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Abstract—Let X = 〈X, ̺〉 be a metric space, let
A ⊆ X and let ε be a positive real number. The
similarity detecting problem is to find all a ∈ A for
which ̺(a, x) ≤ ε where x ∈ X is a given input.

In this work we study the similarity detecting
problem with the additional assumption that X is an
ultrametric space of finite spectrum; these assump-
tions seem to be natural from the point of view of
practical applications. We establish model theoretical
results for ultrametric spaces. More concretely, we
provide sufficient conditions for the existence of met-
ric retractions for certain ultrametric spaces. Based
on these theoretical results, we propose a similarity
detecting algorithm for ultrametric spaces. The time
complexity of our algorithm will be discussed, as
well.

I. INTRODUCTION

The similarity detecting problem can be
described as follows. Suppose we are given

• a metric space X = 〈X, ̺〉,
• a set A ⊆ X and
• a positive real number ε ∈ R

+.

Intuitively, X is a set of instances of an abstract
data type, the distance function ̺ measures “how
similar" the elements of X are (that is, the
distance ̺(a, b) is smaller, the “similarity" of a
and b are larger), A is a “database" and ε is an
amount of inaccuracy we tolerate. The problem is
to find all elements of A whose distance from a
given input x is at most ε.

Often, X may be infinite and A is finite but

huge. The crucial point is to find a representation
for A for which algorithms can perform efficiently.
In these problems, usually the metric space is
compact and often, it has an ultrametric distance
function. For related investigations we refer to
[1], [4], [7] [8], [9] and [10].

As we mentioned in the previous paragraph,
the challenge in related investigations is to find
suitable representations of metric spaces. Beyond
their theoretical interest, this practical aspect also
motivates investigations of the model theory of
metric spaces: model theoretical results for metric
spaces may provide a better understanding for
how certain metric spaces can be constructed from
their finite subspaces. This structural information
may help to design clever representations for
metric spaces. In this purely theoretical direction
we refer to [3], [5], [11] and [12].

As the main result of the present work, we
propose a similarity detecting algorithm for
ultrametric spaces. This can be regarded as a
continuation initiated in [10]. The differences
between [10] and the present work can be
summarized as follows: the investigated classes
of metric spaces in [10] and in the present work
are different and the methods we are utilizing are
different. More concretely,

• In [10] we focused our attention to the
special case when our space X is a large (finite)
dimensional Euclidean space. By a kind of
“dimension reduction" we proposed an algorithm
which finds elements of A “similar" to a given
input x. In the worst case, the number of steps in



that algorithm was proportional with |A|.

• In the present work we will investigate a
different class of metric spaces, more concretely
ultrametric spaces. In this special case, using
metric retractions (see Definition 3.1 below)
we propose an algorithm which finds elements
of A “similar" to a given input x. Again, the
number of required steps in the worst case will
be proportional with |A|.

The sutructure of this paper is as follows. At
the end of this section we are summing up our
system of notation. In Section II we sum up the
technical preliminaries. Section III is devoted to
metric retractions, this provides the theoretical
background for our algorithms. Finally, in Section
IV we present and analyze the time complexity of
our similarity detecting algorithms for ultrametric
spaces.

Notation

Our notation is mostly standard, but the following
list may help.

Throughout R and R
+ denote the set

of real numbers, and the set of positive real
numbers, respectively.

Let X = 〈X, ̺〉 be a metric space, a ∈ X and
let γ be a non-negative real number. As usual, the
open γ-ball B(γ, a) at a is the set

B(γ, a) = {x ∈ X : ̺(a, x) < γ}.

For a function f , the domain and range of f will be
denoted by dom(f) and by ran(f), respectively.

II. PRELIMINARIES

Suppose X = 〈X, ̺〉 is a metric space. X
is defined to be an ultrametric space iff for all
a, b, c ∈ X we have

̺(a, b) ≤ max{̺(a, c), ̺(c, b)}.

The spectrum of X is the range of ̺.
Next we recall a well known method associat-

ing a relational structure A(X ) for a metric space
X . For each d ∈ ran(̺) we introduce a binary
relation Rd as follows:

Rd = {〈a, b〉 ∈ X2 : ̺(a, b) ≤ d}

and we define

A(X ) := 〈X, Rd〉d∈ran(̺).

This first order relational structure completely de-
scribes X . We will investigate model theoretic

properties of A(X ). We assume the reader is
familiar with the basics of model theory. We refer
to [2] for model theoretic notions not recalled here.
Also, as in [8], [11] and [12] by a “model theo-
retic property of a metric space X " we mean the
corresponding property of its associated structure
A(X ).

For the reader’s convenience we breafly sum
up some model theoretical notions and recall a
theorem from [12] which will be used in the
present work. Let A be a first order structure,
B ⊆ A, a ∈ A and let ∆ be a set of formulas.
Then the ∆-type of a in A over B is defined to
be

tpA∆(a/B) = {ϕ(v, b) : ϕ ∈ ∆, b ∈ B,A |= ϕ(a, b)}.

Further, tpA∆(a/B) splits over C ⊆ B iff there are
b0, b1 ∈ B such that

tpA∆(b0/C) = tpA∆(b1/C),

but ϕ(v, b0),¬ϕ(v, b1) ∈ tpA∆(a/B); less formally,
tpA∆(a/B) splits over C iff there exist tuples
b0, b1 ∈ B that “look like the same from the point
of view of C", but a and some ϕ ∈ ∆ “distinguish"
b0 and b1.

In addition, B is a splitting base for a iff for
all X ⊆ A − {a} with B ⊆ X , tpA(a/X) does
not split over B. For the reader’s convenience we
quote here Theorem 3.1 of [12] which, together
with its easy consequence Theorem 2.2, will be
important in Section III.

Theorem 2.1: (Theorem 3.1 in [12].)
Let X = 〈X, ̺〉 be an ultrametric space of finite

spectrum, let Y ⊆ X and let ∆ = {Rα : α ∈
ran(̺)} be the set of atomic formulas of A(X ).
Then for each a ∈ X − Y there exists a finite
B ⊆ Y such that tp∆(a/Y ) does not split over
B. Moreover, |B| ≤ 2 · (

|ran(̺)|−1
2 ).

Theorem 2.2: Let X = 〈X, ̺〉 be an ultramet-
ric space of finite spectrum. Then each a ∈ X has
a splitting base B.

Proof: Apply Theorem 2.1 to Y = X − {a}.

III. METRIC RETRACTIONS

Throughout this section, ∆ will denote the
set of atomic formulas of the language of the
associated structures of the (ultra)metric spaces we
are investigating.

Definition 3.1: Let X = 〈X, ̺〉 be a metric
space and let Y ⊆ X . A function f : X → X
is defined to be a metric retraction iff f |Y is the
identity function of Y , ran(f) ⊆ Y and



for all a, b ∈ X either f(a) = f(b) or
̺(a, b) = ̺(f(a), f(b)).

Further, Y is called a metric retract of X .

Retractions (which are not necessarily metric
retractions) of ultrametric spaces has been investi-
gated in [13].

Lemma 3.2: Suppose X = 〈X, ̺〉 is an
ultrametric space and B ⊆ X is a splitting base
for all a ∈ X . Suppose x, x′, y, y′ ∈ X are such
that x 6= y, x′ 6= y′,

tp∆(x/B) = tp∆(x′/B) and
tp∆(y/B) = tp∆(y′/B).

Then

(1) ̺(x′, y′) ≤ ̺(x, y);
(2) ̺(x′, y′) = ̺(x, y).

Clearly, (2) implies (1), so (1) seems to be su-
perfluous to state. Indeed, (1) is stated for technical
reasons only: as we will see, first we will show (1)
and then the proof of (2) will be reduced to (1) by
a symmetry argument.

Proof: By assumption, B is a splitting base
for y, so we have

̺(x, y) = ̺(x′, y).

Similarly, B is a splitting base for x hence

̺(x, y) = ̺(x, y′).

Combining these observations, we get

̺(x′, y′) ≤ max{̺(y′, x), ̺(x, y), ̺(y, x′)} =
̺(x, y).

Now for (2), we apply the first part twice. In
more detail, since the conditions are completely
symmetric between x and x′ and also between
y and y′, we can use the previous argument two
times (interchanging x with x′ and y with y′ in
the second time) and we get

̺(x′, y′) ≤ ̺(x, y) ≤ ̺(x′, y′),

as desired.

Theorem 3.3: As in Lemma 3.2, suppose
X = 〈X, ̺〉 is an ultrametric space and B ⊆ X
is a spiltting base for all a ∈ X .

Assume further, that B ⊆ Y ⊆ X is such that
every ∆-type over B can be realized in Y . Then

there exists a metric retraction f : X → X over
Y such that for all x, y ∈ X

f(x) = f(y) implies tp∆(x/B) = tp∆(y/B).

(Note that if B and the range of ̺ are finite, then
Y may also be chosen to be finite).

Proof: By our assumptions, for all x ∈ X
there exists x′ ∈ Y such that

tp∆(x/B) = tp∆(x′/B).

We assume x′ = x whenever x ∈ Y . Define
f(x) = x′ for all x ∈ X . We shall show that this
f is a metric retraction over Y . Clearly, f |Y is
the identity function of Y and ran(f) ⊆ Y .

Next assume, x, y ∈ X are arbitrary; we shall
show

(∗) f(x) = f(y) or ̺(x, y) = ̺(f(x), f(y)).

If f(x) = f(y) then (∗) holds obviously. If
(x) 6= f(y) then the conditions of Lemma 3.2 are
satisfied for x, y and for x′ = f(x), y′ = f(y). It
follows from Lemma 3.2(2), that

̺(x, y) = ̺(x′, y′) = ̺(f(x), f(y)),

that is, (∗) holds, as desired.

Lemma 3.4: Suppose X = 〈X, ̺〉 is an
ultrametric space, Y ⊆ X , f : X → Y is a metric
retraction over Y and ε ∈ R

+ such that for all
x ∈ X there exists x′ ∈ X such that f(x) 6= f(x′)
and ̺(x, x′) ≤ ε. Then for all x, y ∈ X

f(x) = f(y) implies ̺(x, y) ≤ ε.

Proof: Let x, y ∈ X be such that f(x) =
f(y). By assumption, there exists x′ such that
̺(x, x′) ≤ ε and f(x) 6= f(x′). Observe, that
f(y) 6= f(x′) hence ̺(x′, y) = ̺(f(x′), f(y))
Now

̺(x, y) ≤ max{̺(x, x′), ̺(x′, y)} ≤

max{ε, ̺(f(x′), f(y))} ≤

max{ε, ̺(f(x′), f(x))} = max{ε, ̺(x′, x)} = ε,

as desired.

Lemma 3.5: Suppose X = 〈X, ̺〉 is an ultra-
metric space of finite spectrum. Let ε0 ∈ R

+ be
the smallest element of ran(̺)−{0} and suppose
ε > ε0 is such that for all x ∈ X there exists
x′ ∈ X with ̺(x, x′) = ε. Then there exists
Y ⊆ X and f : X → Y such that



(1) f is a metric retraction over Y ;
(2) f(x) = f(y) implies ̺(x, y) ≤ ε.

Proof: Let {ai : i < κ} ⊆ X be such that
⋃

i<κ

B(ε0, ai) = X

(where B(ε0, ai) is the ball with origin ai and
radius ε0). By Theorem 2.2, for all i there exists
a splitting base for ai in X − {ai} such that

|Bi| ≤ 2 · (
|ran(̺)|−1

2 ).

Let
B =

⋃

i<κ

Bi

⋃
{ai : i < κ}.

Then B is a splitting base for all a ∈ X because
of the following. Assume u, v ∈ X−{a} are such
that for all b ∈ B we have

̺(u, b) = ̺(v, b).

We shall show

(∗) ̺(a, u) = ̺(a, v).

By construction, there exists i < κ such that
̺(a, ai) ≤ ε0. We proceed by a case distinction.
Case 1: u = ai. Since ai ∈ B, we get

0 = ̺(u, ai) = ̺(v, ai),

that is, v = ai, therefore u = v, as well. Hence
(∗) holds, as desired.
Case 2: v = ai. This case can be treated similarly
to the previous case.
Case 3: u, v ∈ X −{ai}. By construction, Bi is a
splitting base for ai. Hence ̺(ai, u) = ̺(ai, v). If
̺(ai, u) > ε0, then (∗) follows from Lemma 2.7
of [12]. Finally, suppose

̺(ai, u) = ̺(ai, v) = ε0.

Then

̺(a, u) ≤ max{̺(a, ai), ̺(ai, u)} = ε0.

But a 6= u, so ̺(a, u) = ε0. One can show
similarly, that ̺(a, v) = ε0, as well. Therefore (∗)
holds in this last case, too.

Let Y ⊆ X be such that every ∆-type over B
can be realized in Y . Then, by Theorem 3.3 there
exists a metric retraction f : X → Y such that
for all x, y ∈ X

f(x) = f(y) implies tp∆(x/B) = tp∆(y/B).

But for all x ∈ X there exists i < κ such
that ̺(x, ai) ≤ ε0. As ai ∈ B, it follows, that

f(x) = f(y) implies ̺(y, ai) = ̺(x, ai) ≤ ε0,

hence

f(x) = f(y) also implies ̺(x, y) ≤ ε0.

In particular, if ̺(x, x′) = ε, then f(x) 6= f(x′).
Therefore, (2) follows from Lemma 3.4.

IV. SIMILARITY DETECTING BASED ON
METRIC RETRACTIONS

Based on the sections above, We describe
a similarity detecting algorithm for ultrametric
spaces of finite spectrum. Our algorithm consists
of two parts, the Initializing and the Searching
Part. The Initializing Part executes the necessary
steps we need to obtain a relatively fast Searching
Part. The Initializing Part should be executed once
at the beginning. We assume that the Searching
Part will be used much more frequently.

Explanations and comments will be provided
right after describing the initialization and
searching parts of our algorithm.

Throughout this section we fix a finite
ultrametric space X = 〈X, ̺〉 and a number
ε > min(ran(̺) − {0}). Further, we assume
that for all x ∈ X there exists x′ ∈ X with
̺(x, x′) = ε.

Our algorithms can be described as follows.

Initializing Part.
Input: A subset A ⊆ X .

(1) Find a metric retraction f : X → Y
for some Y as in Lemma 3.5;

(2) Fix an enumeration Z = {yi : i ≤ n}
of {f(x) : x ∈ A}.

(3) for each y ∈ Z compute the list

ly = {x ∈ A : f(x) = y}.

Searching Part.
Input: x ∈ X .

(1) Let u := f(x), let i := 1.
(2) While i ≤ n do
(3) If ̺(u, yi) ≤ ε then

add lyi
to the output;

(4) let i := i + 1;
(5) end while.

Remarks on the Initializing Part. The proof of
Theorem 3.1. in [12] and the proof of Theorem
3.3 above are constructive, hence in Step 1 one
can compute f and Y which satisfy the conclusion
of Lemma 3.5.

The number of required elementary steps for



Step 1 is proportional with |X|2, but this should
be executed only once.

We note that in Step 2, Z is a subset of
Y = ran(f), this is the reason for denoting the
elements of Z by yi. The number of required
elementary steps for Step 2 is proportional with
|A|, as we may assume that the input A is given
in some data structure, for example in a list:
A = {ai : i ≤ |A|}.

The number of required elementary steps for
Step 3 is proportional with |A|. If the input A is
given in a list A = {ai : i ≤ |A|}, then going
through in this list, in the ith elementary step we
add ai to the list lf(ai).

If the database A changes in time, then it is
enough to correct the lists containing the modified
elements. This cost is negligible (proportional
with the number of modified points in A).

Remarks on the Searching Part. First we
note that the Searching Part always provides
sound answers because of the following. Assume
x ∈ X is the input, u := f(x) and a ∈ A is a part
of the output. Then ̺(u, yi) ≤ ε for some i ≤ n
and a belongs the list lyi

. In addition, f(a) = yi

holds, as well.
Case 1: ̺(u, yi) = 0, that is, u = yi. As u = f(x)
and yi = f(a), in this case f(x) = f(a), hence
by Lemma 3.5(2) we have ̺(x, a) ≤ ε, so in this
case a is a sound output.
Case 2: ̺(u, yi) > 0. As in the previous
case, u = f(x) and yi = f(a). In particular,
f(x) 6= f(a). Since f is a metric retraction,

̺(a, x) = ̺(f(a), f(x)) = ̺(yi, u) ≤ ε,

therefore a is a sound output, as well. As each
element of A is contained in some list lyi

, it also
follows that the output contains all a ∈ A for
which ̺(x, a) ≤ ε.

The number of required steps is proportional
with |Z|, which in general, may be as large, as
|A|, but clearly, |Z| ≤ |A|. The precise number of
required steps strongly depends on the structure
of A, hence, at that level of generality we cannot
improve further the estimation for the time com-
plexity.
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