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ON HIGHER-ORDER FOURIER ANALYSIS IN CHARACTERISTIC p
PABLO CANDELA, DIEGO GONZALEZ-SANCHEZ, AND BALAZS SZEGEDY

ABSTRACT. In this paper, the nilspace approach to higher-order Fourier analysis is de-
veloped in the setting of vector spaces over a prime field IF,,, with applications mainly in
ergodic theory. A key requisite for this development is to identify a class of nilspaces ade-
quate for this setting. We introduce such a class, whose members we call p-homogeneous
nilspaces. One of our main results characterizes these objects in terms of a simple al-
gebraic property. We then prove various further results on these nilspaces, leading to
a structure theorem describing every finite p-homogeneous nilspace as the image, under
a nilspace fibration, of a member of a simple family of filtered finite abelian p-groups.
The applications include a description of the Host-Kra factors of ergodic F};-systems as
p-homogeneous nilspace systems. This enables the analysis of these factors to be re-
duced to the study of such nilspace systems, with central questions on the factors thus
becoming purely algebraic problems on finite nilspaces. We illustrate this approach by
proving that for k¥ < p + 1 the k-th Host—Kra factor is an Abramov system of order
< k, extending a result of Bergelson—Tao—Ziegler that holds for k < p. We illustrate the
utility of p-homogeneous nilspaces also by showing that the above-mentioned structure

theorem yields a new proof of the Tao-Ziegler inverse theorem for Gowers norms on Fy.

1. INTRODUCTION

The theory of higher-order Fourier analysis, initiated by Gowers in his celebrated work on
Szemerédi’s theorem [14], has generated various fascinating developments in analysis and
combinatorics in the last two decades. Many of these developments aim to understand
the relation between the central objects in this theory, namely the uniformity norms (or
Gowers norms), and structures involving nilpotent groups. This relation emerged early
on, especially in the work [27] of Host and Kra which introduced seminorms in ergodic
theory analogous to the uniformity norms, and proved the Ergodic Structure Theorem,
establishing a deep connection between these seminorms and nilmanifolds [27, Theorem
10.1] (see also [29, Ch. 16]). This inspired further progress, notably in the work of Green
and Tao [17] and Green-Tao—Ziegler [19] in arithmetic combinatorics, developing this
connection between Gowers norms and nilmanifolds, leading to the proof by Green, Tao
and Ziegler of the inverse theorem for Gowers norms on finite cyclic groups [20].

The search for further conceptual clarification of the above-mentioned connection
also led to the discovery of interesting structures closely related to the uniformity norms,
starting with the parallelepiped structures introduced by Host and Kra [2§8], leading to

the concept of nilspaces defined by Antolin Camarena and the third named author in [6].
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Nilspace related topics have now grown into an active research area, including detailed
treatments by the first named author [7, [§] and by Gutman, Manners and Varju [23] 24,
25], as well as further applications in arithmetic combinatorics, ergodic theory, probability
theory, and topological dynamics [9, 12} 2T], 23], 24, 25].

Initial applications of nilspaces in higher-order Fourier analysis were obtained in [35],
where they were combined with analysis on ultraproducts to prove regularity and inverse
theorems for the Gowers norms on various families of compact abelian groups. In [29] end
of Ch. 17], Host and Kra suggested that the nilspace approach from [35] might be unified
with the analysis of characteristic factors for uniformity seminorms from [27]. A measure-
theoretic framework enabling such a unification was introduced in [12], based on the
notion of cubic couplings, inspired by the Host—Kra measures from [27, §3]. Applications
of this framework included an extension of the Ergodic Structure Theorem to nilpotent
group actions (see [I2] Theorem 5.12] and [9, Theorem 5.1]), and an extension of the
inverse theorem to all compact abelian groups and also to nilmanifolds [I3].

In this paper we aim to demonstrate the utility of the above-mentioned framework in
another principal setting for higher-order Fourier analysis, in which this approach had not
been applied previously, namely the characteristic-p setting. Here, the uniformity norms
are studied on vector spaces F over a field F,, of fixed prime order p, with dimension n al-
lowed to tend to infinity. This direction was fostered notably by Green [16], who promoted
these vector spaces as useful models for various problems in arithmetic combinatorics that
were originally posed in the integer setting, the latter setting being usually modeled by
cyclic groups Zy of large prime order N allowed to tend to infinity. The usefulness of
the vector space models relies mainly on the fact that they provide much richer algebraic
structure than is available in the integer setting. The characteristic-p setting has been
very fruitful for higher-order Fourier analysis, with many interesting results in arithmetic
combinatorics and in ergodic theory (for more background on this setting, see for instance
the survey [39]). Among these results, the present paper is related mainly to the work of
Bergelson, Tao and Ziegler on ergodic actions of the (additive group of the) vector space
e = @,enFp [2, 1], and the related inverse theorems for Gowers norms proved by Tao
and Ziegler in [37, [38]. Let us now describe the approach to these topics in this paper.

In the integer setting, a decisive conceptual step was to identify nilmanifolds as ade-
quate spaces with which to define basic harmonics (nilsequences) that could yield a useful
inverse theorem for the Gowers norms. In characteristic p, the greater algebraic richness
of this setting made it possible to obtain an inverse theorem with the corresponding har-
monics being global phase polynomials, easily definable directly on the initial spaces F}.
Thus, inverse theorems in characteristic p have hitherto been obtained without a concep-

tual step similar to the above-mentioned one involving nilmanifolds. On the other hand,
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this has left open several questions that are relevant in order to clarify and strengthen the
connections between the integer setting and the characteristic-p setting. These questions
also lead to new results in the latter setting in itself, and can be subsumed under the

following initial and more general question.

Question 1.1. Which class of spaces analogous to compact nilmanifolds is adequate for

higher-order Fourier analysis in characteristic p?

In this paper we show that the nilspace approach offers a useful answer to this question.
More precisely, we identify and study the class of compact nilspaces that emerges when
the above-mentioned framework from [12, [13] is applied in the characteristic-p setting.
We call these structures p-homogeneous nilspaces. We show that these nilspaces yield a
description of the characteristic factors for uniformity seminorms which is strong enough
to give new proofs of central results in higher-order Fourier analysis in this setting, such as
the inverse theorem for the Gowers norms from [37, 38], and also new results concerning
the Host—Kra factors of ergodic F)-systems.

To explain our results, first let us briefly recall the strategy used in [12, [I3] to prove
the inverse theorem for Gowers norms in the integer setting, as it is overall the same
process that will lead to p-homogeneous nilspaces in characteristic p. To this end, let us
recall that a nilspace is a set X equipped with a sequence of cube sets C"(X) C x {01
n > 0, whose elements are called the n-cubes on X, satisfying three axioms, the most
subtle of which is the completion axiom, which states that any n-corner on X (roughly
speaking, an n-cube missing one vertex) can always be completed to an n-cube. We say
that X is a k-step nilspace if every (k+1)-corner on X has a unique completion. Instead of
recalling these definitions in detail, it is more helpful intuitively at this point just to recall
the standard example of how any abelian group Z can be viewed as a 1-step nilspace,
denoted by D;(Z): for each n, the cube set C"(D;(Z)) consists of the standard n-cubes,
of the form (z 4+ v(1)hy + - - - + v(n)hy)vego13n € 710" for any elements z, h; € Z. Given
nilspaces X, Y, a nilspace morphism from X to Y is a cube-preserving map X — Y, and
the set of all such morphisms is denoted by hom(X,Y). A nilspace X is compact if the set
X is equipped with a compact second-countable Hausdorff topology which is compatible
with the cubic structure in the sense that each cube set C"(X) is compact in the product
topology on X" We refer to [7, 8] for more background on nilspaces.

The main result in [I2] is a structure theorem describing the characteristic factors,
for a general type of uniformity seminorms, in terms of compact nilspaces [12, Theorem
4.2]. The strategy in [I3] is based on the fact that when this structure theorem is applied
to the uniformity seminorms on ultraproducts of cyclic groups Zy (for increasing primes
N), the resulting characteristic factors are completely described by the class of compact

nilspaces X admitting morphisms D;(Zy) — X that are increasingly balanced as N grows
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(the notion of balanced morphism, recalled in detail in Section , involves a quantitative
form of equidistribution which also requires the n-cubic power of the morphism to be
equidistributed in C"(X) for large n). A key step in this proof of the inverse theorem
on Zy is then to show that the relevant nilspaces arising this way are all connected
nilmanifolds, more precisely, toral nilspaces [13, Theorem 6.1].

As signalled by Question [I.1, previously there was no class of compact nilspaces
clearly identified as playing a role in characteristic p similar to the role of nilmanifolds
in the integer setting. However, the above strategy indicates such a class in a natural
way, namely, the class of compact nilspaces X with the property of admitting increasingly
balanced morphisms from (the additive group of) [, into X as n grows. As we shall see,
this property yields one of various equivalent ways of defining p-homogeneous compact
nilspaces. Moreover, one of the main results in this paper shows that these nilspaces
can also be identified by a much simpler and purely algebraic property. Because of its

simplicity, we use this property to define p-homogeneous nilspaces, as follows.

Definition 1.2. Let X be a nilspace and let p be a prime. We say that X is a p-
homogeneous nilspace if for every positive integer n, for every f € hom(D;(Z"),X) the
restriction f|p—1j» is in hom(Dy(Z7),X). !

To state the announced result linking Definition to balanced morphisms from F}, we
need the notion of a finite-rank nilspace. This involves the fact that a k-step compact
nilspace X can always be decomposed as a k-fold compact abelian bundle [8, Definition
2.1.8], where for each i € [k] the nilspace factor X; is an extension (in the sense of [7,
Definition 3.3.13]) of X;_; by a compact abelian group, called the i-th structure group of
X and denoted by Z; or Z;(X); see [8, Proposition 2.1.9]. If every structure group has
finite rank then X is called a compact finite-rank nilspace, which we abbreviate to “CFRr
nilspace”. The inverse limit theorem for nilspaces [6] states that every compact nilspace
can be decomposed as an inverse limit of CFR nilspaces (see also [8, Theorem 2.7.3]). This
often enables the study of a class of compact nilspaces to be reduced in a very useful way

to the study of the CFR members of the class. We can now state the announced result.

Theorem 1.3. Let X be a k-step CFR nilspace, let d be a metric? generating the topology
on X, and let p be a prime. There exists b = b(X,d,p) > 0 such that the following holds:
if for some D there is a b-balanced morphism ¢ : Dl(Z,]?) — X, then X is p-homogeneous.

The proof of Theorem [I.3]occupies Section [2]and involves several steps, using in particular
a recent refinement of the Generalized Von Neumann Theorem [10} [T1] (see also the recent
work of Manners [32]).

'Here Zy is identified with [0,p — 1]™ equipped with addition mod p, the usual way.
2The metric underlies the notion of balance for morphisms, see Remark
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With Theorem [I.3] the theory of p-homogeneous nilspaces can be developed using
the property in Definition [1.2} a property that has rather strong consequences, which we
begin to develop in Section 3] The simplest examples of p-homogeneous nilspaces are the
I-step nilspaces based on finite elementary abelian p-groups, i.e. the nilspaces Di(Z;).
In Section [3| the property in Definition [I.2] is used in particular to identify a larger
family of examples of p-homogeneous nilspaces, within the standard class of so-called
group nilspaces. Recall that a k-step group nilspace is constructed by taking any group
G equipped with a filtration G, of finite degree k, and equipping G with the associated
Host—Kra cube sets C"(G,), n > 0; we call this nilspace the group nilspace associated with
the filtered group (G, G,) (see for instance |29, Ch. 6] for more background on Host-Kra
cubes, and [7, §2.2.1] for the group nilspace construction).

We say that a filtration Gs = (G;)i>0 is p-homogeneous if for all i, for all g € G; we

have ¢g” € G1p—1. We obtain the following description of p-homogeneous group nilspaces.

Theorem 1.4. Let p be a prime and let (G, G,) be a filtered group. The associated group

nilspace is a p-homogeneous nilspace if and only if Go is a p-homogeneous filtration.

In particular, since morphisms between group nilspaces are the same thing as polynomial
maps between the corresponding filtered groups (see e.g. [7, Section §2.2.2]), Theorem
implies that given any filtered group (G, G, ), the filtration G, is p-homogeneous if and only
if for every polynomial f € poly(Z",G.,) the restriction f|,—1» yields a polynomial map
in poly(Zy,G.). Theorem also implies in a simple way that for every p-homogeneous
k-step nilspace defined on a finite cyclic group, the group must in fact be isomorphic to
a subgroup of Z,- for r = L%J + 1; see Proposition These groups Z, underlie
the non-classical polynomials of degree k on F7, identified by Tao and Ziegler in [38] as
adequate harmonics for an inverse theorem in characteristic p that is valid even in the
so-called low-characteristic setting, i.e. for p < k. In the present approach, these cyclic
groups also play a key role, but rather as basic objects used to describe more general
p-homogeneous nilspaces. Using these general descriptions (detailed below), the inverse
theorem can be deduced relatively easily, as explained at the end of this introduction.
Concerning more general p-homogeneous nilspaces (not necessarily group nilspaces),
our main results in Section [3]include the following proposition. In particular, this indicates

that p-homogeneous nilspaces are natural generalizations of elementary abelian p-groups.

Proposition 1.5. Let X be a k-step p-homogeneous nilspace. Then for every i € [k|, the
structure group 7Z;(X) is an elementary abelian p-group. In particular, a p-homogeneous

nilspace is CFR if and only if it is a finite nilspace.?

3We say that a nilspace is finite if its underlying set is finite.
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When the property of structure groups in this proposition is combined with a certain
lifting property for morphisms from elementary abelian p-groups into X, we obtain a
useful sufficient condition for X to be p-homogeneous; see Proposition [3.12]

In Section [d], we prove a structure theorem for p-homogeneous nilspaces, which is also
a key ingredient in our applications. The theorem describes general finite p-homogeneous
nilspaces as images, under nilspace fibrations, of members of a much simpler class of p-
homogeneous nilspaces, defined as follows. (To recall the notion of nilspace fibrations,
also known by the original term fiber surjective morphisms, see |23, Definition 7.1], [T,
Definition 3.3.7]; essentially, the role of fibrations for compact nilspaces generalizes the

role of continuous surjective homomorphisms for compact abelian groups.)

Definition 1.6. Let p be a prime, let &k, ¢ € N with k& > ¢, and let r = r(k,¢,p) =
uj%fj + 1. We define Uy, to be the k-step p-homogeneous group nilspace? consisting of
the cyclic group G = Z,- equipped with the p-homogeneous degree-k filtration (G;);>o
where G; = Z,- for i € [0,/] and G; = pLZ;ﬁlJHZpT- for i > £ + 1, that is, the filtration

Gy Gy G Goip Gryp
| I I | I

ZpT‘ e ZT‘ Z pZ — .. — prr 2 pZZpT...

We define 9, ;. to be the set of all p-homogeneous nilspaces Y such that for some integers
a; > 0 (¢ € [k]) we have that Y is isomorphic to the product® nilspace Hif:ll/{,?fg.

The cyclic groups underlying the nilspaces Uy, agree with those underlying the non-
classical polynomials in |38, Lemma 1.6 (vi)], as mentioned above.
We can now state the structure theorem, which establishes that the abelian group

nilspaces in @, suffice to describe all p-homogeneous CFR nilspaces via fibrations.

Theorem 1.7. Let X be a k-step p-homogeneous finite nilspace. Then there exists Y €
Q. and a fibration v : Y — X with the following property: for every morphism f €
hom(Dy(Z;), X) there is a morphism g € hom(D:(Zy),Y) such that pog = f.

This theorem is a refinement of (and was inspired by) results on finite nilspaces that were
obtained by the third named author in [36], especially [36, Theorem 6]. It is a central
ingredient in our proofs of the regularity and inverse theorems, discussed below.

The second main result in Section [4] refines Theorem for k < p, as follows. This
uses the so-called degree-¢ nilspace structure on any abelian group Z, denoted by D,(Z),

which is a standard way to turn Z into an f-step nilspace; see [T, Definition 2.2.30].

“When the prime p needs to be specified we will write U ,(f z, but usually we omit this superscript.
5The definition of product nilspaces (or of powers X of a nilspace X) is the natural one; see [7, §3.1.1].
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Theorem 1.8. Let p be a prime and let k € N with k < p. Let X be a k-step p-
homogeneous compact nilspace. Then for every { € [k] there exists ap € N U {oo} such

that X is isomorphic to the product nilspace® []5_, Dy(Zs).

Theorem is a key tool in our applications in ergodic theory. Note that the theorem
covers the high-characteristic case k < p but also the additional case k = p. For k > p,
we do not yet know what would be a corresponding qualitatively optimal refinement of
Theorem [I.7} This leads to questions that we leave open in this paper; see Remark [4.12]

We close this introduction with a summary of the main applications.

In Section [5| we treat the applications in ergodic theory. Our results here concern the
ergodic measure-preserving actions of ;) studied by Bergelson, Tao and Ziegler in [2, 3],
and specifically the Host-Kra factors of such [ -systems, i.e. the characteristic factors
for uniformity seminorms on these systems.” In the setting of Z-systems, the Ergodic
Structure Theorem from [27] describes the Host—Kra factors as inverse limits of nilsystems.
In the characteristic-p setting, the Host—Kra factors have hitherto been described in terms
of Weyl systems, which were defined in [3, Definition 1.5, Theorem 1.6] specifically for this
setting (see also [2, Theorem 4.8]). The different approach in the present paper unifies the
descriptions of Host—Kra factors in these two settings via the common notion of a nilspace
system, introduced in [I2]. Let us recall that a (k-step) nilspace system (X, G) is a specific
type of G-system, consisting of a compact (k-step) nilspace X, and a topological group
G acting continuously on X via a group homomorphism G — O(X), where ©(X) is the
translation group® of X. (The nilspace system can also be specified as a triple (X, G, ¢), if
the homomorphism ¢ : G — ©(X) needs to be emphasized; we can also add to the data an
explicit filtration on G, preserved by ¢, writing (X, (G, G,), ¢) and calling this a filtered
nilspace system; see [12, Definition 5.10].) Such a system can be viewed as a topological
dynamical system, and if we equip X with its Haar probability measure then the nilspace
system becomes a measure-preserving G-system. Nilspace systems were shown in [9, [12]
to yield extensions of the Ergodic Structure Theorem (in particular, ergodic nilspace Z-
systems are inverse limits of nilsystems [9, Theorem 5.1]). Let us mention that there are
other descriptions of the characteristic factors of ergodic G-systems. There is for instance
the concept of nilpotent system introduced in |33, Definition 1.29] for the 2-step case with
G = D,cpFp (where P is a multiset of primes), and more generally, for any countable
abelian group G in the 2-step case, there is a description of the 2-factor as a double coset
space [34, Theorem 1.21].

6Here Z,’ denotes the direct product ZE’.
"Recall from [2, Definition 1.1] the notion of a G-system for a locally compact abelian group G; see also

[12] Definition 5.9] for a definition of Host—Kra factors valid for G-systems more generally.
8The translation group O(X) is a group of automorphisms naturally defined on any nilspace X, which

can be viewed as a generalization of the regular action of abelian groups on themselves; see [7, §3.2.4].
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Let us say that a nilspace system is p-homogeneous if the underlying compact nilspace

is p-homogeneous. We then have the following result.

Theorem 1.9. For every k € N, the k-th Host-Kra factor of every ergodic F-system s

1somorphic to a p-homogeneous k-step ergodic nilspace system (X,Fg).

In fact, a property markedly stronger than ergodicity holds here: the action of F, on X
is uniquely ergodic,’ and for every n the standard cube-set C"(Fy) also has a uniquely
ergodic action on C"(X); see Theorem This stronger form of ergodicity follows from
the main results in [I2], which we combine with Theorem to prove Theorem |1.9
With Theorem [I.9] the study of these Host—Kra factors can be reduced to the study
of p-homogeneous nilspace systems. Focusing on the latter systems, we then obtain more
precise descriptions of the factors. In particular, for £ < p we have the following result,
showing that the k-th factor consists of an elementary abelian p-group equipped with a

specific degree-k filtration.

Theorem 1.10. Let (X,FZ) be an ergodic p-homogeneous k-step nilspace system with
k < p. Then this system is isomorphic to a nilspace system (Hif:l Dg(ZZ‘),IF;) where
ag € NU{oo} for each ¢ € [k].

This relates to previous work as follows. In the high-characteristic case k < p, the results of
[2] describe the k-th Host—Kra factor as a k-fold iterated abelian extension by elementary
abelian p-groups, with the cocycle for the j-th extension being polynomial of degree < j;
see [2, Corollary 8.7]. Theorem instead describes the factor as a nilspace system
on the explicit product nilspace H;f:l Dy(Zg), which is a k-fold abelian bundle where
the i-th factor [],_, Dy(Z3t) is a splitting extension of degree i (in the nilspace sense) of
the previous factor Hé;ll Dy(Zg¢) by the group Zg, and this description holds even for
k = p. We note that the translation group of this product nilspace can be described more
explicitly, thus obtaining a complete description of the transformations in this factor in
terms of polynomial maps between filtered elementary abelian p-groups; see Theorem [5.9]

Theorem also enables progress in a closely related direction for these applications
in ergodic theory, namely the direction concerning Abramov systems. Recall that an
ergodic Fy-system is an Abramov system of order < k if its L?-space is the closure of the
linear span of phase polynomials of degree at most k; see Definition [5.11] The following

interesting question arose in the work of Bergelson, Tao and Ziegler [2].

Question 1.11. Is the k-th Host-Kra factor of an ergodic I} -system always an Abramov
system of order < k, for every k € N?

9The notion of unique ergodicity may be recalled from [26 p. 87, §4.3.a.].



ON HIGHER-ORDER FOURIER ANALYSIS IN CHARACTERISTIC p 9

In [2], an affirmative answer is given in the case k < p ([2, Theorem 1.19]), and this is
believed to hold also for k£ > p; see 2, Remark 1.21]. For k > p, a partial affirmative
answer is given in [2, Theorem 1.20], showing that the factor is Abramov of order Oy(1).

We extend the affirmative answer to Question [L.11] as follows.

Theorem 1.12. For every ergodic F,-system and every k < p+ 1, the k-th Host-Kra

factor of the system is Abramov of order < k.

The proof of this theorem uses a reformulation of Question [1.11| as a problem purely
about nilspaces, which we discuss in Section [5| (see Proposition and Question
and which seems of interest as a possible way to make further progress on this question.

Finally, Section [6] contains applications concerning arithmetic combinatorics, which
further illustrate the relevance of p-homogeneous nilspaces to higher-order Fourier analysis
in characteristic p. In particular, we use these nilspaces to give a new proof of the inverse
theorem for Gowers norms on [y from [38], as well as regularity theorems in this setting.
The idea of the proof is to start from the more general inverse theorem in the nilspace
approach from [12} [13], which tells us that a function f with non-trivial Gowers U**! norm
on [} correlates with a complex-valued function which factors through a highly-balanced
morphism ¢ from F} to a CFR k-step nilspace X. Thanks to Theorem we deduce
that X is p-homogeneous. Then Theorem enables us to lift the morphism ¢ through
a simpler finite abelian group nilspace, belonging to the class Q, ;. This, combined with
a standard Fourier decomposition on the abelian group underlying this nilspace, yields a
non-classical phase polynomial of degree < k correlating non-trivially with the original
function f, as required. Moreover, for k < p, using Theorem instead of Theorem [1.7]
we obtain the inverse theorem with classical polynomials; see Theorem [6.6] Note that
the case k = p of this result was obtained only recently, independently, in [4].

The proof strategy on [ outlined above is similar to the one used in the integer setting
n [I3]; both are rooted in the general inverse theorem from [I3], and the differences arise
only once we have to deal with p-homogeneous nilspaces here, instead of toral nilspaces in
the integer setting. So far, this general strategy does not yield effective bounds. Currently,
the proofs of inverse theorems for Gowers norms with the best effective bounds work with
much more specific strategies in each setting; see the recent breakthroughs of Manners in
the integer setting [31], and of Gowers and Mili¢evi¢ in the characteristic-p setting [L5].
It would be very interesting to know if a more general strategy can also yield effective

bounds, perhaps even an effective inverse theorem for general finite abelian groups.

2. p-HOMOGENEOUS NILSPACES AS IMAGES OF HIGHLY BALANCED MORPHISMS ON ZZ

The goal of this section is to prove Theorem We first summarize the strategy, by

formulating its main ingredients in the three propositions below and then explaining
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how these are combined to prove the theorem. Then the work divides into subsections
dedicated to proving each of the propositions.

Before we state the three main propositions, we need to recall some terminology and
an important initial assumption related to the notion of balanced morphisms. For any
compact metrizable topological space X, we denote by P(X) the space of Borel probability
measures on X equipped with the weak topology, which is then also compact metrizable
[30, Theorem (17.22)]. We can then recall the notion of balanced morphism used in [13].

Definition 2.1 (Balance). Let Y be a k-step compact nilspace. For each n € N fix
a metric d,, on P(C"(Y)). Let X be a compact nilspace, and let ¢ : X — Y be a
(continuous) morphism. Then for b > 0 we say that ¢ is b-balanced if for every n < 1/b

we have d,, (,Mcn(x) o(plrh =1, ucn(y)) <b.

Remark 2.2. The notion of balance thus depends on the choice of metrics d,,. Through-
out this paper we adopt the following convention: once we have fixed a metric d on a
compact nilspace Y, this automatically induces a metric on each cube set C"(Y), n € N
(we choose the (,-metric (c,c¢’) — maxyepnyd(c(v),c’(v))), and this in turn induces a
metric d,, on P(C"(Y)) for each n in a standard way (e.g. the Lévy-Prokhorov metric).

Thus, fixing a metric on Y is enough to fix the notion of balanced morphisms into Y.
Let us now state the main propositions.

Proposition 2.3. Let Y be a k-step CFR nilspace, let d be a metric generating the topology
on'Y, and let p be a prime. There exists b= b(Y,d,p) > 0 such that the following holds:
if for some D there is a b-balanced morphism ¢ : Dy (ZI?) — Y, then every structure group

of Y is a finite elementary abelian p-group, and in particular Y is a finite set.
The second proposition gives a sufficient condition for a nilspace to be p-homogeneous.

Proposition 2.4. Let p be a prime and k € N. Then there exists M € N such that the
following holds. A k-step nilspace X is p-homogeneous if it satisfies the following property:

FEvery structure group of X is an elementary abelian p-group, and for all i € [k], (1)

for every f € hom (Dl(Zéw),Xi) there exists f € hom (Dl (Z?,J),X) such that w0 f = f.

In the next section we will see with additional tools that, in fact, a converse to this
proposition holds as well, so that property for M sufficiently large can be used as an
equivalent definition of p-homogeneous nilspaces; see Proposition [3.12]

The last ingredient for Theorem tells us that if X’ is p-homogeneous and ¢’ €
hom(Dy(Z))),X') is sufficiently balanced, then any nilspace morphism Dy (Z)') — X' can
be factored through a much simpler morphism Dy (Z)") — D (Z[’) (this latter morphism

is thus an affine linear map F)f — FP).
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Proposition 2.5. Let X' be a k-step CFR p-homogeneous nilspace and let M € N. Then
there exists U = U/(X', M) > 0 such that the following holds. If for some D € N
there is a U -balanced morphism ¢ € hom(Dl(Zf),X'), then for every morphism f €
hom(Dy(Z)"),X') there exists a morphism g € hom(Dy(Z)"), Dy(Z))) such that f = ¢’ og.

Before we go into the proofs of the above three propositions, let us explain how these

results imply Theorem [1.3] The following diagram helps to visualize the argument.

Di(Z")

@ = Tp_10¢

X' =Xy

Proof of Theorem[1.3 We argue by induction on k. The case k = 1 is clear since then
by Proposition we have X = D, (Z,") for some m € N, a p-homogeneous nilspace. For
k > 1, letting ¢ be the supposed b-balanced morphism D, (Zf) — X, let ¢/ =mp_100p €
hom(Dy(Z))),X'), where X' is the (k — 1)-step nilspace factor, i.e. X' = Xj_1 = mp_1(X).
Note that, whatever compatible metric d’ we may have fixed on X;_;, we have that
for every b* > 0, if b > 0 is sufficiently small then ¢’ is b*-balanced (relative to the
metrics d, on P(C"(X')) induced by d as per Remark [2.2). To see this, note that the
pushforward map P(C"(X)) — P(C"(Xy_1)), v yo(ﬂ,[gi]]l)_l is continuous, by defi-
nition of the weak topology and the continuity of mx_;. Thus, for every € > 0 there
is 0, > 0 such that the cube-set Haar measures jcn(x), picn(x,_,) satisfy that for every
v € P(C"(X)), if d,(v, pcn(xy) < 0, then d, (v O(ng)flaﬂ(}"(xk,l)) < € (where we use
that penx, ) = Henx) o(%@l)_l). Applying this with v = picn(zp) o(l")=1 we deduce
that if b < min, < p- 6,(b*), then d, (pen(zp) o(@'"™) ™, pen(x, ) < b for all n < 1/b°.
Hence, if b is sufficiently small (depending on X and in particular on the metric on
X}_1) then by induction X’ is p-homogeneous. By Proposition , if b is small enough then
the structure groups of X are all finite elementary abelian p-groups. Then, by Proposition
it suffices to prove that the lifting property in holds. We claim that, since Xj;_;
is p-homogeneous, the lifting property already holds for ¢ < k£ — 1. Indeed, for any
f € hom(Dy(Z)"),X;), letting q : ZM — Z)' be the natural quotient map, we have foq €
hom(D,(ZM),X;). By Corollary applied with the fibration ¢ = m; @ X;—1 — X,
there exists f’ € hom(D;(ZM),X;._;) such that fogq = m o f. As Xj_; is p-homogeneous,
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the restriction f|jpp—1)» is a morphism fe hom(Dy(Z)"),Xk—1), and this morphism is
a lift which proves our claim. Hence it now suffices to prove the lifting property for
i = k—1, that is, that for some M = M (k,p), for every f € hom (D1(Z}"),X;_1) there is
f € hom (Dl(Zi,”), X) such that 7,_; o f = f. Fix any such f. Applying Proposition
to f with X' = X1 and ¢’ = 7,1 o (with b small so that b* is less than the parameter
(X', M) given by that proposition), we obtain g € hom(Dy(Z)"), D1(ZL)) such that
f=¢ og. Letting f = pog, we have m,_10f = mp_10pog=¢ og = f. OJ

2.1. Proof of Proposition
We argue by induction on k. The base case k = 0 is trivial (Y is then the 1-point nilspace).
Throughout this subsection let us denote D; (ZI? ) simply by ZI? (the nilspace structure
used on this group is D1(Z)) throughout the proof).

First, by the same argument as in the above proof of Theorem [I.3] for every b* > 0, if
b > 0 is sufficiently small then m,_;0p € hom(Zf, Y_1) is b*-balanced. Hence, if b is less
than the constant b(Yy_1,d,p) (given by Proposition for Y;_1), then by induction
all the structure groups Z;(Y) with ¢ < k are finite elementary abelian p-groups. In
particular Y, _; is a finite set. The proof thus reduces to showing that the last structure
group Zp = Zi(Y) is also a finite elementary p-group. As Zj; is a (compact abelian) Lie
group, by the no-small-subgroups property there is an open neighbourhood Uy of 0 € Z
such that the only subgroup of Zj included in Uy is {0}. It suffices to show that for b > 0
sufficiently small we have pz € Uy for all z € Zy, as then the subgroup p - Zy is {0}.

For ¢ > 0 and ¢ € C*(Y) let Bl(c,¢) := {c' € CF(Y) : Vv € [k], dy(c'(v),c(v)) < €}.

Fix any y € Y. For every z € Zj, let c, denote the cube in C*(Y) such that c,(1¥) =
y+ 2z and c,(v) =y for all v # 1*. Let € > 0 be a parameter to be fixed later.

Our first step in this proof is to use the balance property of ¢ to show that

Vz€Zy " € Ck(Zf) such that poc™ € B(c,,€). (2)
This will be a straightforward application of the following basic result.

Lemma 2.6. Let V be a finite set and let (W, d) be a compact metric space. Let u be the
uniform probability measure on V' and let v be a strictly positive measure in P(W). Let r
be a metric on P(W). Then for every e > 0 there exists 6 = §(W,d,r,€) > 0 such that if
f:V — W is a map satisfying r(uo f~,v) < 6, then for every y € W there exists x € V
such that d(f(x),y) < e.

Proof. By compactness there is a finite set F* C W such that | J,.p Be/2(t) = W, where
Be/5(t) denotes the open ball of radius €/2 and center ¢t. For each t € F' let g, denote the
continuous function y — max{0,¢/2 —d(t,y)} on W. Since v is strictly positive, we have
Jw g dv > 0 for every t € F. Hence, for some § > 0, if k € P(W) satisfies 7(x,v) < 0,
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then [, g;dr > 0 for every t € F. In particular, if f : V — W satisfies r(po f~',v) <6,
then with x = o f~' we have [, g, ds = [V[7' > .\ g:(f(x)) > 0, so there exists z € V
with d(f(x),t) < €¢/2. Now let y € W be arbitrary. We have that some ¢ € F' satisfies
d(t,y) < €/2 and some z € V satisfies d(f(z),t) < €/2, so d(f(z),y) < €. O

Applying Lemma [2.6| with V = Ck(Zf), W = C*(Y), and f = oI, we deduce that there
exists b = b(Y,€e) > 0 (having fixed the metrics as per Remark such that if ¢ is
b-balanced for b < b, then holds. Since Yj_; is a finite set and each fiber 7', (y),
y € Yy is compact, we have min{dy(x,y) : mx_1(z) # m_1(y)} > 0. Using this and the
fact that each fiber W,Zjl(y) is homeomorphic to Zj, for any open neighbourhood U; of 0 in
Zx, we can choose € > 0 small enough to ensure that, for each z € Z, the cube poc* given
by equals v — ¢, (v) + ¢.(v), for some map g, : [k] — Zj such that ¢.(v) € U; for all
v € [k]. Also, since the map ¢, is a difference of two cubes on Y, we have ¢, € C*(Dy(Zy))
[7, Definition 3.2.18 and Theorem 3.2.19].

In the second main step of the proof, we shall now extend the cube ¢oc* in two
different ways, thus producing two morphisms that will be used in the final step below
(the combinatorial core of the proof) to deduce that pz € Uy as required.

Our first extension of poc* is to a morphism g € hom(D;(Z*),Y). Recall from [7,
Corollary 2.2.17] that the cube ¢, can be extended to a morphism (polynomial map) f €
hom(D,(Z*), Di(Zy1.)) of the form f(t) = D welk] G () for t € Z*, where the coefficients
ay € Zy are determined as finite sums and differences of the values of ¢, (see [7, Lemma
2.2.5]). Tt follows that for any open neighbourhood Us of 0 € Zj, we can set the previous
neighbourhood U so that, if ¢, is Uj-valued, then the extension f satisfies f(v) € U,
for all v = (v(1),...,v(k)) € [0,p]*. We then define our first extension of poc* to be
g(v) ==y + f(vQ1),...,vk) + zv(1) - v(k) in hom(Dy(Z*),Y).

Our second extension of g oc* consists in extending to a morphism not from Z* but
from Z’;. To do this we note that the standard k-cube c¢* on Z}? is trivially extendable to
a morphism h € hom(Z, Z), namely, if ¢*(v) = z+v(1)hy +- - - +v(k)hy for v € [k], then
h(v) = x 4+ v(1)hy + - - + v(k)hy, for v € Z'g. The extension is then poh € hom(Z';, Y).

We now come to the combinatorial core of the proof. Here we shall use the morphisms
g and @ oh, and concatenations of cubes, to deduce that pz € U,. We first note that the
morphism properties of g and ¢ oh yield two chains of p consecutive k-cubes which are
usefully interrelated. More precisely, for each i € [p] let ¢; € C*(Y) be the cube obtained
by restricting g to {i—1,i} x [k—1], and similarly let ¢, € C*(Y) be the restriction of ¢ o h
to {i — 1,4} x [k — 1], thus obtaining the two chains of cubes (¢;)icp, (¢})icip. We define
a map ¢ which combines usefully the four (k — 1)-cubes that form the “extreme faces” of
these two chains: let € : [k 4+ 1] — Y be defined by €(0,va, ..., ve11) = g(0,v9, ..., v%) =

c*(0,v9,...,0x), ¢(1,v9,...,0,0) = poh(p,vg,...,v;) = c*(0,vq,...,v;) (where the last
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equality uses the p-periodicity of h), and finally ¢(1,va, ..., vk, 1) = g(p,va, ..., vx). We
shall now show that ¢ € C*(Y), using that g and @ oh are morphisms, and using
concatenations of cubes. To this end, we note the following useful fact: let us define a
relation ~ on C*(Y) by declaring that ¢ ~ ¢’ if the map ¢ : [k + 1] — Y, &(v,0) = c(v),
&(v,1) = ¢ (v) (v € [k]) is in C*T(Y); then the morphism property of ¢ implies that the
cubes ¢; defined above satisty ¢; ~ ¢; for each i,j € [p] (since there is a (k + 1)-cube on
D, (ZF) with image {i — 1,i} x [k — 1] on one k-face and image {j — 1,5} x [k — 1] on
the opposite k-face). Similarly, the morphism property of ¢ oh implies that ¢} ~ ¢ for
each i,j € [p]. Now note that, by concatenation of cubes [7, Lemma 3.1.7.], the relation
~ is transitive (it is also clearly reflexive and symmetric, by the nilspace axioms, so it
is an equivalence relation). Applying this transitivity via the cubes ¢; = ¢| at one end
of the chains, we deduce that for every ¢ € [p] we have ¢; ~ ¢,. Hence, for each i € [p],
the map ¢; : [k + 1] — Y defined by ¢;(v,0) = ¢;(v) and ¢;(v,1) = cj(v) (v € [k]) is a
cube. Note also that, for each i € [p — 1], the cubes ¢;, ¢;11 are adjacent in the sense
that ¢;(1,v) = ¢;41(0,v) for every v € [k]]. Moreover, by the p-periodicity of h, we have
poh(p,v) = poh(0,v) for every v € [k — 1]. This implies that the map ¢ defined above
is indeed in C*™(Y) as we claimed, since it is the concatenation of the cubes &, i € [p).
Now, to conclude this combinatorial argument, we note that the map [k + 1] — Y with
constant value y is also in C*™(Y), so the difference between € and this constant cube
must be a cube in C*™ (Dk(Zk)), and must therefore have Gray-code alternating sum
equal to 0 (see [T, Definitions 3.2.18 and 2.2.30]). Hence, if € > 0 is small enough, then
the neighbourhood Uj in the construction of g (i.e. the smallness of the values of f) is
small enough so that pz € Uy. This proves that Zj is an elementary abelian p-group.

To complete the proof of Proposition|2.3], it now only remains to prove that Y is finite.
Since Y is a CFR nilspace, its structure groups are compact abelian Lie groups, so they
are of the form T™ x A; where n; > 0 are integers and A; are finite abelian groups for
J € [k]. Since we now know that each structure group is an elementary abelian p-group,
we have n; = 0 for all j € [k], i.e. the structure groups are all finite. Now note, more
generally, that if all the structure groups of a k-step nilspace X are finite then X is a
finite set. This can be seen by induction on k, using the fact that for the factor map
1 : X — Xj_1, each preimage W,;_ll(x), xr € Xj_1 is in bijection with the structure
group Zj, (see [7, §3.2.3]).

This completes the proof or Proposition [2.3

Remark 2.7. A straightforward adaptation of the above proof yields a generalization of
Proposition where the 1-step p-homogeneous nilspaces D; (Z]’? ) can be replaced by the
more general class of CFR w-p-homogeneous nilspaces, introduced in Section [3] We do

not need this generalization in this paper.
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2.2. Proof of Proposition

We prove Proposition by induction on the step of the nilspace. The argument uses

several ingredients, each of which is relevant to p-homogeneous nilspaces in themselves.
The first main ingredient is a result which gives a further equivalent description of

p-homogeneous nilspaces: Proposition below. To prove this, we want a useful way

to decide whether a given map from the set [0,p — 1| C Z" into a nilspace X can be

extended to a morphism D;(Z") — X. The following tool will help to obtain a useful

sufficient condition for such an extension.

Definition 2.8 (Maximal cube). For each integer n > 0 and prime p we define the
mazimal cube c; ,, as the following element of C"P=D(Dy(Z)):

n—

1
Vo e [n(p-1)], ¢, )= (06ip—1)+D+0(lp— 1) + 2+ (i + Dp - 1) €1, (3)
=0

where (e;);cpn is the standard basis of Z".
The above-mentioned sufficient condition goes as follows.

Lemma 2.9. Let X be a nilspace. If g : [0,p — 1]" — X satisfies goc; , € Ccrlr=1 (X)),
then there exists f € hom(D:(Z"),X) such that g = f|jop—1)-

This is a special case of a result concerning general nilspace theory rather than just p-
homogeneous nilspaces. Because of this, we leave the proof for Appendix [A| (specifically,
Lemma is the special case of Corollary with Y equal to the 1-point nilspace).

As the sufficient condition in Lemmal2.9|will be used repeatedly below, let us introduce

the following notation for it.

Definition 2.10. Let p be a prime, let n > 0 be an integer and X be a nilspace. Then
we define the set hom(X) := {f : [0,p — 1] = X: foc; , € Cre=(X)}.

We can now state and prove the first main ingredient for the proof of Proposition [2.4]

Proposition 2.11. A nilspace X is p-homogeneous if and only if for every integer n > 0
we have homy (X) C hom(Dy(Zy), X).
Proof. To see the backward implication note that, given f € hom(D;(Z"),X) we have

fliop-1 € homy(X), so by the assumed inclusion we have f|jo,—1» € hom(D;(Zy), X), so

X is p-homogeneous. The forward implication follows from Lemma [2.9] O]

The second main ingredient is the following result. This strengthens the backward impli-

cation in Proposition [2.11] as the assumption is made only up to a bounded dimension.

Proposition 2.12. For every prime p and k € N there is M = M(p, k) > 0 such that
the following holds. If a k-step nilspace X satisfies hom;\/[(X) C hom(Dy(Z)"),X), then X

15 p-homogeneous.
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The proof will use the following definition, which extends the notion of discrete cube

morphism from [6] (see also [7, Definition 1.1.1.]).

Definition 2.13. Let p be a prime. A function ¢ : [0,p — 1" — [0,p — 1]™ is a p-
discrete-cube morphism if it is the restriction of an affine homomorphism Z" — Z™. A
p-discrete-cube morphism ¢ : [0,p — 1] — [0,p — 1]™ with n < m is a p-face-map of

dimension n if it is injective and fixes m — n coordinates.

The case p = 2 of this definition yields the usual discrete cube morphisms. It can be seen
(e.g. by a straightforward adaption of the proof of [7, Lemma 1.1.2.]) that each coordinate
function ¢;(v), j € [m], is either v;;, or p — 1 — v;, for some 4; € [n], or is a constant
ke{0,....,p—1}.

The proof of Proposition [2.12] relies on the following couple of lemmas.

Lemma 2.14. Let f € hom,(X) and suppose that for every T" € hom(Di(Z;"), Di(Zy))
we have foT € hom"(X). Then f € hom(D:(Zy), X).

Proof. By definition f € hom(D,(Zy),X) if for every ¢ € C™(Dy(Z;)) we have foc €
C™(X). As Dy(Zy) is p-homogeneous we know that c extends to a morphism T €
hom(D,(Z}'), D1(Zy)). By our assumption we have foT € hom,'(X). Since foc =
foToi, where i : [m] — Z is the identity embedding (which is in C™(Z}")) we have
foce C™(X) as required. O

Lemma 2.15. Let X be a k-step nilspace and n > k+ 1. Let f:[0,p — 1" — X satisfy
fooge homl;H(X) for every p-face-map ¢ - [0,p—1**" — [0,p—1]". Then f € homy(X).

This second lemma has a longer and more technical proof and concerns nilspaces more
generally, so we leave it to Appendix [A} see Lemma [A.14]

Proof of Proposition[2.13. Let M(p, k) := p**2. By Proposition it is enough to check
that for all n > 0 we have hom,(X) C hom(D;(Zy),X). Thus let f be any element of
hom(X), and let us distinguish the following two cases.

If n < M, then consider the map ¢ : [0,p — 1]M — [0,p — 1]", (v1,...,Vp, ..., 00) >
(v1,...,v,), which clearly extends to a morphism D;(Z™) — D(Z"). Tt follows that
foo e homéw(X). Hence by our assumption fo¢ € hom(Dl(Zéw), X). Now consider 1) :
[0, p=1]" = [0, p—=1]™, (v1, ..., v5) = (v1,...,0n,0,...,0). Astp € hom(D:(Z), D1 (Z)")),
we have that f = fodot € hom(D;(Zy), X), as required.

If n > M, then by Lemma it suffices to check that for the given f € hom,(X)
and any T € hom(D\(Z;'), D1(Zy)), we have foT € hom}'(X). For this, by Lemma
2.15| it suffices to check that for every p-faceemap ¢ : [0,p — 1[¥*t — [0,p — 1]™ we
have foT o¢ € homy(X). Note that ¢ € hom(Dy(Z}*!), Di(Z")). Therefore To¢ €
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hom(Dy(Z+), Dy (Z7)), so for each i € [n] the i-th coordinate of To¢ is an affine-

linear map Z;*' — Z, of the form (vy, .. vk+1) — a(()) + a4+ a,(filvkﬂ for some
coefficients a(()i), .. a,(;)rl In total there are p**2 = M (p, k) possible such maps. Therefore

there is an affine-linear map 7* € hom(Dy(Zy*'), D1(Z)")), whose coordinates are all these
possible maps, and there is a p-discrete-cube morphism v : [0,p — 1] — [0,p — 1]" that
selects the correct entry of 7% in order to have T'o¢ = ¥ oT* (actually 1) can be given
as an n X M matrix with each row having some entry equal to 1 and all others equal
to 0). Since fov € hom;W(X), by hypothesis we have fo € hom(Dl(Zgj),X). Hence
foTop=(forp)oT* € hom(Dy(Zi+),X). O

We need one more tool for the proof of Proposition namely the following lemma esta-

blishing the p-homogeneity of elementary abelian p-groups with higher-degree filtrations.

Lemma 2.16. Let Z be an elementary abelian p-group, and let k € N. Then the k-step

nilspace Dy(Z) is p-homogeneous.

Proof. We check that Definition [1.2| holds for X = Dy(Z). We know (see e.g. [7, Theorem
2.2.14]) that f is in hom(D;(Z"), Dx(Z)) if and only if f is a degree-k polynomial map
Z"™ — 7. Moreover (e.g. by [I8, Lemma A.1)), for each i € N™ with height |i| := i1 +---+
in < k, there is an element a; € Z such that f(n) = 3 nn.jij<i a;(}) for every n € Z". For
each i we have pa; = 0. This implies that the restriction flj,—1» yields a well-defined
map Z, — Z, which is readily seen to be a polynomial of degree at most k. 0

We can now complete the main goal of this section.

Proof of Proposition[2.f, We argue by induction on k. The case k = 0 is trivial. Let
M (p, k) = p*"2. We need to prove that every f € hom P#)(X) is in hom(D; (Zf,w(p’k)), X).

First we prove by induction that X;_; can be assumed to be p-homogeneous. Since
M(p, k) > M(p, k—1), it suffices to show that for every g € hom(D;(Z, Mgk 1)) X;) there
exists § € hom(D;(ZY®* 1), X,_1) such that g = m;0§. Writing elements of Z) " as
(v,w) with v € ZYP* Y et ¢ - ZY@PR 5 7D 1, 1) 5 v (the projection to the
first M(p,k — 1) coordinates). Then go¢ € hom(D; (ZM(M)) X;). By hypothesis there

exists h € hom(D; (ZM(p’k)) X) that lifts go¢. Let i : ZM(‘D LN zy ") be the inclusion
map v — (v,0). Then hoi is in hom(D; (Z, Mpk— 1)) X) and lifts g, i.e. m;ohoi = g. Hence
g :=m_10hoiisin hom(Dl(Zéw(pk 1)) Xj_1) and m;0g = g.

Now consider 7mp_10f € homM(p k)(Xk_l). As Xji_1 is p-homogeneous, by Propo-
sition we have mmp_j0f € hom(Dl(ny(p’k)),Xk,l). By hypothesis, there exists
fe hom(Dl(Z Mp, k)) X) that lifts m,_1 o f, i.e., mp_10f = m_10f. This implies that
f—fe hom,, M@R)(Dy(Z,(X))). Since Z,(X) is an elementary abelian p-group, by Lemma
the nilspace Dy (Zx(X)) is p-homogeneous. Then by Proposition we deduce that
f—f € hom (Dy (""", Dy(Z4(X))). Hence f = f+(f—f) € hom(Dl(ZM(p M) X). O
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2.3. Proof of Proposition
To simplify the notation, we shall prove Proposition with X’ relabeled as X.

We begin with a useful construction of a function with small U*-norm on sz? using a
p-homogeneous nilspace X: it suffices to compose a highly balanced morphism Zz? — X

with a function on X that has average 0 on every orbit of the structure group Z(X).

Lemma 2.17. Let X be a k-step CFR p-homogeneous nilspace with a compatible metric.
For any n > 0 there is b = b(X,p,n) > 0 such that if p € hom(Dl(Z]’?),X) is b-balanced,
then for any 1-bounded function'® f : X — C such thatVx € X, ka flz+2)dug, (2) =0,
we have || fopllpe < 7.

Proof. By Proposition 2.3] if b is small enough then X is finite.

Suppose for a contradiction that there exists 179 > 0 such that for all n € N we have a
L_balanced morphism ¢, and a 1-bounded function f, : X — C such that || f, oy [lpx >
m- Astheset T := {f : X - C: [f| < landVx € X, [, f(z + 2)dpuz,(z) = 0}
is compact, we may assume without loss of generality that for some f € T we have
max,ex |fa(z) — F(@)] = 0 as n — oo, Then m < |lfaogullor < |(fa — F)owallor +
| f o @nllie. Forlarge enough n, we have ||(f,—f) o nllr < % and, since ¢, is L-balanced,
also ‘f [Locpg €™ f o @ulc(v)) ducrzpy(c) = [ Tloepy Clvlf(c(v))dﬂck(X)(C)‘ < 2, where
C denotes the complex-conjugation operator.

By construction of this Haar measure [§], this last integral equals

Lo [ T CM(ew) +¢0)) s, (©) s )
C*(X) J C*(Di(Z)) ve[k]

But we know that C*(Dy(Zy)) is just the direct product ngﬂ with its Haar measure being

the [k]-power of the Haar measure on Z;. Hence for each fixed c the inner integral above

is [ Toep ol ka f(c(v) + 2) dpug, (2) = 0. This yields a contradiction. O

Now let us turn to the core of the proof of Proposition [2.5] Let us recall briefly the situ-
ation. We have the abelian group A := hom(D:(Z)"), D1(Z))) of affine homomorphisms
Z)' — Z7. Note that A = ZP®Z>*M so that in particular we can represent the elements
of A as (M + 1)-tuples (z,t1,...,ty) € (Zf)M“, where such a tuple represents uniquely
) € A defined by

the affine homomorphism g, i—(,,....ens

g(x,t)(z):$+t'zz$‘|‘tlzl+"-+thM, forzEZﬁ/f.

(The t; can also be viewed as the M columns of a matrix 7 € ZP** defining the linear
map 2z — 7z, and then g, is this linear map composed with translation by z.) This

mapping of elements of A to (M + 1)-tuples (x, t=(t1,... ,tM)) is a group isomorphism.

10A complex-valued function A is said to be 1-bounded if |h| < 1 everywhere on the domain of .
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On the other hand we have the abelian bundle B := hom(D;(Z,)"), X), where X is a
k-step p-homogeneous nilspace, and we have a b-balanced morphism ¢ € hom(D; (ZZI,) ), X).
We then consider the map F': A — B, g — pog, and our goal is to prove that if ¢
is b-balanced with b sufficiently small (where b can depend on X), then F' is surjective.
Note that for each element (z,t¢) in A, the image F'(z,t) = ¢ 0g(,) can be viewed as a
point in XZIJ?W, namely as the point F(x,t = (t1,... ,tM)) = (go(x+t121+- . '+tMZM))zezgf'
The first step in our strategy is to use induction on k to reduce the task of proving
that F' is surjective onto B to the task of proving a simpler looking statement about the
distribution of the orbit (F'(x,1))(tea in k-level fibers of some power of X. The reduction
goes as follows. Let f be any element in B. Then, by induction on & (using that m,_10¢p
is O'(b)-balanced where &' — 0 as b — 0), there is an element g € A such that the map
Tr_10@ogis equal to mx_q o f. In other words, our goal of showing that f is the image of
some g € A under F is already achieved modulo 7;_1, i.e. we have m,_j09po0g = m_10f.
Then, since @ og(z) and f(z) are in the same 7_i-fiber in X for every z € Z)', we can
take the difference of these two maps, which must then be a morphism into the k-th
structure group Z, of X, namely ¢ : z — pog(z) — f(z) € hom (Dy(Z), Dy(Zy)). In
other words, this map ¢ is a Zg-valued polynomial of degree at most k in M variables.
Let us identify Z)' with [0,p — 1]", and define for € N the set

Sea = [O,p—l]g:{ze [O,p—l]M:\z| =242y <Th (4)

Then ¢ is entirely determined by its values on Siii . Actually, this holds for more

general morphismes, in the following sense which will be used later.

Lemma 2.18. Let X be a k-step nilspace and let ¢ € hom(D; (Z%),X). Then the values

of ¢ on Sky1,m determine the full map q.

Proof. We use the uniqueness of completion of (k + 1)-corners on X. To this end, for
z € Sgm, we call |z| == 21 + -+ - + 25 the height of 2z, as in the previous subsection.

If all elements in [0, p—1]™ have height at most k (which happens when (p—1)M < k)
then there is nothing to prove (since ¢|s,,, ,, is then already the full map ¢). Otherwise,
we argue by induction on the height. We start with any z € [0,p — 1]M satisfying
|z2| = k + 1. Note that there is a (k + 1)-cube ¢ on Dy(Z)") such that |c(v)| < k for
v # 1% and ¢(1¥1) = 2. Indeed, letting 21, ..., zp; be the coordinates of z, we can take
c(v) = v(1)hy + -+ + v(k+1)hpy1, where, out of the k + 1 elements h; € [0,p — 1]M, we
set the first z; of them to be equal to e;, the next z5 of them to be equal to es, etc.,
the last zp; of them to be equal to ep;. Then, letting ¢’ be the (k + 1)-corner obtained
by restricting ¢ to [k + 1] \ {1**!}, we have that goc’ is a (k + 1)-corner on X, so its
completion is unique, and this completion is g oc by the morphism property, so the value

q(z) = goc(1¥1) is uniquely determined.
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Repeating this argument with every z of height k + 1, then by induction with height

k + 2, and so on, we determine all values ¢(z), z € [0,p — 1]M. O

Recall that in our ongoing argument, the polynomial g is the “error” that we would like to
correct in @ og to get the desired map f as an image ¢ o ¢’ and thus prove the surjectivity
claimed in Proposition [2.5] Thanks to Lemma [2.18] we can focus on correcting errors in

Sk+1,m- It then suffices to prove the following quantitative equidistribution result.

Lemma 2.19. Let X be a k-step CFR p-homogeneous nilspace with a compatible met-
ric, and let S = Sgy1m. For every € > 0, there exists b > 0 such that the follow-
ing holds. Let ¢ € hom(Dy(Z),X) be b-balanced, let (z,t = (t1,...,ty)) € A :=
hom(Dy(Z)"), Dy(Z))), and let y = (p(z +t - Z))ZES € X, Then the map F' : A —
X%, (@) = (e +1t - 2)) . is e-equidistributed in the fiber y + Zy C X°, in the

following sense:

zeS

F=y + w)) 1
Yw e Z7, MA( — <e. )
by )

F'—1(y+w
Note that the quantity M
pa(F=1(y+z5))

y + w given that F'(z,t) is in the fiber y + Z7. Thus tells us that this probability is
e-close to the Haar-probability of the singleton {y + w} in this fiber.

in (j5)) is a conditional probability of F”(x,t) equalling

To see that Lemma [2.19] implies Proposition [2.5] recall that so far we had found
9 = Guoty..ty such that f(z) = pog(z) — ¢q(2), and now we just need to “correct” the
polynomial difference ¢(z) in order to conclude the desired surjectivity. By Lemma
and the finiteness of Z; (given by Proposition , for e sufficiently small (namely ¢ <
ﬁ), the e-equidistribution implies surjectivity in this Zg -fiber, so there is (2/,t') € A
such that (¢(z’+1'- Z))ZES = (p(z+t-2)— Q(Z))zes = (f(z))zes. In other words, letting
g' be the element of A corresponding to (z’,t'), we now have that the morphisms ¢ og

and f in hom(D, (Zy ), X) agree on the simplicial set S C Zi‘,/[ . But then by Lemma

M
D >

completing the proof of Proposition [2.5

we deduce that pog’ = f on all of Z,", which gives our desired surjectivity conclusion,

Let us now turn to the proof of Lemma [2.19

Definition 2.20. We define W = Wx , p to be the vector space of functions h : X® =5 C
with the property that for every point y € X° we have Jys Wy +w) dpizs (w) = 0.
k

Note that W has finite dimension because by Proposition we know that X is finite.
The dimension of W thus depends on | X |, and note that it also increases as M grows
(but this poses no problem, as M will be fixed in terms of p and k).

Our next step is to reduce the proof of Lemma[2.19]to establishing the following result.
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Proposition 2.21. Let X be a k-step p-homogeneous CFR nilspace with a compatible
metric, and let W be the vector space in Definition [2.20 For every § > 0, there exists
b=b(X,M,6) >0 such that if ¢ € hom(Dy(ZL),X) is b-balanced then

VheW with [|hlloo <1, we have

Brir, ez h((ple+1-2) )| <0 (6)

Proof of Lemma using Proposition[2.21]. Suppose that Lemma[2.19/fails for some & >
0. Then this failure is witnessed by a point in some Zf -fiber; more precisely, there exist
T, ty,... ty € ZD such that, letting y = (plz +1t- z))zes,
Y+ Zf, i.e., some point 3’ = y + w for some w € Zf, such that the following holds: let p/,

there is a point in the fiber

denote the measure of the preimage F'~'(y/) in A conditioned on the event F'~'(y +Z7),
that i () = ) a0+ 72)). Then By ) = i 2

Suppose that p/,(F'"'(y)) < ﬁ — ¢ (the case p/,(F'"(y)) > |ZS| + e is handled
similarly). Note that there is some other point 7 in the same fiber such that i/, (F'~" (7)) >
IZIEI — £. Indeed, otherwise we would have 1 = p/, (F'"'(y + Z)) < > wers oy (F" ™y +
w)) < 1—£|Z; |, a contradiction.

Now let h be the function on X which is 0 in every Z;-fiber other than the fiber
y + 77, and in this fiber let h(y') = —1, h(§) = 1, and h = 0 otherwise. Then clearly
h € W. However, for this function A the conclusion @ fails because the left side of @
for b is pa(F' ™ (y) = pa(F'~(5)) = pa(F' ™ (y + Z3)) (M’A(F’*l(y’)) - M’A(F’*l(y))> >
,uA(F’_l(y +73))e/2, so indeed (6) fails with § = ,uA(F’_l(y +73)) /2. Now we want
this ¢ to depend on e, and perhaps X and M, but not on D, so we have to ensure that

the quantity o (F' ' (y + 77 )) is bounded away from 0 independently of D.
By induction we may assume that Lemma holds for step at most kK — 1. Let
F :A— Xiﬁ‘ll, and yg—1 = (mp_1(@(x +1-2))ses, .. Then for b small enough we have
1
T2z

pa(Fh_ 1 (Yp—1 +w)) 1
ia(FL (s +7070) 1205

(recall that 7,1 o is by_1-balanced with bx_1(b) — 0 as b — 0).
Using that F'~'(y +Z7) D F_1(yx_1) we have

_ _ 1 Sj
pa(F "y + 23)) > pa(F - (yeer)) = 2 ng 1 | pa(Fy_q (Y1 + Z,571)).

Thus, repeating this argument iteratively we conclude that, for b small enough,

1 1

[1, F/1y+Z .

which is a quantity that depends on X, p and M, but not on D.
We thus deduce that the conclusion of Proposition fails, as required. OJ
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We now turn to the proof of @ For this purpose let us first observe the following useful

decomposition of functions in W.

Lemma 2.22. Let X be a k-step CFR p-homogeneous nilspace. For every 1-bounded
function h in W we have a decomposition h = ZTG[R] h, where R = R(X,p, M) and
he iy = [l,eq Pr(y2) is a rank 1 function such that each h, . is 1-bounded and, for each

r, for some 2/ = Z'(h,r) € S, the function h, . has integral 0 in each Z-fiber.

Proof. Since X is finite, there are finitely many fibers y + Zf partitioning X°. Denoting
these fibers Fi,..., Fy, we have h = hlp +-- -+ hlp,, where each h1p; has 0 average on
F; and is 0 outside Fj. Therefore it suffices to show that given a single such fiber, every 1-
bounded function with 0 average on this fiber is a sum of rank 1 functions y — ], ¢ h=(y-)
with every h, being 1-bounded and with at least one of the h, having average 0 on this
fiber (we can then extend h, by 0 to a function on all of X, which then clearly has average
0 on every Zg-fiber in X).

Thus, we have reduced the problem to proving the lemma in the case where all of X
is a single Zg-fiber: let X be a finite set, let K be a positive integer (we will apply this
with K = |S|), and let W be the vector space of functions with average 0 on all of X*;
then every 1-bounded function in W is a sum of rank-1 functions where at least one of
the factor-functions has 0 average on X and all factor-functions are 1-bounded.

We can prove this claim by induction on K. For K = 1 the claim holds tautologically.
Suppose then that the claim holds for the similarly-defined vector space W/ < (O
Take a 1-bounded function h : X = X*~! x X — C having average 0. Suppose we could
show that this is a sum of functions of the form (y',y) € X*~' x X = hy(y')he(y) where
at least one of hy, hy has 0 average and both are 1-bounded. Then if it is hy that has 0
average we are done (as hy is a sum of 1-bounded rank-1 functions by standard results)
and if it is h; that has 0 average then by induction h; is a sum of rank 1 functions with
1-bounded factor-functions, one of which has 0 average, so together with hy we get rank
1 functions decomposing h as required.

Thus, we have reduced the problem even more, to proving that if X, Y are finite sets
and f: XxY — C has 0 average and is 1-bounded, then it is a combination of rank 1
functions u(x)v(y) where u and v are both 1-bounded and one of them has average 0.
Note that any such function f is a sum of functions f’ which equal some value o € [—1, 1]
in some entry (zo, o), then —« in some other entry (z1,y;), and 0 everywhere else (just
make a cycle of such functions f’ through consecutive pairs of entries, the second non-zero
entry of one such [’ being corrected by the first non-zero entry of the next such f’). Hence
it suffices to show that any of these functions f’ is a sum of rank 1 functions of the desired
kind. But if zy = 21 or yo = y; then f is already a rank 1 function of the desired kind (for
example if g = 27 then f'(z,y) = al,,(x)v(y) where v(yg) = 1 = —v(y;) and v(y) =0
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otherwise). If instead zo # 1 and yo # y1, then f/'(x,y) = uy(x)v1(y) + uz(z)v2(y) where

u = a(ly, —1s,), v1 = 1, and ug = 1,,, vo = a(1,, —1,,). This completes the proof. [

Given Lemma [2.22] to prove Proposition [2.21| we can first use the decomposition h =
ZTG[R} h, where for each r there is a system of 1-bounded functions (h,, : X — C),cs
with some h,.. having average 0 in each Z-fiber and h,(y) = [[,cq hr-(y.). Hence the
right side of @ is at most

Z By by, taezp H hrzop(x +tizi + - +tameu)|- (7)

re[R| zeS

Note that R depends on the dimension of W, hence on | X® |, and this depends on X (in
particular on k) but also on p and M.

Now by Lemma , for each 7, the 1-bounded function h, ., : X — C that has average
0 on every Zg-fiber satisfies ||h; . 0|y < n for b small enough (where ¢ is the initial
b-balanced morphism in hom(D;(Z)), X)). Note that, by Lemma m, the parameter b
depends only on 7, p, k, M and X but not on the particular function h, ..

Therefore, the proof is now completed by applying the following result, which extends

the Generalized Von Neumann Theorem and was proved recently in [I1], Theorem 1.10].

Theorem 2.23. Let p be a prime, let M € N and let k € [M(p —1)]. Then there exists

¢ > 0 such that for every collection of 1-bounded functions (f, : Zz? — C)zesipars

Eortneze || fz(:c+t121+~~+thM)‘§ min | f2 |7k (8)

2€Sk41,Mm
2€Sk41,Mm

Indeed, this result implies that the sum in ([7]) is at most R7n°, and then we can take b to
be small enough (in terms of everything that goes into R and ¢, i.e. k, p, X, and M) so
that Rn° < 4, as required in the conclusion of Proposition [2.21]

This completes the proof of Proposition [2.5]

Remark 2.24. In Proposition 2.5 for general step k the parameter &' must depend on
the dimension M. This can be seen using the following fact from nilspace theory (not
detailed in this paper): if ¢ is a cube-surjective morphism from a finite nilspace X to a
nilspace Y, then ¢ must be a fibration. Using this, we see that if &’ were independent of
M, then we could deduce that the morphism ¢’ is a fibration, which would force the step
of X' to be at most the step of D;(Z[), a contradiction if k& > 1.

3. FURTHER PROPERTIES OF p-HOMOGENEOUS NILSPACES

In this section we prove additional results about p-homogeneous nilspaces, which will be
used in the next section to obtain the main structure theorem. It turns out that some
of these results hold for a (potentially) larger class of nilspaces, which we call weak-p-

homogeneous (or w-p-homogeneous) nilspaces.
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Definition 3.1 (w-p-homogeneous nilspace). Let p be a prime. A nilspace X is w-p-
homogeneous if for every ¢ € C"(X) there exists f € hom(D;(Z}), X) such that f|p,) = c.

The fact that every p-homogeneous nilspace is a w-p-homogeneous nilspace is a direct

consequence of the following fact.

Lemma 3.2. Let X be a nilspace and let ¢ € C"(X) for any n > 0. Then there ezists a
morphism f € hom(D,(Z"),X) such that fp,) = c.

Since this lemma concerns general nilspaces, we leave its proof to Appendix (specifically,
Lemma is the special case of Corollary with Y equal to the 1-point nilspace).

Remark 3.3. For p = 2 the notions of p-homogeneous and w-p-homogeneous nilspaces are
readily seen to be equivalent. For p > 2 we do not know whether every w-p-homogeneous
nilspace is p-homogeneous. Within certain classes of nilspaces, we can prove that the two
notions are indeed equivalent. This holds for example for group nilspaces, as established
in Theorem below. It can also be proved that every 2-step w-p-homogeneous nilspace
is p-homogeneous (since this is not used in the sequel, we omit the details). Thus, this
paper leaves open the following question, which seems of independent interest despite not

being crucial for our purposes here.
Question 3.4. Is every w-p-homogeneous nilspace also p-homogeneous, for all primes p?

Our first result about w-p-homogeneous nilspaces is that they are generalizations of ele-

mentary abelian p-groups, in the sense of the following result, which immediately implies
Proposition [I.5]

Proposition 3.5. Let X be a k-step w-p-homogeneous nilspace and let i € [k]. Then
Z;(X) is an elementary abelian p-group. If X is also a CFR nilspace, then X is finite.

Proof. We argue by induction on k. For k = 0 the result is trivial (X is then the 1-point
nilspace). For k > 0, by induction it suffices to prove that if X is of step k, then every
element of its k-th structure group Z, has order p. Fix any z € Z, and any z € X.
Let g € hom(D;(Z*),X) be the morphism defined by g(v(1),...,v(k)) := x + v(1) - - - v(k)2
(this is indeed a morphism, since it is the composition of the polynomial map Z* — 7,
v+ (1) - - - v(k)z with the morphism z — x4 2). For each i € [0,p — 1], let ¢; € C¥(X) be
the cube obtained by restricting g to [k—1] x {i,i+1}, that is, we have c;(1¥71,0) = z+iz,
¢;(1¥) = 2+ (i+1)z, and ¢(v) = x otherwise. We have the adjacency of cubes ¢; < ¢, for
each i € [0,p—2]. Moreover, we have the following useful property: define a relation ~ on
C*(X) by declaring that ¢ ~ ¢’ if the map & : [k + 1] — X, &(v,0) = c(v), &(v,1) = c'(v)
(v € [Kk]) is in C**1(X); then the fact that g is a morphism implies that ¢; ~ c; for each
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i,j € [0,p — 1] (since there is a (k + 1)-cube on Z* with image [k — 1] x {i,7+ 1} on one
k-face and image [k — 1] x {J,7 + 1} on the opposite k-face).

By w-p-homogeneity, there is a morphism f € hom(D; (Z’;),X) with f|p = co. For
each i € [0,p — 1], let ¢, € C*(X) similarly be the restriction of f to [k — 1] x {4,7 + 1}.
As above, the morphism property implies that c; ~ c; for each 4,j € [0,p — 1]. Now,
repeating the argument using concatenations that was the combinatorial core of the proof
of Proposition [2.3] we deduce here that pz = 0.

Finally, if X is also a CFR nilspace, then its finiteness is deduced exactly as in the end
of the proof of Proposition [2.3] O

We shall now work toward the proof of Theorem establishing the equivalence between
p-homogeneity of a group nilspace and p-homogeneity of the associated filtration. For one
of the directions in this equivalence, we shall in fact prove the following more general
result giving a similar algebraic property for w-p-homogeneous coset nilspaces. Recall
that a coset nilspace consists of a coset space G/I' where GG is a group with a filtration
G, and T' is a subgroup of G, the cubes being the projections to G/I' of the Host—
Kra cubes in C"(G,), thus every n-cube on G/I' is of the form v — c(v)[’ for some
c € C"(G,); see [7, Proposition 2.3.1] (in particular, filtered nilmanifolds are central

examples of coset nilspaces). Given a group H and k& € N we denote by H* the set of
k-th powers {h*: h € H}.

Lemma 3.6. Let p be a prime, let (G,G,) be a filtered group, and let T be a subgroup of
G. Let X = G/T be the associated coset nilspace. If X is w-p-homogeneous then for every
m > 0 we have G¥, C Gpqp1l.

Recall (e.g. from [20, Lemma B.9]) that for i = (i1,...,4i,) € ZZ; and n = (ny,...,nn) €
Z™, the multiparameter binomial coefficient (%) € Z is defined by (%) = (7!) - (Z’:)

i1

Recall also (e.g. from the proof of Lemma [2.18)), that we define the height of i to be

li| = 41 4+ -+ + 4. We recall the following useful properties of the polynomial maps

(3

nwehy ) (where for m € Z and h € G we write h™ for the m-th power h-h---h in G):

(i) The map n +— hl-(z) is in poly(D;(Z™), G) if and only if h; € Gyj.
ii) If n; < ¢; for some j € [m], then h(@ = id.

( ) J J J ) 7

(iii) Let 2 € {0,...,p} x {0,1}™ and n = (p,v) for some v € {0,1}" 1. If v; < i; for

n n (Pyi9,.-+) im) P
5*) = id. Otherwise hl(*) = hi( o) = hz(ll)'

some j € {2,...,m}, then h

Proof of Lemma([3.6. We prove by induction on j that for all j € [0,p—1], for every m >0
we have G? C G,4;I'. The case 7 = 0 is trivial, so we assume that G2, C G,,;I" for all

m > 0 and we need to show that G? C G4 j41I for all m > 0.
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Fix any m > 0 and g € G,,. Consider the cube ¢ € C™(G/T") such that ¢(1™) = gT’
and c(v) = T for all v # 1™. As G/T" is w-p-homogeneous, there exists an exten-
sion f € hom(D,(Z;'),G/T) such that flj,) = c. The proof will go as follows: using

Lemma |A.12[ we shall construct a morphism f’ = Hhi(Z)F € hom(D,(Z™),G/T") such

that f'|¢0,. pyxo,13m—1 = fl{0,..ptxf0,13m-1, and we will deduce the desired conclusion from

the resulting expression of f.

We construct f’ in three steps, where the second step involves an iterative argument.
Rather than accumulating notation for each new modified version of the function that
we produce in the argument, we just use the same notation f’ throughout the process,
which means that f’ denotes a different function as we progress through the argument

essentia , eaclh round o e 1teration moaiies € previous runction mulitiplyin
tially, each round of the iterati difies th ious function f' by multiplying

o),

i

Step 1: Define f'(n) := g™ "=I'. This function f’ has the following important

it on the left by polynomial maps h

features:

o f'(p,1m7) = ¢g*T and f'(p,v) =T for all v # 1™,

It may be useful to have an example of the process we are applying. For m = 3 and p = 3,

at this stage f’|{0717273}x{071}2 looks as follows.

r gl T 7T

In red we have the vertices where f’ = f. The values of f’ at these vertices will not
change for the rest of the proof.

Step 2: this step involves an inductive argument, each round of which is an operation
that we call correcting the line at v, for v € [m —1]\ {1™*}. Let us describe this process.

Correcting the line at v: suppose that for all w € [m—1]\{v} such that w; < v; for
all 7 € {2,...,m} (instead of labeling the elements for j € {1,...,m — 1}, the elements
of [m — 1] will be labeled for j € {2,...,m}) we have already done the operation of
correcting the line at w. Furthermore, suppose that f/(p,1™"!) = v¢*T" (for some v € T’
that may not be equal in all the rounds of the process) and f’(p,t) =T for all ¢ # 1™~1.

((;i))) in such a way that

By Lemma |A.12] we can multiply f’ (on the left) by elements h
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the product agrees with f first at the vertex (2,v), then at (3,v), and so on all the way
to (p,v). Thus, let f"(n) := h((lg”v”)> : h((2 ”) f'(n).
(%)

e Let n € Z7) with n; < v; for some j € [m]. Then f”(n) = f'(n), by property (ii). In
particular, correcting the line at v preserves the previous corrections of lines at w.
o ["(p,1m™ 1) = ~4gT for some v € T, and f"(p,t) = T for all t € [m — 1]\ {1™1}.

The above properties of the polynomlals h;*” imply the following useful facts:

Indeed, when we multiply by the last factor h((;”v%)), since this ensures that f”(p,v) =
a (p,v) (p,v)
f(p,v) =T and f'(p,v) =T, we must have that h(p&)h((;”__fj) . h(<2(25)) is an element
7" € T'. Moreover, property above implies that for all £ € [m — 1] \ {v} we have
(&), (2i) (&9)
Ry Mp1) o)
is the identity otherwise. In particular, we have f”(p, 1™™1) =" f'(p, 1™ 1) = 4""+/'gPT

€ I', indeed this product is 7" if t; > v; for all i € [2,m], and

(where 4/ comes from previous line corrections). Hence our claim holds with v = ~"+/.

To conclude correcting the line at v, we set f” to be the new f’.

To complete Step 2, we now correct the lines at v for all v € [m — 1]. In order to be
able to apply Lemma in this process, these corrections have to be done in an order
such that for v,v" € [m — 1], if v; < wvj for all j € {2,...,p}, then we correct the line at
v before we correct the line at v’ (we can take the lexicographic order, for example).

To visualize this with our example above, after correcting the line at (0,0) we would

have f’ as follows.

r g 1:9“1“

Again, the vertices in red represent the ones at which f' = f and whose values will not
change for the rest of the proof. After the next two corrections, f’looks as follows (recall

that the value of v may be different in each appearance).

r 9T 79°T
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Step 3: we now correct the line at 1!, The final properties that we obtain are different
this time. The important part is now the value f’(p,1™!). By construction we have
f'(p, 1™ Y = f(p,1™1) =T, which implies

L0

h(p,lmfl)h(z”l) oam-1y79" €T, 9)

(p—1,1m=1) "
(%)
(g,1m=1)
Now, using the induction hypothesis, the fact that (f) is a multiple of p for j € [2, p—1],
(,71) (%)
-tamty " Py €
G|2,1m1)+;I' = Gmyjp1l. Since the last term A, -1y is already in G4, 11", we conclude

where the terms h are the factors involved in correcting the line at 171, and v € T.

and the fact that each group G, is normal in G, we deduce that h

that g” € Guin(m+j+1,m+p-1) = Gmyjp1l'. This completes the inductive step. O

Remark 3.7. By a straightforward generalization of the above proof it can be shown
that if a coset nilspace G/I" is w-p-homogeneous then, more generally, for all £, m > 0 we

have Gif,f C Gmyep—1yI'. We omit the details as this will not be needed in the sequel.
We are now ready to prove Theorem [1.4] which we restate here in a refined form.

Theorem 3.8. Let (G,G,) be a filtered group and let X be the associated group nilspace.
Then the following properties are equivalent:

(i) X is p-homogeneous.

(i) X is w-p-homogeneous.

(ii) The filtration G4 is p-homogeneous.

Proof. The implication (i) = (ii) follows from Lemma |3.2] as observed at the beginning of
this section. The implication (i) = (iit) follows from Lemma [3.6] applied with the trivial
subgroup I' = {id}.

We now prove (iiz) = (i), using the following strategy. Given any f € hom(D;(Z"), X),
note that there exists a p-periodic morphism gy € hom(D:(Zj), X) such that go(0") =
f(0") (we can take go to be the constant map with value f(0")). Then, writing g, for
the map sending each z to the inverse of the group element go(z), we have fg;'(0") =
id. Now suppose that there exists g; € hom(D;(Z;),X) such that ¢,(0") = id and
91(1,0,...,0) = (fgo")(1,0,...,0). Then fgy gy is in hom(Dy(Z2),X) and equals id
at 0" and at (1,0,...,0). Repeating this process, we will end up with a morphism
footgrt - g;" € hom(Dy(Z"),X) such that (fgo'gr' 9, )jop-1y» = id, thus show-
ing that fljop-—1» = go - - g¢ € hom(D:(Z}), X) as required.

We now prove that each step of the process can be carried out. First, for i > 1 we
define the group nilspace Hi(p ) .= 7 with filtration

(Hl-(p)> _ ZH_I if 5 =0,1,...,i 0)

itz > i+
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Now, for i € {0,...,p— 1} we define m\” : Dy(Z) — H® as follows:

0 if (z); € {0,1,...,i—1}

(—1)@5—i (7(’:51:12) if (z); € {i,...,p—1}

P

(p)

i—1

where () is the residue modulo p of z in [0, p — 1]. It is easy to see that'! 81m§p) =m
for i > 1. Moreover, for all i € [0, p— 1] we have that 9*'m!? is a circular vector (viewed
as the element (6i+1m§p)(0), e 8f+1m§p) (p—1)) of ZP, see Definition such that all its
entries are multiples of p. To see this, note that 8§+1m§p ) = o7 71m§,p_)2 and we can apply
Corollary to the latter. Indeed, applying this Corollary as many times as required

we get that m” is a morphism (with the filtrations D (Z) and (H*), by [7, Theorem
(p)

2.2.14]). Note also that by construction each morphism m;"” is a p-periodic map on Z.

These morphisms m?’ ) will be the basic tool to define the morphisms ¢ mentioned
above. But first, it is convenient to see how to use them in dimension larger than 1.
Let n € N and, given a vector of indices t = (t1,...,t,) € {0,...,p — 1}", define the
functions g, : Dy(Z") — Hl(j) as follows: gj(z) := m® (z)m (x3) - --mP (x,,), where
z = (x1,...,2,) € Z" and by definition we take Hép) = Hl(p). The proof that this is a
morphism follows from Lemma [B.4l Before continuing, let us note two useful properties

of these morphisms:

e gi(t) =1 and

e g;(z) = 0if ; < t; for some j € [n].
Now we are ready to complete the argument. We argue by induction on t € {0,...,p—1}",
using the colexicographic order on this set. Suppose that for a fixed t' = (¢],...,t) we
have been able to find a morphism h € hom(D;(Z;),X) such that (fh)(z) = id for all
z < t. Lett = (t1,...,t,) be the next vector after ¢’ in the colex order. Note that
w = (fh)(t) € G- This can be seen by composing the morphism fh with the maximal
cube con; (see Definition [A.1)).

We now define g € hom(Dy(Zy), X) by setting g(z) := w®  where note that this is

indeed a morphism from D;(Z;) since it is a morphism from D;(Z") and is p-periodic in

?) are p-periodic). To conclude this inductive step, we define

each coordinate (since the m;,
h' € hom(Di(Zy),X) as h' := hg~'. By the two mentioned properties of g, we have that

fh (z) =id now for all z < t. O

As a first consequence of Theorem we obtain the following simple description of p-
homogeneous nilspaces defined on finite cyclic groups. Let us say that a set of integers is

t-separated if every pair of integers a, b in this set satisfies |a — b| > t.

UWhere 9, f(x) := f(x + 1) — f(z) for any f : Z — Z where Z is an abelian group.
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Proposition 3.9. Let G be a finite cyclic group equipped with a filtration G of degree
exzactly k (i.e. Gry1 = {0} # Gi), and such that the associated group mnilspace is p-
homogeneous. Then G = Z,a for some positive integer d < L%J + 1, and there 1s a
(p — 1)-separated set A C [k] with |A| =d and k € A, such that Gi11 = p - G; for every
1 € A and Gy = G; otherwise.

Proof. By Proposition , every structure group of X, i.e. every quotient G;/G;;1, is an
elementary abelian p-group, which must then be cyclic, so must be {0} or Z,. It follows
that G = Z,a for some d > 0. Let A = {i € [k] : G;/Gip1 = Zp}. It is then clear that
Giy1 = p-G; for i € A and G;;; = G; otherwise, and also that £ € A (since G, has
degree exactly k). Since G' = Z,a, it is also clear that |A| = d.

To see that A is (p — 1)-separated, let ¢ < j be any two elements of A, so that
Gj+1 C p? - G, and suppose for a contradiction that j —i < p — 1. Then we would have
J+1<i+p—1,80 Giip1 < Gji1 = p*-G;, and since p- G, is not the trivial subgroup, we
would also have p*-G; C p-G;, 50 Gip-1 S p-G;, and so G, would not be p-homogeneous,
contradicting Theorem

Finally, by the previous paragraphs 1+ (d — 1)(p — 1) < (minA) + (JA] = 1)(p — 1)

< maxA = k. This implies d < [f}%ﬂ + 1. O

Remark 3.10. Proposition [3.9]implies that the nilspace Uy ; from Definition defined
on the cyclic group Z/ pL%JHZ, is the largest nilspace among k-step p-homogeneous

nilspaces defined on finite cyclic groups.

Next we use Theorem to prove that the translation group of a p-homogeneous nilspace

is also p-homogeneous, a fact that we shall use in Section [4

Proposition 3.11. Let X be a p-homogeneous nilspace. Then the group nilspace consis-

ting of the translation group ©(X) with the filtration (0;(X)) . is also p-homogeneous.

i>0

Proof. By Theorem it suffices to prove that for every a € ©0;(X) we have a? €
Oi1p-1(X). To do this, given any cube ¢ € CP™™(X) where n > i — 1 (otherwise we
may not have enough dimensions) we want to show that applying o to any face of
codimension 7 + p — 1 gives again a cube. By the symmetries of cubes it suffices to show
this for just one particular face. Let us write [p+n] = [i — 1] x [p] x [n — i+ 1], so any
element y € [[p+n] is of the form (u,w,v) € [i — 1] x [p] x [n — i+ 1]. Let us define the
faces Fj := {(u,w,v) € [p+n] :u=1""w(j) =1} and let C:= N¥_, F;. Tt is clear that
codim(C) =i + p — 1, so it suffices to prove that (a?)(c) € C"™(X). First, let us take
¢ :=a’o---0af?(c), ie., the cube obtained applying « to Fj for all j € [p]. Note that in
¢’ we have o applied to c(y) for each y € C, as we need. However there are also “errors”

in ¢/, i.e., applications of non-zero powers of a to c(y) for some elements y ¢ C. Our
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alm now is to use the additional symmetries provided by p-homogeneity to cancel these
errors. To this end, we define a matrix T € MPTMx®+n)(7 ) as follows: the submatrix of
T formed by the first i — 1 rows and columns is the identity matrix, and similarly for the
submatrix formed by the last n —¢+ 1 rows and columns of 7T'; the submatrix of T" formed
by the p rows and columns indexed by [i,i + p — 1] is an identity matrix too except for
its first row, where we set all entries equal to 1. All other entries of T" are 0.

Let f € hom(Dy(Z5"),X) be a periodic extension of the cube ¢/. Then also foT " €
hom(D;(Z5*"),X). Recall that we can interpret f oT~! as a p-periodic morphism in
hom(D;(ZP*"),X). Now let us define the morphism g € hom (D, (ZP*"), D;(Z)) by setting
g(u,w,v) := —u()u(2) - --u(i — 1)w(1) (it is easy to see that this is a morphism).

Now, given h € hom(D;(ZF*"),X), g € hom(Dy(ZP*"), D;(Z)) and a € 6©,;(X), for
every x € ZP*" let (a9 % h)(x) := a9 (h(z)). Note that af x h € hom(D,(ZP*"), X), since
when we compose this with a cube, we apply « to faces of codimension ¢ of the cube.

By the above observation, we have a9 x (foT~!) € hom(Dy(ZF*"),X). As X is
p-homogeneous, the restriction af * (f oT~)[jgp—1jptn is in hom(Dy(Z5"),X). Let us
denote this restriction by m. Since m € hom(Dy(Z5"),X), we know that moT €
hom(Dy(Z5+"),X). We now complete the proof by showing that m o T|p,4, = (o) (c).

Let y be any element of [p + n], so moT|piay(y) = m(T(y)) = a9@(foT (z)),
where z is T'(y) with coordinates reduced mod p into [0,p — 1]. To see that this is equal
to (a?)%(c)(y), first note that if y € C' then T(y) mod p has w(1) = 0, so g(z) = 0 and
therefore a9@ (f o T~ (x)) = f(y) = /(y) = a”c(y). Now, if y ¢ C, then let s € [0,p — 1]
be the number of coordinates that are 1 in the w part of y. Consider the case y & U; F;,
i.e., we have s = 0 or some coordinate u(j) is 0. Then again the element z = T'(y)
mod p satisfies g(z) = 0 (either because w(1) = 0 or because u(j) = 0) and as above we
then have a9@(foT~(x)) = f(y), which is c(y) (since y is not in any face F; in this
case), as required. The remaining case is y € (U;F;) \ C, i.e., that all u(j) are 1 and
s € [p — 1]. Then note that the element x = T'(y) mod p satisfies g(z) = —s. Hence
9@ (foT () = a=*c/(y), and this equals c(y) since y is in the intersection of s faces

and so ¢/(y) = a®(c)(y). This completes the proof that m o T |[n = ()% (c). O

We close this section with the observation that, using the results above, Proposition [2.4]
can be upgraded by showing that its converse also holds. This yields the following further

equivalent description of p-homogeneous nilspaces.

Proposition 3.12. For every prime p and k € N, there exists M > 0 such that the
following holds. A k-step nilspace X is p-homogeneous if and only if every structure group
of X is an elementary abelian p-group and for all i € [k], for every f € hom(Dy(Z)"),X;)
there is f € hom (D4 (Z)'),X) such that m; of =f.
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Proof. The backward implication is Proposition [2.4 For the forward implication, the
claim concerning the structure groups is given by Proposition (using that X is w-p-
homogeneous). To see the lifting property for morphisms, we argue using Corollary
as in the proof of Theorem [I.3]in Section [2] O

4. A STRUCTURE THEOREM FOR p-HOMOGENEOUS NILSPACES

In this section we prove Theorem[I.7], describing p-homogeneous finite nilspaces as fibration-
images of nilspaces from the simple class in Definition [1.6] In the introduction we mo-
tivated this theorem mainly through its applications. The theorem is also motivated by

the following fact.

Lemma 4.1. Let X, Y be nilspaces, suppose X is p-homogeneous, and let ¢ : X — Y be a

fibration. Then Y s also p-homogeneous.

Proof. Let f € hom(D;(Z"),Y). By Corollary it follows that there exists g €
hom(D;(Z"),X) such that pog = f. Since X is p-homogeneous, we have gl ,-1» €
hom(D; (Z), X), whence f|jgp—1n = @0 gljop-1y» € hom(Dy(Z7),Y), as required. * O

Indeed, Lemma[4. T suggests that finite p-homogeneous nilspaces may all emanate through
fibrations from a much simpler class of nilspaces, and Theorem confirms this.

Recall from Definition that Uy is the k-step p-homogeneous nilspace consisting
of the group G = Z,» with r = L%J + 1, equipped with the filtration

Gy Gy G Grip—1 Gryp
| 1 | | I

Zpr — e = Zpr 2 prr _= e = prr Z p2Zpr ..
Note that Uy, is a special case of the nilspaces described in Proposition with the
filtration chosen to ensure that this special case is an (-fold ergodic nilspace, meaning

that its (-cube set is the whole set of maps [¢] — Uy, (see [T, Definition 1.2.3]).

Remark 4.2. We leave as an exercise for the reader to check that the nilspace factor
map 71 : Upe = (Ure), , is the quotient by the k-th structure group of Uy, (which is
isomorphic to either Z, or {0}), and that (Uy,), , is isomorphic to Uy_;, if ¢ < k and is
the trivial group {0} if ¢ = k.

To begin proving Theorem [I.7], let us note that the second sentence in the theorem,
concerning lifting morphisms through the fibration v, follows from Corollary [A.7 Thus
our main task is to prove the existence of this fibration ¢ : Y — X, for some Y € Q.
The main ingredient for this is the following result which tells us that, in the class of

12An argument similar to the proof of Lemma shows that fibration-images of w-p-homogeneous

nilspaces are also w-p-homogeneous.
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p-homogeneous nilspaces, the family Q, is closed under taking degree-k extensions by

finite elementary abelian p-groups.

Proposition 4.3. Let Q) be a nilspace in Q. Let'Y be a k-step p-homogeneous nilspace
that is a degree-k extension of QQ by a finite elementary abelian p-group. Then Y s a split

extension of Q. In particular we have Y € Q.

We shall prove this proposition by induction on the step k. In the induction, we shall
apply the following lemma with &' = k& — 1.

Lemma 4.4. Let X' € Q,, and let X be a k' -step p-homogeneous nilspace that is a
degree-t extension of X' by a finite elementary abelian p-group, for some t < k'. Assume
that Proposition @ holds for all steps at most k'. Then X is a split extension of X'.

Proof. Note that by assumption the case t = k' holds. For smaller values of ¢, let P’ :
X — X' be the projection associated with the degree-t extension, let us denote both factor
maps X — X; and X" — X} by m;, and let P; be the induced projection X; — X}, so that

the following diagram commutes:

Pl
X X/
l Tt l Uv’
Pt’
Xy X; .

We have X' = Hif/:ll/lg,{g for some ay € Zsg, whence X} = H;le/l% (see Remark .
Proposition implies that X is a degree-t extension of X|. By the assumed Proposition
for step ¢, this extension splits, so there exists a cross-section v : X; — X; which is
also a morphism. Let ¢ : X — X' xxs X; be the map =+ (P'(z),m(x)). By Proposition
A.18, this map is an isomorphism. We can therefore define the map ® : X' — X, 2/ —
o 12, y(m(x'))). Now we just have to check that this is a split extension. First, let us
check that it is well-defined, i.e., we need to check that (2/,v(m (")) € X' xx, X;. But as
P/ o~ =1id, we have that P/(y(m(z"))) = m(2). Next, we need to check that P o® = id,
but this follows from the definition of ¢ and the fact that it is an isomorphism. Finally,

as ¢ 1, v, and 7, are morphisms, so is ®. O

Proof of Proposition[{.3 We argue by induction on k. The case k = 1 follows from
Proposition since Y must then be D;(Z') for some m > 0, and @Q is also of this form,
so Y is clearly a split extension of ).

Thus we suppose that £ > 1 and that the result holds for all steps at most k& — 1.
Let P:Y — @ be the projection associated with the extension. We have by assumption
Q =TI, Uy, so we can define, for each £ € [k] and j € [a], the translation ay; € ©,(Y")
as the function that adds 1 in the j-th coordinate of the factor U ,‘j“g We are going to
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show that we can lift any such translation, i.e. that there exists f,; € ©,(Y) such that
PofByj=ay;oP.

Suppose that we can lift these translations as claimed. Since Y is p-homogeneous,
k'7£+1—|

Proposition [3.11| implies that the order of f,; € O,(Y) divides pL%JH = pl 1

Hence, the following cross-section is well-defined, and is then also a morphism:

S: Q — Y
_ k a oTej
(e € ZPL%HI)ZGW,J‘GW] — 1L 15 0g’ ()
where y € Y is any element of P~*(0). This would conclude the proof.

So the only missing ingredient is the possibility to lift translations. To establish this,

we start with the following diagram:

P

Y Q
Tk—1 l?‘l’kl
P
Y1 Qr-1.

First note that P,_; is an isomorphism. Indeed, since Y is a degree-k extension of () with
associated projection P, it is readily checked that the (k — 1)-step factors of Y and ) are
isomorphic nilspaces, with Pj_; being an isomorphism. Now let us fix some notation. Let

A denote the group Z;" we use to extend ) to get Y, i.e.

mpk(A)
P.Y —Q.

Let B denote the k-th structure group of () (which is also a power of Z,,), i.e.

ka(B)

Th—1: Q —— Qr—1.

The k-th structure group of Y must be isomorphic to A x B because it is an elementary
abelian p-group (by Proposition and the fibers of m;_; o P have cardinality |A||B].
Now fix any o € ©,;(Q) and let us prove that « can be lifted. First let a;_; be the
induced translation on ©;(Qy_1), satisfying m;_j0a = ap_j0m_1, where mp_1 : Q —
Qr—1. As Py_; is an isomorphism, we have that aj;_; is also an element of ©;(Yy_1). We
shall use the criterion for lifting translations established in [6] (see also [7, Proposition
3.3.39]); this criterion states that we can lift a translation if the associated nilspace T*
(see [7, Definition 3.3.34 and (3.18)]) is a split extension (it is not difficult to see that
T* is p-homogeneous if Y is). By [7, Lemma 3.3.38] we know that 7 is a degree-(k — i)
extension of Y1 = if:_ll (Z/{,(Qlye)“", and by Lemma (applied with &/ = k — 1) we
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know that this extension splits. This enables us'® to lift a;_; to a translation 8 € ©;(Y).
Now the problem is that § may not agree with a. As P is a degree-k extension of a k-step
nilspace, it is easy to check that the conditions of [9, Lemma 1.5] are satisfied, so there is
an element * € 0,(Q) such that f*oP = Pof.

Now the issue is that a and $* may not be equal. But we know that they are in
the same B-fiber (because the shadow of both through 7,1 : Q@ — Qk_1 is ax_1). Now
observe that, as P : Y — (@ is a fibration with A x B being the k-th structure group of Y
and B being the k-th structure group of @, if we let ¢ : Ax B — B be the homomorphism
such that P(x 4+ z) = P(z) + ¢(2) for all x € Y and z € A x B, we know that there is
a cross section that is a morphism. That is, there is a map s : B — A x B such that
¢os = id. The simple reason for this is that A x B = Zg*m and B = Z;' (and given a
homomorphism from one to the other it is trivial that we can construct a homomorphism

which is a cross-section). To conclude the proof, we define

vy Y — Y
y — By) +s(la—=5)(Py)),
and this is an element of ©;(Y) that agrees with o through P. O

We can now prove the main structure theorem.

Proof of Theorem[1.7]. We prove the existence of the fibration ¢ : Y — X by induction
on the step k. The case k = 1 follows immediately from Proposition [3.5

Thus we suppose that the theorem holds for all steps less than k£ and we prove the
theorem for step k. By induction there exists a nilspace Y’ = 2::—11 (I/{g)_)u)‘“Z for some
ag > 0 for all £ € [k — 1] and a fibration ¢’ : Y' — X,_; satisfying the conclusions
of Theorem for X;y_1. It is easy to see that for all ¢ there is the projection map
Tg—1 : Upe — Ug_1,4 (these maps are different for each ¢, but it will be clear from the
context that m,_; will always represent the projection to the £ — 1 factor of a certain

nilspace). Thus we can define @ := [],c,_,; Uy, and we have the following diagram:

(0

X

Xp-1
w/

Y'.

Q

where ¢ = 7,1 is just the projection to the k — 1 factor of @ (thus Y' = Qy_1).

3This works for i < k, and for i = k it is trivial that we can lift translations, so without loss of generality

we can safely assume i < k.
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We now define Y as the following nilspace-subdirect-product of ) and X:

Y = {(a,b) € @ x X:¢'(q(a)) = 7(b)}.

Note that Y is a degree-k extension of @) by the k-th structure group of X (by Proposition
A.16|). Hence we have the following diagram:

D2
Y X — X,
\q\ v
Q —1—Y
where Q = Hi}:ll ke and Y = 2:11 k10 and py is the projection of the following

degree-k extension:

ka(ZZ)

Y — Q.

It now suffices to prove that Y is p-homogeneous, as then we can apply Proposition
to conclude that Y € Q,, and thus complete the proof setting 1) = p,. But if f =
(f1, f2) € hom(D,(Z"),Y), then since @ and X are p-homogeneous, we have f|jp—1» €
hom(D1(Zy), Q) and fa|p-1)» € hom(D:(Zy), X), whence Y is also p-homogeneous.

As mentioned above, the last sentence in Theorem follows by Corollary [A.7] O

4.1. A refined structure theorem for £ < p.

In this subsection we prove Theorem [I.8]
We begin by noting that, in the high characteristic case (k < p), Proposition
readily implies the following strengthening of Theorem

Corollary 4.5. Let X be a k-step p-homogeneous CFR nilspace, and let p be a prime with
k < p. Then there are non-negative integers ay,as, ..., a; such that X = lezl Dy(Zs).

In particular, X € Q1.

Proof. We argue by induction on k. The case k = 0 is trivial. For k£ > 0, by induction
we have X;_; = ;:11 DZ(ZZE ) for some integers a, > 0. By general nilspace theory we
know that X is a degree-k extension of X;_; by some compact abelian group Zg, and by
Proposition we know that 7Z; = ng for some a, > 0. Now note that for all £ < k,
since k < p we have Dy(Z,) = Uy, because LEJ + 1 = 1. Therefore, as a product of
such nilspaces Uy, ¢, the nilspace Xj;_; is in Q,, ;. Hence we can apply Proposition , thus
deducing that X is a split extension of Xj_1, so X = Xy xDy(Zg*) = HZ:1 Dy(Zge). O
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We shall now extend this result to include the case k = p. To do so we shall use the

following fact, which is a very specific feature of this case.

Proposition 4.6. For any prime p, the nilspace U, is isomorphic to the product nilspace
D, (Zp) X Dp<Zp)-

Proof. 1t suffices to prove that there is a cross-section from D;(Z,) to U, which is also
a morphism, as this proves that U, ; is a split extension of D;(Z,), which implies the
result. Let f € hom(D;(Z,),D1(Z,)) be the identity map. Then, as (Up1),—1 = Di(Zy),
we can regard f as an element of hom(D;(Zy), (Up1)p-1). By Proposition [3.12] there
exists ¢ € hom(D;(Z,),U, ) such that m,_y0g = f. Since f is the identity map, the
last equality implies that the morphism ¢ is also a cross-section (Up1)p—1 — Upa, as

required. 0]

The following result is the announced extension of Corollary 4.5 and is the special case
of Theorem for CFR nilspaces.

Proposition 4.7. Let p be a prime and k € N with k < p. Let X be a k-step p-
homogeneous CFR nilspace. Then there are non-negative integers ay, as, . . ., aj such that X

15 1somorphic to the product nilspace HIZ:1 Dy(Zyt). In particular, if k < p then X € Q.

Proof. By Corollary [4.5] it suffices to prove this for & = p. The idea is to start again from
the situation we had in the proof of Theorem [1.7] with the following diagram:

p
Y 2 X T X,
\ |w,
0 -—L vy

Note that in this case, by induction we can take Y' = X;_; = X,_1, ¢/ an isomorphism
and X1 = X, 1 =[] Dy(Zg¢). Now, recall that by definition of @ we had to [ift
these factors, in the sense that each factor Dy(Z,) = U,y in Q is lifted to a factor U, .
All these lifts are trivial except for D;(Z,), which is lifted to U, ;. Hence in this case
we have Q = U7 x | Dy(Zg¢). Hence, by Proposition [4.6| there exists a cross-section
s Y — @ which is also a morphism. The rest of the proof goes as before: the map
p1: Y — @ is a degree-p extension that splits, so there is again a cross-section s’ : Q — Y
which is a morphism. Then we have the cross-section pyos’osoy’~! : X, _; — X, which

is also a morphism. Hence X is a split extension of X;_; and the result follows. O

Corollary 4.8. Let k < p, let X be a k-step p-homogeneous CFR nilspace, and let Y be
a p-homogeneous nilspace which is a degree k-extension of X by an elementary abelian

p-group. Then Y is a split extension of X.
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Proof. The cases k < p follow from combining Corollary with Proposition [4.3|

Now suppose that £ = p. By Proposition we have X = [[}_, DZ-(ZZZ') for some
integers a; > 0. Let X1 := Uy < 1T, Di(Zg), and let ¢ : X* — X be the projection
with deletes the component D,(Z;') from U}, as made possible by Proposition It
is then clear that there exists a cross-section s : X — XT. Now let 7 := X" xxY =
{(z,y) € Xt xY : ¢(y) = é(x)}, where ¢ here denotes the projection map Y — X
associated with the extension. It is easy to see that T is a degree-p extension of X' and,
since X* € Q,,, this extension splits. Thus, letting p; denote the associated projection
T — X7, there exists a cross-section which is a morphism s’ : X™ — T'. To conclude, note
that if ps : T'— Y is the projection to the second coordinate, then pyos’os: X — Y is a

cross-section which is also a morphism, and the result follows. O

If we just plugged Proposition [£.7] into the inverse limit theorem then we would obtain
not quite Theorem [1.8] but rather a description of each factor in the inverse system. The
following result will enable us to arrange the terms in the inverse system to express the

inverse limit as the product nilspace claimed in Theorem [1.8|

Proposition 4.9. Let p be a prime, let k < p, let X, Y be k-step, p-homogeneous nilspaces,
and let ¢ : X — Y be a fibration. Then X = Y x@Q for some k-step, p-homogeneous
nilspace () and there exists a nilspace isomorphism ¢ : Y xX@Q) — X such that po¢ :
Y xQ — Y is the projection (y,q) — y.

Proof. We argue by induction on k. The case k = 0 is trivial. For k > 0, suppose that
¢ : X — Y is a fibration and that, by induction, the fibration ¢;_1 : X;_1 — Y_1 satisfies
the following property: There exists a nilspace isomorphism ¢ : Xz 1 — Y1 XQp_1
such that if p; : Yi_1 xQr_1 — Yy_1 is the projection to the first coordinate, then

vr_1 = p1o¢. The situation is illustrated in the following diagram:

¥

X Y
T wﬂ'
Xit — 7y,
: /
Yio1 XQr—1

Now let po : Y1 XQr_1 — Qr_1 be the projection to the second coordinate, and let

v: X — Y XQp-1
z — (p(x),prodon(z))
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We claim that this defines a degree-k extension (in the sense of |7, Definition 3.3.13]) of
Y xQp_1 by the abelian group ker(¢y), where the homomorphism ¢y, : Zi(X) — Zx(Y)
the k-th structure morphism of ¢ (so p(z+2) = ¢(2)+¢r(z) for all 2 € X and z € Z;(X);

is

see [7, Definition 3.3.1]). In particular ker(¢y) is an elementary abelian p-group.

To prove this claim, first let us show that X is an abelian bundle over Y x@Q;_; with
projection W. To see that U is surjective, fix any (y,q) € Y xQ_1 and consider the
element ¢~ (7(y), q) € Xp_1. This equals 7(z) for some x € X, by surjectivity of 7. Now,
as m(p(x)) = m(p(y)), there is z € Zx(Y) such that p(z)+2z = ¢(y). Since p is a fibration,
we know that ¢y, is surjective, so there exists 2z’ € Z(X) such that ¢ (2') = z and hence
the element z + 2’ satisfies U(x + 2') = (y,q), which proves the surjectivity. Now let
z,x’ € X be such that U(x) = ¥(z'). This implies that ¢(x) = ¢(z’) which in turn
means that g1 (7(z)) = @g_1(m(2’)). Since we also have pyogpon(z) = propon(z') we
conclude that 7(x) = m(2’). Thus, there exists z € Z;(X) such that = + z = 2’. Applying
¢ to both sides of this expression we obtain p(z + 2) = ¢(x) + ¢r(2) = @(2') = (z).
This implies that z € ker(¢y). The fact that ker(¢y) acts freely on the fibers of X follows
from the fact that Z;(X) acts freely on X. This proves our claim.

Now let us see that U defines indeed a degree-k extension as claimed. The first
condition to verify is that W is cube-surjective. Let ¢; X ¢co € C"(Y XQk_1). In particular
this means that (mocy) X cg € C"(Yi_1 xQr_1) and thus, ¢~ o((mocy) x ¢3) € C™(Xp_1).
Let ¢ € C"(X) be a lift of this cube. In particular, this means that mopoc = moc;.
Thus, there exists d € C"(Dy(Zx(Y))) such that poc+d = ¢;. As ¢y is surjective it is
easy to see that there exists d' € C"(Dy(Zx(X))) such that ¢, od’ = d. Thus we have that
c+d € C"(X) is a lift of ¢; x ¢y via W. The second condition is that for any ¢; € C"(X),
if co € C"(X) is any cube such that Woc; = Wocy then there exists d € C"(Dy(ker(¢x)))
such that ¢; +d = cg. By similar arguments as before it follows that there exists d €
C"(Dy(Zk(X))) such that ¢; +d = co. This implies that poc) +¢pod = poce. But by
hypothesis we know that poc; = pocy, which implies that d € C"(Dy(ker(¢y))). This
proves that U is an extension as claimed.

To finish the proof, note that by Corollary the extension defined by W splits. Thus
we have for any k£ < p that X =Y xXQx_1 X Di(ker(¢y)). Letting Q := Qx_1 X Di(ker(¢r)),
this means that there is a nilspace isomorphism ¢’ : X — Y x () such that ¢ = p;o¢’, as
required. 0

Proof of Theorem[1.8 By the inverse limit theorem [8, Theorem 2.7.3], the given k-step
p-homogeneous compact nilspace X is the inverse limit of CFR k-step nilspaces X, which
are p-homogeneous by Lemma . By Propositon , each nilspace X; is of the form
H]Z:1 Dy(Zy") for some coefficients aj,. It now only remains to arrange these factors

as j ranges in N to obtain the claimed product nilspace in Theorem [I.§ To carry out
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this arrangement we use Proposition [£.9} It allows us to see the maps 1;; : X; — X; as

projections. Hence the inverse limit has the desired form. 0

This proof of Theorem used several fortunate facts occurring for £ < p, including
Proposition 4.6, The question of whether there are similar refinements of Theorem
for higher k£ > p seems non-trivial (see Remark . For the case k = p + 1 we can
nevertheless prove the following result, which does refine Theorem and which will be

used in the next section to give new applications in ergodic theory.

Proposition 4.10. Let X be a CFR k-step p-homogeneous nilspace with k = p—+1. Then
there is an integer m > 0 such that X XDP(Z;”) 15 1somorphic to an abelian group nilspace.

In particular, there exists an injective morphism from X to an abelian group nilspace.
The proof will use the following fact.

Lemma 4.11. Let ¢ : X — Y be a fibration between k-step p-homogeneous CFR nilspaces.
Suppose that all the structure morphisms are isomorphisms except maybe ¢p_1. Then X

is a degree-(k — 1) extension of Y by the group ker(dp_1).
Proof. Consider the following diagram:

X

Y

-1 Tk—1

Pk—1

Xp-1 Yi-1.

Now let us define the fiber product X;_; Xy, _, Y and the map ® : X — Xj;_; xv,_, Y
such that  — (mp_1(z), p(z)). We claim that this is a nilspace isomorphism. First, it
is clear that this is well-defined and that it is a morphism. Second, to prove that & is
injective, let z, 2" € X and suppose that ®(x) = ®(2’). In particular, m_1(x) = mp_1(2')
and thus ¢ = 2/ 4+ z for some z € Z;(X). But this means that p(z) = p(2') + ¢x(2)
and as ¢(x) = p(2’), this implies that ¢x(z) = 0. Using that ¢y is bijective we get that
z = 0. To prove that ® is surjective, let (my_1(z),y) € X1 Xv,_, Y. As m_1(y) =
Vr—1(mp_1(2)) = mr_1((z)) we have that there exists 2z’ € Zx(Y) such that p(x)+ 2" = y.
Take any z € Zx(X) such that ¢p(z) = 2’ and we have that ®(z + z) = (mp_1(2),y).

To complete the proof that ® is a nilspace isomorphism, note that it now suffices to
prove that ® is cube-surjective, as then ®~! is easily deduced to be a morphism. Let
(mp—10¢1,¢2) € C"(Xp—1 Xy,_, Y). In particular this means that 71 0opoc; = m_10cCo
and therefore there exists d' € C"(Dg(Zr(Y))) such that pocy; +d’ = cy. By the surjec-
tivity of ¢y there is d € C"(Dy(Zx(X))) such that ¢y od = d'. Then ¢, +d is a cube such

that its image through ® is (m,_1 oy, ¢2), which gives us the desired surjectivity.
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Finally, to see that this defines an extension, let P : X;_1 Xy, , Y — Y be the
map (mp_1(x),y) — y. We leave as an exercise for the reader to check that ¢y :
Xk-1 — Y1 defines a degree-k — 1 extension of Y;_1 by the group ker(¢y_1). In X =
Xk—1 Xvy,_, Y we define the action of Dy_; (ker(¢pg_1)) as (mx—1(z),y)+2 := (mp_1(x)+2,y).
Now, the only thing to check to prove that P defines an extension is that given cubes
(Tp—10¢C1,C2), (M1 0, ch) € C"(Xp—1 Xy,_, Y), if Po(mp_10cy,¢0) = Po(mg_y0c],ch),
then (m,_10c¢1,02) +d = (mp_10¢},ch) for some d € C"(Dy_1(ker(¢x_1)). To prove this,
note that cy = ¢, and thus ¢, _jo0m_10c; = pp_10mp_10¢]. As pr_1 is a degree-k — 1
extension, there exists d € C"(Dy_1(ker(¢x_1)) such that mp_1 0c; +d = m,_1 oc}. Hence

(Tk—10¢1,C2) +d = (g1 0Cf, C5). O

Proof of Proposition[{.10. Let us outline the proof. Let X be a (p+1)-step, p-homogeneous,
CFR nilspace. By known theory (the case k = p) we know that X, = [[7_, D;(Zg¢). Let us
separate these into three terms: X, = Dy(Z%) x Dy(Z)) x Q. Let Y := U X Z/{;,’H,z X Q)
with the natural map L : Y — X, defined as (y1,v2,¢) — (m1(y1), m2(y2), q). In particu-
lar note that L, : Y,_1 — X,_; is an isomorphism. Let 7" be the following subdirect
product of X and Y: T:=Y xx, X = {(y,2) € Y x X : L(y) = my(x)}.

It is easy to see that 7" is a degree-(p+1) extension of Y. AsY € Q, y—,11 we know that
this extension splits (by Proposition and therefore T = U7 x Z/{;’ 12 XQ X Dy (Zy)
where Z,,1(X) = Z7. Let us denote by ¥ : T' = Y xx, X — X the map (y,r) > z.
This map is easily seen to be a fibration. Note also that ¥, ; : T,y — X,; is a
nilspace isomorphism. To prove this, note that by Proposition we have that T, ; ~
Y1 Xx,_, Xp—1 but as L, is an isomorphism, this space is simply X, ;.

Now, the first thing we do is to factor by ker(¢,.1) where ¢, is the p + 1 structure
morphism of W. That is, consider the action of ker(¢,1) on T" and note that & : 7" — X
factors through this action and thus we have a fibration U’ : T'/ ker(¢,+1) — X. But by
Proposition we know that 7'/ ker(¢,11) is an abelian group nilspace so what we have
proved is that we can refine our covering of X to a covering such that the only structure
morphism which may be not an isomorphism is ¢,.

Now we apply Lemma[t.11]to ¥’ and thus we obtain that 7'/ ker(¢,1) defines a degree-

p extension of X by an elementary abelian p-group. Consider the following diagram:

\I}/

T/ er(pen) X
-,
(T'/ ker(¢ps1))p Xp-
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By Proposition we have that 7'/ ker(¢,41) is isomorphic to the subdirect product
(T'/ ker(¢ps1))p xx, X. Also, by Proposition we know that W) defined a degree-p
extension of X, and by Corollary this extension splits. Hence, there exists a cross-
section s : X, = (T'/ ker(¢p+1)), which is a morphism.

We now have all the required ingredients. Let us define f : X — (T'/ ker(¢p41))p xx, X
as ¢ +— (s(mp(z)),x). This is clearly a morphism and furthermore this defines a cross-
section for the map W’'. Hence, the extension defined by W’ splits and therefore there
exists an integer m > 0 such that X xD,(Z)") =~ (T/ ker(¢py1))p Xx, X = T/ ker(¢py1)
which is an abelian group nilspace (by Proposition . O

Remark 4.12. For £ > p+1 we do not know whether there are more explicit descriptions
of p-homogeneous nilspaces generalizing Theorem [L.§] There is in particular a possibility
which we are not able to rule out in this paper, namely, that all these p-homogeneous
nilspaces could be not just fibration-images of abelian group nilspaces (as in Theorem
, but actually be isomorphic to abelian group nilspaces. Another approach to the
problem of describing p-homogeneous nilspaces X in more detail consists in examining,
not the fibrations from simpler abelian nilspaces onto X, but rather examining injective
morphisms from X into simpler abelian nilspaces. This latter approach is explored in the

next section, where it will help to make progress on Question [I.11]

5. APPLICATIONS IN ERGODIC THEORY

5.1. Host—Kra factors of I, -systems as p-homogeneous nilspace systems.
In this subsection we prove Theorem [1.9] describing the k-th order Host—Kra factor of
any ergodic F-system as a compact nilspace system with the underlying nilspace being

p-homogeneous. Our starting point is the following result from [12].

Theorem 5.1 (Theorem 5.11 in [12]). Let G be a countable discrete group, let Go be a
filtration of finite degree on G, suppose that G acts ergodically on a Borel probability space
(Q, A, N), and let k € N. Then the k-th Host-Kra factor of (2, (G, G,)) is isomorphic to
an ergodic k-step filtered compact nilspace system (X, (G, Ga), Vk)-

Thus 7 : 2 — X}, is a measure-preserving map and 7, is a filtered-group homomorphism
G — O(Xy) (a group homomorphism such that 7, (G;) C 0;(Xy) for all ¢ > 0) and for
every g € G we have the equivariance v, 09 =) Jx(g) oY% (where =, denotes equality
up to a A-null set). We refer to [12, Definition 3.31 and Lemma 3.32] for the detailed
definition of 7, and to [12, Theorem 4.5] for the definition of 7. We shall apply Theorem
with G the additive group of F;. As usual in this paper, when the filtration on an
abelian group G is not explicitly mentioned, we are implicitly using the lower central
series Gy = G; = G > G; = {0}, Vi > 2. Accordingly, when we write C"(G) for an



ON HIGHER-ORDER FOURIER ANALYSIS IN CHARACTERISTIC p 43

abelian group G (rather than the more rigorous notation C"(G,)), we are referring to the
standard n-cubes on G (i.e. the n-cubes relative to the lower central series on G).

The idea of the proof of Theorem [1.9]is to show that the map 7, induces an arbitrarily
highly balanced morphism ¢ € hom(D; (Z]? ), Xx); by Theorem this will imply that
the nilspace X;, is p-homogeneous. In fact, this approach involving Theorem yields
a rather strong form of ergodicity on this factor. To formalize this, recall that for every
filtered nilspace system (X, (G, Gl,)), for each n € Z>( the cube-set C"(G,) has a natural
action on C"(X) thanks to the fact that G acts by translations (see [12, Definition 5.10]).

Definition 5.2 (Fully ergodic nilspace system). A filtered nilspace system (X, (G, G,))
is fully ergodic if for every n > 0 the action of C"(G,) on C"(X) is uniquely ergodic.

Note that the special case n = 0 here means that G itself acts uniquely ergodically on X.
One of the main results of this section is the following theorem, which directly implies
Theorem [1.9}

Theorem 5.3. For every k € N, the k-th Host-Kra factor of every ergodic F-system s
isomorphic (as a measure-preserving system) to a p-homogeneous k-step nilspace system
(X, F%) that is fully ergodic.

Indeed, we will deduce that the nilspace system is p-homogeneous in Theorem 5.3 as a
consequence of being fully ergodic. Thus, let us start by proving the latter property.

Recall from [12] §5] that for any filtered group (G, G,) such that G acts by measure-
preserving transformations on the probability space (), we can define the sequence of
associated Host—Kra couplings, generalizing the sequence of cubic measures introduced
for G = 7Z in [27]; see [12, Definition 5.4]. We then have the following fact.

Proposition 5.4. Let (Q, A\, G) be an ergodic G-system where G is a countable discrete
group, let G, be a filtration on G, and let (uI"),>¢ be the associated sequence of Host-Kra
couplings. Then C™(G,) acts ergodically on the probability space (", ul"l) for every n.

Proof. This follows by a straightforward generalization of the arguments used to prove
[27, Corollary 3.5]. O

Corollary 5.5. Let (2, A\, G) be an ergodic G-system where G is a countable discrete
group, let G4 be a filtration on G, and let X; be the associated k-th Host—Kra factor.
Then C"(7x(Q)) acts ergodically on C"(Xy) for all n > 0.

Proof. This follows immediately from the definition of the Host—Kra factor. 0

Now we can prove the desired full ergodicity.
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Lemma 5.6. Let X be a k-step compact nilspace, let H be a countable subgroup of ©(X),
with filtration He = (H;);>0 defined by H; == HNO;(X), and suppose that for everyn >0
the action of C"(H,) on C"(X) is ergodic relative to the Haar measure pcr(xy. Then the
system (C"(X),C"(H,)) is uniquely ergodic, with C"(H,)-invariant measure jicn(x).

Proof. We adapt [29, p. 65, Lemma 4, and p. 66, Proposition 5] to the case of these H-
actions. Following [29] we argue by induction on k. The case k = 0 is trivial, as X is then
the 1-point nilspace. Let s : C"(X;_1) — C"(X}) be a Borel cross-section (as provided by
the proof of [8, Lemma 2.4.5]). Let Z; = Zx(X), and let

(c,2) o s(d) + 2.

This is a Borel-measurable map (relative to the product topology on its domain), and
it is bijective, with inverse ®~! : ¢ + (mp_10c,c—s(m,_1oc)). For any T € C"(H,) we
define 7" := &' oT o®. As translations on X commute with addition of elements of Z
[7, Lemma 3.2.37], and 731 0T = T}y omp_q for some Tj_; € C"(O(Xx_1)) [7, Definition
3.3.1 and Proposition 3.3.2], we have T'(c/, z) = (T—1(c), [T'(s(c')) — s(Tk-1(c'))] + z) for
all ¢ € C"(Xy-1), 2 € C"(Di(Zy))-

Let Y :={T": T € C"(H,)}. We shall now show that if x4 is any ergodic T"-invariant
Borel probability measure on C"(Xj_1) x C"(Zy), then p = pcen(x, ) X men(z,) where
pen(x,_ ) and men(z,) are the Haar measures on C"(X;—;) and C"(Z;,) respectively. This
will prove the claimed unique ergodicity, as any Y"-invariant Borel probability measure
on C"(Xj_1) x C"(Zy) is the convex combination of ergodic Y"-invariant Borel proba-
bility measures by [26, Theorem 4.2.6]. It will also establish that 1 = pcn(x)o®™*, by
construction of the Haar measure pcn(x) (see [8, Proposition 2.2.5]).

Note that if 7 : C"(Xy_1) x C"(Zg) — C"(Xy_1) is the projection to the first coordi-
nate, we have that y is a C"(Hj_;)-invariant measure of C"(X;_;) and by induction on k
this measure v is precisely the Haar measure on C"(Xj_1).

Following the proof of [29, p. 63, Lemma 4], we shall use the disintegration of the
measure y with respect to , that is u = [ 6, xp, dv(y). Fix any 77 € T™ and let pr(y) =
T(s(y)) — s(Tx-1(y)) for any y € C"(Xj_1). Since u is T’-invariant, we have that for v-
almost every y € C"(Xj—1) we have pr, ,, = d,,.(y)* iy, in the sense that for any continuous
[ C"(Di(Zy)) — C we have [ f(t)dur,_,,(t) = [ [ fla+b) A0, (a) dpy(D).

Now, for any character x : C"(Dg(Zx)) — C the Fourier-Stieltjes coefficient 71, (x) is
well defined for v-almost all y € C"(Xy_1), and equals

R0 = [ ) )
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Following [29], we define ¢, (v, g) := X(g9)ity(x) for all ¢ € C"(Dy(Zx)) and v-almost all
y € C"(Xg_1). We have that for all g, h € C"(Dy(Zy)) and v-almost all y € C"(X;_1) we
have ¢, (y, g+h) = X(h) ¢y (y, g). Thus, using the fact that pir, ,, = 0,,.(y)* iy, We conclude
that ¢, (T"(y,g9)) = ¢y (y, g) for all g € C"(Dy(Z)) and v-almost all y € C"(Xj_1). We
can repeat this argument with the countably many elements of T and deduce that for
all g € C"(Dy(Zy)) and v-almost all y € C"(Xi_1), &4 (T"(y,9)) = ¢y (y,g). Thus, for
p-almost all (y,g) we have that for any 77 € 1", ¢, (1" (y,g)) = ¢, (v, g). By ergodicity
of © we conclude that ¢, is constant for p-almost all (y,g). If we denote this constant
by ¢y, it is easy to deduce that ¢, = X(h)c,. Therefore, if y is not the trivial character,
¢, = 0 for almost all y € C"(Xj;_1), which in turn implies that each measure p, is the
Haar measure on C"(D(Zy)) for almost all y € C™"(Xy_1). O

The main ingredient for the proof of Theorem [5.3]is the following result, telling us that a
fully ergodic action can be used to obtain arbitrarily balanced morphisms from the acting

group to the Host-Kra factor.

Proposition 5.7. Let 2 be an ergodic F;-system and let Xy be the corresponding k-th
Host-Kra factor. Then for every x € Xy, and b > 0, there exists D = D(b,Q, Xy, x) such
that ¢ : FD — Xy, g = 7i(9)(x) is a b-balanced morphism in hom(Dy(Z)),Xy).

Proof of Theorem using Proposition 5.7, By Theorem [5.1)we know that the k-th Host-
Kra factor is isomorphic to a k-step compact nilspace system. By Corollary and
Lemma [5.6) we know that the action of C"(IFy) on C"(X},) (via 4%) is uniquely ergodic for
all n > 0. We now prove that X, is p-homogeneous.

Fix any x € X;. By the inverse limit theorem (see [8, Theorem 2.7.3]) we have
X, = @XM where Xy, ; are k-step CFR nilspaces. Let 1; : X — Xj,; be the ¢-th
limit map in this inverse limit, and recall that 1); is a fibration. Consider the b-balanced
morphism provided by Proposition (supposing some — any — metrics have been fixed
on Xy, X; and using Remark . Arguing as in the proof of Proposition , we deduce
that 1; o ¢ is b’-balanced for some parameter ' (b) which tends to 0 as b — 0. Thus, given
any b’ > 0, we have that there exists D = D(V/,Q, Xy, z,4) such that v; o ¢ is b’-balanced.
Choosing b/ = 0/(Xg4,p) as given by Theorem [1.3, we can conclude that for sufficiently
large D = D(Q, Xy, p, z,4) the compact nilspace Xy ; is p-homogeneous. Since this holds
for every ¢ € N, we deduce that X is the inverse limit of p-homogeneous nilspaces, which

implies that Xy, itself is p-homogeneous (this follows easily from the definitions). O
In order to prove Proposition we will rely on the following technical result:

Lemma 5.8. Suppose that the system (C"(Xy),C"(Vk(G))) is uniquely ergodic. Let
(Gp)pso be a Folner sequence for the group G such that G = |J;_, Gp. Then for any
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cube g € C"(Xy), the sampling measures Ececn(cp)05, ()¢ 0n C"(Xi) converge in the weak

topology to pcn(x,) as D — oo.

Proof. This follows by similar arguments as in [29, p. 30, Proposition 2] (see also [20], p.
87 §4.3. a.]). O

Proof of Proposition |5.7. By Theorem we know that the k-th Host-Kra factor is iso-
morphic to a k-step compact nilspace system. By Corollary and Lemma [5.6[ we know
that the action of C"(IFy) on C"(Xy) (via %) is uniquely ergodic for all n > 0.

Fix some point « € Xj,. For any D we can define the map ¢ : Z — X, as x — J(g) .
We need to prove that, given b > 0, there exists D such that for every n < 1/b we have

dn(pcn (%) Bom(Dy (FD)) o(pl"h)=1) < b, (11)

where d,, is a prescribed metric on P(C"(X})) (see Remark [2.2). We now apply Lemma
With G =T}, with Gp = IF;? for each D > 0 (naturally embedded as a subgroup F%' so
that (Gp)p>o is a Fglner sequence in F), and ¢ € C"(X},) the cube with constant value
x. Thus, for each n there is D,, such that for D > D, the inequality holds. Taking
D > max,<1/,(Dy), the result follows. O

We can now apply this straightaway to describe the k-th Host-Kra factors for £ < p.
Proof of Theorem[1.10, The result follows from combining theorems [1.9 and [1.§ O

We end this subsection with the following explicit description of the translation group of

the nilspaces occurring in Theorem [1.10}

Theorem 5.9. Let k < p, for each i € [k| let a; € NU {oo}, and let X be the compact
k-step p-homogeneous nilspace []-_, Di(Zg'). Then the translation group ©(X) can be

identified as a set with the Cartesian product 1*

k i—1
z2 x [ hom (Hpj(zgj), Di_l(Zgi)>, (12)
i=2 j=1

and the action of an element (T4, ...,Ty) in this product as a translation a € O(X) is

given by the formula
Oé(l'l, e ,Ik) = (ZEl, Ce ,l‘k) —+ (Tl,T2<.T1), Tg(l‘l,ZL’Q), ce ,Tk(l’l, e ,Ik_l)). (13)

The group operation on O(X) can be expressed directly on the set by deducing it
from the definition of the action. Note also that the morphism sets in are sets of
polynomial maps (see e.g. [7, Theorem 2.2.14]). Thus Theorem describes O(X) in

terms of polynomials.

1Note that in the product signs outside the bracket indicate Cartesian products, and the product

sign inside the bracket indicates a product of nilspaces.
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Proof. First we prove that all the functions described are indeed translations. We argue
by induction on k. The case k = 1 is clear since in this case the function just adds the
constant Ty, and is thus indeed a translation on D;(Z3'). For k& > 2, by induction it
suffices to check that the map o : z = (xy,,...,21) — = + (O, ooy 0, Ty (g, . . ,xk_l))
is a translation. Recall from [7, §3.1.4] the notation for arrow spaces: in particular if
f,g:[[n] — X are any two maps, we define the 1-arrow (f, g)1 : [n + 1] — X as the map
such that for v € [n] we have (f, ¢)1(v,0) = f(v) and (f, g)1(v,1) = g(v). By [7, Lemma
3.2.32] it suffices to show that for every ¢ = (c1,...,¢c,) € C” (Hle D;(Z%)) we have
(c,voc); € C"H(X). But (¢,aoc); = (¢, c)y + g, where g is the map [n+ 1] — [, 7
with values of the form g(v) = (0,...,0,(0, Ty o(cy,...,ck—1))1(v)). Thus it suffices to
prove that for every such n-cube ¢ we have (0,7} o(ci,...,cx-1))1 € C"(Di(Z5¥)). For
this, by [7, Lemma 2.2.19] it suffices to have Tj, o(cy, ..., cp—1) € C"(Dy_1(Zg*)). But this
is precisely what is ensured by our assumption that 7 € hom ( Hf;ll D;(Zy’ ), D1 (Z2%)).

Now we prove the converse, namely that every translation a has the form claimed in
the theorem. By induction on k£ we can assume that o has this form at least in the first
k — 1 components, so a(z) = (x1,...,251,0) + (T1, To(z1), .. ., Tp—1(z1, ..., xK_1), g(x))
for some map g : X — Z7*. We know that translations commute with the action of the
last structure group, so g(z1,...,2x) = g(x1,...,251,0) + 2. Now it suffices to show
that ¢' : (z1,...,25-1) — g(x1,...,2%-1,0) is in hom( ’.:11 Dy(Z3'), Dr—1(Z;¥)), i.e., that

)

for every ¢ € C"(T[, Di(Zg')) we have g'oc € C"(Dp_1(Z3*)). Let c* be the cube
in C"(ITL, D;(Zg)) defined by c*(v) = (c(v),0%) for v € [n], and consider the map
(c*,a0c*);. On one hand, by [7, Lemma 3.2.32] this map is a cube (since « is a trans-
lation), and on the other hand, by the above inductive expression of «, this map equals
(c*,c*)1 4 (0,¢)1 + (0,¢”)1 for some cube ¢’ = (cf,...,c;_;,0%) € C*([;L, Di(Z%)),
and where ¢”(v) = (0“,...,0% g oc(v)). Then (0,¢"); is in C"*Y(]L, Di(Z31)),
since it is the combination of cubes (¢*, aoc*); — (c*,¢*); — (0,¢);. Hence (0,¢' oc); €
C"*(Dy(Z5*)) and therefore ¢’ oc € C"(Dy—1(Z2*)) by [7, Lemma 2.2.19], as required. [

Remark 5.10. Combining Theorem [5.9 with Theorem [I.10] we refine the description of
the k-th Host-Kra factor for & < p, in that the Fy-action is given by a homomorphism 7
from I to the group ©(X) with the above explicit description. It would be interesting to
examine such homomorphisms further, possibly to refine the description even more using

other available properties (e.g. full ergodicity). This goes beyond our aims in this paper.

5.2. k-step p-homogeneous nilspace systems as Abramov systems for k£ < p+ 1.

Given a measure preserving G-system (X, G), a function f : X — Cin L>*(X) and g € G,

the corresponding multiplicative derivative of f is the function A, f(z) := f(g-z)f(z) in
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L*>*(X). We recall the notion of Abramov systems from [2 Definition 1.13], named after
Leonid M. Abramov, who studied this type of systems in the setting of Z-actions [I].

Definition 5.11 (Abramov system). Let (X, G) be a G-system for a countable discrete
agelian group G, and let k& > 0 be an integer. We say that ¢ € L*(X) is a phase
polynomial of degree < k if for all g1,...,gry1 € G we have Ay --- Ay f = 1 almost
surely on X. We say that X is an Abramov system of order < k if the linear span of the
phase polynomials of degree < k is dense in L*(X).

It is proved in [2, Theorem 1.19] that for every ergodic F¥-system X, the k-th Host-Kra
factor of this system (denoted Z_41(X) in [2]) is an Abramov system of order < k for
k < p. In this subsection we prove Theorem [I.12] establishing that the k-th Host—Kra
factor is Abramov also in the two new cases £k = p and k£ = p+ 1. To this end, we shall
first reduce the problem to a question about nilspace systems.

Recall that every compact nilspace X has a compact metric topology, relative to which
every translation in ©(X) is a homeomorphism on X. Thus for every discrete countable
group G acting on X by translations, the nilspace system (X,(G) can be treated as a
topological dynamical system. It is then natural to introduce the following topological
variant of Abramov systems. Given a metric space X, let C'(X,C) denote the algebra of

complex-valued continuous functions on X (a unital *-algebra) with the uniform norm.

Definition 5.12 (Topological Abramov systems). Let X be a compact metric space and
let G be a group acting by homeomorphisms on X. A continuous phase polynomial of
degree < k on X is a function ¢ € C(X,C) such that Ay --- Ay, ¢(x) = 1 for all
g1y, gk+1 € G, x € X. We say that (X, G) is topological Abramov of order < k if the
algebra generated by the continuous phase polynomials of degree < k is dense in C'(X, C).

By standard density arguments it is readily shown that if 1 is a Borel probability measure
on the compact metric space X and (X, G) is a topological Abramov system of order < k
then, provided G acts by transformations preserving u, we have that (X, G) is Abramov
of order < k as a measure-preserving system. Our approach to Question is to study
the question of when a nilspace system (X, G) is a topological Abramov system. To this
end, one of the main steps in this subsection consists in reformulating the topological

Abramov property of a nilspace system (X, G) as the following property of X.

Definition 5.13 (Sub-abelian compact nilspace). A compact nilspace X is sub-abelian of
order < k if there exists a compact (second-countable) abelian group nilspace Y of step

< k and an injective continuous morphism ¢ : X — Y.

Here recall that an abelian group nilspace is a group nilspace (G, G,.) where G is abelian,
and that a group nilspace (G, G,) is of step < k if and only if the filtration G, has degree

< k. The above-mentioned reformulation of Question [I.11] consists in the following result.
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Proposition 5.14. Let X be a k-step compact nilspace, and let G be a countable discrete
abelian group acting on X wvia a homomorphism ¢ : G — O(X). If X is sub-abelian of
order < k, then (X,G) is topological Abramov of order < k. Conversely, if (X,G) is
topological Abramov of order < k and fully ergodic, then X is sub-abelian of order < k.

To prove this we shall use the following couple of lemmas. The first one is just a convenient

reformulation of the sub-abelian property.

Lemma 5.15. A compact nilspace X is sub-abelian of order < k if and only if there is

an injective continuous morphism ¢ : X — Dy (TV).

Proof. The backward implication is clear. For the forward implication, suppose that Z
is a compact abelian group with a filtration Z, of degree < k and that the associated
group nilspace Y admits a continuous injective morphism. Then it suffices to show that
there is a continuous injective morphism ¢’ : Y — Dy (T"). By second-countability of
Z, the dual group 7 is countable, so we can list its elements as x; for « € N and then
define a map ¢’ : Z — TN, x + (xi(x))ien. From the properties of characters it follows
that ¢’ is continuous and injective. We claim that ¢ € hom(Y,Dy(TY)). To see this
it suffices to show that each y € Z is in hom(Y, Dy(T)) (since Dy(TV) is isomorphic to
the product nilspace of countably many copies of Dy(T)). But (Z, Z,) being of step < k
implies that for any (k+1)-cube c on this nilspace, the Gray-code alternating sum o1(c)
is 0 (see [7, Proposition 2.2.25]). Since x commutes with the operations in this sum, we

have o441(xoc) =0in T, so y oc € C*™(D,(T)). This proves that y is a morphism. [J

The second lemma uses full ergodicity to upgrade any continuous polynomial phase to a

nilspace morphism.

Lemma 5.16. Let X be a compact k-step nilspace and let G be a countable discrete abelian
group such that (X, G) is fully ergodic. Let f : X — C be a continuous polynomial phase
of degree < k. Then there is a continuous morphism ¢ € hom (X, Dk(T)) such that

f(z) = e(p(x)) for all x € X.

Proof. The phase polynomial property with g; = - - - = gx11 = idg implies that | f :1:)|2kJrl =
1 for all z € X, so there is a continuous function ¢ : X — T such that f(z) = e(¢(z)), and
it follows that for all gi,...,gx4+1 € G, the additive derivative Vg ---V,  é(x) equals
0 € T for every x € X. We shall deduce from this that ¢ € hom (X, Dy(T)).

We claim that for every § > 0 the map ¢ is a d-quasimorphism X — D (T), in the sense
that for every ¢ € C*™(X) there exists ¢/ € C**1(Dy(T)) such that |¢poc(v) — c/(v)|r < 6
for all v € [k+1] (see [8, Definition 2.8.1]), where |z|r denotes as usual the distance from
z € T to the nearest integer. To prove the claim, given any ¢ € C**(X), let By /(c) be

the open ball of center ¢ and radius ¢’ in the £ norm in C*™(X). By unique ergodicity
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of the action of C*™(G) on CF(X), if we fix any € X and let ¢y € C*™(X) be the
constant cube with value x, then the orbit of ¢y under the action of C*¥™(G) is dense. In
particular there exists ¢ € C*™(G) such that & - ¢y € By/(c). Choosing ¢’ small enough,
this implies |p(c(v)) — @(C - co(v))|r < 0 for all v € [k + 1]. Now note that the phase
polynomial property of ¢ implies that ¢ o(¢ - ¢g) € C¥1(Dy(T)). This proves our claim.
By [8, Theorem 2.8.2], there is a continuous morphism ¢5 : X — Dg(T) such that
|p(z) — ¢s(z)|r < € for every z € X, where €(0) — 0 as 6 — 0. Applying this for
each ¢ in the sequence (d, := 1/n),en, We obtain a sequence of continuous morphisms
¢n + X = Dy(T) such that sup,cp |pn(z) — ¢(z)|r — 0 as n — oco. By the compactness

(hence closure) of each cube set C"(X), we deduce that ¢ is a morphism. O

Proof of Proposition[5.1] Suppose that X is sub-abelian of order < k and let ¢ : X —
Di(TY) be an injective morphism. For each i € N let m; : Dp(TY) — Di(T) be the
projection to the i-th coordinate. Then for every ¢ and every character y € T, the
function yomo¢ : X — C is in C(X,C), and the morphism property of ¢ implies that
this function is a phase polynomial on (X, G). Moreover, the injectivity of ¢ implies that
the set of functions S = {xomo¢ : i € N, x € ﬁ‘} separates the points of X. By the
Stone-Weierstrass theorem [5, Ch. 6, Theorem 10], the unital *-algebra generated by S is
dense in C'(X,C) and so (X, G) is topological Abramov of order < k.

To prove the claim in the converse direction, suppose that (X,G) is topological
Abramov of order < k. Since X is a compact metric space, the space C'(X,C) is sep-
arable, so there is a sequence (h;);eny € C(X, C) that is dense in C(X, C). For each i € N
and each n € N, there is then a finite combination of continuous phase polynomials on
X that is within distance 1/n of h; in C(X,C). We thus obtain a countable collection
(fj)jen of phase polynomials whose linear span is dense in C'(X,C). By Lemma m,
for every j there is a continuous morphism ¢; : X — Dy (T) such that f; = eo¢,. Let
¢ : X — Di(TY) be the continuous morphism z (qu(x))jeN. It remains only to see that
¢ is injective. This is equivalent to the injectivity of the map F : X — CN, z — (f;(x));en-
The latter injectivity follows from the density of the linear span of (f;);jen. Indeed, sup-
pose for a contradiction that there exist  # y in X satisfying F'(z) = F(y). Then every
linear combination of functions f; has the same value on x and y. By Urysohn’s lemma
there is a continuous real-valued function f on X equal to 1 on a closed neighbourhood
U of z and equal to 0 on a closed neighbourhood V' of y with V NU = (). Then there is a
linear combination f’ of the f; that is within € of f in C(X, C) and therefore f'(z) > 1—¢
and f'(y) < e, which contradicts f'(z) = f'(y) if e < 1/2. O

Equipped with Proposition [5.14] we can now prove Theorem by showing that the

nilspaces involved in the theorem are sub-abelian. For the case k = p+ 1 of the theorem,
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we shall use the following additional small lemma, which tells us that the sub-abelian

property is stable under taking inverse limits.

Lemma 5.17. Suppose that a compact nilspace X is the inverse limit of compact nilspaces
that are all sub-abelian of order < k. Then X is sub-abelian of order < k.

Proof. By assumption X is the inverse limit of a strict inverse system of compact nilspaces
X;, © € N, where each X; is sub-abelian. For every ¢ € N let ¢; : X — X, be the i-th
limit map (thus ¢; is a nilspace fibration). For any fixed i, let (¢;;);en be a sequence
of continuous morphisms X — Dy (T) such that the morphism ¢; : X — Dy(TV),  —
(¢i.;(2))jen is injective. Let o : N — N? be a bijection and let ¢ : X — T be the map
T = (Do(n),0(n)s )nen- Since the limits maps 1; separate the points of X and for each ¢ the
maps ¢;;, j € N separate the points of X;, we deduce that ¢ is injective. U

We can now prove the main result of this section.

Proof of Theorem[1.13 By Theoremthe k-th Host-Kra factor of an ergodic ;) -system
is isomorphic (as a measure-preserving G-system) to a p-homogeneous k-step nilspace
system (X, IF;’) For k£ < p, by Theorem the nilspace X is a k-step abelian group
nilspace, so it is sub-abelian. Hence, by Proposition , the nilspace system (X, )
is topological Abramov of order < k as required. For k = p + 1, note first that by the
inverse limit theorem for compact nilspaces, and Lemma X is an inverse limit of p-
homogeneous k-step CFR nilspaces X;, 7 € N. By Proposition , each X; is sub-abelian.
Then X is sub-abelian by Lemma [5.17] By Proposition [5.14] the result follows. U

Given the above results, a plausible way to answer Question for general k£ may be to
answer the following more specific question purely about p-homogeneous nilspaces, which

also has the advantage of reducing the problem to a question concerning finite structures.
Question 5.18. Is every finite p-homogeneous k-step nilspace sub-abelian of order < k?

Our affirmative answer for k& = p + 1 relied on Proposition 4.10, which in turn relies on
technical results including Proposition Generalizing these results to larger values of
k > p did not seem to be a simple task (see Remark , and we do not pursue this
approach to Question further in this paper.

6. REGULARITY AND INVERSE THEOREMS FOR GOWERS NORMS IN CHARACTERISTIC p

Recall that there are countably many isomorphism classes of CFR nilspaces (see [6] or [8]
Theorem 2.6.1]). This enables us to define a notion of complexity for CFR k-step nilspaces
as a bijection from N to the set of isomorphism classes of such nilspaces. Throughout
this section, we assume that some (any) such notion of complexity has been fixed. Thus

for each k we have fixed a sequence (Y (i));en of k-step CFR nilspaces such that for every
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k-step CFR nilspace Y there is ¢ such that Y is isomorphic (as a compact nilspace) to Y ();
we then write Comp(Y) < m to mean that i < m. We shall also assume that some (any)
compatible metric d; has been fixed on each nilspace Y(i). This fixes a meaning for the
notion of balanced morphism into Y (i) for each ¢, using Remark [2.2]

Let us also recall the notion of nilspace polynomials from [13], which constitute a
general class of functions usable for inverse theorems for Gowers norms in various settings,

and let us specify the special case of this notion in the characteristic-p setting.

Definition 6.1 (Nilspace polynomials). Let X be a compact nilspace. A function f :
X — C is a nilspace polynomial of degree k if f = F o¢ where ¢ : X — Y is a continuous
morphism, Y is a k-step CFR nilspace, and F' is continuous. If d is a compatible metric
on Y, then we say that the nilspace polynomial F o ¢ is b-balanced (with respect to d) if
the morphism ¢ is b-balanced (using the metrics induced by d as per Remark . For a

prime p, we say F o¢ is a p-homogeneous nilspace polynomial if Y is p-homogeneous.

Having fixed a complexity notion (Y (i));en as above, we say that a nilspace polynomial f
of degree k on X has complexity at most m, denoted Comp(f) < m, if f = F o¢ where
¢ : X — Y(i) for some i < m and F has Lipschitz constant < m (relative to the metric d;
that we have fixed on Y(i)).

Our main aim in this section is to deduce the Tao-Ziegler inverse theorem from [38], by
combining the results on p-homogeneous nilspaces in the present paper with the following

(special case of the) general inverse theorem [13, Theorem 5.2].

Theorem 6.2. Let k € N, and let b : Ryg — Ry be an arbitrary function. For every
d € (0,1] there is M > 0 such that for every CFR coset nilspace X, and every 1-bounded
Borel function f : X — C such that ||f|lge+1 > 6, for some m < M there is a b(m)-
balanced 1-bounded nilspace-polynomial F o¢ of degree k and complexity at most m such
that (f,Fog¢) > 62" /2.

To recall the Tao—Ziegler inverse theorem, we first recall from [38] the notion of a (non-

classical) polynomial on a vector space Fy.

Definition 6.3 (Polynomials). Let & > 0 be an integer, and let Z be an abelian group.
A function P : F} — Z is said to be a polynomial of degree < k if

Vhl,...,hk+1,$€FZ, Ahl...Ahk_HP(.CE):O,
where A, P(z) := P(xz+ h) — P(z) is the additive derivative of P in the direction h. The
space of polynomials of degree < k is denoted by poly,(Fy — 7).

We now state the inverse theorem for vector spaces over F that we shall prove, which
implies the Tao-Ziegler inverse theorem (stated as Conjecture 1.10 in [38]). Recall that
for N € N we denote by % - Zy the subgroup of T isomorphic to Zy.
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Theorem 6.4. Let 6 > 0, let k > 0, let p be a prime, and let r = L%j + 1. Then there
exists € = g5 pp > 0 such that for every 1-bounded function f : ;) — C with || f[|ye > 9,
there exists P € poly, (F) — # + Zyr) such that |Egery f(z)e(=P(x))| > €.

To prove this we first establish the following fact, which uses Theorem to describe

p-homogeneous nilspace polynomials in terms of phase polynomials on vector spaces F}.

Lemma 6.5. For every prime p and k € N, there is an increasing function D : N — N
with the following property. Let f be a 1-bounded p-homogeneous nilspace polynomial of
degree k and complezity at most m on F. Then for some R < D(m), for each i € [R]
there is \; € C, |Ni| < 1, and P; € poly,(Fy — # - Lyr), where r = Lffﬂ + 1, such that
f=>F NeoP,.

Proof. We have f = Fo¢ where ¢ : F) — X is a morphism to a k-step p-homogeneous
finite nilspace X, and F' is 1-bounded. By Theorem [I.7] there is a fibration ¢ : Y — X
where Y = []}_, ko> Where ay € Z for £ € [k], and a morphism g : Dy(Z;) — Y, such
that ¢ = ¢ og. Letting F' := Fot : Y — C, we have f = F'og. By Definition [1.6]

we know that Y is a direct product of filtered cyclic groups Z each of which can
p

| E=£ 410
be isomorphically embedded in Z,-. Indeed, for any a < r we c;n1 embed Zya — Z, via
the monomorphism 4, : j = p"~%j. Then, letting p, : Z,r — Z,. be the map that takes
every element of the form p"~“j to j and the rest to 0, it is clear that 7, 0i, = idz.. Let
R=R(Y) := Zlgzl ag, leti:Y — Uﬁl be the product of these monomorphisms, and let
e Zfﬁ — Y be the corresponding product of the projections. Then 7w o7 = idy, and 7 is a
morphism. Thus, letting F” := F' o and ¢ := i og, we have that ¢ € hom(D; (ZZ),L{&),
F":Uf — C,and F'op = f.

By classical Fourier analysis on the group ZJ., we have F"(t) = dezﬁr ]/77’(5)6(5 - 1)
where £ -t is the standard T-valued non-degenerate symmetric bilinear form on the finite
abelian group szi. Since Zﬁr is a power of Z,r, the form ¢ -t takes values in the subgroup

z% + Zy C T. We therefore have f(x) = > .z Ace(€ - o(x)), where the coefficients

Ae = Jaz (&) have modulus at most 1.

To complete the proof it now suffices to show that each function x — £ - ¢(x) is in
poly, (Fy — z% + Zy). We have ¢(z) = (¢1(x),...,¢r(z)), where it follows from the
definitions that each map ¢; is a morphism D; (ZZ) — Uy 1. It then follows from standard
properties of such morphisms that ¢; € poly, (]F;l — Zy) for each i, and the result then
follows from the group properties of poly, (F, — Z, ). The proof is now completed by

setting D(m) := max{|Z§?(Y)| : CFR p-homogeneous nilspace Y, Comp(Y) < m}. O

We can now prove the inverse theorem.

Proof of Theorem[6.J]. We apply Theorem [6.2] with the function b to be fixed later. We
thus obtain a nilspace polynomial f, := Fo¢ such that (f, f,) > 6% /2.
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We claim that, if b decreases sufficiently fast as a function of m, then the nilspace
polynomial f; is p-homogeneous. To see this, let us choose b in Theorem so that
for each m we have 0 < b(m) < min{b’Y(i)m : 1 < m}, where b’Y(,)’p is the constant
given by Theorem applied to the CFR nilspace Y (i) in our complexity notion (thus
the minimum here is indeed positive). Then we conclude by Theorem that f is a
p-homogeneous nilspace polynomial of degree k and complexity at most m < M. By
Lemma (6.5 we then have f,(z) = 3.7, Me(P;(z)) where R < D(M) for D the function
provided by that lemma (thus R is bounded above depending only on 4, k, p), and for
each i we have |\;| < 1 and P; € poly(F} — # - Zyr). Hence, for some i € [R] we have
[(f,e(P,))] > 6" /(2D(M)). Letting € = 6" /(2D(M)), the result follows. O

We can also establish the special case for £ < p in terms of classical phase polynomials,

as mentioned at the end of the introduction.

Theorem 6.6. Let 6 > 0, let p be a prime, and let 0 < k < p. Then there exists
€ = ¢eskp > 0 such that for every 1-bounded function f : ¥y — C with || f|lys+1 > 0, there
exists a classical polynomial P € poly(Fy — F,) such that [Ezepn f(x)e(—P(z))] > €.

Proof. The argument is the same as the proof of Theorem [6.4] except that instead of using
Theorem in the proof of Lemma [6.5] we use Proposition [4.7] O

We finish by noting that an application of Theorem similar to the one above yields

the following regularity result specific to the characteristic-p setting.

Theorem 6.7. Let k € N and let b: Rog x N — R be a function decreasing sufficiently
fast in the second variable. For every € > 0 there exists N = N(e,b) > 0 such that the
following holds. For every function f : F} — C with |f| < 1, there is a decomposition
f=fs+ fe+ fr and number m < N such that the following properties hold:

(i) fs is a b(e,m)-balanced p-homogeneous nilspace polynomial of degree k, |fs] < 1,
Comp(fs) < m,
(i) [[fellr <€,

() [|felloser < 0(e,m), [fe] <1 and max{[(fr, f)l, [(frs fe)|} < ble, m).

This follows from the general regularity result [I3], Theorem 1.5], by adding the assumption
that for every € > 0 and m € N we have b(e,m) < min{bg((i)p i < m}, where b’Y( )p

)

is the constant given by Theorem [I.3] Then, again thanks to the latter theorem, we can

conclude that fs is p-homogeneous.

APPENDIX A. AUXILIARY RESULTS ON NILSPACES

In this first appendix we collect several results from general nilspace theory used in the
paper. Most of these results are new and seem of independent interest as additional tools

to work with nilspaces.
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Let us first fix some terminology and notation. By a box (or hyperrectangle) in Z'™,
for m € N, we mean as usual a Cartesian product of m intervals in Z. Given a base-
point a = (a(1),...,a(m)) € Z™ and a vector £ = ({(1),...,{(m)) € ZZ,, we denote the
corresponding box [[;",[a(i), a(i) + £(i)] C Z™ by By .

For m > 1 and n > 0, we shall work with cubes in C"(D;(Z™)) whose images are
contained in a given large box. It will then be useful to associate with each box in Z™ a
certain cube (in the nilspace sense) on D;(Z™) which covers the entire box, which we shall
call the associated mazimal cube. For example, given a box [a(1), a(1)+£(1)] x[a(2), a(2)+£(2)]
in Z?2, the corresponding maximal cube is the (£(1) + £(2))-dimensional cube on D;(Z?)
that maps v € [£(1) + £(2)] to a+ (v(1) + - -+ v(¢),0) + (0, 0(0) + 1) + - - - + V() + ().
Recall the notation e; for the elements of the standard basis of Z™, and the notation |{|
for the height £(1) + - -+ + £(m) of any £ € ZZ,

Definition A.1 (Maximal cube associated with a box). Let m € N, let a = (a(i))icjm] €
Z™ and ¢ € LZ,. The maximal cube associated with the box B, is the cube c,, €
CH(Dy(Z™)) defined as follows:

Voelll], caelv —a—i—Z( 1+Zf +U(2+Z_:€(¢))+...+U(Z£(i)))>e]

Maximal cubes will help us to understand when a morphism defined on a box in Z™ can
be extended to a morphism on all of D;(Z™). To this end we introduce the following

definition.

Definition A.2. Let m € N, let a € Z™ and ¢ € ZY,, and let X be a nilspace. Then
homy ¢(X) := {f : Bay — X : focae € CI(X)}.

Remark A.3. In the sequel, if we have a function f : S — X for some S C Z™ and there
exists a € Z™ and ( € ZY; such that B,, C S, we may abuse the notation by writing
f € hom, ((X), by which we mean that f|p,, € hom,(X).

To treat the above-mentioned extension problem, we begin with the following observation.

Lemma A.4. Let X be a nilspace, let m € N, and let B, be a box in Z™. Suppose that
f € hom, ((X). Then for anyn >0 and any g € C"(D1(Z™)) such that Im(g) C B, we
have fog e C"(X).

Proof. Let x,yy,...,y, € Z™ be the components of g, thus g(v) = z4+v(1) y1+- - - +0(n) Yn.
It suffices to prove that g = ¢, 0h for some discrete-cube morphism b : [n] — [|¢]]. We
shall explain in detail how the first /(1) coordinates of h can be defined in order to satisfy
this last equality (the argument is the same for each interval [1 + S7-0 £(i), >>7_, £(i)] of

coordinates of h, which will correspond to the j-th coordinate of g).
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The first coordinate of g equals z(1) + y;(D)v(1) + - -+ + y,(Dv(n). Note that x(1) €
la(1), a(1) + £(1)] and that > " |Jy:(1)] < £(1) (as otherwise it is easy to check that the
image of g would not lie in B,,). Now, for simplicity of the notation, assume that the
coordinates (1), ...,y (1) are all strictly positive, the coordinates v, +1(1), ..., Yy 4,(1)
are all strictly negative and y;, y4,41(1),...,yn(1) are all zero (the general argument is
similar, modulo taking care of the actual positions of the positive, negative, and zero
coordinates, but tracking this only adds difficulty to the reading of the proof).

We start by defining the first Y, |y;(1)] < £(1) coordinates of the discrete-cube
morphism h. We take these to be

(V1o ey U1, U9, ooy Voo Uy ey Uy L= Uity e oy L= Vg 1y e e oy L= Uy e o vy L — Uty gy )
———— N——— ~— ~ / ~ ”
y1(1) times  y2(1) times ye, (1) times lye, (1)] times |y, +¢5 (1)] times

Now we just have to define the next £(1)—> ", |y;(1)| coordinates of h (and thus we would
have defined in total the first £(1) coordinates of h). Note that x(1) > a(1) —i-zf:;til lyi(1)],
as otherwise it is again easy to check that the image of g would not lie in B, ,. Similarly
we have that x(1) < a(1) + £(1) — 2:1:1 lyi(1)|. Hence, we define the next £(1) — > ", |y:(1)]

coordinates of h as

(17 (W= =EL Dl g1)=52iL lya(1)=2(1)+a(1)y

It is now seen by straightforward summation that the first coordinate of ¢ is thus equal

to the first coordinate of ¢, oh. The result follows. O

Lemma A.5 (Corners of a box). Let X be a nilspace, let B,y be a box in Z™, and let
f i Bag\{a+ 1} — X be a map such that for every j € [m] with {(j) > 0 we have
f €homg . (X) (recall Remark here). Then foc,, € Corl(X).

Here “Cor™(X)” denotes the space of n-corners on X (see [8, Lemma 2.1.12]).

Proof. We show that all lower faces of focay: [|]] \ {11} — X are cubes. For any u €
[|€| ]7 let (bu : II|£| _1]] — [[ MH] be the map (Ub s 7U\Z|—1> = (Ula ey Uy—1, 07 Uy - - 7U|€|—1)'
Thus ¢ 0 ¢y = Car—e,,, Where j(u) € [m] is such that u € [1 + Z{S‘l’*l 0(1), ji“l’ 0(i)).
Thus focag0¢, € C7HX). O

We shall now derive some useful corollaries.

Corollary A.6. Let X and Y be nilspaces, and let ¢p : X — Y be a fibration. Let
g € hom(Dy(Z™),Y), let Boy be a box in Z™, and let f € hom,(X) satisfy o f = g|z, ,-
Then there is g' € hom(D1(Z™),X) such that ¢'|p,, = f and Yog = g.

Proof. Recall that by definition of fibrations, given any corner ¢’ € Cor™(X) and any cube
q € C"(Y) such that 1 oc’ = g|p,pam, there exists ¢ € C™(X) such that ¢y oc = gq.
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The idea of the proof is to extend the definition of f point by point in an inductive
process, defining values of f at new points in Z™ of the form a + (¢(1) + 1,ta, ..., t,,) for
varying t;, in order to extend f eventually to the whole greater box B, ¢1¢, (thus we have
increased the first coordinate of ¢ by 1) while ensuring that f € hom, i, (X). For the
induction, we can use the lexicographic order < on {{(1) 4+ 1} X 1‘[;7;2[0, ()] (noting that
if v(i) < w(i) for all 7 and v # w then v < w). We illustrate the process in the case m = 2

and B(op),1,2)- The points where f is defined initially are

(0,2) (1,2)
o—

(0,1) (1,1)

0,0 1,0
(0,0) (1,0)

and we will assign new values to the points (2,0),(2,1) and (2,2) (in that order).

The base case for the induction corresponds to ty = --- = t,, = 0. First we want to

prove that foc, y(1)41,0,..0 o114 18 in Corg(l)H(X). By Lemma |A.5| it is enough to
0 € Cé(l)(X). AS ¢4 (y(1),0,..0) € Ce(l)(Dl(Zm)) and its image lies
in B, by Lemmathe result follows in this case. Furthermore, by assumption we have
Q/)OfOCa,(£(1)+1,0,...,0)(1}) = goca,(z(l)ﬂ,o,,..,o)(v) for all v # 16(1)“7 and 90Ca(0(1)+10,..0) €
Cé(l)H(X). As 1 is a fibration, we can complete the corner (i.e. assign a value to f(a +
(€1) + 1)er) making foc, 41)11), @ cube) in such a way that (¢ o f)(a + (€(1) + L)er) =
gla+ (€(1) + 1)ey). In our example, we would thus assign a value to (2,0) and now the

check that foc, 1)

geeey

points where f is defined are the following:

(0,2) (1,2)
¢ —

(0,1) (1,1)
9

0,0 1,0 2,0
.( ) ‘( ) .( )

For the general case, suppose that we want to assign the value of f(a+(¢(1)+1,t2,...,tm)).

By induction, for all (¢(1) + 1,t,,...,t.) < (¢) + 1,ts,...,t,) we have assigned a
1 m oy

value to f(a+ (€01) + 1,th,... 1)) so that foc, g1 € CTHFERE(X) and

(0 Ofoca,(é(1)+1,t’2,...,t;n) = 9OCq (e(1) 41,8, t0,) Now we claim that fOCa,(€(1)+1,t2,...,tm)<v> for

ve [a)+14+ 7, 6]\ {1WHFEE 4 in an element of Cor'WHH+EE2 4 (X)), In or-

der to prove this, we will rely again on Lemma To apply it we need to check two



58 PABLO CANDELA, DIEGO GONZALEZ-SANCHEZ, AND BALAZS SZEGEDY

tontm) € C!M+ZE24(X) (corresponding to
tortm) € CU+EE 6 (X) and its image is contained in By,
by Lemma [A.4] the result follows in this case. Now let j > 2. We need to prove that
J0Ca (0(1) 11t ) —e; € Ct+ELa (X). But this case follows by induction hypothesis as
() + 1,te, ... ty) —e; < (1) + 1,ta, ... ).

In our example let us assume that we are trying to assign a value to f(2,1) (in red in

different cases. First, we need that foc, 1),

subtracting e1). As ¢, 1)

the diagram). The previous paragraph says that first we have to check that focq 2,0
and foc() 1) are in C*(X). The images of c() (2.0) and c() 1.1y are represented in

purple and green respectively.

(0,2) (1,2) (0,2) (1,2)
2,1 0,1 1,1 2,1
o (0.1) 10 J2n
(2,0)
o ° O—O0—o

From the diagram we see that for the green cube we have to use our initial assumption
and an application of Lemma and for the purple one the induction hypothesis. We
also have 1 OfOCa,(z(1)+1,t2,...,tm)(v) = 9OCa,(£(1)+1,t2,...,tm)(U) for all v # 1A+ and
9O Cae(1)41t2rtm) € A+ 5 (V) (by construction). Thus, using that t is a fibra-
tion, we can complete the corner f oc, y(1)414,,...4,,) I Such a way that foc, y1)11,,,..0,) €
)+, (X) and ¢ o f O Ca (1) +1tantrm) = 9 © Cay(6(1)41tzrrtm)- The value at the top-
vertex of this completion is the value that we assign to f(a+ (€(1) + 1,t2, ..., tm)).

At the end of this process, we obtain f : B, ., — X such that foc e, € CH‘Z'(X).
It is fairly easy to see now that we can repeat this process in every direction (i.e. thus
adding e; to ¢, for any j € [m]), and thus extend f to a map f: Bar,..1y — X such
that fOCa,(L,...,L) € C™H(X), for any L € N. Moreover, if we reflect f defining f' :
B(0,a(2)....a(m)),(L,...L) — X as f'(v) = f(a() + L —v(1),v(2), ..., v(m)), then extend this by
e; as above, and then reflect again, we obtain an extension of f to B,_¢, (r1,..1). Arguing
similarly and iteratively in each direction, we see that f can be extended to any cube of
size [~ L, L™ for any sufficiently large L.'> Hence, we can define inductively the extension
of f to all Z™. This extension is our morphism ¢’ € hom(D;(Z™), X). To check that this
is indeed a morphism, we just have to note that given any cube ¢ € C"(D;(Z™)), we have
Im(g) C [~L, L]™ for some L large enough, so the result follows using Lemma[A.4 O

The following consequence is the special case of Corollary with By, = [m].

15To be precise, we need L > maxe(1,....m}(|la(?)| + [€(i)]) as the result consists in enlarging the original

,,,,,

box B, ¢ and therefore L has to be large enough so that B, , C [-L, L]™.
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Corollary A.7. Let X and Y be nilspaces and let ¢ : X — Y be a fibration. Let g €
hom(Dy(Z™),Y), let ¢ € C™(X) for some m > 0, and suppose that ¢ oc = g|pmy. Then
there exists g' € hom(D1(Z™),X) such that ¢'|p,) = ¢ and Yog' = g.

Lemma A.8 (Corner completion of a box). Let X be a nilspace, let B,y be a box in Z™,
and let f: By \ {a+{} — X be a map such that for every j € [m] with £(j) > 0 we have
f € homgy_. (X). Then there exists an element v € X such that, extending f to all of
By by setting f(a+ ) =z, we have f € hom, ¢(X).

Proof. By Lemma we have that focay |, is a corner in Cor'z‘(X). Then by the
completion axiom for nilspaces there exists a completion of f oc, ¢, and then letting f(a+/)

be the top-vertex value of this completion, the result follows. O

Next we prove some useful results concerning coset nilspaces.

Lemma A.9. Let (G,G,) be a filtered group, let I' be a subgroup of G, and let X denote
the associated coset nilspace. For any n > 0, let c,¢’ € C"(X) satisfy c(v) = ¢/ (v) for all
v # 1", Then there ezists g € G,, such that gc(1™) = ¢'(17).

Proof. By definition of cubes on X, there exists ¢,¢' € C"(G,) such that ¢ = ¢I" and
¢/ = ¢'T. Then, considering ¢ and ¢ as functions on [n] \ {1}, we have that ¢ !¢/
is an n-corner on the group nilspace (I',I'y) where I'; := I' N G; for all @ > 0. Let
t € C"(T,) be a completion of g~'¢’. Then (since ¢ is I'-valued) we have gtI' = ' = c. As
(qt)(v) = ¢ (v) for all v # 1™, we know that ¢'(qt)~' € C"(G,) and that (¢'(qt)™)(v) =1
for all v # 1. Hence, by basic properties of Host—Kra cubes (see [7, Lemma 2.2.26]) we
have (¢'(qt)™')(1") € G,,. Setting g := (¢'(qt)~*)(1"), the result follows. O

We shall also use the following definitions.

Definition A.10 (Simplicial set). Let n € N be an integer. We say that a set S C Z%,
is a simplicial set if it has the following property: for any v € S and any w € Z%,, if
w(i) < (i) for all ¢ € [n], then w € S.

Definition A.11 (Simplicial corner). Let n € N and S C Z%, be a simplicial set. We say
that a vertex v ¢ S is a corner-vertex for S if for all w € Z2, \ {v} such that w(i) < v(i)

for all i € [n], we have w € S.

The following figure illustrates these two definitions, indicating in red an example of a

simplicial set in ZZ%,, and in blue its corner vertices.
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(0, 4)
°

(0, 3) (1, 3)
9

(0, 2) (1,2) (2,2)
® L ®

(0, 1) (1, 1) (2, 1) (3, 1)
[ @ @

(0, 0) (1,0) (2,0) (3,0) 4,0) (5,0)
[ L @ @ ®

With this, we can now prove the following result.

Lemma A.12 (Taylor coefficients). Let n > 0 be an integer, S C ZZ, a simplicial set,
and let w € Z%, be a corner of S. Let (G,G,) be a filtered group, let ' be a subgroup of
G, and let X denote the corresponding coset nilspace. Let f, f' € hom(Dy(Z"),X) satisfy
f(v) = f'(v) for allv € S. Then there exists g € G|y such that g(fv)f(v) = f'(v) for all
veSU{w}.

Proof. Let con,, € C(Dy(Z")) be the maximal cube associated with the box Bon .
Applying Lemmato foconwand f'ocgn ,, we obtain the value of g € G| It is readily
seen that v — g(fv) f(v) is in hom(D;(Z"),X) and satisfies the desired properties. O

Lemma A.13 (Completion of a simplicial set). Let X be a nilspace and let S be a simpli-
cial set included in a box Bon,y C Z". Let f : S — X be a function such that for any box
Bon g C S we have f € homgn 4(X). Then there ezists g € homgn o(X) such that gls = f.

Proof. This is a straightforward generalization of [7, Lemma 3.1.5] using Lemma . 0J

Recall by Definition m that hom *(X) := {f : [0,p — 1|™ — X : focomp-1m €
C™P=1(X)}. Next we prove Lemma [2.15, which we recall here for convenience.

Lemma A.14. Let X be a k-step nilspace and n > k+ 1. Let f :[0,p — 1]" — X satisfy

foope homI;H(X) for every p-face-map ¢ : [0,p—1]"*' — [0,p—1]". Then f € hom}(X).

Recall the notation the notation Cor***(X) for the set of (k+1)-corners on X. For v € Z",
let us recall also the notation supp(v) for the set of indices ¢ € [n] such that v(i) # 0.
Finally, let us call a function f": {v € [0,p — 1]" : |supp(v)| < n — 1} — X a p-corner of
dimension n on X if for every p-face-map ¢ : [0,p — 1]~ — [0,p — 1]™ that fixes some

coordinate equal to 0, we have fo¢ € hom;“l(X).



ON HIGHER-ORDER FOURIER ANALYSIS IN CHARACTERISTIC p 61

Proof. Let S := {v € [0,p — 1]F* : [supp(v)| < k} = U v € [0,p — 1]5+1 : v(@) = 0}.

i=1
We first claim that every p-corner f’ of dimension &£+ 1 on X has a unique completion,
that is, there is a unique f € hom';H(X) with f(v) = f'(v) for every v € S. To see the
existence of f, note that the set S (on which f is defined) is simplicial and f’ : S — X
satisfies the assumptions in Lemma so the existence of f follows from that lemma.
To see the uniqueness, consider first the cube ¢ € C*™(D;(Z*1)) defined by ¢(v) = v
(this just embeds [k+1] in [0,p—1]**1). Then f’ o ¢|g 1y qur+1y € Cor*(X) and therefore
it has a unique completion. It follows that the value f(1¥*1) is uniquely determined by
f'. Now we argue similarly for every remaining v € [0, p — 1]**!, showing inductively that

k+1

the determination of the values of f by f’ propagates to all of [0, p — 1]"*'. Suppose that

we have a simplicial set S’ C [0,p — 1]**! and a simplicial corner w of S’ (see Definitions

IA.10{and |A.11)). Furthermore, suppose that S’ D S and assume inductively that for every

v € 5, the value f(v) is uniquely determined by f’. We are going to prove that f(w) is
also uniquely determined by f’. Consider the maximal cube cqr+1 ) € clvl(p, (ZF+1)).
Then since f € hom’;“(X), we have focr+1 ) € Cl*l(X). As w() > 1 for all i € [k+1],
we have |w| > k + 1, so by uniqueness of completion f OC(0k+17w)(1|w|) = f(w) is uniquely
determined by the other values of the cube focqr+1,). But since these other values
correspond to points of S’, they are determined by f’, whence f(w) is also uniquely
determined by f’. This proves our claim.

Now, to prove the lemma, let f : [0,p — 1]* — X be a function such that for all
p-face-maps ¢ : [0,p — 1]**1 — [0,p — 1]® we have fo¢ € homfj“(X). We have to
prove that f € homj(X). Consider the map ¢ defined by ¢'(v) := f(v) for all v €
[0,p — 1]™ such that | supp(v)| < k. By Lemma[A.13| we can complete ¢’ to an element
g € homy(X). We claim that f = g. To prove this, we can argue by contradiction
using the claim in the previous paragraph. Indeed, suppose that for some w € [0,p — 1]"
we had f(w) # g(w), and let |supp(w)| be minimal with this property. By our initial
assumption on ¢', we have s := |supp(w)| > k + 1. Without loss of generality, suppose
that w = (w(1),...,w(s),0,...,0). Consider the p-face-map ¢ : [0,p — 1]**1 — [0, p — 1]",
(v(1), .., vE+1)) = (V(1), ..., v+ 1), wE+2),...,w(s),0,...,0). Then, if v € Ut v €
[0,p — 1] w(i) = 0}, we have |supp(¢(v))| < k, so by assumption fo@p(v) = gog(v).
But now both fo¢ and go¢ are elements in hom**!

P
we have fo@(v) = gop(v) for all v € [0,p — 1]*, so f(w) = g(w), a contradiction. [

(X), so by the previous paragraph

Let us recall the following useful construction in nilspace theory.

Definition A.15 (Fiber-product of nilspaces). Let Xj,X,, and X3 be nilspaces and let
Wy 2 X1 — X3 and 1y 1 Xy — X3 be fibrations. We define the fiber-product (or sub-direct
product) X; Xx, X3 to be the nilspace {(z1,x2) € X1 X Xo : ¢1(x1) = 1o(x2)} with cube
sets C™"(Xy X x5 Xg) := {c1 X cg € C"(X;) x C*"(X3) : ¥y 0cy = Yp0ca}.
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To see that this defines indeed a nilspace see [9, Lemma 4.2]. We leave it as an exercise
for the reader to check that the projections p; : X3 xx, Xo — X for i = 1,2 are fibrations,
and that if X; and X, are k-step, then so is X; xx, Xo.

Proposition A.16. Let X and Q) be k-step nilspaces and let @ : Q) — Xi_1 be a fibration.
Then p : Q Xx,_, X = Q 1is a degree-k extension whose structure group is the k-th

structure group of X.

Proof. Let us denote by Z the k-th structure group of X. First, let us define the action
of ZonY :=Q xx,_, X. Given (¢,x) € Y and z € Z, (¢,x) + 2z := (¢,x + z). To see that
this is well defined, note that m;_;(x) = m_1(z + 2) for all z € X and z € Z. The action
is free, because if (¢, z) = (¢, + z) then £ = x+ 2 and this implies that z = 0. The action
is also transitive over the fibers of p;. To see this, let (q1, 1), (¢2,22) € Y be such that
P1(Q1,$1) = p1(Q2,$2)- Then ¢; = ¢2 and 7Tk—1(l‘1) = @(%) = SO(Q2) = 7Tk—1($2)- Thus,
there exists z € Z such that 1 = x9+ 2, which implies that (¢, z1) = (g2, 22) +2. We also
need to prove that p; : C"(Y) — C"(Q) is a surjection, but this follows from the fact that
p1 is a fibration. Finally, we have to check that given two cubes (c1,d;), (c2,d2) € C"(Y)
such that p;o(cy,dy) = pyo(ce,ds), there exists f € C"(Dr(Z)) such that (c1,dy) =
(ca,d2) + f. Proceeding as before, for all v € [n]<x := {v € [n] : |[v| < k} we have
that there exists f(v) € Z such that dy(v) = d2(v) + f(v). Now consider the (unique)
extension of f to an element of C"(Dy(Z)). Thus, di(v) = (ds + f)(v) for all v € [n]<.
as X is k-step, this implies that for all v € [n] we have dy(v) = (dy + f)(v). Therefore
(c1,dy) = (co,da) + f. O

Proposition A.17. Let q : X — Y be a degree-k extension by an abelian group Z. Then

q is a fibration.

Proof. Let ¢ € C"(Y) be a cube and ¢’ € Cor"(X) be a corner such that goc’ = ¢ for
all v # 1™. By [7, Definition 3.3.13, (i)], let ¢* € C"(X) be such that goc* = ¢. Thus,
gocd = qoc* for all v # 1. As X is a bundle over Y, this means that ¢’ —c* takes
values in Z and by [7, Definition 3.3.13, (ii)] we know that ¢/ —c* € Cor"(Dy(Z)). Let
d € C"(Dr(Z)) be a completion of that corner. Then ¢* +d is a cube such that ¢* +d = c*
for all v # 1™ and go(c* +d) = c. O

Proposition A.18. Let X and X' be nilspaces such that p : X — X' is a degree-t extension
by an abelian group Z. Let p; : Xy — X} denote the induced morphism'® between the t-th

factors. Then p, defines a degree-t extension with structure group Z and X = X’ Xx; Xy

Proof. First, let us see that p; defines an abelian bundle with structure group Z. We
define the action of Z on X; by m(x) + z := m(x + z). Let us check that this is well-
defined. If m;(x) = m(y), then by definition of 7, (see [7]) there exists a cube ¢ € C*1(X)

16Sce [7, Definition 3.3.1.(i) and Proposition 3.3.2.]



ON HIGHER-ORDER FOURIER ANALYSIS IN CHARACTERISTIC p 63

such that c(1*!) = y and c(v) = z for all v # 1**1. Then, the cube c+z (adding =z
to all values c(v)) is an element of C'**(X). Thus m(z + 2z) = m(y + 2), so the action
is well-defined. To see that the action is free, note that if m(z) = m(z + z) then there
exists a (t + 1)-dimensional cube in X with value x at all vertices except 1°*1, where the
value will be  + 2. Therefore, as the constant cube with value z is in C**!(X), the map
[t + 1] — Z with value 0 at all vertices except 1'™! and value z at 1*"! would be a
cube on D;(Z). But this implies that z = 0. To see that this action of Z is transitive
on the fibers of p;, suppose that p;(m(x)) = pi(m(y)). Then m(p(z)) = m(p(y)) which
means that if we let ¢’ be the function such that ¢/(1**!) = p(y) and ¢'(v) = p(z) for
all v # 1+ then ¢ € C'"(X’). Now let ¢’ € Cor"™(X) be the corner such that
"(v) = z for all v € [t + 1] \ {1**'}. By Proposition p is a fibration, and as
poc” = ¢ for all v # 1**1 there exists a completion of ¢” such that (abusing a little the
notation) p(c”(1**1)) = p(y). Thus, as p is a degree-t extension by Z, this means that
(1Y) =y + 2. Thus, m(z) = m(y + 2) = m(y) + 2.

Now, let us check that p;, satisfies the conditions of 7, Definition 3.3.13]. The only

non-trivial part is to prove that for any m; oc; € C*(Xy),
{mocy € C"(Xy) : promocy =promoce} ={(moc))+d:de C'(D(Z))}.

Let m; 0ce be a cube in the set on the left side above (where, as usual, we assume that
c1,¢9 € C"(X)). Then mopoc; = mopocy. Now fix any v € [n]<;. Since mpopoc;(v) =
T opocy(v), there exists a cube ¢ € C"(X’) such that c(w) = p(ci(v)) for all w # 1¢+1
and (1) = p(cy(v)). By an argument similar as before (using that p is a fibration),
we conclude that there exists z(v) € Z such that m(ci(v)) = m(c2(v)) + 2(v). Now let
d € C"(Dy(Z)) be the (unique) cube such that d(v) = z(v) for all v € [n]<;. Then, we
have that both m; oc; and 7, oy +d are cubes in C"(X;) and that they coincide in the set
[n]<:. As X; is t-step, this implies that m; 0c; = m 0co +d. This proves that m; 0cy is in
the set on the right above. We leave the other inclusion for the reader.

To complete the proof, let us see that X is (nilspace) isomorphic to X' Xx; Xy Let
¢ : X = X' xx Xy be defined by  — (p(x), m(x)). We want to show that this is a nilspace
isomorphism. To prove that it is injective, suppose that (p(x),m(x)) = (p(y), m(y)).
Then, as p(z) = p(y), we have y = x + z for some z € Z. Likewise, as m(z) = m(y),
there exists ¢ € C"(X) such that ¢(1'!) = y = x + z and c(v) = z for all v # 17+,
This implies that ¢/, defined as ¢/(17') = 2 and ¢/(v) = 0 for all v # 1**! is an element
of C"*(Dy(Z)). Thus, z = 0. To prove the surjectivity, let (a,b) € X' xx; X;. Let = € X
be such that p(z) = a. Thus, m(a) = pi(b) = p(m(x)). As p; is a degree-t extension
by Z, there exists z € Z such that b = m(z) + z. Now it is straightforward to check
that p(z + z) = (a,b). Finally, we need to check that both ¢ and ¢! are morphisms.
As ¢ is clearly a morphism, let ¢; xc; € C"(X' xx; X;). Let ¢ € C"(X) be a cube
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such that poc = ¢;. Then, p;omoc = mopoc = m0c; = pyocy. As p; is a degree-t
extension, this means that there exists d € C"(D;(Z)) such that moc+d = cy. Thus,
o lo(c; X ¢g) = c+d € C"(X). O

We shall also use the following construction of an auxiliary nilspace.

Proposition A.19. Let Y be a k-step nilspace and let H < Zx(Y) be any subgroup. Let
us define the following relation on Y: for yi,yo € Y, we have y; ~ yo if and only if
11 = Yo + h for some h € H. Then the following holds:

(i) The relation ~ is an equivalence relation.
(i1) The setY :=Y | ~ together with the sets C"(Y) := {m.oc:c € C"(Y)} is a nilspace.
(ii1) Y is k-step, Zi(Y) = Zi(Y)/H and Yi—1 = Yi_y.

Proof. To prove (i), the only non-trivial part is the transitivity of ~. If y; ~ yo and
Y2 ~ y3 then y; = yo + h and yo = y3 + 1'. Thus, y; = y3 + (h + 1).

To prove (7i), note first that the composition and ergodicity axioms follows easily from
the definitions. To prove the completion axiom, let ¢’ € Cor™ (\?) for any n > 1. For every
v € [n]<g, let y(v) € Y be any element such that 7. (y(v)) = ¢/(v). Let ¢ : [n]<x — Y be
defined as ¢(v) = y(v) for all v € [n]<.

Case n < k+1: In this case, we have c defined in [n]\{1"}. Let F' be any lower face of
dimension n—1. As ¢ |p € C""1(Y) then there exists d € C"}(Y) such that ¢ | = 7. od.
Then, c¢|p : [n—1] — Y is a function such that 7. od(v) = 7. oc|p(v) for all v € [n—1].
Therefore, d — c|p : [n — 1] — H. Asn —1 < k we have that d — c|p € C" (Dy(H)).
Thus c|p =d — (d —c|r) € C"1(Y). As this holds for every lower face F, we have that
¢ € Cor"(Y) and if we complete it to an element of C"(Y) (abusing the notation, let us
denote by ¢ this completion), we have that m. oc is a completion of the corner ¢’.

Case n > k + 2: In this case, we have ¢ defined in [n]<;. By a similar argument as
before we can conclude that ¢ € hom([n]<g, Y) (seeing [n]<x as a simplicial cubespace).
Abusing the notation, let us denote again by c its (unique) completion in C"(Y) (using
simpicial completion [7, Lemma 3.1.5]). Let now F be a lower face of [n] of dimension
n — 1. Then ¢ |p = 7. od for some d € C"*(Y). Thus, 7. od(v) = n.oc|r(v) for all
v € [n — 1] <. Note that (c|r —d) : [n — 1]<x — H is a function that can be completed
to an element f € C" '(Dy(H)). Thus (d + f)(v) = c|r(v) for all v € [n — 1]<,. But
using that Y is k-step, we have that (d + f)(v) = ¢|p(v) for all v € [n — 1]. Therefore
m.od = m.oc|p = ¢ |p. To conclude, note that 7. oc is an element of C"(Y) that
completes the corner ¢’

Finally, let us prove (zii). First of all, to prove that Y is k-step, suppose that we have
T.oc, = m.ocy for all v # 1% where ci, ¢y € CFTH(Y). Let d : [k+ 1]\ {1¥*'} — H be

defined as d := ¢y — co. Abusing the notation, let us denote by d its unique completion
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in C*™(Dy(H)). Thus, ¢; = ¢y +d for all v # 1¥+! but Y is k-step, and therefore those
cubes must be equal. This implies that c;(1¥*1) = cy(1¥+1) 4 d(1**1) which in turns
means that 7. (c;(1¥71)) = 7o (co(1FF1)).

Now let us define ¢ : Yi1 — Yi_; as Tr—1(m~(y)) — me_1(y). We want to prove
that this is a nilspace isomorphism. First we need to prove that this is well-defined. Let
y1,72 € Y be such that m,_y (7 (y1)) = me_1(m(y2)). Then there exists a cube ¢ € C*(Y)
such that 7.(c(v)) = m(y;) for all v # 1% and 7.(c(1*)) = 7. (y2). Using that every
function f : [k] — H is an element of C*(D,(H)), we have that for some f € C*(Dy(H))
the function c¢+f such that (c+f)(v) = y; for all v # 1% and (c+f)(1¥) = ¥y, is an
element of C*(Y). Thus mx_1(v1) = Tr_1(y2)-

To prove that ¢ is injective, take two elements yi,yo € Y such that mp_1(y1) =
Te_1(y2). Thus there exists a cube ¢ € C¥(Y) such that c(v) = y; for all v # 1% and
c¢(1¥) = y. Then compose with 7. and conclude that m,_1(7(y1)) = mx_1(7~(y2)). The
fact that ¢ is surjective is trivial. To prove that ¢ is a morphism, let m,_;om.oc €
C”(\?k,l), where ¢ € C"(Y), be any cube. Then ¢pom,_qom.oc =m_j0c¢ € C"(Yy_q).
And to prove that ¢! is a morphism, for any ¢ € C"(Y) we have that ¢~ lom,_j0c =
Mk_1 0T OC E C"(\?k,l).

To conclude the proof, let us prove that Z;(Y) = Z,(Y)/H. First, let us define the
action of Zy(Y)/H over Y as (z + H,m.(y)) — m(y + 2). Let us check that this is
well-defined. Suppose that 7. (y1) = 7 (y2) and z; + H = 2o+ H. Then the first equality
implies that y; = y, + h for some h € H. Similarly, the second equality implies that
21 = 25+ R/ for some b’ € H. Thus, we have that 7.(y; + 21) = 7 (y2 + h + 20 + I') =
7~ (y2 + z2). To prove that the action is transitive, it is enough to prove that the fibers
over a single element are covered by the action of Zx(Y)/H. Suppose that we have
Tk—1(7(y1)) = Tr—1(7m~(y2)). We have proved earlier that ¢ was an isomorphism. Thus,
Tr-1(y1) = mr_1(y2) and there exists z € Zg(Y) such that y; = yo + 2. With this we
conclude that 7 (y1) = 7 (y2 + 2) = 7 (y2) + (2 + H). To conclude the proof, we need to
see that this action is free. Let 2+ H be such that 7.(y) = 7.(y) + (2 + H) = 7w (y + 2).
this implies that for some h € H we have that y = y 4+ z + h. But this is an equality in
Y, and as the action of Z(Y) is free, we have that z +h = 0. Therefore z+ H = H. O

Proposition A.20. Let Y,Y' and X be k-step nilspaces. Let o : Y — X and ) : Y — X
be fibrations. Then for every t < k we have that (Y xxY'); ~ Y, xx, Y.

Proof. We prove this by induction on k — ¢ for i € [k]. Note that it suffices to prove this
result for the case i = 1, as then the general result will follow from applying repeatedly
this case. Hence, let us prove that (Y xx Y')r—1 ~ Yi_1 xx,_, Y51

Let us define the map T : Y Xx Y' — Y1 Xx, , Yi_; as (y,y) — (7(y), 7(y')) where

7 denotes throughout this proof the projection to the k—1 factor of any nilspace. This map
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is easily seen to be a well-defined morphism. Let us see that it is indeed a fibration. Take
(d,d") € Cor™(Y xxY') and (c,c) € C"(Yy_1 xx,_, Yy_y) such that T o(d,d’) = (c, ()
for any v # 1™. As this means that mod = ¢ and mod = ¢’ for v # 1", abusing the
notation, let d and d’ be completions of ¢ and ¢ respectively. By definition ¢ od = ¢ od’
for all v # 1. Also, as pp_10c = 1hy_10c for every v € [n] this means that for every
v € [n] we have Topod = p,_10c = hp_10¢ = morpod. Thus, there exists a cube
h € C"(Dy(Zr(X))) such that pod = 1 od + h. But on the other hand we know that
pod =1 od for all v # 1". Thus the cube h must have zero value for every point except
maybe for v = 1". If n > k + 1, as X is k-step this means that h(1") = 0 and we are
done, as (d,d") € C"(Y xx Y') is a cube that lifts (¢, ). If n < k, let 2’ € Zx(Y’') be any
element such that v (z") = z where 1y is the k-th structure morphism of the fibration
¥ (and hence, it is surjective). Define b/ € C"(Dy(Zr(Y"))) as h'(v) = 0 for v # 1™ and
R'(1™) = 2'. Tt is then easy to see that (d,d' +h’) € C*(Y xx Y') is a cube that lifts (c,c’).

Now, in order to prove that (Y xx Y')x—1 ~ Yi_1 Xx,_, Y}_; note that it is enough
to see that Ty_; is injective. The reason is the following. We already know that T} :
(Y xx Y1 = Yiy XXy, Y., is a fibration. In particular, it is a surjective map. If in
addition it is injective, then it is invertible. Hence, for any cube ¢ € C"(Yg-1 xx,_, Y)_1)
let ¢/ € C"((Y xx Y')r_1) be such that Tp_;oc = c¢. As T}, is invertible we have that
T, oc=c € C*"((Y xx Y')g_1) and thus T} ", would be a morphism and the proof would
be completed.

Thus, let us see the injectivity of Ty_1. Let w(y1,y;) = 7(y2, y5) be any pair of elements
in (Y xxY’) such that Ty_1(7(y1,¥,)) = Te1(7(y2,95)). But now Ty_i(7(y1,¥})) =
(T (y1,97)) = 7(7w(y1), 7(yy)) = (w(v1), 7(y;) where the last equality follows from the
fact that Yj_1 xx,_, Y is already k — 1-step. By a similar argument with (ys,v}) we
conclude that (7w(y1),7(v;)) = (7(y2),7(yh)). But this by definition implies that there
exists a cube ¢ € C*(Y) such that c¢(v) = y; for all v # 1™ and ¢(1¥) = y, and a cube
¢’ € C*(Y’) such that ¢/(v) =y} for all v # 1™ and ¢(1¥) = y4. Hence the cube (c, ) is in
C*(Y xx Y’) which by definition means that 7(y1,v}) = 7(y2, ). O

APPENDIX B. AUXILIARY RESULTS ON p-HOMOGENEOUS NILSPACES

In this appendix we record some technical results and definitions that are used several
times in the paper.

Let X be a group nilspace associated with a filtered group (G, G,). To prove that a
function f : Dy(Z,) — X is a morphism, it suffices (see e.g. |7, Theorem 2.2.14]) to take
derivatives of f and check that the resulting functions take values in the correct subgroup
in the filtration. That is, it suffices to ensure that 0y, - - 0,4, f € Gy, 4.4, Where a; € Gy,
forall j =1,...,0. It is easy to see that it is enough to check this with a; = 1 for all 7,

so we can focus on computing 0% f and checking that it takes values in G;. Furthermore,
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it will actually suffice to consider the case G = Z with some filtration. The reason is
that, for more general groups GG, we will actually want to prove that some functions of
the form f(z) = ¢™® for g € G'; are morphisms, and taking derivatives of such functions
is equivalent to taking derivatives of m(x) over Z (relative to some filtration on Z).

To calculate such derivatives, let us think of f as a vector v € ZP, namely v =
(f(0), f(1),..., f(p—1)). Tt is then easy to check that the values of 9% f will be given by

the entries of the matrix Afgv where

-1 1 0
~1
A,y=10 0 -1 - 0 |. (14)
1 0 -~ 0 -1

The case p = 2 will always be treated separately, but typically it will be easier. For any
n € Z, let us denote by (n), the residue of n modulo p that lies in [p| = {1,2,...,p}. The

following concept will also be important in the arguments below.

Definition B.1. Let p be a prime. If p is odd, we call a vector v € ZP circular if there
exists ¢ € [p] such that v; = 0 and for all j € [E}], vty = —v_j),. If p = 2, we say

that a vector is circular if v1 = —wv,.
With this definition, let us prove the following result.

Proposition B.2. Let p be a prime, let v € ZP be a circular vector, and let A, € My ,(Z)
be as defined in (14)). Then Agflv 15 a circular vector such that all its coordinates are

multiples of p.

Proof. The case p = 2 follows from a simple calculation, so let us assume that p is odd.

It can be proved by induction that Aﬁ‘l has the following form:
Co) =) ) e ()
iy ) =) - =00

("o
Ayt = —(;‘;) () B G IR G

D o)

Denoting by (t) the residue of ¢ modulo p that lies in {0,...,p— 1}, we have (A271); ; =

(—1)U=s ((p’l ). To prove that all entries of AP~'v are multiples of p, just note that,

J=i)}
viewing every entry of A?~! modulo p, we get that if r := (j —4)% then (A271);; =

(—1)T(p;1) = (—1)T(p_1zgf:f;:::§p_r) — (_1)7«—(—12((71—_21)).::.(1—7») = 1 mod p. Hence, when we

multiply Ag_l by a circular vector and we view it modulo p, the sum is 0 (essentially

because the matrix (A9~1); ; = 1 mod p for all 7, j).
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To complete the proof, we need to show that Ag_lv is circular. Let us prove only that
there is some coordinate such that its value is 0 (the proof of the circularity is essentially
the same). As v is circular, suppose that v; = 0 and let j € [p] be the row such that
the term (—1)%1(2%11) is in the position i, i.e., (j — 1), = el We want to prove that
(AP~v); = 0 (indeed, this will be the centre of the circular vector AP~*v). The idea is

simple: we just write

p—1

AT _1 2 s * p_l
= (Yo S (2 Y
p—1
2 s * p_].
mzzl (j—i+m); P

and note that the first term cancels because v; = 0 and the other terms cancel pairwise,

by the identity (’:) = (RT_"T), the fact that v is circular, and the fact that (j—i); = ’%1. O

Corollary B.3. Let f : Di(Z,) — Z be a function. If f is circular (viewed as a vector),
then 0" f € pZ.

Next, let us recall from the definition of the group nilspaces Hi(p ) (fori > 1), consisting
of Z equipped with the filtration

. j—i—1
J pl- p—1 J+1Z 1f] Zl—l-l

By definition we take H(" := H.

Lemma B.4. Let n € N, let t = (t1,...,tn) € Z%,, and for j € [n] let mgf) €
hom(D;(Z), Hg))). Let g' : D1(Z™) — Z be defined by g'(x) = mg))(xl) mg) (xg) - -mgi) ().
Then ¢ € hom (Dy(Z"), H).

]

Proof. Let (e;);em be the standard basis of Z". We just have to check that if we
take derivatives of ¢, we land in the correct subgroup in the filtration. We can fo-
cus on derivatives involving the generators, i.e. we just need to check that for every

a=(ai,...,a,) € Z%, we have that 97} - -- 9% g’ takes values in (H‘Sf"))w.

This derivative equals 9% m? - -aggmif ).

1
mgf)
ther hand, th t ' satisfvi r7 — (HPY, is ! — Yy (aj—t5)—1 10
other hand, the exponent 1’ satisfying p" Z = (H ") o/ is " = max ( | ==——| +1,0).
Hence, to ensure that the above derivative takes values in the appropriate subgroup, we

just have to check that " < r.

By what we know about the morphisms

, this derivative takes values in p"Z where r = Z;'L:1 max <0, Vj ;fjl_lJ + 1). On the
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To prove this, note that if |a| < [¢| then 7" = 0 so there is nothing to prove. If |a| > |¢|

then we are going to show that

' i (0 V;’ —hi 1J + 1> (15)
min max | 0, | —————
a’:|a’|=|al = P — 1

is attained for ay = [a| — > 7 ,t; and a} = t; for j > 2 (there are other n-tuples that
attain the minimum, this one here is just one of them). If we prove this then we are done,
because for this particular n-tuple o’ the inequality is trivial.

To do this, let us think of the coordinates a; of an n-tuple a as containers of derivatives,
so if we say move ¢ derivatives from a; to as we mean that we consider the n-tuple
a; —Vl,as 4+ L a3. .., a, (and this of course will preserve |a|). Now let a = (a4, ..., a,) be
an n-tuple that attains the minimum in . First note that we can always assume that
a; > t; for all j > 1; this is because we can move derivatives from variables with an ezcess
to variables with lack of derivatives and the minimum must not change. So if we move

¢ derivatives from (say) a; to ag, the summand max (0, L%J + 1) must be equal

to max (O, {‘“;ftll_lj + 1) (otherwise we contradict our assumption that a achieves the
minimum) because as long as as + ¢ < t,, there is no increment in changing as by as + ¢.

Next, note that we can move blocks of p — 1 derivatives from any a; (j > 2) to a4
without modifying the minimum until we get that ¢; < a; <t;+p—1for all 7 > 2. Now,
for every j > 2, we can move {; := a; — t; derivatives from a; to a;. There are two cases

for every j. If £; = 0 then nothing happens. If ; > 1 then, since a achieves the minimum,
we must have max <0, {MJ + 1) = max <0, L‘”;—l_lJ + 1) + 1 (this will be with

p—1 -1
the new configuration where we have a; + ¢; and a; — ¢;). O
B.1. On p-homogeneous extensions of the elements of O, ;.
Recall from Proposition that given a k-step nilspace X, and a subgroup H of the
last structure group Z(X), we can define the quotient nilspace X /H under the relation
x ~pg yif and only if x = y+h for some h € H. Recall also the class Q,, ;, of p-homogeneous

k-step group nilspaces from Definition [1.6]

Proposition B.5. Let X be a nilspace in Q) and let H be a subgroup of Zi(X). Then
X/H=Y XY whereY € Q1 and Y' € Q.

Since our proof below is technical, it may be useful first to describe a motivating example.
Supposing that Z; = Z;" and that H < Z7" has a simple structure (for example, that it is
generated by a subset of (€;)icpm), where e; is the element with e;(i) = 1 and e;(j) = 0 for
Jj # 1), then we can explicitly describe X /H, using in particular the basic fact that the
quotient of the nilspace Uy, ¢ by the action of its last structure group is the nilspace Uj_1 4.
To illustrate this in detail, let p = 3, m = 2, and suppose that X is the product nilspace
Ug XL{SZ (thus & = 4 here). If H = Z2 then it is easily seen that X /H = Dy(Z3).
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Next, suppose that H = ((1,0)). In this case X /H = Dy(Z3) x Dy(Z3). Similarly, if
H =((0,1)) then X /H = L{f%. A more interesting case is when H = ((1,1)). To discuss
this case, we shall use the injective homomorphism of abelian groups i : Zs — Zg, y
mod 3 — 3y mod 9. Denoting elements of X as couples (z,y) € Ug X L[f}l, we define
the bijection ¢ : X — X, (z,y) — (x +i(y),y), and we note that this is a nilspace
isomorphism, because ¢ respects the required filtrations (that is, for every j, the map
¢ sends the j-th subgroup of Zs in the Z/lﬂ filtration into the j-th subgroup of Zg in
the L{f% filtration) and therefore i is a filtered group homomorphism, hence a nilspace
morphism. Now we observe that, through ¢!, the action of H = ((1,1)) by addition
becomes the action of the subgroup ((0, 1)). More precisely, letting ¢4 be the last structure
morphism of ¢ (see [7, Definition 3.3.1]), it can be seen that ¢, (H) = ((0, 1)), because
of the easily checked equality ¢~ '((z,y) + (1,1)) = ¢ '(x,y) + (0,1). Hence, instead
of computing X /H, we can compute ¢~ !(X)/¢,; (H) more easily, thus concluding that
X /H = o™ (X) /7" (H) = US).

Proof of Proposition [B.5, Since X € Q,, there exist non-negative integers ao, ..., as,
t=|k/(p—1)], such that

X=um

al . at /
kk—t(p—1) < U X Uph xQ',

(t—1)(p—1) <

where Q" € Q, ;—1. The key point of this expression of X is that it isolates the terms that
contribute to the k-th structure group of X. Thus, the elements of the k-th structure group
of X can be written as tuples (fo, f1,..., fi,0) € (P Zpr+1)® X (P L )™ X -+ X L2 X Q'
and the action of this group on X is by coordinate-wise addition. Note that this k-th
structure group is isomorphic to Zgo* .

The second observation is that we have the following chain of inclusions:
Uk k—t(p-1) D Uk k—(t-1)(p-1) D+ D Upke - (16)

With this we mean that for any r < £ we can define a homomorphism Z,» — Z,¢, namely

mod p" — p’~"r mod p’. Moreover, this is a filtered homomorphism (with the filtrations

defining Z/{gf ,)gfj(pfl) for j = 0,...,¢) and thus it is also a nilspace morphism. With this
notation, let us define ¢ : X — X as the map sending (o, ..., 2, q) to
(Aoomo+ Ao (pr1)+- -+ Ao (p'wy), Avazr+Aia(pra)+---+ A0 ), ..., Ay, q),

where ©; € (Upk—(1—i(p-1))", Ai; a matrix in Z**% with det(A;;) coprime with p for all
i=0,...,tand j € [i,t].

Let us see why this construction makes sense. First note that we are using to be
able to sum any element x; with z; for j > 7. This already implies that ¢ is a nilspace

morphism. Now note that A;; is invertible as a matrix over Z, for all r > 1 (since
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det(A;;) is coprime with p and hence with p" for all » > 1). This fact is crucial to prove
that ¢ is invertible and thus a nilspace isomorphism.

To prove this last sentence, let us compute the inverse of ¢. If p(zg,...,2,q) =
(Yo, - - - Yt,q) then A2y = y;. Let A;tl € Z*** be defined as D;adj(A;) where D, € Z
is any integer such that D, det(A4;;) = 1 mod p (note that det(A;;) mod p is non-zero by
hypothesis). It is clear that, as linear maps on Z7, the matrices Ay;, A, ! are inverses of
each other, and thus x; = A;tlyt. Next, let us solve the equation A;_q 1241+ As—1pT1 =
yi—1. Using the previous result we have that A; 1 121 = ye1 — A1 0 Ay, L4y, which
equals y; 1 — At—l,tAZtl DYt.

Now we repeat the same trick as before, but this time we define At__ll,t_1 € Z4—1x%-1
as the matrix D; ;adj(A; 1, 1) where D;det(A; 1, 1) = 1 mod p* (note that, since
det(A;_14-1) is coprime with p, it is coprime with p* whence det(A;_;; ;) is invertible
mod p?). Thus it is clear that x; ; = A;_11,t_1yt—1 - A[_llﬁt_lAt_LtA;tlpyt. Repeating this
process, we end up obtaining an inverse of the function ¢ that has the same structure as
@ and is therefore also a nilspace morphism.

We now explain how we use such an automorphism ¢. The idea is that instead of
computing X /H we can compute ¢ 1(X)/¢, ' (H) (where ¢y, : Zy(X) — Z1(X) is the k-th
structure morphism of ¢). We have ¢p~}(X) = X, and our goal is then to choose ¢ so that
¢; '(H) is a subspace generated by a subset of the standard basis {e; }icfag+ta]-

We claim that the linear map ¢y is represented by the following block matrix:

Ao Aox -0 Aoy
A 0 Ay - Ay c Z;aﬁ,..wt)x(aﬁ...ﬂt)’ (17)
0 0 - Ay

where the elements of the matrices A, ; are inserted modulo p in A. The proof of this claim
is just a routine computation: take (zo,...,2) € Z3°""T and note that by definition
(o, ... 24,q) + (20, -,2) = (o + plzo,x1 + P '21,...,24,q). Then apply ¢ and by
commutativity the claim follows.

Hence, to complete the proof we just have to find the matrix A (i.e. ¢) adequately.
We shall construct A in such a way that some of its columns are the vectors generating
the subspace H. Thus H will be ¢x({e;,,...,e;,)) where w = dim(H). The process
for constructing A is as follows. First let us define the subspaces U; := Zg°F "% x

Qei+1ttar for 4 = 0,...,t. Now we define the columns of A iteratively as follows. First

let v§0), e ,vlgg) € H be a basis of the subspace H N Uy, and complete this to a basis of

the subspace Uy with vectors wégll, e ,w((lg) € Uy. These vectors will constitute the first

ao columns of A. (To be more precise, technically the matrix A must have integer values
(0) (0)

and the values of the vectors v;7 and w,” are in Z,. By abuse of notation, when we say
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©) and w](-O)

that the vectors v; constitute the first columns of A, we mean that we take the
representative of any element of Z, in [0,p — 1].)
Next, consider H N U; and complete the linearly independent set {v§°), .. vég)} -

HNUy C HNU to a basis of HNUp. Let these vectors be {v{”, . vbl)} We claim

that the set {U(O) . véo) wégll, . w((m), vgl), . véi)} is linearly independent. To prove
this, let )\11)(0) +o N vb )4 M1w5(,01rl +-+ uaow((l?)) + %vg) +- %11}8) = 0 for some

coefficients )\Z-,,uj,fyk G Z,. This implies that )\1111 + N UISO)—i-ulwéOZrl—l— +ua0w,§? =

—711)51) — =Y vb . And now the left hand side is in Uy whereas the right hand side

is in H. Thus both sides are in H N Uy. Therefore we know that for some coefficients

pi € Z, we have )\17150) +- 1t )\bovég) + mwl(,gzrl +- 4t ﬂagwc(lg) = Pl“%o) +eoe pbovég)-

Thus we have that (A — p1)vl” + -+ + (A, — pbo)vég) + ,ulwl()gzrl F o gty = 0. As
{’Ul e IES), wégll, . wao)} is a basis of Uy we know that pu; = 0 for all ©+ = by+1, .

We conclude that, since {vl b ,vég), vgl), e bi)} is a basis of HNU7, we have Aj =, =
0 for all j € [by] and k € [by]. And finally we define the vectors wl(,lzrl, . wl) € Uy as any
vectors that complete {vio), . Ul()g) wégll, . wég),vgl), . Ubl)} to a basis of U;. The
vectors v§1), e ,vé}) followed by the vectors wélll, e ,'w((ll) will be the next a; columns of

A (with the previous convention of choosing a representative in [0, p — 1]).
Continuing this process, we construct the matrix A putting together the vectors v](-i)

and wj(-f/) in the order described above. The resulting matrix A has the following structure:

0@ |- 0@ [ w®@ [ 0@ o o [ | (o] @] (8)

By construction this matrix has the desired shape and also, as det(A) = []'_, det(A;,)
mod p and the vectors {’UJ(»i)}ie[O’tLje[l’bi} U {w](-f/)}Z-/e[oi],j/e[bi,ﬂvai,] form a basis of U, =
Zgotte we have that det(A) # 0 mod p, and thus det(4;;) # 0 mod p for 7 € [0,1].
Now note that, letting H' be the subspace generated by vectors of the form eq+...4q,+;
fori=20,...,tand j = 1,...,b;, we have ¢,(H') = H. But now this subspace has the
form of the subspaces for which we understand the quotient X /H’. Thus X /H ~ X /H'

and the latter equals

bo aog—bo by a1—by
uk—l,k t(p—1) XUy h—t(p—1) < uk—l,k—( XUy,

CLz bt
—-1p-1 X x@. O

t—=1)(p—1)

Remark B.6. It may be tempting to generalize the previous result to lower structure
groups, but there are obstacles to a straightforward generalization. For example, let
X be the group nilspace consisting of G = Zy5 with filtration Gy = G = Gy = Zos,
Gs = -+ = Gy = by and G; = {0} for i@ > 8 It can be checked that X is not
isomorphic to any nilspace that is a product of nilspaces in Qs y, for any k£ (note that

the only possibility, given the structure groups of X, would be for X to be isomorphic to
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D4 (Zs) x D7(Zs5); we leave it as an exercise to prove that this does not hold). However, we
have the fibration ¢ : Z/I((f% xD7(Zs5) — X, (x,y) — x + by, where with 5y we mean that
we take 5(y + 5Z) mod 25 (the natural monomorphism Zs — Zos). It can be checked
that Z/{g X D7(Zs) is thus a degree-6 extension of X, where the addition of z € Dg(Zs) can
be defined as (z,y) + z := (z + 52,y — z). Thus, to generalize Proposition , we would

have to take into account nilspaces such as X, that are not products of nilspaces in Qs j.
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