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Abstract

We present predictions for soft-drop event shapes of hadronic final states
in electron-positron annihilation at next-to-next-to-leading order accuracy in
perturbation theory obtained using the CoLoRFulNNLO subtraction method.
We study the impact of the soft drop on the convergence of the perturbative
expansion for the distributions of three event shape variables, the soft-drop
thrust, the hemisphere jet and narrow jet invariant masses. We find that
grooming generally improves perturbative convergence for these event shapes.
This better perturbative stability, in conjunction with a reduced sensitivity
to non-perturbative hadronization corrections makes soft-drop event shapes
promising observables for the precise determination of the strong coupling at
lepton colliders.
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The precise determination of the strong coupling αS is important for improving our
understanding of the fundamental interactions. For instance, the value of αS has the largest
effect on the running of the effective potential of the Higgs field among the gauge couplings
of the standard model [1]. In principle, electron-positron colliders provide the cleanest
laboratories to carry out such a measurement because all strongly interacting particles
emerge only in the final state. At the LEP collider numerous observables were studied
extensively to determine the value of αS at various center-of-mass energies. A large class
of such observables are distributions of event shape variables such as thrust, T [2, 3].

Thrust is among the best studied event shapes and provides a good example for under-
standing the theoretical issues that need to be overcome for a precise determination of the
strong coupling. The first of these relates to the precise perturbative description of the ob-
servable. The thrust distribution is known to NNLO precision in fixed-order perturbation
theory [4–7], while the resummation of large logarithms for small τ = 1−T has been carried
out to N3LL accuracy using SCET in Ref. [8] where matched predictions at NNLO+N3LL
accuracy were also presented. Yet the perturbative corrections are not particularly small
even at NNLO and one observes a significant difference between the predictions and mea-
sured data, especially in the peak region around τ ' 2.5 · 10−2 where the statistics of data
are the best.

A second issue concerns the estimation of hadronization corrections that mostly account
for the difference between the perturbative predictions and data. These corrections must
either be extracted from data by comparison to Monte Carlo predictions or computed using
analytic models and the lack of reliable predictions for hadronization from first principles
hampers the precise determination of the strong coupling in this potentially clean environ-
ment. One possible way to improve on this situation is to look for observables for which
the hadronization corrections are much reduced as compared to traditional ones.

Generic classes of observables with reduced non-perturbative corrections can be ob-
tained by various methods of grooming [9–14], which were originally developed for hadron
colliders. However, understanding the structure of theoretical predictions for groomed jets
is usually more complicated than for un-groomed ones. Nevertheless, for a particular type
of grooming called soft drop [14], significant progress to perform all-order calculations has
been made [15–19], although the resummation program at high perturbative orders still
poses computational challenges. A recent development related to soft-drop jet observables
is the definition of soft-drop thrust and related quantities in electron-positron annihila-
tion [20], whose hadronization corrections are indeed significantly reduced by the soft drop.

In this letter we present fixed-order predictions at NNLO accuracy for three soft-drop
groomed jet observables, the thrust, the hemisphere jet mass and the narrow jet mass
measured in electron-positron annihilation. We find that soft-drop grooming, in addition
to reducing hadronization corrections, also leads to a better perturbative convergence of
these quantities, making them promising observables for the precise determination of αS.
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The soft drop grooming technique was introduced in Ref. [14] and defined for jets
produced in lepton collisions in Ref. [15]. For the particular prescription that we employ
here we refer to Ref. [20] where the definitions of the event shapes that we discuss – (i)
soft-drop thrust (version T ′SD that is free of the transition point in the soft-collinear region),

(ii) hemisphere jet mass (e
(2)
2 ) and (iii) narrow jet mass (ρ) – are spelled out precisely. The

soft-drop algorithm depends on two parameters zc and β. The effect of these parameters on
hadronization corrections was studied in Ref. [20] where it was found that with increasing
zc and decreasing β (i.e., stronger grooming) the hadronization corrections to the soft-
drop thrust are much reduced over a wide range of the event shape. But such changes
in the grooming parameters also reduce the cross section. Thus, in addition to the small
hadronization corrections, a further criterion for determining the optimal value of zc and
β is to avoid the loss of too much data.

The precision of αS determination is also influenced by the convergence of the pertur-
bative series for the observable. Hence, it is important to examine how grooming affects
the perturbative stability of the predictions. In order to assess this, we choose four pairs
of (zc, β) values, {(0.05, 1), (0.05, 0), (0.1, 1), (0.1, 0)}, and compute the NLO and NNLO
K-factors defined by ratios of distributions of the observable O as

KNLO(µ) =
dσNLO(µ)

dO

/
dσLO(Q)

dO
, KNNLO(µ) =

dσNNLO(µ)

dO

/
dσLO(Q)

dO
. (1)

The normalization above is chosen such that the leading-order cross sections in the denom-
inators are always computed at the default renormalization scale µ = Q, independently of
µ. The closer the K-factors are to unity, the better the convergence of the perturbative
series.∗

The perturbative expansion of the differential distribution of an event shape O at some
arbitrary renormalization scale µ can be written to NNLO accuracy as

O

σ0

dσ(µ)

dO
=
αS(µ)

2π
AO(µ) +

(
αS(µ)

2π

)2

BO(µ) +

(
αS(µ)

2π

)3

CO(µ) +O(α4
S) (2)

where σ0 is the leading-order perturbative prediction for the process e+e− → qq̄. The
dependence of the expansion coefficients on the value of the observable O is understood, but
suppressed. In practice it suffices to compute the functions AO(µ), BO(µ) and CO(µ) at one
particular value of the renormalization scale, since scale dependence is easily restored using
the renormalization group equation for the strong coupling. Choosing the center-of-mass
energy Q as the default renormalization scale and denoting the perturbative coefficients at
this scale as AO, BO and CO, we find

AO(µ) = AO , BO(µ) = BO + AOβ0 ln ξ ,

CO(µ) = CO + 2BOβ0 ln ξ + AO

(
1

2
β1 ln ξ + β2

0 ln2 ξ

)
,

(3)

∗We have checked that the K-factors depend on the grooming parameters smoothly within the range
(zc, β) ∈ [0.05, 0.1]× [0, 1].
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Figure 1: Predictions for the soft-drop thrust for grooming parameters zc = 0.1 and β = 0
at LO (dot-dashed green), NLO (dashed blue) and NNLO (solid red) accuracy (left) and
K-factors for various zc and β values as indicated in the plots (left). The bands represent
renormalization scale variation in the range ξ = µ/Q ∈ [0.5, 2].

with ξ ≡ µ/Q. The first two coefficients of the QCD β function are [21]

β0 =
11CA − 4TRnf

3
and β1 =

34

3
C2

A −
20

3
CATRnf − 4CFTRnf . (4)

We note that the expansion coefficients at the default renormalization scale, AO, BO and
CO, are independent of the collision energy and the distribution of the observable at µ = Q
depends on Q only through the strong coupling αS(Q).

The perturbative coefficients were computed using the CoLoRFulNNLO method that
was also used to calculate a variety of three-jet event shapes in electron-positron annihila-
tion at NNLO accuracy [6,7,22]. Details of the formalism can be found in Refs. [7,23,24].

We begin the presentation of our results by considering the soft-drop thrust. Predictions
for the distribution of τ ′SD = 1 − T ′SD for the center-of-mass energy of Q = 91.2 GeV and
grooming parameters zc = 0.1 and β = 0 are shown on the left panel of Figure 1 at
LO (dot-dashed green), NLO (dashed blue) and NNLO (solid red) accuracy. The value
of the strong coupling was chosen as αS(MZ) = 0.118. The bands correspond to varying
the renormalization scale in the range µ ∈ [Q/2, 2Q]. We also present the perturbative
coefficients Aτ ′SD , Bτ ′SD

and Cτ ′SD computed at µ = Q in Table 1 for (zc, β) = (0.1, 0),
tabulated on a linear scale in τ ′SD. We observe the very good numerical stability of our
NNLO computation over the full range of the observable considered. We have checked that
this stability does not depend on the values of zc and β.

Next, we investigate how the convergence of the perturbative prediction depends on
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Figure 2: Predictions for the soft-drop hemisphere jet mass for grooming parameters
zc = 0.1 and β = 0 at LO (dot-dashed green), NLO (dashed blue) and NNLO (solid red)
accuracy (left) and K-factors for various zc and β values as indicated in the plots (left).
The bands represent renormalization scale variation in the range ξ = µ/Q ∈ [0.5, 2].

the grooming parameters. On the right panel of Figure 1 we present the K-factors at
NLO (dashed blue) and NNLO (solid red) as defined in Eq. (1) for four pairs of (zc, β)
values, {(0.05, 1), (0.05, 0), (0.1, 1), (0.1, 0)}. The constant LO K-factor (dot-dashed green)
is also shown for visual reference.† In general we find that milder grooming leads to larger
change from order to order in perturbation theory. Thus, grooming improves perturbative
convergence as one might expect. In the ranges considered, the dependence of the K-factors
on β is seen to be milder than their dependence on zc. We observe that for τ ′SD & 10−2,
i.e., in the range where the bulk of the data lies, the most stable perturbative prediction is
obtained for zc = 0.1 and β = 0.

Turning to the soft-drop hemisphere jet mass, in Figure 2 we present our perturbative
predictions for the distribution of e

(2)
2 at LO, NLO and NNLO accuracy for zc = 0.1 and

β = 0 on the left panel. The K-factors corresponding to the same set of (zc, β) values as for
the soft-drop thrust are shown on the right panel. We also record in Table 3 the values of
the perturbative coefficients A

e
(2)
2

, B
e
(2)
2

and C
e
(2)
2

computed at µ = Q for (zc, β) = (0.1, 0),

tabulated on a linear scale in e
(2)
2 . We again observe the very good numerical stability of

our NNLO predictions.

In general, we find that also for the soft-drop hemisphere jet mass, stronger grooming
leads to an improved convergence of the perturbative predictions. In fact, the perturbative
expansions of the distributions for soft-drop thrust and hemisphere jet mass behave very

†Note however that the LO distribution itself depends significantly on the grooming parameters.
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Figure 3: Predictions for the soft-drop narrow jet mass for jet radius R = 1 and grooming
parameters zc = 0.1 and β = 0 at LO (dot-dashed green), NLO (dashed blue) and NNLO
(solid red) accuracy (left) and K-factors for various zc and β values as indicated in the plots
(left). The bands represent renormalization scale variation in the range ξ = µ/Q ∈ [0.25, 1].

similarly with somewhat larger K-factors for the latter. We again find that choosing
zc = 0.1 and β = 0 leads to the perturbatively most stable predictions.

Last, we investigate the soft-drop narrow jet mass. The fixed-order predictions for the
distribution of ρ at LO, NLO and NNLO are shown on the left panel of Figure 3, for
jet radius R = 1 (jets were defined using the anti-kt algorithm [25, 26]) and grooming
parameters zc = 0.1 and β = 0. In Ref. [20] it was shown that the natural hard scale for
this observable is µ = QR

2
, hence in Figure 3 we have set the central scale to µ = Q/2.

Nevertheless, in Table 2 we present the expansion coefficients Aρ, Bρ and Cρ computed at
the default renormalization scale of µ = Q for R = 1 and (zc, β) = (0.1, 0), tabulated on a
linear scale in ρ. The numerical convergence of the NNLO calculation is again found to be
very good.

Examining the K-factors for the narrow jet mass, shown on the left panel of Figure 3,
alongside those for soft-drop thrust and hemisphere jet mass, a new feature emerges. Al-
though stronger grooming does improve the perturbative convergence from NLO to NNLO
(i.e., the ratio KNNLO/KNLO is closer to unity), but the NLO K-factor is actually seen
to increase with increasing zc and decreasing β (i.e., more grooming). This is readily un-
derstood from the definition of ρ. Since a leading-order computation involves only three
massless partons in the final state, in order to obtain a narrow jet mass that is non-zero
at LO requires not only that the three partons be clustered into two jets, but also that
the clustering passes the soft-drop condition. Otherwise, all soft-dropped jets are massless.
Starting from NLO, the extra real radiation allows for configurations where three or more
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partons cluster to form a single jet. Such a jet can remain massive even after the soft drop.
Hence one expects that the LO contribution is reduced more by stronger grooming than
higher-order corrections, leading to an increased NLO K-factor at larger zc and smaller β.

We conclude that although in general grooming leads to better converging perturbative
predictions, the sizes of the radiative corrections depend on the observable, being smaller
for the more inclusive ones. In particular, for the narrow jet mass the NLO K-factor is
rather large and positive (the K-factors are even larger for smaller jet radii), indicating
that the NNLO computation represents the first reliable prediction for this quantity.

Finally, we offer a brief comment regarding all-order resummation for the observables
considered here. Clearly, for small enough values of the event shapes the resummation of
logarithmic contributions is mandatory. However, for soft-drop thrust and hemisphere jet
mass specifically, the higher-order corrections remain moderate down to τ ′SD ' 10−3 and
ρ ' 10−3 if zc = 0.1 and β = 0. This suggests that the fixed-order NNLO predictions may
potentially be reliable in the region with the bulk of the data (e.g., τ ′SD & 10−2). Hence, it
might be possible that resummation only becomes essential for such a small range of the
shape variable, that over this range the contribution to the cross section becomes more
or less negligible. As the hadronization corrections are also small for zc = 0.1 and β = 0
(under 10% for τ ′SD & 10−2 [20]), the increased perturbative stability makes the soft-drop
thrust and hemisphere jet mass with such grooming parameters promising event shapes for
a precise determination of αS, perhaps even without resummation of large logarithms.

In this letter we presented predictions for soft-drop groomed event shapes of hadronic
final states in electron-positron annihilation at NNLO accuracy in perturbation theory.
Our predictions for the perturbative coefficients show very good numerical stability over the
complete ranges of the observables considered. We have also studied the impact of grooming
on the convergence of the perturbative expansions and presented NLO and NNLO K-factors
for several values of the grooming parameters. We observed that in general, grooming
improves the perturbative convergence of the predictions. This is more pronounced for the
more inclusive quantities of soft-drop thrust and hemisphere jet mass, and less so for the
narrow jet mass. The increased perturbative stability, along with reduced hadronization
corrections makes the soft-drop thrust and hemisphere jet mass appealing candidates for a
precise determination of the strong coupling at lepton colliders.
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Table 1: Perturbative coefficients for the soft-drop thrust τ ′SD with (zc, β) = (0.1, 0) at
µ = Q. Cτ ′SD is presented only up to the kinematical limit of Bτ ′SD

.
τ ′SD Aτ ′

SD
·10−3 Bτ ′

SD
·10−4 Cτ ′

SD
·10−5 τ ′SD Aτ ′

SD
·10−3 Bτ ′

SD
·10−4 Cτ ′

SD
·10−5

0.005 80.4(2) −2017(4) 1787(4) 0.225 0.013122(3) 0.0447(3) 0.113(5)
0.015 0.62894(7) 0.202(2) −1.34(3) 0.235 0.011427(3) 0.0393(3) 0.101(4)
0.025 0.38657(4) 0.249(2) −0.48(3) 0.245 0.009890(2) 0.0363(3) 0.097(4)
0.035 0.28926(4) 0.251(2) −0.11(2) 0.255 0.008492(2) 0.0327(3) 0.081(4)
0.045 0.23794(3) 0.234(2) 0.03(2) 0.265 0.007196(2) 0.0292(3) 0.079(3)
0.055 0.19907(3) 0.238(2) 0.08(2) 0.275 0.005991(2) 0.0263(2) 0.075(3)
0.065 0.15468(2) 0.255(2) 0.22(2) 0.285 0.004862(2) 0.0235(2) 0.067(3)
0.075 0.12311(2) 0.234(1) 0.32(2) 0.295 0.003791(2) 0.0205(2) 0.059(2)
0.085 0.10021(2) 0.2091(9) 0.32(2) 0.305 0.0027649(9) 0.0179(2) 0.057(2)
0.095 0.08299(2) 0.1877(9) 0.30(2) 0.315 0.0017736(8) 0.01478(7) 0.048(2)
0.105 0.069666(9) 0.1662(8) 0.31(2) 0.325 801.8(5)·10−6 0.01244(5) 0.0425(7)
0.115 0.059103(8) 0.1482(8) 0.28(1) 0.335 53.4(2)·10−6 0.00773(2) 0.0363(3)
0.125 0.050600(7) 0.1304(7) 0.26(1) 0.345 0 0.0025277(7) 0.02025(5)
0.135 0.043611(6) 0.1167(6) 0.227(9) 0.355 0 0.0012796(3) 0.01016(3)
0.145 0.037822(6) 0.1043(6) 0.228(8) 0.365 0 680.7(3)·10−6 0.00557(2)
0.155 0.032941(5) 0.0925(6) 0.209(8) 0.375 0 356.9(2)·10−6 0.00301(1)
0.165 0.028799(5) 0.0839(5) 0.181(7) 0.385 0 177.5(1)·10−6 0.001576(6)
0.175 0.025239(4) 0.0749(5) 0.163(7) 0.395 0 79.04(7)·10−6 767(4)·10−6

0.185 0.022159(4) 0.0668(4) 0.153(6) 0.405 0 28.19(4)·10−6 328(2)·10−6

0.195 0.019465(4) 0.0604(4) 0.141(6) 0.415 0 5.21(2)·10−6 102.3(7)·10−6

0.205 0.017095(3) 0.0540(4) 0.130(6) 0.425 0 2.6(2)·10−9 6.6(2)·10−6

0.215 0.014994(3) 0.0494(4) 0.116(5)

Table 2: Perturbative coefficients for the narrow jet mass ρ with R = 1 and (zc, β) = (0.1, 0)
at µ = Q. Cρ is presented only up to the kinematical limit of Bρ.

ρ Aρ · 10−3 Bρ · 10−4 Cρ · 10−5 ρ Aρ · 10−3 Bρ · 10−4 Cρ · 10−5

0.005 174.8(5) −2492(5) 2415(4) 0.195 0.022163(7) 0.1384(2) 0.613(5)
0.015 0.6028(2) 2.555(2) −2.25(5) 0.205 0.018671(6) 0.1194(2) 0.550(4)
0.025 0.35799(7) 1.601(2) 0.02(4) 0.215 0.015404(5) 0.1017(2) 0.473(4)
0.035 0.25785(5) 1.1847(9) 0.62(3) 0.225 0.012191(5) 0.0855(1) 0.419(3)
0.045 0.20315(4) 0.9489(7) 0.86(3) 0.235 0.008854(4) 0.07012(8) 0.356(3)
0.055 0.16856(4) 0.7945(7) 0.99(2) 0.245 0.004583(3) 0.05802(5) 0.307(2)
0.065 0.14480(3) 0.6863(6) 1.03(2) 0.255 0 0.033405(8) 0.2442(7)
0.075 0.12755(3) 0.6061(6) 1.06(2) 0.265 0 0.014268(4) 0.1290(3)
0.085 0.11445(3) 0.5445(5) 1.05(2) 0.275 0 0.007721(3) 0.0734(2)
0.095 0.09988(3) 0.5029(5) 1.18(2) 0.285 0 0.004371(2) 0.0437(2)
0.105 0.08443(2) 0.4521(4) 1.25(2) 0.295 0 0.002488(2) 0.0257(1)
0.115 0.07200(2) 0.3995(4) 1.22(1) 0.305 0 0.0013994(8) 0.01518(7)
0.125 0.06184(2) 0.3519(4) 1.175(9) 0.315 0 766.6(6)·10−6 0.00873(5)
0.135 0.05340(2) 0.3091(3) 1.099(8) 0.325 0 393.7(4)·10−6 0.00489(3)
0.145 0.04624(2) 0.2718(3) 1.016(8) 0.335 0 177.5(3)·10−6 0.00251(2)
0.155 0.04012(1) 0.2391(3) 0.930(7) 0.345 0 63.1(2)·10−6 0.00111(1)
0.165 0.034803(9) 0.2095(2) 0.850(6) 0.355 0 12.47(6)·10−6 326(4)·10−6

0.175 0.030127(8) 0.1834(2) 0.775(6) 0.365 0 26(2)·10−9 16.3(6)·10−6

0.185 0.025951(8) 0.1599(2) 0.686(5)
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Table 3: Perturbative coefficients for the hemisphere jet mass e
(2)
2 with (zc, β) = (0.1, 0) at

µ = Q. C
e
(2)
2

is presented only up to the kinematical limit of B
e
(2)
2

.

e
(2)
2 A

e
(2)
2
·10−3 B

e
(2)
2
·10−4 C

e
(2)
2
·10−5 e

(2)
2 A

e
(2)
2
·10−3 B

e
(2)
2
·10−4 C

e
(2)
2
·10−5

0.005 79.2(2) −2016(4) 1792(4) 0.425 0.017936(4) 0.03617(4) 0.064(3)
0.015 0.6040(2) −0.1789(8) −2.31(4) 0.435 0.017151(4) 0.03477(4) 0.059(3)
0.025 0.35912(7) −0.0177(5) −1.14(3) 0.445 0.016391(4) 0.03330(4) 0.056(3)
0.035 0.25908(5) 0.0304(4) −0.70(2) 0.455 0.015674(4) 0.03190(4) 0.054(3)
0.045 0.20438(4) 0.0507(4) −0.44(2) 0.465 0.014986(4) 0.03060(4) 0.054(3)
0.055 0.16982(4) 0.0615(3) −0.35(2) 0.475 0.014334(3) 0.02924(3) 0.049(2)
0.065 0.14617(3) 0.0677(3) −0.22(2) 0.485 0.013701(3) 0.02801(3) 0.048(2)
0.075 0.12900(3) 0.0724(3) −0.18(2) 0.495 0.013093(3) 0.02679(3) 0.048(2)
0.085 0.11589(3) 0.0750(2) −0.12(2) 0.505 0.012514(3) 0.02554(3) 0.045(2)
0.095 0.10574(3) 0.0776(2) −0.09(2) 0.515 0.011953(3) 0.02441(3) 0.041(2)
0.105 0.09752(2) 0.0793(2) −0.05(2) 0.525 0.011408(3) 0.02327(3) 0.039(2)
0.115 0.09083(2) 0.0808(2) −0.007(10) 0.535 0.010884(3) 0.02207(3) 0.038(2)
0.125 0.08536(2) 0.0816(2) −0.013(10) 0.545 0.010370(3) 0.02093(2) 0.035(2)
0.135 0.08073(2) 0.0828(2) 0.021(9) 0.555 0.009869(3) 0.01985(2) 0.032(2)
0.145 0.07688(2) 0.0832(2) 0.030(9) 0.565 0.009390(3) 0.01875(2) 0.033(2)
0.155 0.07358(2) 0.0833(2) 0.052(8) 0.575 0.008911(2) 0.01764(2) 0.030(2)
0.165 0.07082(2) 0.0828(2) 0.042(8) 0.585 0.008449(2) 0.01657(2) 0.028(2)
0.175 0.06845(2) 0.0817(2) 0.070(8) 0.595 0.007992(2) 0.01554(2) 0.024(2)
0.185 0.06643(2) 0.0781(2) 0.036(8) 0.605 0.007538(2) 0.01450(2) 0.022(1)
0.195 0.06320(2) 0.0783(2) 0.049(8) 0.615 0.007089(2) 0.01344(2) 0.021(1)
0.205 0.05874(2) 0.0808(2) 0.071(7) 0.625 0.006643(2) 0.01244(2) 0.0207(9)
0.215 0.05478(2) 0.0802(2) 0.079(7) 0.635 0.006192(2) 0.01146(2) 0.0175(8)
0.225 0.05119(2) 0.0788(2) 0.083(7) 0.645 0.005746(2) 0.01046(2) 0.0153(8)
0.235 0.04797(1) 0.0768(2) 0.103(6) 0.655 0.005296(2) 0.00948(2) 0.0141(7)
0.245 0.04505(1) 0.0743(1) 0.099(6) 0.665 0.004830(2) 0.00850(1) 0.0117(7)
0.255 0.042376(9) 0.07180(9) 0.094(6) 0.675 0.004359(2) 0.00752(1) 0.0105(6)
0.265 0.039926(9) 0.06926(9) 0.092(6) 0.685 0.003874(2) 0.006593(9) 0.0083(5)
0.275 0.037697(8) 0.06666(8) 0.097(5) 0.695 0.003369(2) 0.005645(8) 0.0073(5)
0.285 0.035639(8) 0.06417(8) 0.097(5) 0.705 0.002843(1) 0.004749(7) 0.0061(4)
0.295 0.033751(7) 0.06167(8) 0.099(5) 0.715 0.0022871(9) 0.003931(6) 0.0056(4)
0.305 0.031981(7) 0.05915(7) 0.088(5) 0.725 0.0016951(7) 0.003205(5) 0.0046(3)
0.315 0.030343(7) 0.05690(7) 0.089(5) 0.735 0.0010592(6) 0.002754(4) 0.0044(2)
0.325 0.028826(7) 0.05464(6) 0.087(4) 0.745 367.5(4)·10−6 0.002889(2) 0.0051(1)
0.335 0.027407(6) 0.05245(6) 0.077(4) 0.755 0 0.0018054(7) 0.00524(3)
0.345 0.026087(6) 0.05042(6) 0.092(4) 0.765 0 751.8(3)·10−6 0.00248(2)
0.355 0.024841(5) 0.04837(6) 0.076(4) 0.775 0 380.1(2)·10−6 0.001189(9)
0.365 0.023668(5) 0.04642(5) 0.076(4) 0.785 0 191.1(2)·10−6 581(5)·10−6

0.375 0.022574(5) 0.04445(5) 0.081(4) 0.795 0 89.11(8)·10−6 255(3)·10−6

0.385 0.021545(5) 0.04283(5) 0.071(3) 0.805 0 35.65(5)·10−6 99(2)·10−6

0.395 0.020570(5) 0.04100(5) 0.073(3) 0.815 0 10.24(3)·10−6 29.5(8)·10−6

0.405 0.019638(5) 0.03928(5) 0.067(3) 0.825 0 1.241(8)·10−6 1.6(2)·10−6

0.415 0.018760(4) 0.03781(4) 0.063(3) 0.835 0 2.3(2)·10−9 139(4)·10−9
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