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Summary. A simple mechanical model of the skateboard-skater system is catestimcwhich a PD controller with time delay is
implemented. Equations of motion are derived with the help of Appell-Gil#thod and are linearized around straight uniform motion.
The linear stability analysis is carried out analytically using the D-subdivisietinod. Stability charts are presented for realistic system
parameters and the critical time delay is calculated. It is also shown hovettiekgains have to be varied with respect to the speed
of the skateboard in order to stabilize uniform motion.

Introduction

The stability problem of the skateboard at high speed is Wr@dwn in the community of skaters. However, this phe-
nomenon is not fully explained in the specialist literat(see, for example [1],[2]). The mechanical analysis of the
skateboard-skater system is an interesting challenges$earchers due to the complexity of the system. On the ortk han
the skateboard is a non-holonomic system due to its rollihgels, which are steered by the special wheel-suspension
system. On the other hand, the skateboard-skater intedeterns this non-holonomic system into an enhanced human
balancing problem. And, the analysis of human balancingmmaplicated task due to the reflex delay in the control loop
of the human body.

The aim of this study is the investigation of the effect of #kater reflex delay on the stability of the uniform motion. In
order to this, we use a simplified mechanical model of theedi@drd-skater system. The balancing effort of the skater
is taken into account by a PD controller, which considergéfiex delay too. The linear stability charts are constmicte
with special attention to the speed of the skateboard antintieedelay of the control.

Mechanical model

Figure 1: The simplified mechanical model of the skateboard-skasézray

The mechanical model (see Figure 1) is based on [1]. Here eadditional reduction in the geometry of the model using

a control torque that relates to the balancing effort of #egey. The skateboard is modelled by a massless rod (between
the front axle at F and the rear axle at R) while the skatersesented by a massless rod (between the points S and C)
with a mass point at C. In this model, the connection betwherskater and the board (at S) is assumed to be rigid. The
resulting rigid body has zero mass moment of inertia witipeesto its centre of gravity at C, which makes the derivation
of the equations of motion easier. Thus, the skateboard snovhe three dimensional gravitational field but we have to
describe the motion of a mass point only.

Due to the fact that the skateboard is in contact with the mgowhich reduces the degrees of freedom by two, one can
choose four generalised coordinates to describe the malioandY are the coordinates of the skateboard centre point
S in the plane of the ground); describes the direction of the longitudinal axes of theatk@ard; and is the deflection
angle of the body of skater from the vertical direction. Teemetrical parameters are the following. The half-heidht o
the skater is denoted by The length of the board & while m represents the mass of the skater aiglthe acceleration
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due to gravity. A control torque is considered, which can bgimated in the ankle of the skater, and acts around the
longitudinal axis of the skateboard:
M (t) = Po(t —7) + Dp(t — 1), @

wherer is the time delayP and D represent the proportional and the differential contrahgiarespectively.
Regarding the rolling wheels of the skateboard, kinematitstraint equations can be given for the velocitiesandvy
of the points F and R, respectively. The directions of thedecities depend o throughdg, the steering angle (see
Figure 1), such that
sin ¢ (t) tan k = tan dg (), (2

wherek is the complement of the rake angle in the skateboard whepksision system (see Figure 2). This formula is
straightforward to obtain since, as the skater deflects daedowith anglep, the axles of the wheels turn with anglg.
The wheel axle is always parallel to the ground, remainingfierpendicular to the king pin axis, which rotates togethe
with the board.
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Figure 2: Skateboard wheel suspension system

The equation of motion of the resulting non-holonomic systan be efficiently derived by means of the Appell-Gibbs
equation (see in [4]).

We get the governing equation in a compact form of first ordelinary differential equations. In our model, two
pseudo velocities are required since the number of the gksed coordinates is two greater than the number of the
non-holonomic constraints. An appropriate choice can bédahgitudinal speed

o1 = X costy+ Y costp 3)

of the skateboard and the angular speed
o2 =¢ 4)
of the skater around the longitudinal axes of the board. Theusbtain the equations of the motion

_ 3hsin2p(t)tank 01 (t) o2 (t)

51() 2 (I — hsin®p(t) tank)

ba(t) = mgh sin ¢(t) — Pfé;; 7) = Doy (t—7) sin 2p(t) tank (;}QZhsin?@(t) tanx) (1),

¢(t) = o2(t), ()
X(t) = o1(t) cosyp(t)

Y(t) = ou(t)sine(t),

9t = = o (1) sin ().

l

Here X, Y and+ are cyclic coordinates, so the last three equations arecessary for our further investigation. So we
have a three dimensional problem.

Stability analysis

To investigate the stability of uniform motion of the skatabd-skater system, the equations of motion were linedrize
around the stationary solution; = V,00 =0, X = Vt,Y = 0,9 = 0 andy = 0. The linear equations of the motion
can be written in the form:

a1(t) 0 0 0 o1(t) 0 0 0 o1(t—17)
Got) | =| 0 0 & Vitans oo(t) |+ 0 =5 —-L; oa(t—71) | . (6)
¢(t) 0 1 0 o(t) 0 0 0 et —7)
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The first row of the two coefficient matrices contains onlyces, thusr is also a cyclic coordinate in the linear case.
This implies that the characteristic function of the lirizad system

mh2 A_EJ“ mh? hl

D(\) = (AQ + 7

De™?" g Pe™T . V%ann) AL
where is the characteristic exponent, always has a zero root. é¢Jemiform motion with longitudinal spedd cannot
be asymptotically stable, but it can be Lyapunov stable.sTthe stability of uniform motion can be stable if and only if
the real parts of the other characteristic exponents asdles zero.

The limit of stability corresponds to the case when charatie exponents are located on the imaginary axis inxhe
complex plane for some particular system parameters (&,d/;, P, D, etc.). If both the real and imaginary parts of a
characteristic exponent are zero, then a saddle-node (8Mgdtion can occur. In our cas®, (A = 0) = 0 leads to

P & g

—mhz—kﬁtann—ﬁzo, (8)

which gives a vertical line in th& — D parameter plane:

2
Psny = mh (g — VT tan K) . 9)

If the imaginary part of the characteristic exponent is rebz then a Hopf-bifurcation can occur, and the charatieris
exponent can be express as= +iw, wherei is the imaginary unit and € R . Using the D-subdivision method, we
obtain two equations foP, D, w, 7, (first is the real part of the characteristic equation, #ead one is the imaginary
part of it):

~ Dwcos (wr) = Psin (wT)

mh? mh? =0,

2 . (20)
29 V<tank n P cos (wT) n Duw sin (wT) 0
h hi mh? mh? '
From these equation®, and D can be obtained as follows
V2
P =mh cos (wT) <g + hw? — T tan /<;> ,

(11)

: 2
D :mhM (g + hw? — VT tan /{) .
w

This leads to a curve in thB — D parameter plane. The vertical line of the SN bifurcation amtbpf bifurcation curve
with the linearly stable (white) and unstable (shaded) dosean be seen in Figure 3 for = 1m/s andr = 0.2s. The
other, realistically chosen system parameters are showabile 1.
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Figure 3: The linear stability chart f&f = 1 m/s andr = 0.2s.

Table 1: Parameters of the skater and the board
[ hIm] [mkg] [[ g[m/&] [ I[m] [ &[]
] 0.85 \ 75 H 9.81 H 0.3937\ 63 \
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The resulted stability chart is very similar to stabilityacts of the human balancing model in [5]. Nevertheless,ntlza
verified by means of the formulas that the origin of the P-Dapaater plane/f = 0 andD = 0, i.e. without control)

is always on the stability boundary if the vertical line @®s to the SN bifurcation) is on the left side of the plane
(Psn < 0). Then, the known critical forward speed (see [3] withousional spring)

Vo = Vgl/tank (12)

can be obtained, above which uniform motion is linearly itabithout any control.
Let us now consider a control loop without time delay. In ttase, the stability analysis is easier and we obtain the same
conclusion as in [1] with symmetric skateboard skater coméiion. The characteristic equation with this simplificat

reduces to b P V2
tank
A2 i ) =0, 13

( LTy Ay AR ) 0 (13)

The stability of uniform motion can be investigated by meahthe Routh-Hurwitz criterion. This leads to the necessary
and sufficient conditions:

> 0. (14)

h
P > mgh — m7V2tanf<; and "

The first condition is the same as the condition that we obthfor the saddle-node bifurcation. The second one leads
to D > 0. This problem is similar to the inverted pendulum, with tequired spring stiffness, which refers kin our
model, depending on the forward spééd

Interpretation of the result from the stability analysis

In this section we investigate the shape of the stable paeardemains of the stability charts at different parameters
Stability charts belong to different forward speeds forghme time delay = 0.7 sec are shown in Figure 4. The vertical
line, the SN bifurcation, moves left in thle — D plane whileV increases. But let us concentrate on the behaviour of the
Hopf stability curve, which may show more interesting pies.

It is easy to see in Figure 4 that the so-called D-curve iptdssitself beyond a certain longitudinal speed, and a loop
appears with an enclosed domain. If we cross the D-curve fheninner side to the outer, one complex conjugate pair
will go from the left hand side to the right hand side of the ptew plane. Hence only the inner side of the loop can be
stable.

It can be also observed in Figure 4, that D-curve loop rotatdilockwise around the origin when velocity increases.
It means there are certain velocities for which the stablaaln is located on the left, on the bottom, on the right or on
the top half plane. It implies there are several parametsr\gben negativéd® and negativeD control gains are also
appropriate. This is in sharp contrast to the results of imple human balancing or the controlled inverted pendulum
[5].

This property also implies that with fixell — D parameter pairs uniform motion cannot be linearly stablafty speed.
Strictly speaking, only the origin is always at the limit ¢kility for large enough longitudinal speed (wh€gy < 0).
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Figure 4: The linear stability charts for different reflex delays at zpezd
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Figure 5: Time functions from numerical simulations

If the skater does not chandgeand D parameters then motion will not be stable at high speed ¢wessi at lower speed.
Thus, skaters have to tune their control gaiRsahd D) with respect to their speed, which means that an adaptivealo
strategy is required. It can be seen in Figure 4, that whespeed changes from 1.7 m/s to 4 m/s, the stable domain
rotates significantly around the origin. Hence, small \aiaof the velocity strongly influences the optimal congalins.

To check our analytical results, numerical simulationsem@one. The crosses in Figure 4 refer to parameter points
Py — P4, where the simulations were carried out. The time histagiesshown in Figure 5 for an impact-like initial
conditions. The simulations have good agreement with tladytioal results. The time history at the parameter point
P1 shows linearly unstable steady rectilinear motion. Theutition diverges exponentially from the rectilinear matio
and it converges to a non-zero solution, which relates tduhgng maneuver of the skateboard with a constant radius.
Simulation atP, confirms that an appropriate choice of tReand D control gains can lead to stable uniform motion.
In case of the parameter poiRt, the skateboard starts to vibrate with constant amplitudéch corresponds to the
existence of a stable limit cycle around the unstable iretir motion.

An interesting point of the results is the intersection & Brcurve, where double Hopf bifurcation points can occur. A
these points, there are two different angular frequencighe emerging motion. This is also confirmed by numerical
simulation at the parameter poiRt,. See Figure 5, where both the time history and its spectranpiatted, and two
different frequencies can be clearly identified.

Another important parameter is the reflex time of the skaiertime delayr. Its effect is illustrated in Figure 6, where
charts have been created with the parameters of Table 1aatysgtate positioni( = 0). Here the stability charts
correspond to different time delays. The left half planencde stable due to the saddle-node bifurcation, so theridecu
must depart to the right from the SN bifurcation line in ortiehave a stable domain. This condition can be fulfilled if
and only if

2hl

TR e

(15)

When the skater’s reflex delay is large then uniform motiomoabe stable. This critical time delay, increases together
with the forward speed, so the higher the forward speed thierthe stabilization. The critical time delay, is around
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Figure 6: The linear stability charts for different reflex delays at zpeed
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0.42 sec at zero forward speed (for the given system paresihetehat is in a same order of magnitude of the human
reflex delay (see for example [6]).

Conclusions

We have shown that, the reflex delay of the skater stronglyénfies the stability of uniform motion and requires speed
varying control gain parameters to keep the straight mdiiwarly stable, although greater time delay is adequate at
higher speeds. Moreover, in some cases, the skater have ttegative control gains to stabilize the rectilinear nmotio
of the skateboard, which obviously demonstrates the diffeuof skateboarding. Skaters have to use such contmégai
sometimes that clearly override all the well-studied colrdtrategies of the human balancing. Another possibititytfie
skater is to switch off the control and let the skateboardtee itself. This cannot be realized when the skater tries to
follow a specific trajectory, which requires a more compkozontrol strategy that could be the objective of futureligs.
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