (see [7, Lemma

2.2.5]). It follows that for any open neighbourhood U2 of 0 ∈ Zk, we can set the previous

neighbourhood U1 so that, if qz is U1-valued, then the extension f satisfies f(v) ∈ U2

for all v = (v(1), . . . , v(k)) ∈ [0, p]k. We then define our first extension of ϕ ◦c∗ to be

g(v) := y + f(v(1), . . . , v(k)) + z v(1) · · · v(k) in hom(D1(Zk),Y).

Our second extension of ϕ ◦c∗ consists in extending to a morphism not from Zk but

from Zkp. To do this we note that the standard k-cube c∗ on ZDp is trivially extendable to

a morphism h ∈ hom(Zkp,ZDp ), namely, if c∗(v) = x+v(1)h1 + · · ·+v(k)hk for v ∈ JkK, then

h(v) = x+ v(1)h1 + · · ·+ v(k)hk for v ∈ Zkp. The extension is then ϕ ◦h ∈ hom(Zkp,Y).

We now come to the combinatorial core of the proof. Here we shall use the morphisms

g and ϕ ◦h, and concatenations of cubes, to deduce that pz ∈ U0. We first note that the

morphism properties of g and ϕ ◦h yield two chains of p consecutive k-cubes which are

usefully interrelated. More precisely, for each i ∈ [p] let ci ∈ Ck(Y) be the cube obtained

by restricting g to {i−1, i}×Jk−1K, and similarly let c′i ∈ Ck(Y) be the restriction of ϕ ◦h
to {i− 1, i} × Jk − 1K, thus obtaining the two chains of cubes (ci)i∈[p], (c′i)i∈[p]. We define

a map ĉ which combines usefully the four (k − 1)-cubes that form the “extreme faces” of

these two chains: let ĉ : Jk + 1K → Y be defined by ĉ(0, v2, . . . , vk+1) = g(0, v2, . . . , vk) =

c∗(0, v2, . . . , vk), ĉ(1, v2, . . . , vk, 0) = ϕ ◦h(p, v2, . . . , vk) = c∗(0, v2, . . . , vk) (where the last
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equality uses the p-periodicity of h), and finally ĉ(1, v2, . . . , vk, 1) = g(p, v2, . . . , vk). We

shall now show that ĉ ∈ Ck+1(Y), using that g and ϕ ◦h are morphisms, and using

concatenations of cubes. To this end, we note the following useful fact: let us define a

relation ∼ on Ck(Y) by declaring that c ∼ c′ if the map c̃ : Jk + 1K → Y, c̃(v, 0) = c(v),

c̃(v, 1) = c′(v) (v ∈ JkK) is in Ck+1(Y); then the morphism property of g implies that the

cubes ci defined above satisfy ci ∼ cj for each i, j ∈ [p] (since there is a (k + 1)-cube on

D1(Zk) with image {i − 1, i} × Jk − 1K on one k-face and image {j − 1, j} × Jk − 1K on

the opposite k-face). Similarly, the morphism property of ϕ ◦h implies that c′i ∼ c′j for

each i, j ∈ [p]. Now note that, by concatenation of cubes [7, Lemma 3.1.7.], the relation

∼ is transitive (it is also clearly reflexive and symmetric, by the nilspace axioms, so it

is an equivalence relation). Applying this transitivity via the cubes c1 = c′1 at one end

of the chains, we deduce that for every i ∈ [p] we have ci ∼ c′i. Hence, for each i ∈ [p],

the map c̃i : Jk + 1K → Y defined by c̃i(v, 0) = ci(v) and c̃i(v, 1) = c′i(v) (v ∈ JkK) is a

cube. Note also that, for each i ∈ [p − 1], the cubes c̃i, c̃i+1 are adjacent in the sense

that c̃i(1, v) = c̃i+1(0, v) for every v ∈ JkK. Moreover, by the p-periodicity of h, we have

ϕ ◦h(p, v) = ϕ ◦h(0, v) for every v ∈ Jk − 1K. This implies that the map ĉ defined above

is indeed in Ck+1(Y) as we claimed, since it is the concatenation of the cubes c̃i, i ∈ [p].

Now, to conclude this combinatorial argument, we note that the map Jk + 1K → Y with

constant value y is also in Ck+1(Y), so the difference between ĉ and this constant cube

must be a cube in Ck+1
(
Dk(Zk)

)
, and must therefore have Gray-code alternating sum

equal to 0 (see [7, Definitions 3.2.18 and 2.2.30]). Hence, if ε > 0 is small enough, then

the neighbourhood U2 in the construction of g (i.e. the smallness of the values of f) is

small enough so that pz ∈ U0. This proves that Zk is an elementary abelian p-group.

To complete the proof of Proposition 2.3, it now only remains to prove that Y is finite.

Since Y is a cfr nilspace, its structure groups are compact abelian Lie groups, so they

are of the form Tnj × Aj where nj ≥ 0 are integers and Aj are finite abelian groups for

j ∈ [k]. Since we now know that each structure group is an elementary abelian p-group,

we have nj = 0 for all j ∈ [k], i.e. the structure groups are all finite. Now note, more

generally, that if all the structure groups of a k-step nilspace X are finite then X is a

finite set. This can be seen by induction on k, using the fact that for the factor map

πk−1 : X → Xk−1, each preimage π−1k−1(x), x ∈ Xk−1 is in bijection with the structure

group Zk (see [7, §3.2.3]).

This completes the proof or Proposition 2.3.

Remark 2.7. A straightforward adaptation of the above proof yields a generalization of

Proposition 2.3 where the 1-step p-homogeneous nilspaces D1(ZDp ) can be replaced by the

more general class of cfr w-p-homogeneous nilspaces, introduced in Section 3. We do

not need this generalization in this paper.
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2.2. Proof of Proposition 2.4.

We prove Proposition 2.4 by induction on the step of the nilspace. The argument uses

several ingredients, each of which is relevant to p-homogeneous nilspaces in themselves.

The first main ingredient is a result which gives a further equivalent description of

p-homogeneous nilspaces: Proposition 2.11 below. To prove this, we want a useful way

to decide whether a given map from the set [0, p − 1]n ⊂ Zn into a nilspace X can be

extended to a morphism D1(Zn) → X. The following tool will help to obtain a useful

sufficient condition for such an extension.

Definition 2.8 (Maximal cube). For each integer n ≥ 0 and prime p we define the

maximal cube c∗p,n as the following element of Cn(p−1)(D1(Zn)):

∀ v ∈ Jn(p−1)K, c∗p,n(v) :=
n−1∑
i=0

(
v(i(p− 1) + 1)+v(i(p− 1) + 2)+· · ·+v((i+ 1)(p− 1))

)
ei+1, (3)

where (ei)i∈[n] is the standard basis of Zn.

The above-mentioned sufficient condition goes as follows.

Lemma 2.9. Let X be a nilspace. If g : [0, p − 1]n → X satisfies g ◦c∗p,n ∈ Cn(p−1)(X),

then there exists f ∈ hom(D1(Zn),X) such that g = f |[0,p−1]n.

This is a special case of a result concerning general nilspace theory rather than just p-

homogeneous nilspaces. Because of this, we leave the proof for Appendix A (specifically,

Lemma 2.9 is the special case of Corollary A.6 with Y equal to the 1-point nilspace).

As the sufficient condition in Lemma 2.9 will be used repeatedly below, let us introduce

the following notation for it.

Definition 2.10. Let p be a prime, let n ≥ 0 be an integer and X be a nilspace. Then

we define the set homn
p (X) := {f : [0, p− 1]n → X : f ◦c∗p,n ∈ Cn(p−1)(X)}.

We can now state and prove the first main ingredient for the proof of Proposition 2.4.

Proposition 2.11. A nilspace X is p-homogeneous if and only if for every integer n ≥ 0

we have homn
p (X) ⊂ hom(D1(Znp ),X).

Proof. To see the backward implication note that, given f ∈ hom(D1(Zn),X) we have

f |[0,p−1]n ∈ homn
p (X), so by the assumed inclusion we have f |[0,p−1]n ∈ hom(D1(Znp ),X), so

X is p-homogeneous. The forward implication follows from Lemma 2.9. �

The second main ingredient is the following result. This strengthens the backward impli-

cation in Proposition 2.11, as the assumption is made only up to a bounded dimension.

Proposition 2.12. For every prime p and k ∈ N there is M = M(p, k) > 0 such that

the following holds. If a k-step nilspace X satisfies homM
p (X) ⊂ hom(D1(ZMp ),X), then X

is p-homogeneous.
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The proof will use the following definition, which extends the notion of discrete cube

morphism from [6] (see also [7, Definition 1.1.1.]).

Definition 2.13. Let p be a prime. A function φ : [0, p − 1]n → [0, p − 1]m is a p-

discrete-cube morphism if it is the restriction of an affine homomorphism Zn → Zm. A

p-discrete-cube morphism φ : [0, p − 1]n → [0, p − 1]m with n ≤ m is a p-face-map of

dimension n if it is injective and fixes m− n coordinates.

The case p = 2 of this definition yields the usual discrete cube morphisms. It can be seen

(e.g. by a straightforward adaption of the proof of [7, Lemma 1.1.2.]) that each coordinate

function φj(v), j ∈ [m], is either vij , or p − 1 − vij for some ij ∈ [n], or is a constant

k ∈ {0, . . . , p− 1}.
The proof of Proposition 2.12 relies on the following couple of lemmas.

Lemma 2.14. Let f ∈ homn
p (X) and suppose that for every T ∈ hom(D1(Zmp ),D1(Znp ))

we have f ◦T ∈ homm
p (X). Then f ∈ hom(D1(Znp ),X).

Proof. By definition f ∈ hom(D1(Znp ),X) if for every c ∈ Cm(D1(Znp )) we have f ◦c ∈
Cm(X). As D1(Znp ) is p-homogeneous we know that c extends to a morphism T ∈
hom(D1(Zmp ),D1(Znp )). By our assumption we have f ◦T ∈ homm

p (X). Since f ◦c =

f ◦T ◦ i, where i : JmK → Zmp is the identity embedding (which is in Cm(Zmp )) we have

f ◦c ∈ Cm(X) as required. �

Lemma 2.15. Let X be a k-step nilspace and n ≥ k + 1. Let f : [0, p − 1]n → X satisfy

f ◦φ ∈ homk+1
p (X) for every p-face-map φ : [0, p−1]k+1 → [0, p−1]n. Then f ∈ homn

p (X).

This second lemma has a longer and more technical proof and concerns nilspaces more

generally, so we leave it to Appendix A; see Lemma A.14.

Proof of Proposition 2.12. Let M(p, k) := pk+2. By Proposition 2.11, it is enough to check

that for all n ≥ 0 we have homn
p (X) ⊂ hom(D1(Znp ),X). Thus let f be any element of

homn
p (X), and let us distinguish the following two cases.

If n ≤ M , then consider the map φ : [0, p− 1]M → [0, p− 1]n, (v1, . . . , vn, . . . , vM) 7→
(v1, . . . , vn), which clearly extends to a morphism D1(ZM) → D1(Zn). It follows that

f ◦φ ∈ homM
p (X). Hence by our assumption f ◦φ ∈ hom(D1(ZMp ),X). Now consider ψ :

[0, p−1]n → [0, p−1]M , (v1, . . . , vn) 7→ (v1, . . . , vn, 0, . . . , 0). As ψ ∈ hom(D1(Znp ),D1(ZMp )),

we have that f = f ◦φ ◦ψ ∈ hom(D1(Znp ),X), as required.

If n > M , then by Lemma 2.14 it suffices to check that for the given f ∈ homn
p (X)

and any T ∈ hom(D1(Zmp ),D1(Znp )), we have f ◦T ∈ homm
p (X). For this, by Lemma

2.15 it suffices to check that for every p-face-map φ : [0, p − 1]k+1 → [0, p − 1]m we

have f ◦T ◦φ ∈ homn
p (X). Note that φ ∈ hom(D1(Zk+1

p ),D1(Zmp )). Therefore T ◦φ ∈
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hom(D1(Zk+1
p ),D1(Znp )), so for each i ∈ [n] the i-th coordinate of T ◦φ is an affine-

linear map Zk+1
p → Zp of the form (v1, . . . , vk+1) 7→ a

(i)
0 + a

(i)
1 v1 + · · ·+ a

(i)
k+1vk+1 for some

coefficients a
(i)
0 , . . . , a

(i)
k+1. In total there are pk+2 = M(p, k) possible such maps. Therefore

there is an affine-linear map T ∗ ∈ hom(D1(Zk+1
p ),D1(ZMp )), whose coordinates are all these

possible maps, and there is a p-discrete-cube morphism ψ : [0, p− 1]M → [0, p− 1]n that

selects the correct entry of T ∗ in order to have T ◦φ = ψ ◦T ∗ (actually ψ can be given

as an n ×M matrix with each row having some entry equal to 1 and all others equal

to 0). Since f ◦ψ ∈ homM
p (X), by hypothesis we have f ◦ψ ∈ hom(D1(ZMp ),X). Hence

f ◦T ◦φ = (f ◦ψ) ◦T ∗ ∈ hom(D1(Zk+1
p ),X). �

We need one more tool for the proof of Proposition 2.4, namely the following lemma esta-

blishing the p-homogeneity of elementary abelian p-groups with higher-degree filtrations.

Lemma 2.16. Let Z be an elementary abelian p-group, and let k ∈ N. Then the k-step

nilspace Dk(Z) is p-homogeneous.

Proof. We check that Definition 1.2 holds for X = Dk(Z). We know (see e.g. [7, Theorem

2.2.14]) that f is in hom(D1(Zn),Dk(Z)) if and only if f is a degree-k polynomial map

Zn → Z. Moreover (e.g. by [18, Lemma A.1]), for each i ∈ Nn with height |i| := i1 + · · ·+
in ≤ k, there is an element ai ∈ Z such that f(n) =

∑
i∈Nn:|i|≤k ai

(
n
i

)
for every n ∈ Zn. For

each i we have p ai = 0. This implies that the restriction f |[0,p−1]n yields a well-defined

map Znp → Z, which is readily seen to be a polynomial of degree at most k. �

We can now complete the main goal of this section.

Proof of Proposition 2.4. We argue by induction on k. The case k = 0 is trivial. Let

M(p, k) = pk+2. We need to prove that every f ∈ homM(p,k)
p (X) is in hom(D1(ZM(p,k)

p ),X).

First we prove by induction that Xk−1 can be assumed to be p-homogeneous. Since

M(p, k) ≥M(p, k−1), it suffices to show that for every g ∈ hom(D1(ZM(p,k−1)
p ),Xi) there

exists g̃ ∈ hom(D1(ZM(p,k−1)
p ),Xk−1) such that g = πi ◦ g̃. Writing elements of ZM(p,k)

p as

(v, w) with v ∈ ZM(p,k−1)
p , let φ : ZM(p,k)

p → ZM(p,k−1)
p , (v, w) 7→ v (the projection to the

first M(p, k − 1) coordinates). Then g ◦φ ∈ hom(D1(ZM(p,k)
p ),Xi). By hypothesis, there

exists h ∈ hom(D1(ZM(p,k)
p ),X) that lifts g ◦φ. Let i : ZM(p,k−1)

p → ZM(p,k)
p be the inclusion

map v 7→ (v, 0). Then h ◦ i is in hom(D1(ZM(p,k−1)
p ),X) and lifts g, i.e. πi ◦h ◦ i = g. Hence

g̃ := πk−1 ◦h ◦ i is in hom(D1(ZM(p,k−1)
p ),Xk−1) and πi ◦ g̃ = g.

Now consider πk−1 ◦f ∈ homM(p,k)
p (Xk−1). As Xk−1 is p-homogeneous, by Propo-

sition 2.11 we have πk−1 ◦f ∈ hom(D1(ZM(p,k)
p ),Xk−1). By hypothesis, there exists

f̃ ∈ hom(D1(ZM(p,k)
p ),X) that lifts πk−1 ◦f , i.e., πk−1 ◦ f̃ = πk−1 ◦f . This implies that

f − f̃ ∈ homM(p,k)
p (Dk(Zk(X))). Since Zk(X) is an elementary abelian p-group, by Lemma

2.16 the nilspace Dk(Zk(X)) is p-homogeneous. Then by Proposition 2.11 we deduce that

f− f̃ ∈ hom
(
D1(ZM(p,k)

p ),Dk(Zk(X))
)
. Hence f = f̃+(f− f̃) ∈ hom(D1(ZM(p,k)

p ),X). �
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2.3. Proof of Proposition 2.5.

To simplify the notation, we shall prove Proposition 2.5 with X′ relabeled as X.

We begin with a useful construction of a function with small Uk-norm on ZDp using a

p-homogeneous nilspace X: it suffices to compose a highly balanced morphism ZDp → X

with a function on X that has average 0 on every orbit of the structure group Zk(X).

Lemma 2.17. Let X be a k-step cfr p-homogeneous nilspace with a compatible metric.

For any η > 0 there is b = b(X, p, η) > 0 such that if ϕ ∈ hom(D1(ZDp ),X) is b-balanced,

then for any 1-bounded function10 f : X→ C such that ∀x ∈ X,
∫
Zk
f(x+ z) dµZk

(z) = 0,

we have ‖f ◦ϕ‖Uk ≤ η.

Proof. By Proposition 2.3, if b is small enough then X is finite.

Suppose for a contradiction that there exists η0 > 0 such that for all n ∈ N we have a
1
n
-balanced morphism ϕn and a 1-bounded function fn : X→ C such that ‖fn ◦ϕn‖Uk ≥
η0. As the set T := {f : X → C : |f | ≤ 1 and ∀x ∈ X,

∫
Zk
f(x + z) dµZk

(z) = 0}
is compact, we may assume without loss of generality that for some f ∈ T we have

maxx∈X |fn(x) − f(x)| → 0 as n → ∞. Then η0 ≤ ‖fn ◦ϕn‖Uk ≤ ‖(fn − f) ◦ϕn‖Uk +

‖f ◦ϕn‖Uk . For large enough n, we have ‖(fn−f) ◦ϕn‖Uk ≤ η0
3

and, since ϕn is 1
n
-balanced,

also
∣∣∣∫ ∏v∈JkKC

|v|f ◦ϕn(c(v)) dµCk(ZD
p )(c)−

∫ ∏
v∈JkKC

|v|f(c(v)) dµCk(X)(c)
∣∣∣ ≤ η0

3
, where

C denotes the complex-conjugation operator.

By construction of this Haar measure [8], this last integral equals∫
Ck(X)

∫
Ck(Dk(Zk))

∏
v∈JkK

C |v|f(c(v) + c′(v)) dµCk(Dk(Zk))
(c′) dµCk(X)(c).

But we know that Ck(Dk(Zk)) is just the direct product Z
JkK
k with its Haar measure being

the JkK-power of the Haar measure on Zk. Hence for each fixed c the inner integral above

is
∏

v∈JkKC
|v| ∫

Zk
f(c(v) + z) dµZk

(z) = 0. This yields a contradiction. �

Now let us turn to the core of the proof of Proposition 2.5. Let us recall briefly the situ-

ation. We have the abelian group A := hom(D1(ZMp ),D1(ZDp )) of affine homomorphisms

ZMp → ZDp . Note that A ∼= ZDp ⊕ZD×Mp , so that in particular we can represent the elements

of A as (M + 1)-tuples (x, t1, . . . , tM) ∈ (ZDp )M+1, where such a tuple represents uniquely

the affine homomorphism g(x,t=(t1,...,tM )) ∈ A defined by

g(x,t)(z) = x+ t · z = x+ t1z1 + · · ·+ tMzM , for z ∈ ZMp .

(The ti can also be viewed as the M columns of a matrix τ ∈ ZD×Mp defining the linear

map z 7→ τz, and then g(x,t) is this linear map composed with translation by x.) This

mapping of elements of A to (M + 1)-tuples
(
x, t = (t1, . . . , tM)

)
is a group isomorphism.

10A complex-valued function h is said to be 1-bounded if |h| ≤ 1 everywhere on the domain of h.
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On the other hand we have the abelian bundle B := hom(D1(ZMp ),X), where X is a

k-step p-homogeneous nilspace, and we have a b-balanced morphism ϕ ∈ hom(D1(ZDp ),X).

We then consider the map F : A → B, g 7→ ϕ ◦g, and our goal is to prove that if ϕ

is b-balanced with b sufficiently small (where b can depend on X), then F is surjective.

Note that for each element (x, t) in A, the image F (x, t) = ϕ ◦g(x,t) can be viewed as a

point in XZM
p , namely as the point F

(
x, t = (t1, . . . , tM)

)
=
(
ϕ(x+t1z1+· · ·+tMzM)

)
z∈ZM

p
.

The first step in our strategy is to use induction on k to reduce the task of proving

that F is surjective onto B to the task of proving a simpler looking statement about the

distribution of the orbit (F (x, t))(x,t)∈A in k-level fibers of some power of X. The reduction

goes as follows. Let f be any element in B. Then, by induction on k (using that πk−1 ◦ϕ
is b′(b)-balanced where b′ → 0 as b → 0), there is an element g ∈ A such that the map

πk−1 ◦ϕ ◦g is equal to πk−1 ◦f . In other words, our goal of showing that f is the image of

some g ∈ A under F is already achieved modulo πk−1, i.e. we have πk−1 ◦ϕ ◦g = πk−1 ◦f .

Then, since ϕ ◦g(z) and f(z) are in the same πk−1-fiber in X for every z ∈ ZMp , we can

take the difference of these two maps, which must then be a morphism into the k-th

structure group Zk of X, namely q : z 7→ ϕ ◦g(z) − f(z) ∈ hom
(
D1(ZMp ),Dk(Zk)

)
. In

other words, this map q is a Zk-valued polynomial of degree at most k in M variables.

Let us identify ZMp with [0, p− 1]M , and define for r ∈ N the set

Sr,M := [0, p− 1]M<r = {z ∈ [0, p− 1]M : |z| := z1 + · · ·+ zM < r}. (4)

Then q is entirely determined by its values on Sk+1,M . Actually, this holds for more

general morphisms, in the following sense which will be used later.

Lemma 2.18. Let X be a k-step nilspace and let q ∈ hom(D1(ZMp ),X). Then the values

of q on Sk+1,M determine the full map q.

Proof. We use the uniqueness of completion of (k + 1)-corners on X. To this end, for

z ∈ Sk,M , we call |z| := z1 + · · ·+ zM the height of z, as in the previous subsection.

If all elements in [0, p−1]M have height at most k (which happens when (p−1)M ≤ k)

then there is nothing to prove (since q|Sk+1,M
is then already the full map q). Otherwise,

we argue by induction on the height. We start with any z ∈ [0, p − 1]M satisfying

|z| = k + 1. Note that there is a (k + 1)-cube c on D1(ZMp ) such that | c(v)| ≤ k for

v 6= 1k+1 and c(1k+1) = z. Indeed, letting z1, . . . , zM be the coordinates of z, we can take

c(v) = v(1)h1 + · · · + v(k + 1)hk+1, where, out of the k + 1 elements hi ∈ [0, p − 1]M , we

set the first z1 of them to be equal to e1, the next z2 of them to be equal to e2, etc.,

the last zM of them to be equal to eM . Then, letting c′ be the (k + 1)-corner obtained

by restricting c to Jk + 1K \ {1k+1}, we have that q ◦c′ is a (k + 1)-corner on X, so its

completion is unique, and this completion is q ◦c by the morphism property, so the value

q(z) = q ◦c(1k+1) is uniquely determined.
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Repeating this argument with every z of height k + 1, then by induction with height

k + 2, and so on, we determine all values q(z), z ∈ [0, p− 1]M . �

Recall that in our ongoing argument, the polynomial q is the “error” that we would like to

correct in ϕ ◦g to get the desired map f as an image ϕ ◦g′ and thus prove the surjectivity

claimed in Proposition 2.5. Thanks to Lemma 2.18, we can focus on correcting errors in

Sk+1,M . It then suffices to prove the following quantitative equidistribution result.

Lemma 2.19. Let X be a k-step cfr p-homogeneous nilspace with a compatible met-

ric, and let S = Sk+1,M . For every ε > 0, there exists b > 0 such that the follow-

ing holds. Let ϕ ∈ hom(D1(ZDp ),X) be b-balanced, let (x, t = (t1, . . . , tM)) ∈ A :=

hom(D1(ZMp ),D1(ZDp )), and let y =
(
ϕ(x + t · z)

)
z∈S ∈ XS. Then the map F ′ : A →

XS, (x′, t′) 7→
(
ϕ(x′ + t′ · z)

)
z∈S is ε-equidistributed in the fiber y + ZSk ⊂ XS, in the

following sense:

∀w ∈ ZSk ,
∣∣∣ µA(F ′−1(y + w)

)
µA
(
F ′−1(y + ZSk )

) − 1

|ZSk |

∣∣∣ < ε. (5)

Note that the quantity
µA

(
F ′−1(y+w)

)
µA

(
F ′−1(y+ZS

k )
) in (5) is a conditional probability of F ′(x, t) equalling

y + w given that F ′(x, t) is in the fiber y + ZSk . Thus (5) tells us that this probability is

ε-close to the Haar-probability of the singleton {y + w} in this fiber.

To see that Lemma 2.19 implies Proposition 2.5, recall that so far we had found

g = gx,t1,...,tM such that f(z) = ϕ ◦g(z) − q(z), and now we just need to “correct” the

polynomial difference q(z) in order to conclude the desired surjectivity. By Lemma 2.19

and the finiteness of Zk (given by Proposition 2.3), for ε sufficiently small (namely ε <
1
|ZS

k |
), the ε-equidistribution implies surjectivity in this ZSk -fiber, so there is (x′, t′) ∈ A

such that
(
ϕ(x′+ t′ · z)

)
z∈S =

(
ϕ(x+ t · z)− q(z)

)
z∈S =

(
f(z)

)
z∈S. In other words, letting

g′ be the element of A corresponding to (x′, t′), we now have that the morphisms ϕ ◦g′

and f in hom(D1(ZMp ),X) agree on the simplicial set S ⊂ ZMp . But then by Lemma 2.18

we deduce that ϕ ◦g′ = f on all of ZMp , which gives our desired surjectivity conclusion,

completing the proof of Proposition 2.5.

Let us now turn to the proof of Lemma 2.19.

Definition 2.20. We define W = WX,k,p,M to be the vector space of functions h : XS → C
with the property that for every point y ∈ XS we have

∫
ZS
k
h(y + w) dµZS

k
(w) = 0.

Note that W has finite dimension because by Proposition 2.3 we know that X is finite.

The dimension of W thus depends on |X |, and note that it also increases as M grows

(but this poses no problem, as M will be fixed in terms of p and k).

Our next step is to reduce the proof of Lemma 2.19 to establishing the following result.
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Proposition 2.21. Let X be a k-step p-homogeneous cfr nilspace with a compatible

metric, and let W be the vector space in Definition 2.20. For every δ > 0, there exists

b = b(X,M, δ) > 0 such that if ϕ ∈ hom(D1(ZDp ),X) is b-balanced then

∀h ∈ W with ‖h‖∞ ≤ 1, we have
∣∣∣Ex,t1,...,tM∈ZD

p
h
((
ϕ(x+ t · z)

)
z∈S

)∣∣∣ ≤ δ. (6)

Proof of Lemma 2.19 using Proposition 2.21. Suppose that Lemma 2.19 fails for some ε >

0. Then this failure is witnessed by a point in some ZSk -fiber; more precisely, there exist

x, t1, . . . , tM ∈ ZDp such that, letting y =
(
ϕ(x + t · z)

)
z∈S, there is a point in the fiber

y+ ZSk , i.e., some point y′ = y+w for some w ∈ ZSk , such that the following holds: let µ′A

denote the measure of the preimage F ′−1(y′) in A conditioned on the event F ′−1(y+ ZSk ),

that is µ′A(F ′−1(y′)) = µA(F ′−1(y′))/µA(F ′−1(y + ZSk )). Then
∣∣µ′A(F ′−1(y))− 1

|ZS
k |

∣∣ ≥ ε.

Suppose that µ′A(F ′−1(y)) ≤ 1
|ZS

k |
− ε (the case µ′A(F ′−1(y)) ≥ 1

|ZS
k |

+ ε is handled

similarly). Note that there is some other point ỹ in the same fiber such that µ′A(F ′−1(ỹ)) ≥
1
|ZS

k |
− ε

2
. Indeed, otherwise we would have 1 = µ′A(F ′−1(y + ZSk )) ≤

∑
w∈ZS

k
µ′A(F ′−1(y +

w)) ≤ 1− ε
2
|ZSk |, a contradiction.

Now let h be the function on XS which is 0 in every ZSk -fiber other than the fiber

y + ZSk , and in this fiber let h(y′) = −1, h(ỹ) = 1, and h = 0 otherwise. Then clearly

h ∈ W . However, for this function h the conclusion (6) fails because the left side of (6)

for h is µA(F ′−1(y′))− µA(F ′−1(ỹ)) = µA(F ′−1
(
y + ZSk )

)(
µ′A(F ′−1(y′))− µ′A(F ′−1(y))

)
≥

µA(F ′−1
(
y + ZSk )

)
ε/2, so indeed (6) fails with δ = µA(F ′−1

(
y + ZSk )

)
ε/2. Now we want

this δ to depend on ε, and perhaps X and M , but not on D, so we have to ensure that

the quantity µA(F ′−1
(
y + ZSk )

)
is bounded away from 0 independently of D.

By induction we may assume that Lemma 2.19 holds for step at most k − 1. Let

F ′k−1 : A→ X
Sk−1

k−1 , and yk−1 := (πk−1(ϕ(x+ t · z))z∈Sk−1
. Then for b small enough we have∣∣∣∣∣ µA(F ′k−1(yk−1 + w))

µA(F ′k−1(yk−1 + Z
Sk−1

k−1 ))
− 1

|ZSk−1

k−1 |

∣∣∣∣∣ ≤ 1

2|ZSk−1

k−1 |

(recall that πk−1 ◦ϕ is bk−1-balanced with bk−1(b)→ 0 as b→ 0).

Using that F ′−1(y + ZSk ) ⊃ F ′−1k−1(yk−1) we have

µA(F ′−1(y + ZSk )) ≥ µA(F ′−1k−1(yk−1)) ≥
1

2|ZSk−1

k−1 |
µA(F ′k−1(yk−1 + Z

Sk−1

k−1 )).

Thus, repeating this argument iteratively we conclude that, for b small enough,

µA(F ′−1(y + ZSk )) ≥ 1

2|ZSk−1

k−1 |
· · · 1

2|ZS1
1 |

which is a quantity that depends on X, p and M , but not on D.

We thus deduce that the conclusion of Proposition 2.21 fails, as required. �
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We now turn to the proof of (6). For this purpose let us first observe the following useful

decomposition of functions in W .

Lemma 2.22. Let X be a k-step cfr p-homogeneous nilspace. For every 1-bounded

function h in W we have a decomposition h =
∑

r∈[R] hr where R = R(X, p,M) and

hr : y 7→
∏

z∈S hr,z(yz) is a rank 1 function such that each hr,z is 1-bounded and, for each

r, for some z′ = z′(h, r) ∈ S, the function hr,z′ has integral 0 in each Zk-fiber.

Proof. Since X is finite, there are finitely many fibers y + ZSk partitioning XS. Denoting

these fibers F1, . . . , FN , we have h = h1F1 + · · ·+ h1FN
, where each h1Fj

has 0 average on

Fj and is 0 outside Fj. Therefore it suffices to show that given a single such fiber, every 1-

bounded function with 0 average on this fiber is a sum of rank 1 functions y 7→
∏

z∈S hz(yz)

with every hz being 1-bounded and with at least one of the hz having average 0 on this

fiber (we can then extend hz by 0 to a function on all of X, which then clearly has average

0 on every Zk-fiber in X).

Thus, we have reduced the problem to proving the lemma in the case where all of X

is a single Zk-fiber: let X be a finite set, let K be a positive integer (we will apply this

with K = |S|), and let W be the vector space of functions with average 0 on all of XK ;

then every 1-bounded function in W is a sum of rank-1 functions where at least one of

the factor-functions has 0 average on X and all factor-functions are 1-bounded.

We can prove this claim by induction on K. For K = 1 the claim holds tautologically.

Suppose then that the claim holds for the similarly-defined vector space W ′ ≤ CXK−1
.

Take a 1-bounded function h : XK = XK−1×X→ C having average 0. Suppose we could

show that this is a sum of functions of the form (y′, y) ∈ XK−1×X 7→ h1(y
′)h2(y) where

at least one of h1, h2 has 0 average and both are 1-bounded. Then if it is h2 that has 0

average we are done (as h1 is a sum of 1-bounded rank-1 functions by standard results)

and if it is h1 that has 0 average then by induction h1 is a sum of rank 1 functions with

1-bounded factor-functions, one of which has 0 average, so together with h2 we get rank

1 functions decomposing h as required.

Thus, we have reduced the problem even more, to proving that if X,Y are finite sets

and f : X×Y → C has 0 average and is 1-bounded, then it is a combination of rank 1

functions u(x)v(y) where u and v are both 1-bounded and one of them has average 0.

Note that any such function f is a sum of functions f ′ which equal some value α ∈ [−1, 1]

in some entry (x0, y0), then −α in some other entry (x1, y1), and 0 everywhere else (just

make a cycle of such functions f ′ through consecutive pairs of entries, the second non-zero

entry of one such f ′ being corrected by the first non-zero entry of the next such f ′). Hence

it suffices to show that any of these functions f ′ is a sum of rank 1 functions of the desired

kind. But if x0 = x1 or y0 = y1 then f is already a rank 1 function of the desired kind (for

example if x0 = x1 then f ′(x, y) = α 1x0(x)v(y) where v(y0) = 1 = −v(y1) and v(y) = 0
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otherwise). If instead x0 6= x1 and y0 6= y1, then f ′(x, y) = u1(x)v1(y) + u2(x)v2(y) where

u1 = α(1x0−1x1), v1 = 1y0 , and u2 = 1x1 , v2 = α(1y0−1y1). This completes the proof. �

Given Lemma 2.22, to prove Proposition 2.21 we can first use the decomposition h =∑
r∈[R] hr where for each r there is a system of 1-bounded functions (hr,z : X → C)z∈S

with some hr,z having average 0 in each Zk-fiber and hr(y) =
∏

z∈S hr,z(yz). Hence the

right side of (6) is at most∑
r∈[R]

∣∣∣Ex,t1,...,tM∈ZD
p

∏
z∈S

hr,z ◦ϕ(x+ t1z1 + · · ·+ tMzM)
∣∣∣. (7)

Note that R depends on the dimension of W , hence on |XS |, and this depends on X (in

particular on k) but also on p and M .

Now by Lemma 2.17, for each r, the 1-bounded function hr,z′ : X→ C that has average

0 on every Zk-fiber satisfies ‖hr,z′ ◦ϕ‖Uk ≤ η for b small enough (where ϕ is the initial

b-balanced morphism in hom(D1(ZDp ),X)). Note that, by Lemma 2.17, the parameter b

depends only on η, p, k,M and X but not on the particular function hr,z′ .

Therefore, the proof is now completed by applying the following result, which extends

the Generalized Von Neumann Theorem and was proved recently in [11, Theorem 1.10].

Theorem 2.23. Let p be a prime, let M ∈ N and let k ∈ [M(p− 1)]. Then there exists

c > 0 such that for every collection of 1-bounded functions (fz : ZDp → C)z∈Sk+1,M
,∣∣∣Ex,t1,...,tM∈ZD

p

∏
z∈Sk+1,M

fz(x+ t1z1 + · · ·+ tMzM)
∣∣∣ ≤ min

z∈Sk+1,M

‖fz‖cUk . (8)

Indeed, this result implies that the sum in (7) is at most Rηc, and then we can take b to

be small enough (in terms of everything that goes into R and c, i.e. k, p, X, and M) so

that Rηc ≤ δ, as required in the conclusion of Proposition 2.21.

This completes the proof of Proposition 2.5.

Remark 2.24. In Proposition 2.5, for general step k the parameter b′ must depend on

the dimension M . This can be seen using the following fact from nilspace theory (not

detailed in this paper): if ϕ is a cube-surjective morphism from a finite nilspace X to a

nilspace Y, then ϕ must be a fibration. Using this, we see that if b′ were independent of

M , then we could deduce that the morphism ϕ′ is a fibration, which would force the step

of X′ to be at most the step of D1(ZDp ), a contradiction if k > 1.

3. Further properties of p-homogeneous nilspaces

In this section we prove additional results about p-homogeneous nilspaces, which will be

used in the next section to obtain the main structure theorem. It turns out that some

of these results hold for a (potentially) larger class of nilspaces, which we call weak-p-

homogeneous (or w-p-homogeneous) nilspaces.
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Definition 3.1 (w-p-homogeneous nilspace). Let p be a prime. A nilspace X is w-p-

homogeneous if for every c ∈ Cn(X) there exists f ∈ hom(D1(Znp ),X) such that f |JnK = c.

The fact that every p-homogeneous nilspace is a w-p-homogeneous nilspace is a direct

consequence of the following fact.

Lemma 3.2. Let X be a nilspace and let c ∈ Cn(X) for any n ≥ 0. Then there exists a

morphism f ∈ hom(D1(Zn),X) such that f |JnK = c.

Since this lemma concerns general nilspaces, we leave its proof to Appendix A (specifically,

Lemma 3.2 is the special case of Corollary A.7 with Y equal to the 1-point nilspace).

Remark 3.3. For p = 2 the notions of p-homogeneous and w-p-homogeneous nilspaces are

readily seen to be equivalent. For p > 2 we do not know whether every w-p-homogeneous

nilspace is p-homogeneous. Within certain classes of nilspaces, we can prove that the two

notions are indeed equivalent. This holds for example for group nilspaces, as established

in Theorem 3.8 below. It can also be proved that every 2-step w-p-homogeneous nilspace

is p-homogeneous (since this is not used in the sequel, we omit the details). Thus, this

paper leaves open the following question, which seems of independent interest despite not

being crucial for our purposes here.

Question 3.4. Is every w-p-homogeneous nilspace also p-homogeneous, for all primes p?

Our first result about w-p-homogeneous nilspaces is that they are generalizations of ele-

mentary abelian p-groups, in the sense of the following result, which immediately implies

Proposition 1.5.

Proposition 3.5. Let X be a k-step w-p-homogeneous nilspace and let i ∈ [k]. Then

Zi(X) is an elementary abelian p-group. If X is also a cfr nilspace, then X is finite.

Proof. We argue by induction on k. For k = 0 the result is trivial (X is then the 1-point

nilspace). For k > 0, by induction it suffices to prove that if X is of step k, then every

element of its k-th structure group Zk has order p. Fix any z ∈ Zk and any x ∈ X.

Let g ∈ hom(D1(Zk),X) be the morphism defined by g(v(1), . . . , v(k)) := x+ v(1) · · · v(k)z

(this is indeed a morphism, since it is the composition of the polynomial map Zk → Zk,

v 7→ v(1) · · · v(k)z with the morphism z 7→ x+ z). For each i ∈ [0, p− 1], let ci ∈ Ck(X) be

the cube obtained by restricting g to Jk−1K×{i, i+1}, that is, we have ci(1
k−1, 0) = x+iz,

ci(1
k) = x+(i+1)z, and c(v) = x otherwise. We have the adjacency of cubes ci ≺ ci+1 for

each i ∈ [0, p−2]. Moreover, we have the following useful property: define a relation ∼ on

Ck(X) by declaring that c ∼ c′ if the map c̃ : Jk + 1K → X, c̃(v, 0) = c(v), c̃(v, 1) = c′(v)

(v ∈ JkK) is in Ck+1(X); then the fact that g is a morphism implies that ci ∼ cj for each
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i, j ∈ [0, p− 1] (since there is a (k + 1)-cube on Zk with image Jk − 1K× {i, i+ 1} on one

k-face and image Jk − 1K× {j, j + 1} on the opposite k-face).

By w-p-homogeneity, there is a morphism f ∈ hom(D1(Zkp),X) with f |JkK = c0. For

each i ∈ [0, p− 1], let c′i ∈ Ck(X) similarly be the restriction of f to Jk − 1K× {i, i + 1}.
As above, the morphism property implies that c′i ∼ c′j for each i, j ∈ [0, p − 1]. Now,

repeating the argument using concatenations that was the combinatorial core of the proof

of Proposition 2.3, we deduce here that pz = 0.

Finally, if X is also a cfr nilspace, then its finiteness is deduced exactly as in the end

of the proof of Proposition 2.3. �

We shall now work toward the proof of Theorem 1.4, establishing the equivalence between

p-homogeneity of a group nilspace and p-homogeneity of the associated filtration. For one

of the directions in this equivalence, we shall in fact prove the following more general

result giving a similar algebraic property for w-p-homogeneous coset nilspaces. Recall

that a coset nilspace consists of a coset space G/Γ where G is a group with a filtration

G• and Γ is a subgroup of G, the cubes being the projections to G/Γ of the Host–

Kra cubes in Cn(G•), thus every n-cube on G/Γ is of the form v 7→ c(v)Γ for some

c ∈ Cn(G•); see [7, Proposition 2.3.1] (in particular, filtered nilmanifolds are central

examples of coset nilspaces). Given a group H and k ∈ N we denote by Hk the set of

k-th powers {hk : h ∈ H}.

Lemma 3.6. Let p be a prime, let (G,G•) be a filtered group, and let Γ be a subgroup of

G. Let X = G/Γ be the associated coset nilspace. If X is w-p-homogeneous then for every

m ≥ 0 we have Gp
m ⊂ Gm+p−1Γ.

Recall (e.g. from [20, Lemma B.9]) that for i = (i1, . . . , im) ∈ Zm≥0 and n = (n1, . . . , nm) ∈
Zm, the multiparameter binomial coefficient

(
n
i

)
∈ Z is defined by

(
n
i

)
=
(
n1

i1

)
· · ·
(
nm

im

)
.

Recall also (e.g. from the proof of Lemma 2.18), that we define the height of i to be

|i| = i1 + · · · + im. We recall the following useful properties of the polynomial maps

n 7→ h
(n
i)
i (where for m ∈ Z and h ∈ G we write hm for the m-th power h · h · · ·h in G):

(i) The map n 7→ h
(n
i)
i is in poly(D1(Zm), G) if and only if hi ∈ G|i|.

(ii) If nj < ij for some j ∈ [m], then h
(n
i)
i = id.

(iii) Let i ∈ {0, . . . , p} × {0, 1}m−1 and n = (p, v) for some v ∈ {0, 1}m−1. If vj < ij for

some j ∈ {2, . . . ,m}, then h
(n
i)
i = id. Otherwise h

(n
i)
i = h

((p,i2,...,im)
i )

i = h
( p
i1

)
i .

Proof of Lemma 3.6. We prove by induction on j that for all j ∈ [0, p−1], for every m ≥ 0

we have Gp
m ⊂ Gm+jΓ. The case j = 0 is trivial, so we assume that Gp

m ⊂ Gm+jΓ for all

m ≥ 0 and we need to show that Gp
m ⊂ Gm+j+1Γ for all m ≥ 0.
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Fix any m ≥ 0 and g ∈ Gm. Consider the cube c ∈ Cm(G/Γ) such that c(1m) = gΓ

and c(v) = Γ for all v 6= 1m. As G/Γ is w-p-homogeneous, there exists an exten-

sion f ∈ hom(D1(Zmp ), G/Γ) such that f |JmK = c. The proof will go as follows: using

Lemma A.12 we shall construct a morphism f ′ =
∏
h

(n
i)
i Γ ∈ hom(D1(Zm), G/Γ) such

that f ′|{0,...,p}×{0,1}m−1 = f |{0,...,p}×{0,1}m−1 , and we will deduce the desired conclusion from

the resulting expression of f ′.

We construct f ′ in three steps, where the second step involves an iterative argument.

Rather than accumulating notation for each new modified version of the function that

we produce in the argument, we just use the same notation f ′ throughout the process,

which means that f ′ denotes a different function as we progress through the argument

(essentially, each round of the iteration modifies the previous function f ′ by multiplying

it on the left by polynomial maps h
(n
i)
i ).

Step 1: Define f ′(n) := gn1···nmΓ. This function f ′ has the following important

features:

• f ′|JmK = f |JmK = c.

• f ′(p, 1m−1) = gpΓ and f ′(p, v) = Γ for all v 6= 1m−1.

It may be useful to have an example of the process we are applying. For m = 3 and p = 3,

at this stage f ′|{0,1,2,3}×{0,1}2 looks as follows.

In red we have the vertices where f ′ = f . The values of f ′ at these vertices will not

change for the rest of the proof.

Step 2: this step involves an inductive argument, each round of which is an operation

that we call correcting the line at v, for v ∈ Jm−1K\{1m−1}. Let us describe this process.

Correcting the line at v: suppose that for all w ∈ Jm−1K\{v} such that wj ≤ vj for

all j ∈ {2, . . . ,m} (instead of labeling the elements for j ∈ {1, . . . ,m − 1}, the elements

of Jm − 1K will be labeled for j ∈ {2, . . . ,m}) we have already done the operation of

correcting the line at w. Furthermore, suppose that f ′(p, 1m−1) = γgpΓ (for some γ ∈ Γ

that may not be equal in all the rounds of the process) and f ′(p, t) = Γ for all t 6= 1m−1.

By Lemma A.12, we can multiply f ′ (on the left) by elements h
( n
(s,v))

(s,v) in such a way that
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the product agrees with f first at the vertex (2, v), then at (3, v), and so on all the way

to (p, v). Thus, let f ′′(n) := h
( n
(p,v))

(p,v) · · ·h
( n
(2,v))

(2,v) f ′(n).

The above properties of the polynomials h
(n
i)
i imply the following useful facts:

• Let n ∈ Zm≥0 with nj < vj for some j ∈ [m]. Then f ′′(n) = f ′(n), by property (ii). In

particular, correcting the line at v preserves the previous corrections of lines at w.

• f ′′(p, 1m−1) = γgpΓ for some γ ∈ Γ, and f ′′(p, t) = Γ for all t ∈ Jm − 1K \ {1m−1}.

Indeed, when we multiply by the last factor h
( n
(p,v))

(p,v) , since this ensures that f ′′(p, v) =

f(p, v) = Γ and f ′(p, v) = Γ, we must have that h(p,v)h
( (p,v)
(p−1,v))

(p−1,v) · · ·h
((p,v)
(2,v))

(2,v) is an element

γ′′ ∈ Γ. Moreover, property (iii) above implies that for all t ∈ Jm− 1K \ {v} we have

h
((p,t)
(p,v))

(p,v) h
( (p,t)
(p−1,v))

(p−1,v) · · ·h
((p,t)
(2,v))

(2,v) ∈ Γ, indeed this product is γ′′ if ti ≥ vi for all i ∈ [2,m], and

is the identity otherwise. In particular, we have f ′′(p, 1m−1) = γ′′f ′(p, 1m−1) = γ′′γ′gpΓ

(where γ′ comes from previous line corrections). Hence our claim holds with γ = γ′′γ′.

To conclude correcting the line at v, we set f ′′ to be the new f ′.

To complete Step 2, we now correct the lines at v for all v ∈ Jm− 1K. In order to be

able to apply Lemma A.12 in this process, these corrections have to be done in an order

such that for v, v′ ∈ Jm− 1K, if vj ≤ v′j for all j ∈ {2, . . . , p}, then we correct the line at

v before we correct the line at v′ (we can take the lexicographic order, for example).

To visualize this with our example above, after correcting the line at (0, 0) we would

have f ′ as follows.

Again, the vertices in red represent the ones at which f ′ = f and whose values will not

change for the rest of the proof. After the next two corrections, f ′ looks as follows (recall

that the value of γ may be different in each appearance).
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Step 3: we now correct the line at 1m−1. The final properties that we obtain are different

this time. The important part is now the value f ′(p, 1m−1). By construction we have

f ′(p, 1m−1) = f(p, 1m−1) = Γ, which implies

h(p,1m−1)h
( p
p−1)

(p−1,1m−1) · · ·h
(p
2)

(2,1m−1)γg
p ∈ Γ, (9)

where the terms h
(p
j)

(j,1m−1) are the factors involved in correcting the line at 1m−1, and γ ∈ Γ.

Now, using the induction hypothesis, the fact that
(
p
j

)
is a multiple of p for j ∈ [2, p−1],

and the fact that each group G` is normal in G, we deduce that h
( p
p−1)

(p−1,1m−1) · · ·h
(p
2)

(2,1m−1) ∈
G|(2,1m−1)|+jΓ = Gm+j+1Γ. Since the last term h(p,1m−1) is already in Gm+p−1Γ, we conclude

that gp ∈ Gmin(m+j+1,m+p−1)Γ = Gm+j+1Γ. This completes the inductive step. �

Remark 3.7. By a straightforward generalization of the above proof it can be shown

that if a coset nilspace G/Γ is w-p-homogeneous then, more generally, for all `,m ≥ 0 we

have Gp`

m ⊂ Gm+`(p−1)Γ. We omit the details as this will not be needed in the sequel.

We are now ready to prove Theorem 1.4, which we restate here in a refined form.

Theorem 3.8. Let (G,G•) be a filtered group and let X be the associated group nilspace.

Then the following properties are equivalent:

(i) X is p-homogeneous.

(ii) X is w-p-homogeneous.

(iii) The filtration G• is p-homogeneous.

Proof. The implication (i)⇒ (ii) follows from Lemma 3.2 as observed at the beginning of

this section. The implication (ii)⇒ (iii) follows from Lemma 3.6 applied with the trivial

subgroup Γ = {id}.
We now prove (iii)⇒ (i), using the following strategy. Given any f ∈ hom(D1(Zn),X),

note that there exists a p-periodic morphism g0 ∈ hom(D1(Znp ),X) such that g0(0
n) =

f(0n) (we can take g0 to be the constant map with value f(0n)). Then, writing g−10 for

the map sending each z to the inverse of the group element g0(z), we have fg−10 (0n) =

id. Now suppose that there exists g1 ∈ hom(D1(Znp ),X) such that g1(0
n) = id and

g1(1, 0, . . . , 0) = (fg−10 )(1, 0, . . . , 0). Then fg−10 g−11 is in hom(D1(Znp ),X) and equals id

at 0n and at (1, 0, . . . , 0). Repeating this process, we will end up with a morphism

fg−10 g−11 · · · g−1` ∈ hom(D1(Zn),X) such that (fg−10 g−11 · · · g−1` )|[0,p−1]n = id, thus show-

ing that f |[0,p−1]n = g0 · · · g` ∈ hom(D1(Znp ),X) as required.

We now prove that each step of the process can be carried out. First, for i ≥ 1 we

define the group nilspace H
(p)
i := Z with filtration(

H
(p)
i

)
j

=

Z if j = 0, 1, . . . , i

pb
j−i−1
p−1

c+1Z if j ≥ i+ 1.
(10)
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Now, for i ∈ {0, . . . , p− 1} we define m
(p)
i : D1(Z)→ H

(p)
i as follows:

m
(p)
i (x) =

0 if (x)∗p ∈ {0, 1, . . . , i− 1}

(−1)(x)
∗
p−i
(
p−i−1
(x)∗p−i

)
if (x)∗p ∈ {i, . . . , p− 1}

where (x)∗p is the residue modulo p of x in [0, p− 1]. It is easy to see that11 ∂1m
(p)
i = m

(p)
i−1

for i ≥ 1. Moreover, for all i ∈ [0, p−1] we have that ∂i+1
1 m

(p)
i is a circular vector (viewed

as the element (∂i+1
1 m

(p)
i (0), . . . , ∂i+1

1 m
(p)
i (p−1)) of Zp, see Definition B.1) such that all its

entries are multiples of p. To see this, note that ∂i+1
1 m

(p)
i = ∂p−11 m

(p)
p−2 and we can apply

Corollary B.3 to the latter. Indeed, applying this Corollary as many times as required

we get that m
(p)
i is a morphism (with the filtrations D1(Z) and (H

(p)
i )•, by [7, Theorem

2.2.14]). Note also that by construction each morphism m
(p)
i is a p-periodic map on Z.

These morphisms m
(p)
i will be the basic tool to define the morphisms g mentioned

above. But first, it is convenient to see how to use them in dimension larger than 1.

Let n ∈ N and, given a vector of indices t = (t1, . . . , tn) ∈ {0, . . . , p − 1}n, define the

functions g′t : D1(Zn) → H
(p)
|t| as follows: g′t(x) := m

(p)
t1 (x1)m

(p)
t2 (x2) · · ·m(p)

tn (xn), where

x = (x1, . . . , xn) ∈ Zn and by definition we take H
(p)
0 := H

(p)
1 . The proof that this is a

morphism follows from Lemma B.4. Before continuing, let us note two useful properties

of these morphisms:

• g′t(t) = 1 and

• g′t(x) = 0 if xj < tj for some j ∈ [n].

Now we are ready to complete the argument. We argue by induction on t ∈ {0, . . . , p−1}n,

using the colexicographic order on this set. Suppose that for a fixed t′ = (t′1, . . . , t
′
n) we

have been able to find a morphism h ∈ hom(D1(Znp ),X) such that (fh)(x) = id for all

x ≤ t′. Let t = (t1, . . . , tn) be the next vector after t′ in the colex order. Note that

w := (fh)(t) ∈ G|t|. This can be seen by composing the morphism fh with the maximal

cube c0n,t (see Definition A.1).

We now define g ∈ hom(D1(Znp ),X) by setting g(x) := wg
′
t(x), where note that this is

indeed a morphism from D1(Znp ) since it is a morphism from D1(Zn) and is p-periodic in

each coordinate (since the m
(p)
i are p-periodic). To conclude this inductive step, we define

h′ ∈ hom(D1(Znp ),X) as h′ := hg−1. By the two mentioned properties of g′t we have that

fh′(x) = id now for all x ≤ t. �

As a first consequence of Theorem 3.8 we obtain the following simple description of p-

homogeneous nilspaces defined on finite cyclic groups. Let us say that a set of integers is

t-separated if every pair of integers a, b in this set satisfies |a− b| ≥ t.

11Where ∂1f(x) := f(x + 1)− f(x) for any f : Z→ Z where Z is an abelian group.
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Proposition 3.9. Let G be a finite cyclic group equipped with a filtration G• of degree

exactly k (i.e. Gk+1 = {0} 6= Gk), and such that the associated group nilspace is p-

homogeneous. Then G ∼= Zpd for some positive integer d ≤ bk−1
p−1c + 1, and there is a

(p − 1)-separated set ∆ ⊂ [k] with |∆| = d and k ∈ ∆, such that Gi+1 = p · Gi for every

i ∈ ∆ and Gi+1 = Gi otherwise.

Proof. By Proposition 3.5, every structure group of X, i.e. every quotient Gi/Gi+1, is an

elementary abelian p-group, which must then be cyclic, so must be {0} or Zp. It follows

that G = Zpd for some d ≥ 0. Let ∆ = {i ∈ [k] : Gi/Gi+1
∼= Zp}. It is then clear that

Gi+1 = p · Gi for i ∈ ∆ and Gi+1 = Gi otherwise, and also that k ∈ ∆ (since G• has

degree exactly k). Since G = Zpd , it is also clear that |∆| = d.

To see that ∆ is (p − 1)-separated, let i < j be any two elements of ∆, so that

Gj+1 ⊂ p2 ·Gi, and suppose for a contradiction that j − i < p− 1. Then we would have

j+1 ≤ i+p−1, so Gi+p−1 ≤ Gj+1 = p2 ·Gi, and since p ·Gi is not the trivial subgroup, we

would also have p2 ·Gi ( p ·Gi, so Gi+p−1 ( p ·Gi, and so G• would not be p-homogeneous,

contradicting Theorem 3.8.

Finally, by the previous paragraphs 1 + (d − 1)(p − 1) ≤ (min ∆) + (|∆| − 1)(p − 1)

≤ max ∆ = k. This implies d ≤ bk−1
p−1c+ 1. �

Remark 3.10. Proposition 3.9 implies that the nilspace Uk,1 from Definition 1.6, defined

on the cyclic group Z/pb
k−1
p−1
c+1Z, is the largest nilspace among k-step p-homogeneous

nilspaces defined on finite cyclic groups.

Next we use Theorem 3.8 to prove that the translation group of a p-homogeneous nilspace

is also p-homogeneous, a fact that we shall use in Section 4.

Proposition 3.11. Let X be a p-homogeneous nilspace. Then the group nilspace consis-

ting of the translation group Θ(X) with the filtration
(
Θi(X)

)
i≥0 is also p-homogeneous.

Proof. By Theorem 3.8 it suffices to prove that for every α ∈ Θi(X) we have αp ∈
Θi+p−1(X). To do this, given any cube c ∈ Cp+n(X) where n ≥ i − 1 (otherwise we

may not have enough dimensions) we want to show that applying αp to any face of

codimension i+ p− 1 gives again a cube. By the symmetries of cubes it suffices to show

this for just one particular face. Let us write Jp+ nK = Ji− 1K× JpK× Jn− i+ 1K, so any

element y ∈ Jp+ nK is of the form (u,w, v) ∈ Ji− 1K× JpK× Jn− i+ 1K. Let us define the

faces Fj := {(u,w, v) ∈ Jp+ nK : u = 1i−1, w(j) = 1} and let C := ∩pj=1Fj. It is clear that

codim(C) = i + p − 1, so it suffices to prove that (αp)C(c) ∈ Cn+p(X). First, let us take

c′ := αF1 ◦ · · · ◦αFp(c), i.e., the cube obtained applying α to Fj for all j ∈ [p]. Note that in

c′ we have αp applied to c(y) for each y ∈ C, as we need. However there are also “errors”

in c′, i.e., applications of non-zero powers of α to c(y) for some elements y 6∈ C. Our
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aim now is to use the additional symmetries provided by p-homogeneity to cancel these

errors. To this end, we define a matrix T ∈M (p+n)×(p+n)(Zp) as follows: the submatrix of

T formed by the first i− 1 rows and columns is the identity matrix, and similarly for the

submatrix formed by the last n− i+ 1 rows and columns of T ; the submatrix of T formed

by the p rows and columns indexed by [i, i + p − 1] is an identity matrix too except for

its first row, where we set all entries equal to 1. All other entries of T are 0.

Let f ∈ hom(D1(Zp+np ),X) be a periodic extension of the cube c′. Then also f ◦T−1 ∈
hom(D1(Zp+np ),X). Recall that we can interpret f ◦T−1 as a p-periodic morphism in

hom(D1(Zp+n),X). Now let us define the morphism g ∈ hom(D1(Zp+n),Di(Z)) by setting

g(u,w, v) := −u(1)u(2) · · ·u(i− 1)w(1) (it is easy to see that this is a morphism).

Now, given h ∈ hom(D1(Zp+n),X), g ∈ hom(D1(Zp+n),Di(Z)) and α ∈ Θi(X), for

every x ∈ Zp+n let (αg ∗h)(x) := αg(x)(h(x)). Note that αg ∗h ∈ hom(D1(Zp+n),X), since

when we compose this with a cube, we apply α to faces of codimension i of the cube.

By the above observation, we have αg ∗ (f ◦T−1) ∈ hom(D1(Zp+n),X). As X is

p-homogeneous, the restriction αg ∗ (f ◦T−1)|[0,p−1]p+n is in hom(D1(Zp+np ),X). Let us

denote this restriction by m. Since m ∈ hom(D1(Zp+np ),X), we know that m ◦T ∈
hom(D1(Zp+np ),X). We now complete the proof by showing that m ◦T |Jp+nK = (αp)C(c).

Let y be any element of Jp + nK, so m ◦T |Jp+nK(y) = m(T (y)) = αg(x)(f ◦T−1(x)),

where x is T (y) with coordinates reduced mod p into [0, p− 1]. To see that this is equal

to (αp)C(c)(y), first note that if y ∈ C then T (y) mod p has w(1) = 0, so g(x) = 0 and

therefore αg(x)(f ◦T−1(x)) = f(y) = c′(y) = αp c(y). Now, if y 6∈ C, then let s ∈ [0, p− 1]

be the number of coordinates that are 1 in the w part of y. Consider the case y 6∈ ∪iFi,
i.e., we have s = 0 or some coordinate u(j) is 0. Then again the element x = T (y)

mod p satisfies g(x) = 0 (either because w(1) = 0 or because u(j) = 0) and as above we

then have αg(x)(f ◦T−1(x)) = f(y), which is c(y) (since y is not in any face Fi in this

case), as required. The remaining case is y ∈ (∪iFi) \ C, i.e., that all u(j) are 1 and

s ∈ [p − 1]. Then note that the element x = T (y) mod p satisfies g(x) = −s. Hence

αg(x)(f ◦T−1(x)) = α−s c′(y), and this equals c(y) since y is in the intersection of s faces

and so c′(y) = αs(c)(y). This completes the proof that m ◦T |Jp+nK = (αp)C(c). �

We close this section with the observation that, using the results above, Proposition 2.4

can be upgraded by showing that its converse also holds. This yields the following further

equivalent description of p-homogeneous nilspaces.

Proposition 3.12. For every prime p and k ∈ N, there exists M > 0 such that the

following holds. A k-step nilspace X is p-homogeneous if and only if every structure group

of X is an elementary abelian p-group and for all i ∈ [k], for every f ∈ hom(D1(ZMp ),Xi)

there is f̃ ∈ hom(D1(ZMp ),X) such that πi ◦ f̃ = f .
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Proof. The backward implication is Proposition 2.4. For the forward implication, the

claim concerning the structure groups is given by Proposition 3.5 (using that X is w-p-

homogeneous). To see the lifting property for morphisms, we argue using Corollary A.6

as in the proof of Theorem 1.3 in Section 2. �

4. A structure theorem for p-homogeneous nilspaces

In this section we prove Theorem 1.7, describing p-homogeneous finite nilspaces as fibration-

images of nilspaces from the simple class in Definition 1.6. In the introduction we mo-

tivated this theorem mainly through its applications. The theorem is also motivated by

the following fact.

Lemma 4.1. Let X,Y be nilspaces, suppose X is p-homogeneous, and let ϕ : X→ Y be a

fibration. Then Y is also p-homogeneous.

Proof. Let f ∈ hom(D1(Zn),Y). By Corollary A.7 it follows that there exists g ∈
hom(D1(Zn),X) such that ϕ ◦g = f . Since X is p-homogeneous, we have g|[0,p−1]n ∈
hom(D1(Znp ),X), whence f |[0,p−1]n = ϕ ◦g|[0,p−1]n ∈ hom(D1(Znp ),Y), as required. 12 �

Indeed, Lemma 4.1 suggests that finite p-homogeneous nilspaces may all emanate through

fibrations from a much simpler class of nilspaces, and Theorem 1.7 confirms this.

Recall from Definition 1.6 that Uk,` is the k-step p-homogeneous nilspace consisting

of the group G = Zpr with r = b k−`
p−1c+ 1, equipped with the filtration

G1 G` G`+1 G`+p−1 G`+p

‖ ‖ ‖ ‖ ‖
Zpr = · · · = Zpr ≥ pZpr = · · · = pZpr ≥ p2Zpr · · ·

.

Note that Uk,` is a special case of the nilspaces described in Proposition 3.9, with the

filtration chosen to ensure that this special case is an `-fold ergodic nilspace, meaning

that its `-cube set is the whole set of maps J`K→ Uk,` (see [7, Definition 1.2.3]).

Remark 4.2. We leave as an exercise for the reader to check that the nilspace factor

map πk−1 : Uk,` → (Uk,`)k−1 is the quotient by the k-th structure group of Uk,` (which is

isomorphic to either Zp or {0}), and that (Uk,`)k−1 is isomorphic to Uk−1,` if ` < k and is

the trivial group {0} if ` = k.

To begin proving Theorem 1.7, let us note that the second sentence in the theorem,

concerning lifting morphisms through the fibration ψ, follows from Corollary A.7. Thus

our main task is to prove the existence of this fibration ψ : Y → X, for some Y ∈ Qp,k.
The main ingredient for this is the following result which tells us that, in the class of

12An argument similar to the proof of Lemma 4.1 shows that fibration-images of w-p-homogeneous

nilspaces are also w-p-homogeneous.
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p-homogeneous nilspaces, the family Qp,k is closed under taking degree-k extensions by

finite elementary abelian p-groups.

Proposition 4.3. Let Q be a nilspace in Qp,k. Let Y be a k-step p-homogeneous nilspace

that is a degree-k extension of Q by a finite elementary abelian p-group. Then Y is a split

extension of Q. In particular we have Y ∈ Qp,k.

We shall prove this proposition by induction on the step k. In the induction, we shall

apply the following lemma with k′ = k − 1.

Lemma 4.4. Let X′ ∈ Qp,k′, and let X be a k′-step p-homogeneous nilspace that is a

degree-t extension of X′ by a finite elementary abelian p-group, for some t ≤ k′. Assume

that Proposition 4.3 holds for all steps at most k′. Then X is a split extension of X′.

Proof. Note that by assumption the case t = k′ holds. For smaller values of t, let P ′ :

X→ X′ be the projection associated with the degree-t extension, let us denote both factor

maps X→ Xt and X′ → X′t by πt, and let Pt be the induced projection Xt → X′t, so that

the following diagram commutes:

X X′

Xt X′t .

P ′

πt πt
P ′t

We have X′ =
∏k′

`=1 U
a`
k′,` for some a` ∈ Z≥0, whence X′t =

∏t
`=1 U

a`
t,` (see Remark 4.2).

Proposition A.18 implies that Xt is a degree-t extension of X′t. By the assumed Proposition

4.3 for step t, this extension splits, so there exists a cross-section γ : X′t → Xt which is

also a morphism. Let ϕ : X→ X′×X′t
Xt be the map x 7→ (P ′(x), πt(x)). By Proposition

A.18, this map is an isomorphism. We can therefore define the map Φ : X′ → X, x′ 7→
ϕ−1(x′, γ(πt(x

′))). Now we just have to check that this is a split extension. First, let us

check that it is well-defined, i.e., we need to check that (x′, γ(πt(x
′))) ∈ X′×X′t

Xt. But as

P ′t ◦γ = id, we have that P ′t(γ(πt(x
′))) = πt(x

′). Next, we need to check that P ′ ◦Φ = id,

but this follows from the definition of ϕ and the fact that it is an isomorphism. Finally,

as ϕ−1, γ, and πt are morphisms, so is Φ. �

Proof of Proposition 4.3. We argue by induction on k. The case k = 1 follows from

Proposition 3.5 since Y must then be D1(Zmp ) for some m ≥ 0, and Q is also of this form,

so Y is clearly a split extension of Q.

Thus we suppose that k > 1 and that the result holds for all steps at most k − 1.

Let P : Y → Q be the projection associated with the extension. We have by assumption

Q =
∏k

`=1 U
a`
k,`, so we can define, for each ` ∈ [k] and j ∈ [a`], the translation α`,j ∈ Θ`(Y

′)

as the function that adds 1 in the j-th coordinate of the factor U a`
k,`. We are going to
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show that we can lift any such translation, i.e. that there exists β`,j ∈ Θ`(Y) such that

P ◦β`,j = α`,j ◦P .

Suppose that we can lift these translations as claimed. Since Y is p-homogeneous,

Proposition 3.11 implies that the order of β`,j ∈ Θ`(Y) divides pb
k−`
p−1c+1 = pd

k−`+1
p−1 e.

Hence, the following cross-section is well-defined, and is then also a morphism:

s : Q −→ Y(
x`,j ∈ Z

p
b k−`
p−1 c+1

)
`∈[k], j∈[a`]

−→
∏k

`=1

∏al
j=1 β

x`,j
`,j (y)

where y ∈ Y is any element of P−1(0). This would conclude the proof.

So the only missing ingredient is the possibility to lift translations. To establish this,

we start with the following diagram:

Y Q

Yk−1 Qk−1.

P

πk−1 πk−1
Pk−1

First note that Pk−1 is an isomorphism. Indeed, since Y is a degree-k extension of Q with

associated projection P , it is readily checked that the (k− 1)-step factors of Y and Q are

isomorphic nilspaces, with Pk−1 being an isomorphism. Now let us fix some notation. Let

A denote the group Zmp we use to extend Q to get Y, i.e.

P : Y Q.

Dk(A)

Let B denote the k-th structure group of Q (which is also a power of Zp), i.e.

πk−1 : Q Qk−1.

Dk(B)

The k-th structure group of Y must be isomorphic to A×B because it is an elementary

abelian p-group (by Proposition 1.5) and the fibers of πk−1 ◦P have cardinality |A||B|.
Now fix any α ∈ Θi(Q) and let us prove that α can be lifted. First let αk−1 be the

induced translation on Θi(Qk−1), satisfying πk−1 ◦α = αk−1 ◦πk−1, where πk−1 : Q →
Qk−1. As Pk−1 is an isomorphism, we have that αk−1 is also an element of Θi(Yk−1). We

shall use the criterion for lifting translations established in [6] (see also [7, Proposition

3.3.39]); this criterion states that we can lift a translation if the associated nilspace T ∗

(see [7, Definition 3.3.34 and (3.18)]) is a split extension (it is not difficult to see that

T ∗ is p-homogeneous if Y is). By [7, Lemma 3.3.38] we know that T ∗ is a degree-(k − i)
extension of Yk−1 ∼=

∏k−1
`=1 (U (p)

k−1,`)
a` , and by Lemma 4.4 (applied with k′ = k − 1) we
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know that this extension splits. This enables us13 to lift αk−1 to a translation β ∈ Θi(Y).

Now the problem is that β may not agree with α. As P is a degree-k extension of a k-step

nilspace, it is easy to check that the conditions of [9, Lemma 1.5] are satisfied, so there is

an element β∗ ∈ Θi(Q) such that β∗ ◦P = P ◦β.

Now the issue is that α and β∗ may not be equal. But we know that they are in

the same B-fiber (because the shadow of both through πk−1 : Q → Qk−1 is αk−1). Now

observe that, as P : Y → Q is a fibration with A×B being the k-th structure group of Y

and B being the k-th structure group of Q, if we let φ : A×B → B be the homomorphism

such that P (x + z) = P (x) + φ(z) for all x ∈ Y and z ∈ A × B, we know that there is

a cross section that is a morphism. That is, there is a map s : B → A × B such that

φ ◦ s = id. The simple reason for this is that A × B = Zn+mp and B = Zmp (and given a

homomorphism from one to the other it is trivial that we can construct a homomorphism

which is a cross-section). To conclude the proof, we define

γ : Y −→ Y

y −→ β(y) + s((α− β∗)(P (y)),

and this is an element of Θi(Y) that agrees with α through P . �

We can now prove the main structure theorem.

Proof of Theorem 1.7. We prove the existence of the fibration ψ : Y → X by induction

on the step k. The case k = 1 follows immediately from Proposition 3.5.

Thus we suppose that the theorem holds for all steps less than k and we prove the

theorem for step k. By induction there exists a nilspace Y′ =
∏k−1

`=1 (U (p)
k−1,`)

a` for some

a` ≥ 0 for all ` ∈ [k − 1] and a fibration ψ′ : Y′ → Xk−1 satisfying the conclusions

of Theorem 1.7 for Xk−1. It is easy to see that for all ` there is the projection map

πk−1 : Uk,` → Uk−1,` (these maps are different for each `, but it will be clear from the

context that πk−1 will always represent the projection to the k − 1 factor of a certain

nilspace). Thus we can define Q :=
∏

`∈[k−1] U
a`
k,` and we have the following diagram:

X Xk−1

Q Y′ .

π

ψ′

q

where q = πk−1 is just the projection to the k − 1 factor of Q (thus Y′ = Qk−1).

13This works for i < k, and for i = k it is trivial that we can lift translations, so without loss of generality

we can safely assume i < k.
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We now define Y as the following nilspace-subdirect-product of Q and X:

Y := {(a, b) ∈ Q× X : ψ′(q(a)) = π(b)}.

Note that Y is a degree-k extension of Q by the k-th structure group of X (by Proposition

A.16). Hence we have the following diagram:

Y X Xk−1

Q Y′,

p2

p1

π

ψ′

q

where Q =
∏k−1

`=1 U
a`
k,` and Y′ =

∏k−1
`=1 U

a`
k−1,`, and p1 is the projection of the following

degree-k extension:

p1 : Y Q .

Dk(Znp )

It now suffices to prove that Y is p-homogeneous, as then we can apply Proposition 4.3

to conclude that Y ∈ Qp,k, and thus complete the proof setting ψ = p2. But if f =

(f1, f2) ∈ hom(D1(Zn),Y), then since Q and X are p-homogeneous, we have f1|[0,p−1]n ∈
hom(D1(Znp ), Q) and f2|[0,p−1]n ∈ hom(D1(Znp ),X), whence Y is also p-homogeneous.

As mentioned above, the last sentence in Theorem 1.7 follows by Corollary A.7. �

4.1. A refined structure theorem for k ≤ p.

In this subsection we prove Theorem 1.8.

We begin by noting that, in the high characteristic case (k < p), Proposition 4.3

readily implies the following strengthening of Theorem 1.7.

Corollary 4.5. Let X be a k-step p-homogeneous cfr nilspace, and let p be a prime with

k < p. Then there are non-negative integers a1, a2, . . . , ak such that X ∼=
∏k

`=1D`(Za`p ).

In particular, X ∈ Qp,k.

Proof. We argue by induction on k. The case k = 0 is trivial. For k > 0, by induction

we have Xk−1 =
∏k−1

l=1 D`(Za`p ) for some integers a` ≥ 0. By general nilspace theory we

know that X is a degree-k extension of Xk−1 by some compact abelian group Zk, and by

Proposition 3.5 we know that Zk ∼= Zakp for some ak ≥ 0. Now note that for all ` ≤ k,

since k < p we have D`(Zp) = Uk,`, because b k−l
p−1c + 1 = 1. Therefore, as a product of

such nilspaces Uk,`, the nilspace Xk−1 is in Qp,k. Hence we can apply Proposition 4.3, thus

deducing that X is a split extension of Xk−1, so X = Xk−1×Dk(Zakp ) =
∏k

`=1D`(Za`p ). �
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We shall now extend this result to include the case k = p. To do so we shall use the

following fact, which is a very specific feature of this case.

Proposition 4.6. For any prime p, the nilspace Up,1 is isomorphic to the product nilspace

D1(Zp)×Dp(Zp).

Proof. It suffices to prove that there is a cross-section from D1(Zp) to Up,1 which is also

a morphism, as this proves that Up,1 is a split extension of D1(Zp), which implies the

result. Let f ∈ hom(D1(Zp),D1(Zp)) be the identity map. Then, as (Up,1)p−1 ∼= D1(Zp),
we can regard f as an element of hom(D1(Zp), (Up,1)p−1). By Proposition 3.12, there

exists g ∈ hom(D1(Zp),Up,1) such that πp−1 ◦g = f . Since f is the identity map, the

last equality implies that the morphism g is also a cross-section (Up,1)p−1 → Up,1, as

required. �

The following result is the announced extension of Corollary 4.5, and is the special case

of Theorem 1.8 for cfr nilspaces.

Proposition 4.7. Let p be a prime and k ∈ N with k ≤ p. Let X be a k-step p-

homogeneous cfr nilspace. Then there are non-negative integers a1, a2, . . . , ak such that X

is isomorphic to the product nilspace
∏k

`=1D`(Za`p ). In particular, if k < p then X ∈ Qk,p.

Proof. By Corollary 4.5 it suffices to prove this for k = p. The idea is to start again from

the situation we had in the proof of Theorem 1.7 with the following diagram:

Y X Xk−1

Q Y′ .

p2

p1

π

ψ′

q

Note that in this case, by induction we can take Y′ = Xk−1 = Xp−1, ψ
′ an isomorphism

and Xk−1 = Xp−1 ∼=
∏p−1

`=1 D`(Za`p ). Now, recall that by definition of Q we had to lift

these factors, in the sense that each factor D`(Zp) = U `,` in Q is lifted to a factor Up,`.
All these lifts are trivial except for D1(Zp), which is lifted to Up,1. Hence in this case

we have Q = U a1
p,1×

∏p−1
`=2 D`(Za`p ). Hence, by Proposition 4.6 there exists a cross-section

s : Y′ → Q which is also a morphism. The rest of the proof goes as before: the map

p1 : Y → Q is a degree-p extension that splits, so there is again a cross-section s′ : Q→ Y

which is a morphism. Then we have the cross-section p2 ◦s′ ◦s ◦ψ′−1 : Xk−1 → X, which

is also a morphism. Hence X is a split extension of Xk−1 and the result follows. �

Corollary 4.8. Let k ≤ p, let X be a k-step p-homogeneous cfr nilspace, and let Y be

a p-homogeneous nilspace which is a degree k-extension of X by an elementary abelian

p-group. Then Y is a split extension of X.
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Proof. The cases k < p follow from combining Corollary 4.5 with Proposition 4.3.

Now suppose that k = p. By Proposition 4.7 we have X =
∏p

i=1Di(Zaip ) for some

integers ai ≥ 0. Let X+ := U a1
p,1×

∏p
i=2Di(Zaip ), and let φ : X+ → X be the projection

with deletes the component Dp(Za1p ) from U a1
p,1, as made possible by Proposition 4.6. It

is then clear that there exists a cross-section s : X → X+. Now let T := X+×X Y =

{(x, y) ∈ X+×Y : ϕ(y) = φ(x)}, where ϕ here denotes the projection map Y → X

associated with the extension. It is easy to see that T is a degree-p extension of X+ and,

since X+ ∈ Qp,p, this extension splits. Thus, letting p1 denote the associated projection

T → X+, there exists a cross-section which is a morphism s′ : X+ → T . To conclude, note

that if p2 : T → Y is the projection to the second coordinate, then p2 ◦s′ ◦s : X→ Y is a

cross-section which is also a morphism, and the result follows. �

If we just plugged Proposition 4.7 into the inverse limit theorem then we would obtain

not quite Theorem 1.8, but rather a description of each factor in the inverse system. The

following result will enable us to arrange the terms in the inverse system to express the

inverse limit as the product nilspace claimed in Theorem 1.8.

Proposition 4.9. Let p be a prime, let k ≤ p, let X,Y be k-step, p-homogeneous nilspaces,

and let ϕ : X → Y be a fibration. Then X ∼= Y×Q for some k-step, p-homogeneous

nilspace Q and there exists a nilspace isomorphism φ : Y×Q → X such that ϕ ◦φ :

Y×Q→ Y is the projection (y, q) 7→ y.

Proof. We argue by induction on k. The case k = 0 is trivial. For k > 0, suppose that

ϕ : X→ Y is a fibration and that, by induction, the fibration ϕk−1 : Xk−1 → Yk−1 satisfies

the following property: There exists a nilspace isomorphism φ : Xk−1 → Yk−1×Qk−1

such that if p1 : Yk−1×Qk−1 → Yk−1 is the projection to the first coordinate, then

ϕk−1 = p1 ◦φ. The situation is illustrated in the following diagram:

X Y

Xk−1 Yk−1

Yk−1×Qk−1

ϕ

π π

ϕk−1

φ
p1

Now let p2 : Yk−1×Qk−1 → Qk−1 be the projection to the second coordinate, and let

Ψ : X −→ Y×Qk−1

x −→
(
ϕ(x), p2 ◦φ ◦π(x)

) .
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We claim that this defines a degree-k extension (in the sense of [7, Definition 3.3.13]) of

Y×Qk−1 by the abelian group ker(φk), where the homomorphism φk : Zk(X)→ Zk(Y) is

the k-th structure morphism of ϕ (so ϕ(x+z) = ϕ(x)+φk(z) for all x ∈ X and z ∈ Zk(X);

see [7, Definition 3.3.1]). In particular ker(φk) is an elementary abelian p-group.

To prove this claim, first let us show that X is an abelian bundle over Y×Qk−1 with

projection Ψ. To see that Ψ is surjective, fix any (y, q) ∈ Y×Qk−1 and consider the

element φ−1(π(y), q) ∈ Xk−1. This equals π(x) for some x ∈ X, by surjectivity of π. Now,

as π(ϕ(x)) = π(ϕ(y)), there is z ∈ Zk(Y) such that ϕ(x)+z = ϕ(y). Since ϕ is a fibration,

we know that φk is surjective, so there exists z′ ∈ Zk(X) such that φk(z
′) = z and hence

the element x + z′ satisfies Ψ(x + z′) = (y, q), which proves the surjectivity. Now let

x, x′ ∈ X be such that Ψ(x) = Ψ(x′). This implies that ϕ(x) = ϕ(x′) which in turn

means that ϕk−1(π(x)) = ϕk−1(π(x′)). Since we also have p2 ◦φ ◦π(x) = p2 ◦φ ◦π(x′) we

conclude that π(x) = π(x′). Thus, there exists z ∈ Zk(X) such that x+ z = x′. Applying

ϕ to both sides of this expression we obtain ϕ(x + z) = ϕ(x) + φk(z) = ϕ(x′) = ϕ(x).

This implies that z ∈ ker(φk). The fact that ker(φk) acts freely on the fibers of X follows

from the fact that Zk(X) acts freely on X. This proves our claim.

Now let us see that Ψ defines indeed a degree-k extension as claimed. The first

condition to verify is that Ψ is cube-surjective. Let c1× c2 ∈ Cn(Y×Qk−1). In particular

this means that (π ◦c1)× c2 ∈ Cn(Yk−1×Qk−1) and thus, φ−1 ◦((π ◦c1)× c2) ∈ Cn(Xk−1).

Let c ∈ Cn(X) be a lift of this cube. In particular, this means that π ◦ϕ ◦c = π ◦c1.

Thus, there exists d ∈ Cn(Dk(Zk(Y))) such that ϕ ◦c +d = c1. As φk is surjective it is

easy to see that there exists d′ ∈ Cn(Dk(Zk(X))) such that φk ◦d′ = d. Thus we have that

c +d′ ∈ Cn(X) is a lift of c1× c2 via Ψ. The second condition is that for any c1 ∈ Cn(X),

if c2 ∈ Cn(X) is any cube such that Ψ ◦c1 = Ψ ◦c2 then there exists d ∈ Cn(Dk(ker(φk)))

such that c1 +d = c2. By similar arguments as before it follows that there exists d ∈
Cn(Dk(Zk(X))) such that c1 +d = c2. This implies that ϕ ◦c1 +φk ◦d = ϕ ◦c2. But by

hypothesis we know that ϕ ◦c1 = ϕ ◦c2, which implies that d ∈ Cn(Dk(ker(φk))). This

proves that Ψ is an extension as claimed.

To finish the proof, note that by Corollary 4.8 the extension defined by Ψ splits. Thus

we have for any k ≤ p that X ∼= Y×Qk−1×Dk(ker(φk)). Letting Q := Qk−1×Dk(ker(φk)),

this means that there is a nilspace isomorphism φ′ : X→ Y×Q such that ϕ = p1 ◦φ′, as

required. �

Proof of Theorem 1.8. By the inverse limit theorem [8, Theorem 2.7.3], the given k-step

p-homogeneous compact nilspace X is the inverse limit of cfr k-step nilspaces Xj, which

are p-homogeneous by Lemma 4.1. By Propositon 4.7, each nilspace Xj is of the form∏k
`=1D`(Z

aj,`
p ) for some coefficients aj,`. It now only remains to arrange these factors

as j ranges in N to obtain the claimed product nilspace in Theorem 1.8. To carry out
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this arrangement we use Proposition 4.9: It allows us to see the maps ψi,j : Xj → Xi as

projections. Hence the inverse limit has the desired form. �

This proof of Theorem 1.8 used several fortunate facts occurring for k ≤ p, including

Proposition 4.6. The question of whether there are similar refinements of Theorem 1.7

for higher k > p seems non-trivial (see Remark B.6). For the case k = p + 1 we can

nevertheless prove the following result, which does refine Theorem 1.8 and which will be

used in the next section to give new applications in ergodic theory.

Proposition 4.10. Let X be a cfr k-step p-homogeneous nilspace with k = p+ 1. Then

there is an integer m ≥ 0 such that X×Dp(Zmp ) is isomorphic to an abelian group nilspace.

In particular, there exists an injective morphism from X to an abelian group nilspace.

The proof will use the following fact.

Lemma 4.11. Let ϕ : X→ Y be a fibration between k-step p-homogeneous cfr nilspaces.

Suppose that all the structure morphisms are isomorphisms except maybe φk−1. Then X

is a degree-(k − 1) extension of Y by the group ker(φk−1).

Proof. Consider the following diagram:

X Y

Xk−1 Yk−1 .

ϕ

πk−1 πk−1

ϕk−1

Now let us define the fiber product Xk−1×Yk−1
Y and the map Φ : X → Xk−1×Yk−1

Y

such that x 7→ (πk−1(x), ϕ(x)). We claim that this is a nilspace isomorphism. First, it

is clear that this is well-defined and that it is a morphism. Second, to prove that Φ is

injective, let x, x′ ∈ X and suppose that Φ(x) = Φ(x′). In particular, πk−1(x) = πk−1(x
′)

and thus x = x′ + z for some z ∈ Zk(X). But this means that ϕ(x) = ϕ(x′) + φk(z)

and as ϕ(x) = ϕ(x′), this implies that φk(z) = 0. Using that φk is bijective we get that

z = 0. To prove that Φ is surjective, let (πk−1(x), y) ∈ Xk−1×Yk−1
Y. As πk−1(y) =

ϕk−1(πk−1(x)) = πk−1(ϕ(x)) we have that there exists z′ ∈ Zk(Y) such that ϕ(x) + z′ = y.

Take any z ∈ Zk(X) such that φk(z) = z′ and we have that Φ(x+ z) = (πk−1(x), y).

To complete the proof that Φ is a nilspace isomorphism, note that it now suffices to

prove that Φ is cube-surjective, as then Φ−1 is easily deduced to be a morphism. Let

(πk−1 ◦c1, c2) ∈ Cn(Xk−1×Yk−1
Y). In particular this means that πk−1 ◦ϕ ◦c1 = πk−1 ◦c2

and therefore there exists d′ ∈ Cn(Dk(Zk(Y))) such that ϕ ◦c1 +d′ = c2. By the surjec-

tivity of φk there is d ∈ Cn(Dk(Zk(X))) such that φk ◦d = d′. Then c1 +d is a cube such

that its image through Φ is (πk−1 ◦c1, c2), which gives us the desired surjectivity.
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Finally, to see that this defines an extension, let P : Xk−1×Yk−1
Y → Y be the

map (πk−1(x), y) 7→ y. We leave as an exercise for the reader to check that ϕk−1 :

Xk−1 → Yk−1 defines a degree-k − 1 extension of Yk−1 by the group ker(φk−1). In X ∼=
Xk−1×Yk−1

Y we define the action ofDk−1(ker(φk−1)) as (πk−1(x), y)+z := (πk−1(x)+z, y).

Now, the only thing to check to prove that P defines an extension is that given cubes

(πk−1 ◦c1, c2), (πk−1 ◦c′1, c
′
2) ∈ Cn(Xk−1×Yk−1

Y), if P ◦(πk−1 ◦c1, c2) = P ◦(πk−1 ◦c′1, c
′
2),

then (πk−1 ◦c1, c2) + d = (πk−1 ◦c′1, c
′
2) for some d ∈ Cn(Dk−1(ker(φk−1)). To prove this,

note that c2 = c′2 and thus ϕk−1 ◦πk−1 ◦c1 = ϕk−1 ◦πk−1 ◦c′1. As ϕk−1 is a degree-k − 1

extension, there exists d ∈ Cn(Dk−1(ker(φk−1)) such that πk−1 ◦c1 +d = πk−1 ◦c′1. Hence

(πk−1 ◦c1, c2) + d = (πk−1 ◦c′1, c
′
2). �

Proof of Proposition 4.10. Let us outline the proof. Let X be a (p+1)-step, p-homogeneous,

cfr nilspace. By known theory (the case k = p) we know that Xp
∼=
∏p

i=1Di(Zaip ). Let us

separate these into three terms: Xp = D1(Zap) × D2(Zbp) × Q. Let Y := U a
p,1×U b

p+1,2×Q
with the natural map L : Y → Xp defined as (y1, y2, q) 7→ (π1(y1), π2(y2), q). In particu-

lar note that Lp−1 : Yp−1 → Xp−1 is an isomorphism. Let T be the following subdirect

product of X and Y: T := Y×Xp X = {(y, x) ∈ Y×X : L(y) = πp(x)}.
It is easy to see that T is a degree-(p+1) extension of Y. As Y ∈ Qp,k=p+1 we know that

this extension splits (by Proposition 4.3) and therefore T ∼= U a
p,1×U b

p+1,2×Q×Dp+1(Znp )

where Zp+1(X) = Znp . Let us denote by Ψ : T = Y×Xp X → X the map (y, x) 7→ x.

This map is easily seen to be a fibration. Note also that Ψp−1 : Tp−1 → Xp−1 is a

nilspace isomorphism. To prove this, note that by Proposition A.20 we have that Tp−1 '
Yp−1×Xp−1 Xp−1 but as Lp−1 is an isomorphism, this space is simply Xp−1.

Now, the first thing we do is to factor by ker(φp+1) where φp+1 is the p+ 1 structure

morphism of Ψ. That is, consider the action of ker(φp+1) on T and note that Φ : T → X

factors through this action and thus we have a fibration Ψ′ : T/ ker(φp+1) → X. But by

Proposition B.5 we know that T/ ker(φp+1) is an abelian group nilspace so what we have

proved is that we can refine our covering of X to a covering such that the only structure

morphism which may be not an isomorphism is φp.

Now we apply Lemma 4.11 to Ψ′ and thus we obtain that T/ ker(φp+1) defines a degree-

p extension of X by an elementary abelian p-group. Consider the following diagram:

T/ ker(φp+1) X

(T/ ker(φp+1))p Xp .

Ψ′

πp πp

Ψ′p
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By Proposition A.18 we have that T/ ker(φp+1) is isomorphic to the subdirect product

(T/ ker(φp+1))p ×Xp X. Also, by Proposition A.18 we know that Ψ′p defined a degree-p

extension of Xp and by Corollary 4.8 this extension splits. Hence, there exists a cross-

section s : Xp → (T/ ker(φp+1))p which is a morphism.

We now have all the required ingredients. Let us define f : X→ (T/ ker(φp+1))p×Xp X

as x 7→ (s(πp(x)), x). This is clearly a morphism and furthermore this defines a cross-

section for the map Ψ′. Hence, the extension defined by Ψ′ splits and therefore there

exists an integer m ≥ 0 such that X×Dp(Zmp ) ' (T/ ker(φp+1))p ×Xp X ' T/ ker(φp+1)

which is an abelian group nilspace (by Proposition B.5). �

Remark 4.12. For k > p+1 we do not know whether there are more explicit descriptions

of p-homogeneous nilspaces generalizing Theorem 1.8. There is in particular a possibility

which we are not able to rule out in this paper, namely, that all these p-homogeneous

nilspaces could be not just fibration-images of abelian group nilspaces (as in Theorem

1.8), but actually be isomorphic to abelian group nilspaces. Another approach to the

problem of describing p-homogeneous nilspaces X in more detail consists in examining,

not the fibrations from simpler abelian nilspaces onto X, but rather examining injective

morphisms from X into simpler abelian nilspaces. This latter approach is explored in the

next section, where it will help to make progress on Question 1.11.

5. Applications in ergodic theory

5.1. Host–Kra factors of Fωp -systems as p-homogeneous nilspace systems.

In this subsection we prove Theorem 1.9, describing the k-th order Host–Kra factor of

any ergodic Fωp -system as a compact nilspace system with the underlying nilspace being

p-homogeneous. Our starting point is the following result from [12].

Theorem 5.1 (Theorem 5.11 in [12]). Let G be a countable discrete group, let G• be a

filtration of finite degree on G, suppose that G acts ergodically on a Borel probability space

(Ω,A, λ), and let k ∈ N. Then the k-th Host–Kra factor of (Ω, (G,G•)) is isomorphic to

an ergodic k-step filtered compact nilspace system (Xk, (G,G•), γ̂k).

Thus γk : Ω→ Xk is a measure-preserving map and γ̂k is a filtered-group homomorphism

G → Θ(Xk) (a group homomorphism such that γ̂k(Gi) ⊂ Θi(Xk) for all i ≥ 0) and for

every g ∈ G we have the equivariance γk ◦g =λ γ̂k(g) ◦γk (where =λ denotes equality

up to a λ-null set). We refer to [12, Definition 3.31 and Lemma 3.32] for the detailed

definition of γk, and to [12, Theorem 4.5] for the definition of γ̂k. We shall apply Theorem

5.1 with G the additive group of Fωp . As usual in this paper, when the filtration on an

abelian group G is not explicitly mentioned, we are implicitly using the lower central

series G0 = G1 = G ≥ Gi = {0}, ∀ i ≥ 2. Accordingly, when we write Cn(G) for an
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abelian group G (rather than the more rigorous notation Cn(G•)), we are referring to the

standard n-cubes on G (i.e. the n-cubes relative to the lower central series on G).

The idea of the proof of Theorem 1.9 is to show that the map γ̂k induces an arbitrarily

highly balanced morphism ϕ ∈ hom(D1(ZDp ),Xk); by Theorem 1.3 this will imply that

the nilspace Xk is p-homogeneous. In fact, this approach involving Theorem 5.1 yields

a rather strong form of ergodicity on this factor. To formalize this, recall that for every

filtered nilspace system (X, (G,G•)), for each n ∈ Z≥0 the cube-set Cn(G•) has a natural

action on Cn(X) thanks to the fact that G acts by translations (see [12, Definition 5.10]).

Definition 5.2 (Fully ergodic nilspace system). A filtered nilspace system (X, (G,G•))

is fully ergodic if for every n ≥ 0 the action of Cn(G•) on Cn(X) is uniquely ergodic.

Note that the special case n = 0 here means that G itself acts uniquely ergodically on X.

One of the main results of this section is the following theorem, which directly implies

Theorem 1.9:

Theorem 5.3. For every k ∈ N, the k-th Host–Kra factor of every ergodic Fωp -system is

isomorphic (as a measure-preserving system) to a p-homogeneous k-step nilspace system

(X,Fωp ) that is fully ergodic.

Indeed, we will deduce that the nilspace system is p-homogeneous in Theorem 5.3 as a

consequence of being fully ergodic. Thus, let us start by proving the latter property.

Recall from [12, §5] that for any filtered group (G,G•) such that G acts by measure-

preserving transformations on the probability space Ω, we can define the sequence of

associated Host–Kra couplings, generalizing the sequence of cubic measures introduced

for G = Z in [27]; see [12, Definition 5.4]. We then have the following fact.

Proposition 5.4. Let (Ω, λ,G) be an ergodic G-system where G is a countable discrete

group, let G• be a filtration on G, and let (µJnK)n≥0 be the associated sequence of Host–Kra

couplings. Then Cn(G•) acts ergodically on the probability space (ΩJnK, µJnK) for every n.

Proof. This follows by a straightforward generalization of the arguments used to prove

[27, Corollary 3.5]. �

Corollary 5.5. Let (Ω, λ,G) be an ergodic G-system where G is a countable discrete

group, let G• be a filtration on G, and let Xk be the associated k-th Host–Kra factor.

Then Cn(γ̂k(G)) acts ergodically on Cn(Xk) for all n ≥ 0.

Proof. This follows immediately from the definition of the Host–Kra factor. �

Now we can prove the desired full ergodicity.
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Lemma 5.6. Let X be a k-step compact nilspace, let H be a countable subgroup of Θ(X),

with filtration H• = (Hi)i≥0 defined by Hi := H ∩Θi(X), and suppose that for every n ≥ 0

the action of Cn(H•) on Cn(X) is ergodic relative to the Haar measure µCn(X). Then the

system (Cn(X),Cn(H•)) is uniquely ergodic, with Cn(H•)-invariant measure µCn(X).

Proof. We adapt [29, p. 65, Lemma 4, and p. 66, Proposition 5] to the case of these H-

actions. Following [29] we argue by induction on k. The case k = 0 is trivial, as X is then

the 1-point nilspace. Let s : Cn(Xk−1)→ Cn(Xk) be a Borel cross-section (as provided by

the proof of [8, Lemma 2.4.5]). Let Zk = Zk(X), and let

Φ : Cn(Xk−1)× Cn(Dk(Zk)) → Cn(X)

(c′, z) 7→ s(c′) + z.

This is a Borel-measurable map (relative to the product topology on its domain), and

it is bijective, with inverse Φ−1 : c 7→ (πk−1 ◦c, c−s(πk−1 ◦c)). For any T ∈ Cn(H•) we

define T ′ := Φ−1 ◦T ◦Φ. As translations on X commute with addition of elements of Zk

[7, Lemma 3.2.37], and πk−1 ◦T = Tk−1 ◦πk−1 for some Tk−1 ∈ Cn(Θ(Xk−1)) [7, Definition

3.3.1 and Proposition 3.3.2], we have T ′(c′, z) = (Tk−1(c
′), [T (s(c′))− s(Tk−1(c′))] + z) for

all c′ ∈ Cn(Xk−1), z ∈ Cn(Dk(Zk)).
Let Υn := {T ′ : T ∈ Cn(H•)}. We shall now show that if µ is any ergodic Υn-invariant

Borel probability measure on Cn(Xk−1) × Cn(Zk), then µ = µCn(Xk−1) × mCn(Zk) where

µCn(Xk−1) and mCn(Zk) are the Haar measures on Cn(Xk−1) and Cn(Zk) respectively. This

will prove the claimed unique ergodicity, as any Υn-invariant Borel probability measure

on Cn(Xk−1) × Cn(Zk) is the convex combination of ergodic Υn-invariant Borel proba-

bility measures by [26, Theorem 4.2.6]. It will also establish that µ = µCn(X) ◦Φ−1, by

construction of the Haar measure µCn(X) (see [8, Proposition 2.2.5]).

Note that if π : Cn(Xk−1)× Cn(Zk)→ Cn(Xk−1) is the projection to the first coordi-

nate, we have that µ is a Cn(Hk−1)-invariant measure of Cn(Xk−1) and by induction on k

this measure ν is precisely the Haar measure on Cn(Xk−1).

Following the proof of [29, p. 63, Lemma 4], we shall use the disintegration of the

measure µ with respect to π, that is µ =
∫
δy×µy dν(y). Fix any T ′ ∈ Υn and let ρT (y) :=

T (s(y)) − s(Tk−1(y)) for any y ∈ Cn(Xk−1). Since µ is T ′-invariant, we have that for ν-

almost every y ∈ Cn(Xk−1) we have µTk−1y = δρT (y)∗µy, in the sense that for any continuous

f : Cn(Dk(Zk))→ C we have
∫
f(t) dµTk−1y(t) =

∫ ∫
f(a+ b) dδρT (y)(a) dµy(b).

Now, for any character χ : Cn(Dk(Zk)) → C the Fourier-Stieltjes coefficient µ̂y(χ) is

well defined for ν-almost all y ∈ Cn(Xk−1), and equals

µ̂y(χ) =

∫
Cn(Dk(Zk))

χ(h) dµy(h).
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Following [29], we define φχ(y, g) := χ(g)µ̂y(χ) for all g ∈ Cn(Dk(Zk)) and ν-almost all

y ∈ Cn(Xk−1). We have that for all g, h ∈ Cn(Dk(Zk)) and ν-almost all y ∈ Cn(Xk−1) we

have φχ(y, g+h) = χ(h)φχ(y, g). Thus, using the fact that µTk−1y = δρT (y)∗µy, we conclude

that φχ(T ′(y, g)) = φχ(y, g) for all g ∈ Cn(Dk(Zk)) and ν-almost all y ∈ Cn(Xk−1). We

can repeat this argument with the countably many elements of Υn and deduce that for

all g ∈ Cn(Dk(Zk)) and ν-almost all y ∈ Cn(Xk−1), φχ(T ′(y, g)) = φχ(y, g). Thus, for

µ-almost all (y, g) we have that for any T ′ ∈ Υn, φχ(T ′(y, g)) = φχ(y, g). By ergodicity

of µ we conclude that φχ is constant for µ-almost all (y, g). If we denote this constant

by cχ, it is easy to deduce that cχ = χ(h)cχ. Therefore, if χ is not the trivial character,

cχ = 0 for almost all y ∈ Cn(Xk−1), which in turn implies that each measure µy is the

Haar measure on Cn(Dk(Zk)) for almost all y ∈ Cn(Xk−1). �

The main ingredient for the proof of Theorem 5.3 is the following result, telling us that a

fully ergodic action can be used to obtain arbitrarily balanced morphisms from the acting

group to the Host-Kra factor.

Proposition 5.7. Let Ω be an ergodic Fωp -system and let Xk be the corresponding k-th

Host–Kra factor. Then for every x ∈ Xk and b > 0, there exists D = D(b,Ω,Xk, x) such

that φ : FDp → Xk, g 7→ γ̂k(g)(x) is a b-balanced morphism in hom(D1(ZDp ),Xk).

Proof of Theorem 5.3 using Proposition 5.7. By Theorem 5.1 we know that the k-th Host-

Kra factor is isomorphic to a k-step compact nilspace system. By Corollary 5.5 and

Lemma 5.6 we know that the action of Cn(Fωp ) on Cn(Xk) (via γ̂k) is uniquely ergodic for

all n ≥ 0. We now prove that Xk is p-homogeneous.

Fix any x ∈ Xk. By the inverse limit theorem (see [8, Theorem 2.7.3]) we have

Xk = lim←−Xk,i where Xk,i are k-step cfr nilspaces. Let ψi : Xk → Xk,i be the i-th

limit map in this inverse limit, and recall that ψi is a fibration. Consider the b-balanced

morphism provided by Proposition 5.7 (supposing some – any – metrics have been fixed

on Xk, Xk,i and using Remark 2.2). Arguing as in the proof of Proposition 2.3, we deduce

that ψi ◦φ is b′-balanced for some parameter b′(b) which tends to 0 as b→ 0. Thus, given

any b′ > 0, we have that there exists D = D(b′,Ω,Xk, x, i) such that ψi ◦φ is b′-balanced.

Choosing b′ = b′(Xk,i, p) as given by Theorem 1.3, we can conclude that for sufficiently

large D = D(Ω,Xk, p, x, i) the compact nilspace Xk,i is p-homogeneous. Since this holds

for every i ∈ N, we deduce that Xk is the inverse limit of p-homogeneous nilspaces, which

implies that Xk itself is p-homogeneous (this follows easily from the definitions). �

In order to prove Proposition 5.7 we will rely on the following technical result:

Lemma 5.8. Suppose that the system (Cn(Xk),C
n(γ̂k(G))) is uniquely ergodic. Let

(GD)D≥0 be a Følner sequence for the group G such that G =
⋃∞
D=1GD. Then for any
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cube q ∈ Cn(Xk), the sampling measures Ec∈Cn(GD)δγ̂k(c)·q on Cn(Xk) converge in the weak

topology to µCn(Xk) as D →∞.

Proof. This follows by similar arguments as in [29, p. 30, Proposition 2] (see also [26, p.

87 §4.3. a.]). �

Proof of Proposition 5.7. By Theorem 5.1 we know that the k-th Host-Kra factor is iso-

morphic to a k-step compact nilspace system. By Corollary 5.5 and Lemma 5.6 we know

that the action of Cn(Fωp ) on Cn(Xk) (via γ̂k) is uniquely ergodic for all n ≥ 0.

Fix some point x ∈ Xk. For any D we can define the map ϕ : ZDp → Xk as x 7→ γ̂k(g)·x.

We need to prove that, given b > 0, there exists D such that for every n ≤ 1/b we have

dn(µCn(Xk), µCn(D1(FD
p )) ◦(ϕJnK)−1) < b, (11)

where dn is a prescribed metric on P(Cn(Xk)) (see Remark 2.2). We now apply Lemma

5.8 with G = Fωp , with GD = FDp for each D ≥ 0 (naturally embedded as a subgroup Fωp so

that (GD)D≥0 is a Følner sequence in Fωp ), and q ∈ Cn(Xk) the cube with constant value

x. Thus, for each n there is Dn such that for D ≥ Dn the inequality (11) holds. Taking

D ≥ maxn≤1/b(Dn), the result follows. �

We can now apply this straightaway to describe the k-th Host-Kra factors for k ≤ p.

Proof of Theorem 1.10. The result follows from combining theorems 1.9 and 1.8. �

We end this subsection with the following explicit description of the translation group of

the nilspaces occurring in Theorem 1.10.

Theorem 5.9. Let k ≤ p, for each i ∈ [k] let ai ∈ N ∪ {∞}, and let X be the compact

k-step p-homogeneous nilspace
∏k

i=1Di(Zaip ). Then the translation group Θ(X) can be

identified as a set with the Cartesian product 14

Za1p ×
k∏
i=2

hom
( i−1∏
j=1

Dj(Zajp ),Di−1(Zaip )
)
, (12)

and the action of an element (T1, . . . , Tk) in this product as a translation α ∈ Θ(X) is

given by the formula

α(x1, . . . , xk) = (x1, . . . , xk) + (T1, T2(x1), T3(x1, x2), . . . , Tk(x1, . . . , xk−1)). (13)

The group operation on Θ(X) can be expressed directly on the set (12) by deducing it

from the definition of the action. Note also that the morphism sets in (12) are sets of

polynomial maps (see e.g. [7, Theorem 2.2.14]). Thus Theorem 5.9 describes Θ(X) in

terms of polynomials.

14Note that in (12) the product signs outside the bracket indicate Cartesian products, and the product

sign inside the bracket indicates a product of nilspaces.
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Proof. First we prove that all the functions described are indeed translations. We argue

by induction on k. The case k = 1 is clear since in this case the function just adds the

constant T1, and is thus indeed a translation on D1(Za1p ). For k ≥ 2, by induction it

suffices to check that the map α : x = (x1, , . . . , xk) 7→ x +
(
0, . . . , 0, Tk(x1, . . . , xk−1)

)
is a translation. Recall from [7, §3.1.4] the notation for arrow spaces : in particular if

f, g : JnK→ X are any two maps, we define the 1-arrow 〈f, g〉1 : Jn+ 1K→ X as the map

such that for v ∈ JnK we have 〈f, g〉1(v, 0) = f(v) and 〈f, g〉1(v, 1) = g(v). By [7, Lemma

3.2.32] it suffices to show that for every c = (c1, . . . , ck) ∈ Cn
(∏k

i=1Di(Zaip )
)

we have

〈c, α ◦c〉1 ∈ Cn+1(X). But 〈c, α ◦c〉1 = 〈c, c〉1 + g, where g is the map Jn+ 1K→
∏k

i=1 Zaip
with values of the form g(v) = (0, . . . , 0, 〈0, Tk ◦(c1, . . . , ck−1)〉1(v)). Thus it suffices to

prove that for every such n-cube c we have 〈0, Tk ◦(c1, . . . , ck−1)〉1 ∈ Cn(Dk(Zakp )). For

this, by [7, Lemma 2.2.19] it suffices to have Tk ◦(c1, . . . , ck−1) ∈ Cn(Dk−1(Zakp )). But this

is precisely what is ensured by our assumption that Tk ∈ hom
(∏k−1

j=1 Dj(Z
aj
p ),Dk−1(Zakp )

)
.

Now we prove the converse, namely that every translation α has the form claimed in

the theorem. By induction on k we can assume that α has this form at least in the first

k − 1 components, so α(x) = (x1, . . . , xk−1, 0) + (T1, T2(x1), . . . , Tk−1(x1, . . . , xk−1), g(x))

for some map g : X → Zakp . We know that translations commute with the action of the

last structure group, so g(x1, . . . , xk) = g(x1, . . . , xk−1, 0) + xk. Now it suffices to show

that g′ : (x1, . . . , xk−1) 7→ g(x1, . . . , xk−1, 0) is in hom(
∏k−1

i=1 Di(Zaip ),Dk−1(Zakp )), i.e., that

for every c ∈ Cn(
∏k−1

i=1 Di(Zaip )) we have g′ ◦c ∈ Cn(Dk−1(Zakp )). Let c∗ be the cube

in Cn(
∏k

i=1Di(Zaip )) defined by c∗(v) = (c(v), 0ak) for v ∈ JnK, and consider the map

〈c∗, α ◦c∗〉1. On one hand, by [7, Lemma 3.2.32] this map is a cube (since α is a trans-

lation), and on the other hand, by the above inductive expression of α, this map equals

〈c∗, c∗〉1 + 〈0, c′〉1 + 〈0, c′′〉1 for some cube c′ = (c′1, . . . , c
′
k−1, 0

ak) ∈ Cn(
∏n

i=1Di(Zaip )),

and where c′′(v) = (0a1 , . . . , 0ak−1 , g′ ◦c(v)). Then 〈0, c′′〉1 is in Cn+1(
∏k

i=1Di(Zaip )),

since it is the combination of cubes 〈c∗, α ◦c∗〉1 − 〈c∗, c∗〉1 − 〈0, c′〉1. Hence 〈0, g′ ◦c〉1 ∈
Cn+1(Dk(Zakp )) and therefore g′ ◦c ∈ Cn(Dk−1(Zakp )) by [7, Lemma 2.2.19], as required. �

Remark 5.10. Combining Theorem 5.9 with Theorem 1.10 we refine the description of

the k-th Host-Kra factor for k ≤ p, in that the Fωp -action is given by a homomorphism γ̂k

from Fωp to the group Θ(X) with the above explicit description. It would be interesting to

examine such homomorphisms further, possibly to refine the description even more using

other available properties (e.g. full ergodicity). This goes beyond our aims in this paper.

5.2. k-step p-homogeneous nilspace systems as Abramov systems for k ≤ p+ 1.

Given a measure preserving G-system (X,G), a function f : X → C in L∞(X) and g ∈ G,

the corresponding multiplicative derivative of f is the function ∆gf(x) := f(g · x)f(x) in
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L∞(X). We recall the notion of Abramov systems from [2, Definition 1.13], named after

Leonid M. Abramov, who studied this type of systems in the setting of Z-actions [1].

Definition 5.11 (Abramov system). Let (X,G) be a G-system for a countable discrete

agelian group G, and let k ≥ 0 be an integer. We say that φ ∈ L∞(X) is a phase

polynomial of degree ≤ k if for all g1, . . . , gk+1 ∈ G we have ∆g1 · · ·∆gk+1
f = 1 almost

surely on X. We say that X is an Abramov system of order ≤ k if the linear span of the

phase polynomials of degree ≤ k is dense in L2(X).

It is proved in [2, Theorem 1.19] that for every ergodic Fωp -system X, the k-th Host–Kra

factor of this system (denoted Z<k+1(X) in [2]) is an Abramov system of order ≤ k for

k < p. In this subsection we prove Theorem 1.12, establishing that the k-th Host–Kra

factor is Abramov also in the two new cases k = p and k = p + 1. To this end, we shall

first reduce the problem to a question about nilspace systems.

Recall that every compact nilspace X has a compact metric topology, relative to which

every translation in Θ(X) is a homeomorphism on X. Thus for every discrete countable

group G acting on X by translations, the nilspace system (X, G) can be treated as a

topological dynamical system. It is then natural to introduce the following topological

variant of Abramov systems. Given a metric space X, let C(X,C) denote the algebra of

complex-valued continuous functions on X (a unital ∗-algebra) with the uniform norm.

Definition 5.12 (Topological Abramov systems). Let X be a compact metric space and

let G be a group acting by homeomorphisms on X. A continuous phase polynomial of

degree ≤ k on X is a function φ ∈ C(X,C) such that ∆g1 · · ·∆gk+1
φ(x) = 1 for all

g1, . . . , gk+1 ∈ G, x ∈ X. We say that (X,G) is topological Abramov of order ≤ k if the

algebra generated by the continuous phase polynomials of degree ≤ k is dense in C(X,C).

By standard density arguments it is readily shown that if µ is a Borel probability measure

on the compact metric space X and (X,G) is a topological Abramov system of order ≤ k

then, provided G acts by transformations preserving µ, we have that (X,G) is Abramov

of order ≤ k as a measure-preserving system. Our approach to Question 1.11 is to study

the question of when a nilspace system (X, G) is a topological Abramov system. To this

end, one of the main steps in this subsection consists in reformulating the topological

Abramov property of a nilspace system (X, G) as the following property of X.

Definition 5.13 (Sub-abelian compact nilspace). A compact nilspace X is sub-abelian of

order ≤ k if there exists a compact (second-countable) abelian group nilspace Y of step

≤ k and an injective continuous morphism φ : X→ Y.

Here recall that an abelian group nilspace is a group nilspace (G,G•) where G is abelian,

and that a group nilspace (G,G•) is of step ≤ k if and only if the filtration G• has degree

≤ k. The above-mentioned reformulation of Question 1.11 consists in the following result.
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Proposition 5.14. Let X be a k-step compact nilspace, and let G be a countable discrete

abelian group acting on X via a homomorphism ϕ : G → Θ(X). If X is sub-abelian of

order ≤ k, then (X, G) is topological Abramov of order ≤ k. Conversely, if (X, G) is

topological Abramov of order ≤ k and fully ergodic, then X is sub-abelian of order ≤ k.

To prove this we shall use the following couple of lemmas. The first one is just a convenient

reformulation of the sub-abelian property.

Lemma 5.15. A compact nilspace X is sub-abelian of order ≤ k if and only if there is

an injective continuous morphism φ : X→ Dk(TN).

Proof. The backward implication is clear. For the forward implication, suppose that Z

is a compact abelian group with a filtration Z• of degree ≤ k and that the associated

group nilspace Y admits a continuous injective morphism. Then it suffices to show that

there is a continuous injective morphism φ′ : Y → Dk(TN). By second-countability of

Z, the dual group Ẑ is countable, so we can list its elements as χi for i ∈ N and then

define a map φ′ : Z → TN, x 7→ (χi(x))i∈N. From the properties of characters it follows

that φ′ is continuous and injective. We claim that φ′ ∈ hom(Y,Dk(TN)). To see this

it suffices to show that each χ ∈ Ẑ is in hom(Y,Dk(T)) (since Dk(TN) is isomorphic to

the product nilspace of countably many copies of Dk(T)). But (Z,Z•) being of step ≤ k

implies that for any (k+1)-cube c on this nilspace, the Gray-code alternating sum σk+1(c)

is 0 (see [7, Proposition 2.2.25]). Since χ commutes with the operations in this sum, we

have σk+1(χ ◦c) = 0 in T, so χ ◦c ∈ Ck+1(Dk(T)). This proves that χ is a morphism. �

The second lemma uses full ergodicity to upgrade any continuous polynomial phase to a

nilspace morphism.

Lemma 5.16. Let X be a compact k-step nilspace and let G be a countable discrete abelian

group such that (X, G) is fully ergodic. Let f : X → C be a continuous polynomial phase

of degree ≤ k. Then there is a continuous morphism φ ∈ hom
(

X,Dk(T)
)

such that

f(x) = e(φ(x)) for all x ∈ X.

Proof. The phase polynomial property with g1 = · · · = gk+1 = idG implies that |f(x)|2k+1
=

1 for all x ∈ X, so there is a continuous function φ : X→ T such that f(x) = e(φ(x)), and

it follows that for all g1, . . . , gk+1 ∈ G, the additive derivative ∇g1 · · · ∇gk+1
φ(x) equals

0 ∈ T for every x ∈ X. We shall deduce from this that φ ∈ hom
(

X,Dk(T)
)
.

We claim that for every δ > 0 the map φ is a δ-quasimorphism X→ Dk(T), in the sense

that for every c ∈ Ck+1(X) there exists c′ ∈ Ck+1(Dk(T)) such that |φ ◦c(v)− c′(v)|T ≤ δ

for all v ∈ Jk+ 1K (see [8, Definition 2.8.1]), where |x|T denotes as usual the distance from

x ∈ T to the nearest integer. To prove the claim, given any c ∈ Ck+1(X), let Bδ′(c) be

the open ball of center c and radius δ′ in the `∞ norm in Ck+1(X). By unique ergodicity
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of the action of Ck+1(G) on Ck+1(X), if we fix any x ∈ X and let c0 ∈ Ck+1(X) be the

constant cube with value x, then the orbit of c0 under the action of Ck+1(G) is dense. In

particular there exists c̃ ∈ Ck+1(G) such that c̃ · c0 ∈ Bδ′(c). Choosing δ′ small enough,

this implies |φ(c(v)) − φ(c̃ · c0(v))|T ≤ δ for all v ∈ Jk + 1K. Now note that the phase

polynomial property of φ implies that φ ◦(c̃ · c0) ∈ Ck+1(Dk(T)). This proves our claim.

By [8, Theorem 2.8.2], there is a continuous morphism φδ : X → Dk(T) such that

|φ(x) − φδ(x)|T ≤ ε for every x ∈ X, where ε(δ) → 0 as δ → 0. Applying this for

each δ in the sequence (δn := 1/n)n∈N, we obtain a sequence of continuous morphisms

φn : X → Dk(T) such that supx∈T |φn(x) − φ(x)|T → 0 as n → ∞. By the compactness

(hence closure) of each cube set Cn(X), we deduce that φ is a morphism. �

Proof of Proposition 5.14. Suppose that X is sub-abelian of order ≤ k and let φ : X →
Dk(TN) be an injective morphism. For each i ∈ N let πi : Dk(TN) → Dk(T) be the

projection to the i-th coordinate. Then for every i and every character χ ∈ T̂, the

function χ ◦πi ◦φ : X → C is in C(X,C), and the morphism property of φ implies that

this function is a phase polynomial on (X, G). Moreover, the injectivity of φ implies that

the set of functions S = {χ ◦πi ◦φ : i ∈ N, χ ∈ T̂} separates the points of X. By the

Stone-Weierstrass theorem [5, Ch. 6, Theorem 10], the unital ∗-algebra generated by S is

dense in C(X,C) and so (X, G) is topological Abramov of order ≤ k.

To prove the claim in the converse direction, suppose that (X, G) is topological

Abramov of order ≤ k. Since X is a compact metric space, the space C(X,C) is sep-

arable, so there is a sequence (hi)i∈N ∈ C(X,C) that is dense in C(X,C). For each i ∈ N
and each n ∈ N, there is then a finite combination of continuous phase polynomials on

X that is within distance 1/n of hi in C(X,C). We thus obtain a countable collection

(fj)j∈N of phase polynomials whose linear span is dense in C(X,C). By Lemma 5.16,

for every j there is a continuous morphism φj : X → Dk(T) such that fj = e ◦φj. Let

φ : X→ Dk(TN) be the continuous morphism x 7→
(
φj(x)

)
j∈N. It remains only to see that

φ is injective. This is equivalent to the injectivity of the map F : X→ CN, x 7→ (fj(x))j∈N.

The latter injectivity follows from the density of the linear span of (fj)j∈N. Indeed, sup-

pose for a contradiction that there exist x 6= y in X satisfying F (x) = F (y). Then every

linear combination of functions fj has the same value on x and y. By Urysohn’s lemma

there is a continuous real-valued function f on X equal to 1 on a closed neighbourhood

U of x and equal to 0 on a closed neighbourhood V of y with V ∩U = ∅. Then there is a

linear combination f ′ of the fj that is within ε of f in C(X,C) and therefore f ′(x) ≥ 1−ε
and f ′(y) ≤ ε, which contradicts f ′(x) = f ′(y) if ε < 1/2. �

Equipped with Proposition 5.14, we can now prove Theorem 1.12 by showing that the

nilspaces involved in the theorem are sub-abelian. For the case k = p+ 1 of the theorem,
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we shall use the following additional small lemma, which tells us that the sub-abelian

property is stable under taking inverse limits.

Lemma 5.17. Suppose that a compact nilspace X is the inverse limit of compact nilspaces

that are all sub-abelian of order ≤ k. Then X is sub-abelian of order ≤ k.

Proof. By assumption X is the inverse limit of a strict inverse system of compact nilspaces

Xi, i ∈ N, where each Xi is sub-abelian. For every i ∈ N let ψi : X → Xi be the i-th

limit map (thus ψi is a nilspace fibration). For any fixed i, let (φi,j)j∈N be a sequence

of continuous morphisms X → Dk(T) such that the morphism φi : X → Dk(TN), x 7→
(φi,j(x))j∈N is injective. Let σ : N → N2 be a bijection and let φ : X → TN be the map

x 7→ (φσ(n)1,σ(n)2)n∈N. Since the limits maps ψi separate the points of X and for each i the

maps φi,j, j ∈ N separate the points of Xi, we deduce that φ is injective. �

We can now prove the main result of this section.

Proof of Theorem 1.12. By Theorem 1.9 the k-th Host–Kra factor of an ergodic Fωp -system

is isomorphic (as a measure-preserving G-system) to a p-homogeneous k-step nilspace

system (X,Fωp ). For k ≤ p, by Theorem 1.8 the nilspace X is a k-step abelian group

nilspace, so it is sub-abelian. Hence, by Proposition 5.14, the nilspace system (X,Fωp )

is topological Abramov of order ≤ k as required. For k = p + 1, note first that by the

inverse limit theorem for compact nilspaces, and Lemma 4.1, X is an inverse limit of p-

homogeneous k-step cfr nilspaces Xj, j ∈ N. By Proposition 4.10, each Xj is sub-abelian.

Then X is sub-abelian by Lemma 5.17. By Proposition 5.14, the result follows. �

Given the above results, a plausible way to answer Question 1.11 for general k may be to

answer the following more specific question purely about p-homogeneous nilspaces, which

also has the advantage of reducing the problem to a question concerning finite structures.

Question 5.18. Is every finite p-homogeneous k-step nilspace sub-abelian of order ≤ k?

Our affirmative answer for k = p + 1 relied on Proposition 4.10, which in turn relies on

technical results including Proposition B.5. Generalizing these results to larger values of

k > p did not seem to be a simple task (see Remark B.6), and we do not pursue this

approach to Question 1.11 further in this paper.

6. Regularity and inverse theorems for Gowers norms in characteristic p

Recall that there are countably many isomorphism classes of cfr nilspaces (see [6] or [8,

Theorem 2.6.1]). This enables us to define a notion of complexity for cfr k-step nilspaces

as a bijection from N to the set of isomorphism classes of such nilspaces. Throughout

this section, we assume that some (any) such notion of complexity has been fixed. Thus

for each k we have fixed a sequence (Y(i))i∈N of k-step cfr nilspaces such that for every
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k-step cfr nilspace Y there is i such that Y is isomorphic (as a compact nilspace) to Y(i);

we then write Comp(Y) ≤ m to mean that i ≤ m. We shall also assume that some (any)

compatible metric di has been fixed on each nilspace Y(i). This fixes a meaning for the

notion of balanced morphism into Y(i) for each i, using Remark 2.2.

Let us also recall the notion of nilspace polynomials from [13], which constitute a

general class of functions usable for inverse theorems for Gowers norms in various settings,

and let us specify the special case of this notion in the characteristic-p setting.

Definition 6.1 (Nilspace polynomials). Let X be a compact nilspace. A function f :

X→ C is a nilspace polynomial of degree k if f = F ◦φ where φ : X→ Y is a continuous

morphism, Y is a k-step cfr nilspace, and F is continuous. If d is a compatible metric

on Y, then we say that the nilspace polynomial F ◦φ is b-balanced (with respect to d) if

the morphism φ is b-balanced (using the metrics induced by d as per Remark 2.2). For a

prime p, we say F ◦φ is a p-homogeneous nilspace polynomial if Y is p-homogeneous.

Having fixed a complexity notion (Y(i))i∈N as above, we say that a nilspace polynomial f

of degree k on X has complexity at most m, denoted Comp(f) ≤ m, if f = F ◦φ where

φ : X→ Y(i) for some i ≤ m and F has Lipschitz constant ≤ m (relative to the metric di

that we have fixed on Y(i)).

Our main aim in this section is to deduce the Tao-Ziegler inverse theorem from [38], by

combining the results on p-homogeneous nilspaces in the present paper with the following

(special case of the) general inverse theorem [13, Theorem 5.2].

Theorem 6.2. Let k ∈ N, and let b : R>0 → R>0 be an arbitrary function. For every

δ ∈ (0, 1] there is M > 0 such that for every cfr coset nilspace X, and every 1-bounded

Borel function f : X → C such that ‖f‖Uk+1 ≥ δ, for some m ≤ M there is a b(m)-

balanced 1-bounded nilspace-polynomial F ◦φ of degree k and complexity at most m such

that 〈f, F ◦φ〉 ≥ δ2
k+1
/2.

To recall the Tao–Ziegler inverse theorem, we first recall from [38] the notion of a (non-

classical) polynomial on a vector space Fnp .

Definition 6.3 (Polynomials). Let k ≥ 0 be an integer, and let Z be an abelian group.

A function P : Fnp → Z is said to be a polynomial of degree ≤ k if

∀h1, . . . , hk+1, x ∈ Fnp , ∆h1 . . .∆hk+1
P (x) = 0,

where ∆hP (x) := P (x+ h)− P (x) is the additive derivative of P in the direction h. The

space of polynomials of degree ≤ k is denoted by poly≤k(Fnp → Z).

We now state the inverse theorem for vector spaces over Fnp that we shall prove, which

implies the Tao-Ziegler inverse theorem (stated as Conjecture 1.10 in [38]). Recall that

for N ∈ N we denote by 1
N
· ZN the subgroup of T isomorphic to ZN .
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Theorem 6.4. Let δ > 0, let k ≥ 0, let p be a prime, and let r = bk−1
p−1c+ 1. Then there

exists ε = εδ,k,p > 0 such that for every 1-bounded function f : Fnp → C with ‖f‖Uk+1 ≥ δ,

there exists P ∈ polyk(Fnp → 1
pr
· Zpr) such that |Ex∈Fn

p
f(x)e(−P (x))| ≥ ε.

To prove this we first establish the following fact, which uses Theorem 1.7 to describe

p-homogeneous nilspace polynomials in terms of phase polynomials on vector spaces Fnp .

Lemma 6.5. For every prime p and k ∈ N, there is an increasing function D : N → N
with the following property. Let f be a 1-bounded p-homogeneous nilspace polynomial of

degree k and complexity at most m on Fnp . Then for some R ≤ D(m), for each i ∈ [R]

there is λi ∈ C, |λi| ≤ 1, and Pi ∈ polyk(Fnp → 1
pr
· Zpr), where r = bk−1

p−1c + 1, such that

f =
∑R

i=1 λi e ◦Pi.

Proof. We have f = F ◦φ where φ : Fnp → X is a morphism to a k-step p-homogeneous

finite nilspace X, and F is 1-bounded. By Theorem 1.7, there is a fibration ψ : Y → X

where Y =
∏k

`=1 U
a`
k,`, where a` ∈ Z≥0 for ` ∈ [k], and a morphism g : D1(Znp )→ Y, such

that φ = ψ ◦g. Letting F ′ := F ◦ψ : Y → C, we have f = F ′ ◦g. By Definition 1.6,

we know that Y is a direct product of filtered cyclic groups Z
p
b k−`
p−1 c+1 , each of which can

be isomorphically embedded in Zpr . Indeed, for any a ≤ r we can embed Zpa → Zpr via

the monomorphism ia : j 7→ pr−aj. Then, letting pa : Zpr → Zpa be the map that takes

every element of the form pr−aj to j and the rest to 0, it is clear that πa ◦ ia = idZpa
. Let

R = R(Y) :=
∑k

`=1 a`, let i : Y → URk,1 be the product of these monomorphisms, and let

π : ZRpr → Y be the corresponding product of the projections. Then π ◦ i = idY, and i is a

morphism. Thus, letting F ′′ := F ′ ◦π and ϕ := i ◦g, we have that ϕ ∈ hom(D1(Znp ),URk,1),
F ′′ : URk,1 → C, and F ′′ ◦ϕ = f .

By classical Fourier analysis on the group ZRpr , we have F ′′(t) =
∑

ξ∈ZR
pr
F̂ ′′(ξ)e(ξ · t)

where ξ · t is the standard T-valued non-degenerate symmetric bilinear form on the finite

abelian group ZRpr . Since ZRpr is a power of Zpr , the form ξ · t takes values in the subgroup
1
pr
· Zpr ⊂ T. We therefore have f(x) =

∑
ξ∈ZM

pr
λξe(ξ · ϕ(x)), where the coefficients

λξ = F̂ ′′(ξ) have modulus at most 1.

To complete the proof it now suffices to show that each function x 7→ ξ · ϕ(x) is in

polyk(Fnp → 1
pr
· Zpr). We have ϕ(x) =

(
ϕ1(x), . . . , ϕR(x)

)
, where it follows from the

definitions that each map ϕi is a morphism D1(Znp )→ Uk,1. It then follows from standard

properties of such morphisms that ϕi ∈ polyk(Fnp → Zpr) for each i, and the result then

follows from the group properties of polyk(Fnp → Zpr). The proof is now completed by

setting D(m) := max{|ZR(Y)
pr | : cfr p-homogeneous nilspace Y, Comp(Y) ≤ m}. �

We can now prove the inverse theorem.

Proof of Theorem 6.4. We apply Theorem 6.2 with the function b to be fixed later. We

thus obtain a nilspace polynomial fs := F ◦φ such that 〈f, fs〉 ≥ δ2
k+1
/2.
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We claim that, if b decreases sufficiently fast as a function of m, then the nilspace

polynomial fs is p-homogeneous. To see this, let us choose b in Theorem 6.2 so that

for each m we have 0 < b(m) < min{b′
Y(i),p : i ≤ m}, where b′

Y(i),p is the constant

given by Theorem 1.3 applied to the cfr nilspace Y(i) in our complexity notion (thus

the minimum here is indeed positive). Then we conclude by Theorem 1.3 that fs is a

p-homogeneous nilspace polynomial of degree k and complexity at most m ≤ M . By

Lemma 6.5 we then have fs(x) =
∑R

i=1 λie(Pi(x)) where R ≤ D(M) for D the function

provided by that lemma (thus R is bounded above depending only on δ, k, p), and for

each i we have |λi| ≤ 1 and Pi ∈ poly(Fnp → 1
pr
· Zpr). Hence, for some i ∈ [R] we have

|〈f, e(Pi)〉| ≥ δ2
k+1
/(2D(M)). Letting ε = δ2

k+1
/(2D(M)), the result follows. �

We can also establish the special case for k ≤ p in terms of classical phase polynomials,

as mentioned at the end of the introduction.

Theorem 6.6. Let δ > 0, let p be a prime, and let 0 ≤ k ≤ p. Then there exists

ε = εδ,k,p > 0 such that for every 1-bounded function f : Fnp → C with ‖f‖Uk+1 ≥ δ, there

exists a classical polynomial P ∈ polyk(Fnp → Fp) such that |Ex∈Fn
p
f(x)e(−P (x))| ≥ ε.

Proof. The argument is the same as the proof of Theorem 6.4, except that instead of using

Theorem 1.7 in the proof of Lemma 6.5, we use Proposition 4.7. �

We finish by noting that an application of Theorem 1.3 similar to the one above yields

the following regularity result specific to the characteristic-p setting.

Theorem 6.7. Let k ∈ N and let b : R>0×N→ R>0 be a function decreasing sufficiently

fast in the second variable. For every ε > 0 there exists N = N(ε, b) > 0 such that the

following holds. For every function f : Fnp → C with |f | ≤ 1, there is a decomposition

f = fs + fe + fr and number m ≤ N such that the following properties hold:

(i) fs is a b(ε,m)-balanced p-homogeneous nilspace polynomial of degree k, |fs| ≤ 1,

Comp(fs) ≤ m,

(ii) ‖fe‖L1 ≤ ε,

(iii) ‖fr‖Uk+1 ≤ b(ε,m), |fr| ≤ 1 and max{|〈fr, fs〉|, |〈fr, fe〉|} ≤ b(ε,m).

This follows from the general regularity result [13, Theorem 1.5], by adding the assumption

that for every ε > 0 and m ∈ N we have b(ε,m) ≤ min{b′
Y (i),p : i ≤ m}, where b′

Y (i),p

is the constant given by Theorem 1.3. Then, again thanks to the latter theorem, we can

conclude that fs is p-homogeneous.

Appendix A. Auxiliary results on nilspaces

In this first appendix we collect several results from general nilspace theory used in the

paper. Most of these results are new and seem of independent interest as additional tools

to work with nilspaces.
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Let us first fix some terminology and notation. By a box (or hyperrectangle) in Zm,

for m ∈ N, we mean as usual a Cartesian product of m intervals in Z. Given a base-

point a = (a(1), . . . , a(m)) ∈ Zm and a vector ` = (`(1), . . . , `(m)) ∈ Zm≥0, we denote the

corresponding box
∏m

i=1[a(i), a(i) + `(i)] ⊂ Zm by Ba,`.

For m ≥ 1 and n ≥ 0, we shall work with cubes in Cn(D1(Zm)) whose images are

contained in a given large box. It will then be useful to associate with each box in Zm a

certain cube (in the nilspace sense) on D1(Zm) which covers the entire box, which we shall

call the associated maximal cube. For example, given a box [a(1), a(1)+`(1)]×[a(2), a(2)+`(2)]

in Z2, the corresponding maximal cube is the (`(1) + `(2))-dimensional cube on D1(Z2)

that maps v ∈ J`(1) + `(2)K to a+
(
v(1) + · · ·+ v(`(1)), 0

)
+
(
0, v(`(1) + 1) + · · ·+ v(`(1) + `(2))

)
.

Recall the notation ei for the elements of the standard basis of Zm, and the notation |`|
for the height `(1) + · · ·+ `(m) of any ` ∈ Zm≥0.

Definition A.1 (Maximal cube associated with a box). Let m ∈ N, let a = (a(i))i∈[m] ∈
Zm and ` ∈ Zm≥0. The maximal cube associated with the box Ba,` is the cube ca,` ∈
C|`|(D1(Zm)) defined as follows:

∀ v ∈ J |`| K, ca,`(v) := a+
∑
j∈[m]

(
v(1 +

j−1∑
i=1

`(i)) + v(2 +

j−1∑
i=1

`(i)) + · · ·+ v(

j∑
i=1

`(i)))
)
ej.

Maximal cubes will help us to understand when a morphism defined on a box in Zm can

be extended to a morphism on all of D1(Zm). To this end we introduce the following

definition.

Definition A.2. Let m ∈ N, let a ∈ Zm and ` ∈ Zm≥0, and let X be a nilspace. Then

homa,`(X) := {f : Ba,` → X : f ◦ca,` ∈ C|`|(X)}.

Remark A.3. In the sequel, if we have a function f : S → X for some S ⊂ Zm and there

exists a ∈ Zm and ` ∈ Zm≥0 such that Ba,` ⊂ S, we may abuse the notation by writing

f ∈ homa,`(X), by which we mean that f |Ba,`
∈ homa,`(X).

To treat the above-mentioned extension problem, we begin with the following observation.

Lemma A.4. Let X be a nilspace, let m ∈ N, and let Ba,` be a box in Zm. Suppose that

f ∈ homa,`(X). Then for any n ≥ 0 and any g ∈ Cn(D1(Zm)) such that Im(g) ⊂ Ba,`, we

have f ◦g ∈ Cn(X).

Proof. Let x, y1, . . . , yn ∈ Zm be the components of g, thus g(v) = x+v(1) y1+· · ·+v(n) yn.

It suffices to prove that g = ca,` ◦h for some discrete-cube morphism h : JnK→ J|`|K. We

shall explain in detail how the first `(1) coordinates of h can be defined in order to satisfy

this last equality (the argument is the same for each interval [1 +
∑j−1

i=0 `(i),
∑j

i=0 `(i)] of

coordinates of h, which will correspond to the j-th coordinate of g).
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The first coordinate of g equals x(1) + y1(1)v(1) + · · · + yn(1)v(n). Note that x(1) ∈
[a(1), a(1) + `(1)] and that

∑n
i=1 |yi(1)| ≤ `(1) (as otherwise it is easy to check that the

image of g would not lie in Ba,`). Now, for simplicity of the notation, assume that the

coordinates y1(1), . . . , yt1(1) are all strictly positive, the coordinates yt1+1(1), . . . , yt1+t2(1)

are all strictly negative and yt1+t2+1(1), . . . , yn(1) are all zero (the general argument is

similar, modulo taking care of the actual positions of the positive, negative, and zero

coordinates, but tracking this only adds difficulty to the reading of the proof).

We start by defining the first
∑n

i=1 |yi(1)| ≤ `(1) coordinates of the discrete-cube

morphism h. We take these to be

(v1, . . . , v1︸ ︷︷ ︸
y1(1) times

, v2, . . . , v2︸ ︷︷ ︸
y2(1) times

, . . . , vt1 , . . . , vt1︸ ︷︷ ︸
yt1(1) times

, 1− vt1+1, . . . , 1− vt1+1︸ ︷︷ ︸
|yt1(1)| times

, . . . , 1− vt1+t2 , . . . , 1− vt1+t2︸ ︷︷ ︸
|yt1+t2(1)| times

).

Now we just have to define the next `(1)−
∑n

i=1 |yi(1)| coordinates of h (and thus we would

have defined in total the first `(1) coordinates of h). Note that x(1) ≥ a(1)+
∑t1+t2

i=t1+1 |yi(1)|,
as otherwise it is again easy to check that the image of g would not lie in Ba,`. Similarly

we have that x(1) ≤ a(1) + `(1)−
∑t1

i=1 |yi(1)|. Hence, we define the next `(1)−
∑n

i=1 |yi(1)|
coordinates of h as

(1x(1)−a(1)−
∑t1+t2

i=t1+1 |yi(1)|, 0`(1)−
∑t1

i=1 |yi(1)|−x(1)+a(1)).

It is now seen by straightforward summation that the first coordinate of g is thus equal

to the first coordinate of ca,` ◦h. The result follows. �

Lemma A.5 (Corners of a box). Let X be a nilspace, let Ba,` be a box in Zm, and let

f : Ba,` \ {a + `} → X be a map such that for every j ∈ [m] with `(j) > 0 we have

f ∈ homa,`−ej(X) (recall Remark A.3 here). Then f ◦ca,` ∈ Cor|`|(X).

Here “Corn(X)” denotes the space of n-corners on X (see [8, Lemma 2.1.12]).

Proof. We show that all lower faces of f ◦ca,` : J|`|K \ {1|`|} → X are cubes. For any u ∈
[ |`| ], let φu : J |`|−1 K→ J |`| K be the map (v1, . . . , v|`|−1) 7→ (v1, . . . , vu−1, 0, vu, . . . , v|`|−1).

Thus ca,` ◦φu = ca,`−ej(u) where j(u) ∈ [m] is such that u ∈ [1 +
∑j(u)−1

i=1 `(i),
∑j(u)

i=1 `(i)].

Thus f ◦ca,` ◦φu ∈ C|`|−1(X). �

We shall now derive some useful corollaries.

Corollary A.6. Let X and Y be nilspaces, and let ψ : X → Y be a fibration. Let

g ∈ hom(D1(Zm),Y), let Ba,` be a box in Zm, and let f ∈ homa,`(X) satisfy ψ ◦f = g|Ba,`
.

Then there is g′ ∈ hom(D1(Zm),X) such that g′|Ba,`
= f and ψ ◦g′ = g.

Proof. Recall that by definition of fibrations, given any corner c′ ∈ Corm(X) and any cube

q ∈ Cm(Y) such that ψ ◦c′ = q|JmK\1m , there exists c ∈ Cm(X) such that ψ ◦c = q.
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The idea of the proof is to extend the definition of f point by point in an inductive

process, defining values of f at new points in Zm of the form a+ (`(1) + 1, t2, . . . , tm) for

varying tj, in order to extend f eventually to the whole greater box Ba,`+e1 (thus we have

increased the first coordinate of ` by 1) while ensuring that f ∈ homa,`+e1(X). For the

induction, we can use the lexicographic order ≺ on {`(1) + 1} ×
∏m

j=2[0, `(j)] (noting that

if v(i) ≤ w(i) for all i and v 6= w then v ≺ w). We illustrate the process in the case m = 2

and B(0,0),(1,2). The points where f is defined initially are

and we will assign new values to the points (2, 0), (2, 1) and (2, 2) (in that order).

The base case for the induction corresponds to t2 = · · · = tm = 0. First we want to

prove that f ◦ca,(`(1)+1,0,...,0) |v 6=11+`(1) is in Cor`(1)+1(X). By Lemma A.5 it is enough to

check that f ◦ca,(`(1),0,...,0) ∈ C`(1)(X). As ca,(`(1),0,...,0) ∈ C`(1)(D1(Zm)) and its image lies

in Ba,`, by Lemma A.4 the result follows in this case. Furthermore, by assumption we have

ψ ◦f ◦ca,(`(1)+1,0,...,0)(v) = g ◦ca,(`(1)+1,0,...,0)(v) for all v 6= 1`(1)+1, and g ◦ca,(`(1)+1,0,...,0) ∈
C`(1)+1(X). As ψ is a fibration, we can complete the corner (i.e. assign a value to f(a +

(`(1) + 1)e1) making f ◦ca,(`(1)+1)e1
a cube) in such a way that (ψ ◦f)(a+ (`(1) + 1)e1) =

g(a + (`(1) + 1)e1). In our example, we would thus assign a value to (2, 0) and now the

points where f is defined are the following:

For the general case, suppose that we want to assign the value of f(a+(`(1)+1, t2, . . . , tm)).

By induction, for all (`(1) + 1, t′2, . . . , t
′
m) ≺ (`(1) + 1, t2, . . . , tm) we have assigned a

value to f(a + (`(1) + 1, t′2, . . . , t
′
m)) so that f ◦ca,(`(1)+1,t′2,...,t

′
m) ∈ C`(1)+1+

∑m
i=2 t

′
i(X) and

ψ ◦f ◦ca,(`(1)+1,t′2,...,t
′
m) = g ◦ca,(`(1)+1,t′2,...,t

′
m). Now we claim that f ◦ca,(`(1)+1,t2,...,tm)(v) for

v ∈ J`(1) + 1 +
∑m

i=2 tiK \ {1`(1)+1+
∑m

i=2 ti} in an element of Cor`(1)+1+
∑m

i=2 ti(X). In or-

der to prove this, we will rely again on Lemma A.5. To apply it we need to check two
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different cases. First, we need that f ◦ca,(`(1),t2,...,tm) ∈ C`(1)+
∑m

i=2 ti(X) (corresponding to

subtracting e1). As ca,(`(1),t2,...,tm) ∈ C`(1)+
∑m

i=2 ti(X) and its image is contained in Ba,`,

by Lemma A.4 the result follows in this case. Now let j ≥ 2. We need to prove that

f ◦ca,(`(1)+1,t2,...,tm)−ej ∈ C`(1)+
∑m

i=2 ti(X). But this case follows by induction hypothesis as

(`(1) + 1, t2, . . . , tm)− ej ≺ (`(1) + 1, t2, . . . , tm).

In our example let us assume that we are trying to assign a value to f(2, 1) (in red in

the diagram). The previous paragraph says that first we have to check that f ◦c(0,0),(2,0)

and f ◦c(0,0),(1,1) are in C2(X). The images of c(0,0),(2,0) and c(0,0),(1,1) are represented in

purple and green respectively.

From the diagram we see that for the green cube we have to use our initial assumption

and an application of Lemma A.4 and for the purple one the induction hypothesis. We

also have ψ ◦f ◦ca,(`(1)+1,t2,...,tm)(v) = g ◦ca,(`(1)+1,t2,...,tm)(v) for all v 6= 1`(1)+1+
∑m

j=2 tj and

g ◦ca,(`(1)+1,t2,...,tm) ∈ C`(1)+1+
∑m

j=2 tj(Y) (by construction). Thus, using that ψ is a fibra-

tion, we can complete the corner f ◦ca,(`(1)+1,t2,...,tm) in such a way that f ◦ca,(`(1)+1,t2,...,tm) ∈
C`(1)+1+

∑m
j=2 tj(X) and ψ ◦f ◦ca,(`(1)+1,t2,...,tm) = g ◦ca,(`(1)+1,t2,...,tm). The value at the top-

vertex of this completion is the value that we assign to f(a+ (`(1) + 1, t2, . . . , tm)).

At the end of this process, we obtain f : Ba,`+e1 → X such that f ◦c(a,`+e1) ∈ C1+|`|(X).

It is fairly easy to see now that we can repeat this process in every direction (i.e. thus

adding ej to `, for any j ∈ [m]), and thus extend f to a map f̃ : Ba,(L,...,L) → X such

that f̃ ◦ca,(L,...,L) ∈ CmL(X), for any L ∈ N. Moreover, if we reflect f̃ defining f ′ :

B(0,a(2),...,a(m)),(L,...,L) → X as f ′(v) = f̃(a(1) + L− v(1), v(2), . . . , v(m)), then extend this by

e1 as above, and then reflect again, we obtain an extension of f̃ to Ba−e1,(L,L,...,L). Arguing

similarly and iteratively in each direction, we see that f can be extended to any cube of

size [−L,L]m for any sufficiently large L.15 Hence, we can define inductively the extension

of f to all Zm. This extension is our morphism g′ ∈ hom(D1(Zm),X). To check that this

is indeed a morphism, we just have to note that given any cube q ∈ Cn(D1(Zm)), we have

Im(q) ⊂ [−L,L]m for some L large enough, so the result follows using Lemma A.4. �

The following consequence is the special case of Corollary A.6 with Ba,` = JmK.

15To be precise, we need L ≥ maxi∈{1,...,m}(|a(i)|+ |`(i)|) as the result consists in enlarging the original

box Ba,` and therefore L has to be large enough so that Ba,` ⊂ [−L,L]m.
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Corollary A.7. Let X and Y be nilspaces and let ψ : X → Y be a fibration. Let g ∈
hom(D1(Zm),Y), let c ∈ Cm(X) for some m ≥ 0, and suppose that ψ ◦c = g|JmK. Then

there exists g′ ∈ hom(D1(Zm),X) such that g′|JmK = c and ψ ◦g′ = g.

Lemma A.8 (Corner completion of a box). Let X be a nilspace, let Ba,` be a box in Zm,

and let f : Ba,` \ {a+ `} → X be a map such that for every j ∈ [m] with `(j) > 0 we have

f ∈ homa,`−ej(X). Then there exists an element x ∈ X such that, extending f to all of

Ba,` by setting f(a+ `) = x, we have f ∈ homa,`(X).

Proof. By Lemma A.5 we have that f ◦ca,` |v 6=1|`| is a corner in Cor|`|(X). Then by the

completion axiom for nilspaces there exists a completion of f ◦ca,`, and then letting f(a+`)

be the top-vertex value of this completion, the result follows. �

Next we prove some useful results concerning coset nilspaces.

Lemma A.9. Let (G,G•) be a filtered group, let Γ be a subgroup of G, and let X denote

the associated coset nilspace. For any n ≥ 0, let c, c′ ∈ Cn(X) satisfy c(v) = c′(v) for all

v 6= 1n. Then there exists g ∈ Gn such that g c(1n) = c′(1n).

Proof. By definition of cubes on X, there exists q, q′ ∈ Cn(G•) such that c = qΓ and

c′ = q′Γ. Then, considering q and q′ as functions on JnK \ {1n}, we have that q−1q′

is an n-corner on the group nilspace (Γ,Γ•) where Γi := Γ ∩ Gi for all i ≥ 0. Let

t ∈ Cn(Γ•) be a completion of q−1q′. Then (since t is Γ-valued) we have qtΓ = qΓ = c. As

(qt)(v) = q′(v) for all v 6= 1n, we know that q′(qt)−1 ∈ Cn(G•) and that (q′(qt)−1)(v) = 1

for all v 6= 1n. Hence, by basic properties of Host–Kra cubes (see [7, Lemma 2.2.26]) we

have (q′(qt)−1)(1n) ∈ Gn. Setting g := (q′(qt)−1)(1n), the result follows. �

We shall also use the following definitions.

Definition A.10 (Simplicial set). Let n ∈ N be an integer. We say that a set S ⊂ Zn≥0
is a simplicial set if it has the following property: for any v ∈ S and any w ∈ Zn≥0, if

w(i) ≤ v(i) for all i ∈ [n], then w ∈ S.

Definition A.11 (Simplicial corner). Let n ∈ N and S ⊂ Zn≥0 be a simplicial set. We say

that a vertex v /∈ S is a corner-vertex for S if for all w ∈ Zn≥0 \ {v} such that w(i) ≤ v(i)

for all i ∈ [n], we have w ∈ S.

The following figure illustrates these two definitions, indicating in red an example of a

simplicial set in Z2
≥0, and in blue its corner vertices.
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With this, we can now prove the following result.

Lemma A.12 (Taylor coefficients). Let n ≥ 0 be an integer, S ⊂ Zn≥0 a simplicial set,

and let w ∈ Zn≥0 be a corner of S. Let (G,G•) be a filtered group, let Γ be a subgroup of

G, and let X denote the corresponding coset nilspace. Let f, f ′ ∈ hom(D1(Zn),X) satisfy

f(v) = f ′(v) for all v ∈ S. Then there exists g ∈ G|w| such that g(v
w)f(v) = f ′(v) for all

v ∈ S ∪ {w}.

Proof. Let c0n,w ∈ C|w|(D1(Zn)) be the maximal cube associated with the box B0n,w.

Applying Lemma A.9 to f ◦c0n,w and f ′ ◦c0n,w, we obtain the value of g ∈ G|w|. It is readily

seen that v 7→ g(v
w)f(v) is in hom(D1(Zn),X) and satisfies the desired properties. �

Lemma A.13 (Completion of a simplicial set). Let X be a nilspace and let S be a simpli-

cial set included in a box B0n,` ⊂ Zn. Let f : S → X be a function such that for any box

B0n,d ⊂ S we have f ∈ hom0n,d(X). Then there exists g ∈ hom0n,`(X) such that g|S = f .

Proof. This is a straightforward generalization of [7, Lemma 3.1.5] using Lemma A.8. �

Recall by Definition 2.10 that homm
p (X) := {f : [0, p − 1]m → X : f ◦c0m,(p−1)m ∈

Cm(p−1)(X)}. Next we prove Lemma 2.15, which we recall here for convenience.

Lemma A.14. Let X be a k-step nilspace and n ≥ k + 1. Let f : [0, p− 1]n → X satisfy

f ◦φ ∈ homk+1
p (X) for every p-face-map φ : [0, p−1]k+1 → [0, p−1]n. Then f ∈ homn

p (X).

Recall the notation the notation Cork+1(X) for the set of (k+1)-corners on X. For v ∈ Zn,

let us recall also the notation supp(v) for the set of indices i ∈ [n] such that v(i) 6= 0.

Finally, let us call a function f ′ : {v ∈ [0, p− 1]n : | supp(v)| ≤ n− 1} → X a p-corner of

dimension n on X if for every p-face-map φ : [0, p − 1]n−1 → [0, p − 1]n that fixes some

coordinate equal to 0, we have f ◦φ ∈ homn−1
p (X).
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Proof. Let S := {v ∈ [0, p − 1]k+1 : | supp(v)| ≤ k} =
⋃k+1
i=1 {v ∈ [0, p − 1]k+1 : v(i) = 0}.

We first claim that every p-corner f ′ of dimension k + 1 on X has a unique completion,

that is, there is a unique f ∈ homk+1
p (X) with f(v) = f ′(v) for every v ∈ S. To see the

existence of f , note that the set S (on which f ′ is defined) is simplicial and f ′ : S → X

satisfies the assumptions in Lemma A.13, so the existence of f follows from that lemma.

To see the uniqueness, consider first the cube φ ∈ Ck+1(D1(Zk+1)) defined by φ(v) = v

(this just embeds Jk+1K in [0, p−1]k+1). Then f ′ ◦φ|Jk+1K\{1k+1} ∈ Cork+1(X) and therefore

it has a unique completion. It follows that the value f(1k+1) is uniquely determined by

f ′. Now we argue similarly for every remaining v ∈ [0, p− 1]k+1, showing inductively that

the determination of the values of f by f ′ propagates to all of [0, p− 1]k+1. Suppose that

we have a simplicial set S ′ ⊂ [0, p− 1]k+1 and a simplicial corner w of S ′ (see Definitions

A.10 and A.11). Furthermore, suppose that S ′ ⊃ S and assume inductively that for every

v ∈ S ′, the value f(v) is uniquely determined by f ′. We are going to prove that f(w) is

also uniquely determined by f ′. Consider the maximal cube c(0k+1,w) ∈ C|w|(D1(Zk+1)).

Then since f ∈ homk+1
p (X), we have f ◦c(0k+1,w) ∈ C|w|(X). As w(i) ≥ 1 for all i ∈ [k+ 1],

we have |w| ≥ k + 1, so by uniqueness of completion f ◦c(0k+1,w)(1
|w|) = f(w) is uniquely

determined by the other values of the cube f ◦c(0k+1,w). But since these other values

correspond to points of S ′, they are determined by f ′, whence f(w) is also uniquely

determined by f ′. This proves our claim.

Now, to prove the lemma, let f : [0, p − 1]n → X be a function such that for all

p-face-maps φ : [0, p − 1]k+1 → [0, p − 1]n we have f ◦φ ∈ homk+1
p (X). We have to

prove that f ∈ homn
p (X). Consider the map g′ defined by g′(v) := f(v) for all v ∈

[0, p − 1]n such that | supp(v)| ≤ k. By Lemma A.13, we can complete g′ to an element

g ∈ homn
p (X). We claim that f = g. To prove this, we can argue by contradiction

using the claim in the previous paragraph. Indeed, suppose that for some w ∈ [0, p− 1]n

we had f(w) 6= g(w), and let | supp(w)| be minimal with this property. By our initial

assumption on g′, we have s := | supp(w)| ≥ k + 1. Without loss of generality, suppose

that w = (w(1), . . . , w(s), 0, . . . , 0). Consider the p-face-map φ : [0, p− 1]k+1 → [0, p− 1]n,

(v(1), . . . , v(k + 1)) 7→ (v(1), . . . , v(k + 1), w(k + 2), . . . , w(s), 0, . . . , 0). Then, if v ∈ ∪k+1
i=1 {v ∈

[0, p − 1]k+1 : v(i) = 0}, we have | supp(φ(v))| ≤ k, so by assumption f ◦φ(v) = g ◦φ(v).

But now both f ◦φ and g ◦φ are elements in homk+1
p (X), so by the previous paragraph

we have f ◦φ(v) = g ◦φ(v) for all v ∈ [0, p− 1]k+1, so f(w) = g(w), a contradiction. �

Let us recall the following useful construction in nilspace theory.

Definition A.15 (Fiber-product of nilspaces). Let X1,X2, and X3 be nilspaces and let

ψ1 : X1 → X3 and ψ2 : X2 → X3 be fibrations. We define the fiber-product (or sub-direct

product) X1×X3 X2 to be the nilspace {(x1, x2) ∈ X1×X2 : ψ1(x1) = ψ2(x2)} with cube

sets Cn(X1×X3 X2) := {c1× c2 ∈ Cn(X1)× Cn(X2) : ψ1 ◦c1 = ψ2 ◦c2}.
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To see that this defines indeed a nilspace see [9, Lemma 4.2]. We leave it as an exercise

for the reader to check that the projections pi : X1×X3 X2 → Xi for i = 1, 2 are fibrations,

and that if X1 and X2 are k-step, then so is X1×X3 X2.

Proposition A.16. Let X and Q be k-step nilspaces and let ϕ : Q→ Xk−1 be a fibration.

Then p1 : Q ×Xk−1
X → Q is a degree-k extension whose structure group is the k-th

structure group of X.

Proof. Let us denote by Z the k-th structure group of X. First, let us define the action

of Z on Y := Q×Xk−1
X. Given (q, x) ∈ Y and z ∈ Z, (q, x) + z := (q, x+ z). To see that

this is well defined, note that πk−1(x) = πk−1(x+ z) for all x ∈ X and z ∈ Z. The action

is free, because if (q, x) = (q, x+z) then x = x+z and this implies that z = 0. The action

is also transitive over the fibers of p1. To see this, let (q1, x1), (q2, x2) ∈ Y be such that

p1(q1, x1) = p1(q2, x2). Then q1 = q2 and πk−1(x1) = ϕ(q1) = ϕ(q2) = πk−1(x2). Thus,

there exists z ∈ Z such that x1 = x2+z, which implies that (q1, x1) = (q2, x2)+z. We also

need to prove that p1 : Cn(Y)→ Cn(Q) is a surjection, but this follows from the fact that

p1 is a fibration. Finally, we have to check that given two cubes (c1, d1), (c2, d2) ∈ Cn(Y)

such that p1 ◦(c1, d1) = p1 ◦(c2, d2), there exists f ∈ Cn(Dk(Z)) such that (c1, d1) =

(c2, d2) + f . Proceeding as before, for all v ∈ JnK≤k := {v ∈ JnK : |v| ≤ k} we have

that there exists f(v) ∈ Z such that d1(v) = d2(v) + f(v). Now consider the (unique)

extension of f to an element of Cn(Dk(Z)). Thus, d1(v) = (d2 + f)(v) for all v ∈ JnK≤k.
as X is k-step, this implies that for all v ∈ JnK we have d1(v) = (d2 + f)(v). Therefore

(c1, d1) = (c2, d2) + f . �

Proposition A.17. Let q : X→ Y be a degree-k extension by an abelian group Z. Then

q is a fibration.

Proof. Let c ∈ Cn(Y) be a cube and c′ ∈ Corn(X) be a corner such that q ◦c′ = c for

all v 6= 1n. By [7, Definition 3.3.13, (i)], let c∗ ∈ Cn(X) be such that q ◦c∗ = c. Thus,

q ◦c′ = q ◦c∗ for all v 6= 1n. As X is a bundle over Y, this means that c′− c∗ takes

values in Z and by [7, Definition 3.3.13, (ii)] we know that c′− c∗ ∈ Corn(Dk(Z)). Let

d ∈ Cn(Dk(Z)) be a completion of that corner. Then c∗+d is a cube such that c∗+d = c∗

for all v 6= 1n and q ◦(c∗+d) = c. �

Proposition A.18. Let X and X′ be nilspaces such that p : X→ X′ is a degree-t extension

by an abelian group Z. Let pt : Xt → X′t denote the induced morphism16 between the t-th

factors. Then pt defines a degree-t extension with structure group Z and X ∼= X′×X′t
Xt.

Proof. First, let us see that pt defines an abelian bundle with structure group Z. We

define the action of Z on Xt by πt(x) + z := πt(x + z). Let us check that this is well-

defined. If πt(x) = πt(y), then by definition of πt (see [7]) there exists a cube c ∈ Ct+1(X)

16See [7, Definition 3.3.1.(i) and Proposition 3.3.2.]
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such that c(1t+1) = y and c(v) = x for all v 6= 1t+1. Then, the cube c +z (adding z

to all values c(v)) is an element of Ct+1(X). Thus πt(x + z) = πt(y + z), so the action

is well-defined. To see that the action is free, note that if πt(x) = πt(x + z) then there

exists a (t+ 1)-dimensional cube in X with value x at all vertices except 1t+1, where the

value will be x+ z. Therefore, as the constant cube with value x is in Ct+1(X), the map

Jt + 1K → Z with value 0 at all vertices except 1t+1 and value z at 1t+1, would be a

cube on Dt(Z). But this implies that z = 0. To see that this action of Z is transitive

on the fibers of pt, suppose that pt(πt(x)) = pt(πt(y)). Then πt(p(x)) = πt(p(y)) which

means that if we let c′ be the function such that c′(1t+1) = p(y) and c′(v) = p(x) for

all v 6= 1t+1, then c′ ∈ Ct+1(X′). Now let c′′ ∈ Cort+1(X) be the corner such that

c′′(v) = x for all v ∈ Jt + 1K \ {1t+1}. By Proposition A.17, p is a fibration, and as

p ◦c′′ = c′ for all v 6= 1t+1, there exists a completion of c′′ such that (abusing a little the

notation) p(c′′(1t+1)) = p(y). Thus, as p is a degree-t extension by Z, this means that

c′′(1t+1) = y + z. Thus, πt(x) = πt(y + z) = πt(y) + z.

Now, let us check that pt satisfies the conditions of [7, Definition 3.3.13]. The only

non-trivial part is to prove that for any πt ◦c1 ∈ Cn(Xt),

{πt ◦c2 ∈ Cn(Xt) : pt ◦πt ◦c1 = pt ◦πt ◦c2} = {(πt ◦c1) + d : d ∈ Cn(Dt(Z))}.

Let πt ◦c2 be a cube in the set on the left side above (where, as usual, we assume that

c1, c2 ∈ Cn(X)). Then πt ◦p ◦c1 = πt ◦p ◦c2. Now fix any v ∈ JnK≤t. Since πt ◦p ◦c1(v) =

πt ◦p ◦c2(v), there exists a cube c ∈ Ct+1(X′) such that c(w) = p(c1(v)) for all w 6= 1t+1

and c(1t+1) = p(c2(v)). By an argument similar as before (using that p is a fibration),

we conclude that there exists z(v) ∈ Z such that πt(c1(v)) = πt(c2(v)) + z(v). Now let

d ∈ Cn(Dt(Z)) be the (unique) cube such that d(v) = z(v) for all v ∈ JnK≤t. Then, we

have that both πt ◦c1 and πt ◦c2 +d are cubes in Cn(Xt) and that they coincide in the set

JnK≤t. As Xt is t-step, this implies that πt ◦c1 = πt ◦c2 +d. This proves that πt ◦c2 is in

the set on the right above. We leave the other inclusion for the reader.

To complete the proof, let us see that X is (nilspace) isomorphic to X′×X′t
Xt. Let

ϕ : X→ X′×X′t
Xt be defined by x 7→ (p(x), πt(x)). We want to show that this is a nilspace

isomorphism. To prove that it is injective, suppose that (p(x), πt(x)) = (p(y), πt(y)).

Then, as p(x) = p(y), we have y = x + z for some z ∈ Z. Likewise, as πt(x) = πt(y),

there exists c ∈ Ct+1(X) such that c(1t+1) = y = x + z and c(v) = x for all v 6= 1t+1.

This implies that c′, defined as c′(1t+1) = z and c′(v) = 0 for all v 6= 1t+1 is an element

of Ct+1(Dt(Z)). Thus, z = 0. To prove the surjectivity, let (a, b) ∈ X′×X′t
Xt. Let x ∈ X

be such that p(x) = a. Thus, πt(a) = pt(b) = pt(πt(x)). As pt is a degree-t extension

by Z, there exists z ∈ Z such that b = πt(x) + z. Now it is straightforward to check

that ϕ(x + z) = (a, b). Finally, we need to check that both ϕ and ϕ−1 are morphisms.

As ϕ is clearly a morphism, let c1× c2 ∈ Cn(X′×X′t
Xt). Let c ∈ Cn(X) be a cube
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such that p ◦c = c1. Then, pt ◦πt ◦c = πt ◦p ◦c = πt ◦c1 = pt ◦c2. As pt is a degree-t

extension, this means that there exists d ∈ Cn(Dt(Z)) such that πt ◦c +d = c2. Thus,

ϕ−1 ◦(c1× c2) = c +d ∈ Cn(X). �

We shall also use the following construction of an auxiliary nilspace.

Proposition A.19. Let Y be a k-step nilspace and let H < Zk(Y) be any subgroup. Let

us define the following relation on Y: for y1, y2 ∈ Y, we have y1 ∼ y2 if and only if

y1 = y2 + h for some h ∈ H. Then the following holds:

(i) The relation ∼ is an equivalence relation.

(ii) The set Ỹ := Y / ∼ together with the sets Cn(Ỹ) := {π∼ ◦c : c ∈ Cn(Y)} is a nilspace.

(iii) Ỹ is k-step, Zk(Ỹ) = Zk(Y)/H and Ỹk−1 ∼= Yk−1.

Proof. To prove (i), the only non-trivial part is the transitivity of ∼. If y1 ∼ y2 and

y2 ∼ y3 then y1 = y2 + h and y2 = y3 + h′. Thus, y1 = y3 + (h+ h′).

To prove (ii), note first that the composition and ergodicity axioms follows easily from

the definitions. To prove the completion axiom, let c′ ∈ Corn(Ỹ) for any n ≥ 1. For every

v ∈ JnK≤k, let y(v) ∈ Y be any element such that π∼(y(v)) = c′(v). Let c : JnK≤k → Y be

defined as c(v) = y(v) for all v ∈ JnK≤k.
Case n ≤ k+1: In this case, we have c defined in JnK\{1n}. Let F be any lower face of

dimension n−1. As c′ |F ∈ Cn−1(Ỹ) then there exists d ∈ Cn−1(Y) such that c′ |F = π∼ ◦d.

Then, c |F : Jn−1K→ Y is a function such that π∼ ◦d(v) = π∼ ◦c |F (v) for all v ∈ Jn−1K.
Therefore, d − c |F : Jn − 1K → H. As n − 1 ≤ k we have that d − c |F ∈ Cn−1(Dk(H)).

Thus c |F = d− (d− c |F ) ∈ Cn−1(Y). As this holds for every lower face F , we have that

c ∈ Corn(Y) and if we complete it to an element of Cn(Y) (abusing the notation, let us

denote by c this completion), we have that π∼ ◦c is a completion of the corner c′.

Case n ≥ k + 2: In this case, we have c defined in JnK≤k. By a similar argument as

before we can conclude that c ∈ hom(JnK≤k,Y) (seeing JnK≤k as a simplicial cubespace).

Abusing the notation, let us denote again by c its (unique) completion in Cn(Y) (using

simpicial completion [7, Lemma 3.1.5]). Let now F be a lower face of JnK of dimension

n − 1. Then c′ |F = π∼ ◦d for some d ∈ Cn−1(Y). Thus, π∼ ◦d(v) = π∼ ◦c |F (v) for all

v ∈ Jn− 1K≤k. Note that (c |F − d) : Jn− 1K≤k → H is a function that can be completed

to an element f ∈ Cn−1(Dk(H)). Thus (d + f)(v) = c |F (v) for all v ∈ Jn − 1K≤k. But

using that Y is k-step, we have that (d + f)(v) = c |F (v) for all v ∈ Jn − 1K. Therefore

π∼ ◦d = π∼ ◦c |F = c′ |F . To conclude, note that π∼ ◦c is an element of Cn(Ỹ) that

completes the corner c′.

Finally, let us prove (iii). First of all, to prove that Ỹ is k-step, suppose that we have

π∼ ◦c1 = π∼ ◦c2 for all v 6= 1k+1 where c1, c2 ∈ Ck+1(Y). Let d : Jk + 1K \ {1k+1} → H be

defined as d := c1− c2. Abusing the notation, let us denote by d its unique completion
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in Ck+1(Dk(H)). Thus, c1 = c2 +d for all v 6= 1k+1, but Y is k-step, and therefore those

cubes must be equal. This implies that c1(1
k+1) = c2(1

k+1) + d(1k+1) which in turns

means that π∼(c1(1
k+1)) = π∼(c2(1

k+1)).

Now let us define φ : Ỹk−1 → Yk−1 as πk−1(π∼(y)) 7→ πk−1(y). We want to prove

that this is a nilspace isomorphism. First we need to prove that this is well-defined. Let

y1, y2 ∈ Y be such that πk−1(π∼(y1)) = πk−1(π∼(y2)). Then there exists a cube c ∈ Ck(Y)

such that π∼(c(v)) = π∼(y1) for all v 6= 1k and π∼(c(1k)) = π∼(y2). Using that every

function f : JkK→ H is an element of Ck(Dk(H)), we have that for some f ∈ Ck(Dk(H))

the function c +f such that (c +f)(v) = y1 for all v 6= 1k and (c +f)(1k) = y2 is an

element of Ck(Y). Thus πk−1(y1) = πk−1(y2).

To prove that φ is injective, take two elements y1, y2 ∈ Y such that πk−1(y1) =

πk−1(y2). Thus there exists a cube c ∈ Ck(Y) such that c(v) = y1 for all v 6= 1k and

c(1k) = y2. Then compose with π∼ and conclude that πk−1(π∼(y1)) = πk−1(π∼(y2)). The

fact that φ is surjective is trivial. To prove that φ is a morphism, let πk−1 ◦π∼ ◦c ∈
Cn(Ỹk−1), where c ∈ Cn(Y), be any cube. Then φ ◦πk−1 ◦π∼ ◦c = πk−1 ◦c ∈ Cn(Yk−1).

And to prove that φ−1 is a morphism, for any c ∈ Cn(Y) we have that φ−1 ◦πk−1 ◦c =

πk−1 ◦π∼ ◦c ∈ Cn(Ỹk−1).

To conclude the proof, let us prove that Zk(Ỹ) = Zk(Y)/H. First, let us define the

action of Zk(Y)/H over Ỹ as (z + H, π∼(y)) 7→ π∼(y + z). Let us check that this is

well-defined. Suppose that π∼(y1) = π∼(y2) and z1 +H = z2 +H. Then the first equality

implies that y1 = y2 + h for some h ∈ H. Similarly, the second equality implies that

z1 = z2 + h′ for some h′ ∈ H. Thus, we have that π∼(y1 + z1) = π∼(y2 + h + z2 + h′) =

π∼(y2 + z2). To prove that the action is transitive, it is enough to prove that the fibers

over a single element are covered by the action of Zk(Y)/H. Suppose that we have

πk−1(π∼(y1)) = πk−1(π∼(y2)). We have proved earlier that φ was an isomorphism. Thus,

πk−1(y1) = πk−1(y2) and there exists z ∈ Zk(Y) such that y1 = y2 + z. With this we

conclude that π∼(y1) = π∼(y2 + z) = π∼(y2) + (z+H). To conclude the proof, we need to

see that this action is free. Let z+H be such that π∼(y) = π∼(y) + (z+H) = π∼(y+ z).

this implies that for some h ∈ H we have that y = y + z + h. But this is an equality in

Y, and as the action of Zk(Y) is free, we have that z + h = 0. Therefore z +H = H. �

Proposition A.20. Let Y,Y′ and X be k-step nilspaces. Let ϕ : Y → X and ψ : Y′ → X

be fibrations. Then for every t ≤ k we have that (Y×X Y′)t ' Yt×Xt Y′t.

Proof. We prove this by induction on k − i for i ∈ [k]. Note that it suffices to prove this

result for the case i = 1, as then the general result will follow from applying repeatedly

this case. Hence, let us prove that (Y×X Y′)k−1 ' Yk−1×Xk−1
Y′k−1.

Let us define the map T : Y×X Y′ → Yk−1×Xk−1
Y′k−1 as (y, y′) 7→ (π(y), π(y′)) where

π denotes throughout this proof the projection to the k−1 factor of any nilspace. This map
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is easily seen to be a well-defined morphism. Let us see that it is indeed a fibration. Take

(d, d′) ∈ Corn(Y×X Y′) and (c, c′) ∈ Cn(Yk−1×Xk−1
Y′k−1) such that T ◦(d, d′) = (c, c′)

for any v 6= 1n. As this means that π ◦d = c and π ◦d′ = c′ for v 6= 1n, abusing the

notation, let d and d′ be completions of c and c′ respectively. By definition ϕ ◦d = ψ ◦d′

for all v 6= 1n. Also, as ϕk−1 ◦c = ψk−1 ◦c′ for every v ∈ JnK this means that for every

v ∈ JnK we have π ◦ϕ ◦d = ϕk−1 ◦c = ψk−1 ◦c′ = π ◦ψ ◦d′. Thus, there exists a cube

h ∈ Cn(Dk(Zk(X))) such that ϕ ◦d = ψ ◦d′ + h. But on the other hand we know that

ϕ ◦d = ψ ◦d′ for all v 6= 1n. Thus the cube h must have zero value for every point except

maybe for v = 1n. If n ≥ k + 1, as X is k-step this means that h(1n) = 0 and we are

done, as (d, d′) ∈ Cn(Y×X Y′) is a cube that lifts (c, c′). If n ≤ k, let z′ ∈ Zk(Y
′) be any

element such that ψk(z
′) = z where ψk is the k-th structure morphism of the fibration

ψ (and hence, it is surjective). Define h′ ∈ Cn(Dk(Zk(Y′))) as h′(v) = 0 for v 6= 1n and

h′(1n) = z′. It is then easy to see that (d, d′+h′) ∈ Cn(Y×X Y′) is a cube that lifts (c, c′).

Now, in order to prove that (Y×X Y′)k−1 ' Yk−1×Xk−1
Y′k−1 note that it is enough

to see that Tk−1 is injective. The reason is the following. We already know that Tk−1 :

(Y×X Y′)k−1 → Yk−1×Xk−1
Y′k−1 is a fibration. In particular, it is a surjective map. If in

addition it is injective, then it is invertible. Hence, for any cube c ∈ Cn(Yk−1×Xk−1
Y′k−1)

let c′ ∈ Cn((Y×X Y′)k−1) be such that Tk−1 ◦c′ = c. As Tk−1 is invertible we have that

T−1k−1 ◦c = c′ ∈ Cn((Y×X Y′)k−1) and thus T−1k−1 would be a morphism and the proof would

be completed.

Thus, let us see the injectivity of Tk−1. Let π(y1, y
′
1) = π(y2, y

′
2) be any pair of elements

in (Y×X Y′) such that Tk−1(π(y1, y
′
1)) = Tk−1(π(y2, y

′
2)). But now Tk−1(π(y1, y

′
1)) =

π(T (y1, y
′
1)) = π(π(y1), π(y′1)) = (π(y1), π(y′1) where the last equality follows from the

fact that Yk−1×Xk−1
Y′k−1 is already k − 1-step. By a similar argument with (y2, y

′
2) we

conclude that (π(y1), π(y′1)) = (π(y2), π(y′2)). But this by definition implies that there

exists a cube c ∈ Ck(Y) such that c(v) = y1 for all v 6= 1n and c(1k) = y2 and a cube

c′ ∈ Ck(Y′) such that c′(v) = y′1 for all v 6= 1n and c(1k) = y′2. Hence the cube (c, c′) is in

Ck(Y×X Y′) which by definition means that π(y1, y
′
1) = π(y2, y

′
2). �

Appendix B. Auxiliary results on p-homogeneous nilspaces

In this appendix we record some technical results and definitions that are used several

times in the paper.

Let X be a group nilspace associated with a filtered group (G,G•). To prove that a

function f : D1(Zp)→ X is a morphism, it suffices (see e.g. [7, Theorem 2.2.14]) to take

derivatives of f and check that the resulting functions take values in the correct subgroup

in the filtration. That is, it suffices to ensure that ∂a1 · · · ∂a`f ∈ Gi1+···+i` where aj ∈ Gij

for all j = 1, . . . , `. It is easy to see that it is enough to check this with aj = 1 for all j,

so we can focus on computing ∂t1f and checking that it takes values in Gt. Furthermore,
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it will actually suffice to consider the case G = Z with some filtration. The reason is

that, for more general groups G, we will actually want to prove that some functions of

the form f(x) = gm(x) for g ∈ Gj are morphisms, and taking derivatives of such functions

is equivalent to taking derivatives of m(x) over Z (relative to some filtration on Z).

To calculate such derivatives, let us think of f as a vector v ∈ Zp, namely v =

(f(0), f(1), . . . , f(p− 1)). It is then easy to check that the values of ∂t1f will be given by

the entries of the matrix Atpv where

Ap :=



−1 1 0 · · · 0

0 −1 1 · · · 0

0 0 −1 · · · 0
...

. . .

1 0 · · · 0 −1.


. (14)

The case p = 2 will always be treated separately, but typically it will be easier. For any

n ∈ Z, let us denote by (n)p the residue of n modulo p that lies in [p] = {1, 2, . . . , p}. The

following concept will also be important in the arguments below.

Definition B.1. Let p be a prime. If p is odd, we call a vector v ∈ Zp circular if there

exists i ∈ [p] such that vi = 0 and for all j ∈ [p−1
2

], v(i+j)p = −v(i−j)p . If p = 2, we say

that a vector is circular if v1 = −v2.

With this definition, let us prove the following result.

Proposition B.2. Let p be a prime, let v ∈ Zp be a circular vector, and let Ap ∈Mp×p(Z)

be as defined in (14). Then Ap−1p v is a circular vector such that all its coordinates are

multiples of p.

Proof. The case p = 2 follows from a simple calculation, so let us assume that p is odd.

It can be proved by induction that Ap−1p has the following form:

Ap−1p :=



(
p−1
0

)
−
(
p−1
1

) (
p−1
2

)
· · ·

(
p−1
p−1

)(
p−1
p−1

) (
p−1
0

)
−
(
p−1
1

)
· · · −

(
p−1
p−2

)
−
(
p−1
p−2

) (
p−1
p−1

) (
p−1
0

)
· · ·

(
p−1
p−3

)
...

. . .

−
(
p−1
1

) (
p−1
2

)
· · · · · ·

(
p−1
0

)


.

Denoting by (t)∗p the residue of t modulo p that lies in {0, . . . , p− 1}, we have (Ap−1p )i,j =

(−1)(j−i)
∗
p
(
p−1

(j−i)∗p

)
. To prove that all entries of Ap−1p v are multiples of p, just note that,

viewing every entry of Ap−1p modulo p, we get that if r := (j − i)∗p then (Ap−1p )i,j =

(−1)r
(
p−1
r

)
= (−1)r (p−1)(p−2)···(p−r)

r(r−1)···1 = (−1)r (−1)(−2)···(−r)
r(r−1)···1 = 1 mod p. Hence, when we

multiply Ap−1p by a circular vector and we view it modulo p, the sum is 0 (essentially

because the matrix (Ap−1p )i,j = 1 mod p for all i, j).
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To complete the proof, we need to show that Ap−1p v is circular. Let us prove only that

there is some coordinate such that its value is 0 (the proof of the circularity is essentially

the same). As v is circular, suppose that vi = 0 and let j ∈ [p] be the row such that

the term (−1)
p−1
2

(p−1
p−1
2

)
is in the position i, i.e., (j − i)∗p = p−1

2
. We want to prove that

(Ap−1p v)j = 0 (indeed, this will be the centre of the circular vector Ap−1p v). The idea is

simple: we just write

(Ap−1p v)j = (−1)(j−i)
∗
p

(
p− 1

(j − i)∗p

)
vi +

p−1
2∑

m=1

(−1)(j−i−m)∗p

(
p− 1

(j − i−m)∗p

)
v(i−m)∗p

+

p−1
2∑

m=1

(−1)(j−i+m)∗p

(
p− 1

(j − i+m)∗p

)
v(i+m)∗p

and note that the first term cancels because vi = 0 and the other terms cancel pairwise,

by the identity
(
n
r

)
=
(
n
n−r

)
, the fact that v is circular, and the fact that (j−i)∗p = p−1

2
. �

Corollary B.3. Let f : D1(Zp)→ Z be a function. If f is circular (viewed as a vector),

then ∂p−11 f ∈ pZ.

Next, let us recall from (10) the definition of the group nilspacesH
(p)
i (for i ≥ 1), consisting

of Z equipped with the filtration

(
H

(p)
i

)
j

=

Z if j = 0, 1, . . . , i

pb
j−i−1
p−1

c+1Z if j ≥ i+ 1.

By definition we take H
(p)
0 := H

(p)
1 .

Lemma B.4. Let n ∈ N, let t = (t1, . . . , tn) ∈ Zn≥0, and for j ∈ [n] let m
(p)
tj ∈

hom(D1(Z), H
(p)
tj ). Let g′ : D1(Zn)→ Z be defined by g′(x) = m

(p)
t1 (x1)m

(p)
t2 (x2) · · ·m(p)

tn (xn).

Then g′ ∈ hom
(
D1(Zn), H

(p)
|t|
)
.

Proof. Let (ej)j∈[n] be the standard basis of Zn. We just have to check that if we

take derivatives of g′, we land in the correct subgroup in the filtration. We can fo-

cus on derivatives involving the generators, i.e. we just need to check that for every

a = (a1, . . . , an) ∈ Zn≥0 we have that ∂a1e1 · · · ∂
an
en g
′ takes values in (H

(p)
|t| )|a|.

This derivative equals ∂a1e1m
(p)
t1 · · · ∂anenm

(p)
tn . By what we know about the morphisms

m
(p)
tj , this derivative takes values in prZ where r =

∑n
j=1 max

(
0,
⌊
aj−tj−1
p−1

⌋
+ 1
)

. On the

other hand, the exponent r′ satisfying pr
′Z = (H

(p)
|t| )|a| is r

′ = max
(⌊∑n

j=1(aj−tj)−1
p−1

⌋
+ 1, 0

)
.

Hence, to ensure that the above derivative takes values in the appropriate subgroup, we

just have to check that r′ ≤ r.
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To prove this, note that if |a| ≤ |t| then r′ = 0 so there is nothing to prove. If |a| > |t|
then we are going to show that

min
a′:|a′|=|a|

(
n∑
j=1

max

(
0,

⌊
a′j − tj − 1

p− 1

⌋
+ 1

))
(15)

is attained for a′1 = |a| −
∑n

j=2 tj and a′j = tj for j ≥ 2 (there are other n-tuples that

attain the minimum, this one here is just one of them). If we prove this then we are done,

because for this particular n-tuple a′ the inequality is trivial.

To do this, let us think of the coordinates aj of an n-tuple a as containers of derivatives,

so if we say move ` derivatives from a1 to a2 we mean that we consider the n-tuple

a1 − `, a2 + `, a3 . . . , an (and this of course will preserve |a|). Now let a = (a1, . . . , an) be

an n-tuple that attains the minimum in (15). First note that we can always assume that

aj ≥ tj for all j ≥ 1; this is because we can move derivatives from variables with an excess

to variables with lack of derivatives and the minimum must not change. So if we move

` derivatives from (say) a1 to a2, the summand max
(

0,
⌊
a1−`−t1−1

p−1

⌋
+ 1
)

must be equal

to max
(

0,
⌊
a1−t1−1
p−1

⌋
+ 1
)

(otherwise we contradict our assumption that a achieves the

minimum) because as long as a2 + ` ≤ t2, there is no increment in changing a2 by a2 + `.

Next, note that we can move blocks of p − 1 derivatives from any aj (j ≥ 2) to a1

without modifying the minimum until we get that tj ≤ aj < tj + p− 1 for all j ≥ 2. Now,

for every j ≥ 2, we can move `j := aj − tj derivatives from aj to a1. There are two cases

for every j. If `j = 0 then nothing happens. If `j ≥ 1 then, since a achieves the minimum,

we must have max
(

0,
⌊
a1+`j−t1−1

p−1

⌋
+ 1
)

= max
(

0,
⌊
a1−t1−1
p−1

⌋
+ 1
)

+ 1 (this will be with

the new configuration where we have a1 + `j and aj − `j). �

B.1. On p-homogeneous extensions of the elements of Qp,k.
Recall from Proposition A.19 that given a k-step nilspace X, and a subgroup H of the

last structure group Zk(X), we can define the quotient nilspace X /H under the relation

x ∼H y if and only if x = y+h for some h ∈ H. Recall also the classQp,k of p-homogeneous

k-step group nilspaces from Definition 1.6.

Proposition B.5. Let X be a nilspace in Qp,k and let H be a subgroup of Zk(X). Then

X /H ∼= Y×Y′ where Y ∈ Qp,k−1 and Y′ ∈ Qp,k.

Since our proof below is technical, it may be useful first to describe a motivating example.

Supposing that Zk = Zmp and that H ≤ Zmp has a simple structure (for example, that it is

generated by a subset of (ei)i∈[m], where ei is the element with ei(i) = 1 and ei(j) = 0 for

j 6= i), then we can explicitly describe X /H, using in particular the basic fact that the

quotient of the nilspace Uk,` by the action of its last structure group is the nilspace Uk−1,`.
To illustrate this in detail, let p = 3, m = 2, and suppose that X is the product nilspace

U (3)
4,2×U

(3)
4,4 (thus k = 4 here). If H = Z2

3 then it is easily seen that X /H ∼= D2(Z3).
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Next, suppose that H = 〈(1, 0)〉. In this case X /H ∼= D2(Z3) × D4(Z3). Similarly, if

H = 〈(0, 1)〉 then X /H = U (3)
4,2. A more interesting case is when H = 〈(1, 1)〉. To discuss

this case, we shall use the injective homomorphism of abelian groups i : Z3 → Z9, y

mod 3 7→ 3y mod 9. Denoting elements of X as couples (x, y) ∈ U (3)
4,2×U

(3)
4,4, we define

the bijection ϕ : X → X, (x, y) 7→ (x + i(y), y), and we note that this is a nilspace

isomorphism, because i respects the required filtrations (that is, for every j, the map

i sends the j-th subgroup of Z3 in the U (3)
4,4 filtration into the j-th subgroup of Z9 in

the U (3)
4,2 filtration) and therefore i is a filtered group homomorphism, hence a nilspace

morphism. Now we observe that, through ϕ−1, the action of H = 〈(1, 1)〉 by addition

becomes the action of the subgroup 〈(0, 1)〉. More precisely, letting φ4 be the last structure

morphism of ϕ (see [7, Definition 3.3.1]), it can be seen that φ−14 (H) = 〈(0, 1)〉, because

of the easily checked equality ϕ−1((x, y) + (1, 1)) = ϕ−1(x, y) + (0, 1). Hence, instead

of computing X /H, we can compute ϕ−1(X)/φ−14 (H) more easily, thus concluding that

X /H ∼= ϕ−1(X)/φ−14 (H) ∼= U (3)
4,2.

Proof of Proposition B.5. Since X ∈ Qp,k, there exist non-negative integers a0, . . . , at,

t = bk/(p− 1)c, such that

X = U a0
k,k−t(p−1)×U

a1
k,k−(t−1)(p−1)× · · · × U

at
k,k×Q

′,

where Q′ ∈ Qp,k−1. The key point of this expression of X is that it isolates the terms that

contribute to the k-th structure group of X. Thus, the elements of the k-th structure group

of X can be written as tuples (f0, f1, . . . , ft, 0) ∈ (ptZpt+1)a0 × (pt−1Zpt)a1 × · · · ×Zatp ×Q′

and the action of this group on X is by coordinate-wise addition. Note that this k-th

structure group is isomorphic to Za0+···+atp .

The second observation is that we have the following chain of inclusions:

Uk,k−t(p−1) ⊃ Uk,k−(t−1)(p−1) ⊃ · · · ⊃ Uk,k . (16)

With this we mean that for any r ≤ ` we can define a homomorphism Zpr → Zp` , namely x

mod pr 7→ p`−rx mod p`. Moreover, this is a filtered homomorphism (with the filtrations

defining U (p)
k,k−j(p−1) for j = 0, . . . , t) and thus it is also a nilspace morphism. With this

notation, let us define ϕ : X→ X as the map sending (x0, . . . , xt, q) to

(A0,0x0+A0,1(px1)+ · · ·+A0,t(p
txt), A1,1x1+A1,2(px2)+ · · ·+A1,t(p

t−1xt), . . . , At,txt, q),

where xi ∈ (Uk,k−(t−i)(p−1))ai , Ai,j a matrix in Zai×aj with det(Ai,i) coprime with p for all

i = 0, . . . , t and j ∈ [i, t].

Let us see why this construction makes sense. First note that we are using (16) to be

able to sum any element xj with xi for j > i. This already implies that ϕ is a nilspace

morphism. Now note that Ai,i is invertible as a matrix over Zpr for all r ≥ 1 (since
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det(Ai,i) is coprime with p and hence with pr for all r ≥ 1). This fact is crucial to prove

that ϕ is invertible and thus a nilspace isomorphism.

To prove this last sentence, let us compute the inverse of ϕ. If ϕ(x0, . . . , xt, q) =

(y0, . . . , yt, q) then At,txt = yt. Let A−1t,t ∈ Zat×at be defined as Dt adj(At,t) where Dt ∈ Z
is any integer such that Dt det(At,t) = 1 mod p (note that det(At,t) mod p is non-zero by

hypothesis). It is clear that, as linear maps on Zatp , the matrices At,t, A
−1
t,t are inverses of

each other, and thus xt = A−1t,t yt. Next, let us solve the equation At−1,t−1xt−1+At−1,tpxt =

yt−1. Using the previous result we have that At−1,t−1xt−1 = yt−1 − At−1,t pA−1t,t yt, which

equals yt−1 − At−1,tA−1t,t p yt.
Now we repeat the same trick as before, but this time we define A−1t−1,t−1 ∈ Zat−1×at−1

as the matrix Dt−1 adj(At−1,t−1) where Dt det(At−1,t−1) = 1 mod p2 (note that, since

det(At−1,t−1) is coprime with p, it is coprime with p2 whence det(At−1,t−1) is invertible

mod p2). Thus it is clear that xt−1 = A−1t−1,t−1yt−1 −A−1t−1,t−1At−1,tA−1t,t pyt. Repeating this

process, we end up obtaining an inverse of the function ϕ that has the same structure as

ϕ and is therefore also a nilspace morphism.

We now explain how we use such an automorphism ϕ. The idea is that instead of

computing X /H we can compute ϕ−1(X)/φ−1k (H) (where φk : Zk(X)→ Zk(X) is the k-th

structure morphism of ϕ). We have ϕ−1(X) = X, and our goal is then to choose ϕ so that

φ−1k (H) is a subspace generated by a subset of the standard basis {ei}i∈[a0+···+at].
We claim that the linear map φk is represented by the following block matrix:

A =


A0,0 A0,1 · · · A0,t

0 A1,1 · · · A1,t

...

0 0 · · · At,t

 ∈ Z(a0+···+at)×(a0+···+at)
p , (17)

where the elements of the matrices Ai,j are inserted modulo p in A. The proof of this claim

is just a routine computation: take (z0, . . . , zt) ∈ Za0+···+atp and note that by definition

(x0, . . . , xt, q) + (z0, . . . , zt) = (x0 + ptz0, x1 + pt−1z1, . . . , xt, q). Then apply ϕ and by

commutativity the claim follows.

Hence, to complete the proof we just have to find the matrix A (i.e. ϕ) adequately.

We shall construct A in such a way that some of its columns are the vectors generating

the subspace H. Thus H will be φk(〈ei1 , . . . , eiw〉) where w = dim(H). The process

for constructing A is as follows. First let us define the subspaces Ui := Za0+···+aip ×
0ai+1+···+at for i = 0, . . . , t. Now we define the columns of A iteratively as follows. First

let v
(0)
1 , . . . , v

(0)
b0
∈ H be a basis of the subspace H ∩ U0, and complete this to a basis of

the subspace U0 with vectors w
(0)
b0+1, . . . , w

(0)
a0 ∈ U0. These vectors will constitute the first

a0 columns of A. (To be more precise, technically the matrix A must have integer values

and the values of the vectors v
(0)
i and w

(0)
j are in Zp. By abuse of notation, when we say
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that the vectors v
(0)
i and w

(0)
j constitute the first columns of A, we mean that we take the

representative of any element of Zp in [0, p− 1].)

Next, consider H ∩ U1 and complete the linearly independent set {v(0)1 , . . . , v
(0)
b0
} ⊂

H ∩ U0 ⊂ H ∩ U1 to a basis of H ∩ U1. Let these vectors be {v(1)1 , . . . , v
(1)
b1
}. We claim

that the set {v(0)1 , . . . , v
(0)
b0
, w

(0)
b0+1, . . . , w

(0)
a0 , v

(1)
1 , . . . , v

(1)
b1
} is linearly independent. To prove

this, let λ1v
(0)
1 + · · ·+λb0v

(0)
b0

+µ1w
(0)
b0+1 + · · ·+µa0w

(0)
a0 + γ1v

(1)
1 + · · ·+ γb1v

(1)
b1

= 0 for some

coefficients λi, µj, γk ∈ Zp. This implies that λ1v
(0)
1 +· · ·+λb0v

(0)
b0

+µ1w
(0)
b0+1+· · ·+µa0w

(0)
a0 =

−γ1v(1)1 − · · · − γb1v
(1)
b1

. And now the left hand side is in U0 whereas the right hand side

is in H. Thus both sides are in H ∩ U0. Therefore we know that for some coefficients

ρi ∈ Zp we have λ1v
(0)
1 + · · · + λb0v

(0)
b0

+ µ1w
(0)
b0+1 + · · · + µa0w

(0)
a0 = ρ1v

(0)
1 + · · · + ρb0v

(0)
b0

.

Thus we have that (λ1 − ρ1)v(0)1 + · · ·+ (λb0 − ρb0)v
(0)
b0

+ µ1w
(0)
b0+1 + · · ·+ µa0w

(0)
a0 = 0. As

{v(0)1 , . . . , v
(0)
b0
, w

(0)
b0+1, . . . , w

(0)
a0 } is a basis of U0 we know that µi = 0 for all i = b0+1, . . . , a0.

We conclude that, since {v(0)1 , . . . , v
(0)
b0
, v

(1)
1 , . . . , v

(1)
b1
} is a basis of H∩U1, we have λj = γk =

0 for all j ∈ [b0] and k ∈ [b1]. And finally we define the vectors w
(1)
b1+1, . . . , w

(1)
a1 ∈ U1 as any

vectors that complete {v(0)1 , . . . , v
(0)
b0
, w

(0)
b0+1, . . . , w

(0)
a0 , v

(1)
1 , . . . , v

(1)
b1
} to a basis of U1. The

vectors v
(1)
1 , . . . , v

(1)
b1

followed by the vectors w
(1)
b1+1, . . . , w

(1)
a1 will be the next a1 columns of

A (with the previous convention of choosing a representative in [0, p− 1]).

Continuing this process, we construct the matrix A putting together the vectors v
(i)
j

and w
(i′)
j′ in the order described above. The resulting matrix A has the following structure:v(0)1 · · · v

(0)
b0

w
(0)
b0+1 · · · w

(0)
a0 v

(1)
1 · · · v

(1)
b1

w
(1)
b1+1 · · · w

(1)
a1 · · · w

(t)
at

 . (18)

By construction this matrix has the desired shape and also, as det(A) =
∏t

i=0 det(Ai,i)

mod p and the vectors {v(i)j }i∈[0,t],j∈[1,bi] ∪ {w
(i′)
j′ }i′∈[0,t],j′∈[bi′+1,ai′ ]

form a basis of Ut =

Za0+···+atp , we have that det(A) 6= 0 mod p, and thus det(Ai,i) 6= 0 mod p for i ∈ [0, t].

Now note that, letting H ′ be the subspace generated by vectors of the form ea0+···+ai+j

for i = 0, . . . , t and j = 1, . . . , bi, we have φk(H
′) = H. But now this subspace has the

form of the subspaces for which we understand the quotient X /H ′. Thus X /H ' X /H ′

and the latter equals

U b0
k−1,k−t(p−1)×U

a0−b0
k,k−t(p−1)×U

b1
k−1,k−(t−1)(p−1)×U

a1−b1
k,k−(t−1)(p−1)× · · · × U

at−bt
k,k ×Q′. �

Remark B.6. It may be tempting to generalize the previous result to lower structure

groups, but there are obstacles to a straightforward generalization. For example, let

X be the group nilspace consisting of G = Z25 with filtration G0 = G1 = G2 = Z25,

G3 = · · · = G7 = 5Z25 and Gi = {0} for i ≥ 8. It can be checked that X is not

isomorphic to any nilspace that is a product of nilspaces in Q5,k, for any k (note that

the only possibility, given the structure groups of X, would be for X to be isomorphic to
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D2(Z5)×D7(Z5); we leave it as an exercise to prove that this does not hold). However, we

have the fibration ϕ : U (5)
6,2×D7(Z5) → X, (x, y) 7→ x + 5y, where with 5y we mean that

we take 5(y + 5Z) mod 25 (the natural monomorphism Z5 → Z25). It can be checked

that U (5)
6,2×D7(Z5) is thus a degree-6 extension of X, where the addition of z ∈ D6(Z5) can

be defined as (x, y) + z := (x+ 5z, y − z). Thus, to generalize Proposition B.5, we would

have to take into account nilspaces such as X, that are not products of nilspaces in Q5,k.
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