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Abstract

The lateral stability of the car-trailer combination is analysed by means of a single track model. The equations
of motion are derived rigorously by means of the Appell-Gibbs equations for constant longitudinal velocity of the
vehicle. The tyres are described with the help of the so-called delayed tyre model, which is based on a brush model
with pure rolling contact. The lateral forces and aligning torques of the tyre/road interaction are calculated via the
exact instantaneous lateral deformations in the contact patches. The linear stability analysis of the rectilinear motion
is performed via the analytically determined characteristic function of the system. Stability charts are constructed
with respect to the vehicle longitudinal velocity and the payload position on the trailer. Self-excited lateral vibrations
are detected with different vibration modes at low and at high longitudinal speedsof the vehicle. The effects of the
tyre parameters are also investigated.
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1. Introduction

The tiny contact regions between tyres and road surface haveessential effects on the dynamics of large-scale road
vehicles. Consequently, tyre deformations strongly influence vehicle manoeuvrability and stability, which explains
the fact that tyre dynamics is one of the most important research fields in vehicle dynamics.

Several tyre models have been developed to be used in analytical and/or numerical investigations of vehicle sys-
tems. The basic models assume quasi-static tyre deformations both inside and outside the tyre-ground contact patch.
The tyre model initially developed in [1] is based on the so-called creep-force idea that has become standard in vehicle
dynamics. In engineering applications, this model can efficiently be used for different vehicle set-ups running with
large or medium speeds. The usability of this tyre model has been proven by many studies; here, we mention recent
work on aircraft ground dynamics only (see, for example, [2,3, 4]). Nevertheless, more accurate models are needed
when the instantaneous shape of the deformed tyre is relevant. The corresponding dynamic tyre models that can be
used in multi-body simulations of complex vehicle systems are reviewed and discussed in [5].

During the last decades, the fuel consumption and the noise generation of vehicles have become relevant aspects
of tyre development. Recent publications, like [6, 7, 8, 9],observe that the tyre-ground interaction has a key role in
noise generation and consequently, it has certain effect on fuel consumption, too [10].

The further development of dynamic tyre/ground contact models are also required by the driving aid systems,
especially the self-parking systems, which tend to become increasingly common nowadays. These systems demand
accurate modelling of the vehicle motion by means of improved tyre models. While the classical quasi-stationary
tyre models can be improved by introducing more and more characteristic parameters obtained from extensive exper-
imental work, there are several arguments for not to over-complicate these models. On the one hand, the real-time
simulation of the vehicle models and the real-time digital control of the corresponding vehicles require the use of
simple-enough dynamic tyre models. On the other hand, analytical studies are also needed to find new insights into
the parameter dependence of vehicle dynamic behaviour. These investigations prefer the use of complex-enough tyre
models but with low number of parameters. As a typical example for such approach, the single track model of a
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passenger car (‘bycicle model’) can be mentioned in [11], where the non-linear analysis of the turning manoeuvre is
carried out leading to new information about the lateral stability of vehicles.

In the present report, the stability of the car-trailer combination is studied. Although this vehicle system was
thoroughly analysed in former studies [12, 13, 14], it is worth revisiting it with the use of an improved dynamic tyre
model, since the bicycle model of the four-wheeled car in [15] showed that new unstable parameter domains can be
found by using a time delayed tyre model (also called ‘tyre with memory effect’). These results motivated us to focus
on the accurate modelling of the tyre deformation in the contact patch and to implement the time delayed tyre model
in a car-trailer system, which is capable to describe the so-called regenerative vibrations of the tyres, too.

In order to keep the governing equations analytically manageable, the partial slip in the tyre/ground contact as
well as the tyre relaxation outside the contact patch are neglected. These are rough but acceptable approximations in
case of the linear stability analysis of the stationary rectilinear motion when small tyre deformations are assumed. As
a result of this analysis, stability charts are constructedwith respect to the speed of the vehicle and the location of the
trailer’s payload. The effects of the tyre damping and the parameters of the trailer’s tyre are investigated in details.

2. Mechanical model
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Figure 1: The single track model of the car-trailer combination

The mechanical model is shown in Fig. 1. The car-trailer combination is represented by the so-called single track
model (in-plane bicycle model with a trailer, see [12]) by means of the following assumptions. The vehicle can move
in the (X,Y) plane, and its motion is described in the ground-fixed Lagrangian coordinate system. The vertical motion
of the vehicle is neglected. By using the single track model,we also neglect the lateral extension of the vehicles,
which is an acceptable simplification for the stability analysis of stationary rectilinear motion.

Hence, the vehicle system is represented by two rods, which are connected with a rotational joint at J. The wheels
are attached to the vehicle at points T1, T2 and T3. The notationsh, f andb stand for the distances between the centre
of mass C1 and the joint J, the front and rear wheel point T1 and T2 respectively. The distance between the centre of
gravity C2 of the trailer and the king pin J is referred to aslc, while l (often called caster/trail length) is the distance
between the king pin J and the wheel axle of the trailer. Four generalized coordinates describe the motion of the
vehicle:X1 andY1, which are the coordinates of the centre of gravity C1, and the anglesψ1 andψ2 of the longitudinal
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axes of the car and the trailer with respect to theX direction. These are represented in the vector of generalized
coordinates:

q =
[

X1 Y1 ψ1 ψ2

]T
. (1)

One kinematic constraint is applied to the system, namely, the longitudinal velocityV of the car is kept constant
in time:

Ẋ1 cosψ1 + Ẏ1 sinψ1 = V , (2)

where dots refer to the derivatives with respect to time. Theequations of motion of the non-holonomic mechanical
system can be determined efficiently by means of the Appell-Gibbs equation [16]. This requires the definition of the
so-called pseudo velocitiesβ1,2,3, which can be introduced with the help of a system of linear equations:
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where the coefficient matrix provides the unique relationship between the pseudo velocitiesβr and the generalized
velocitiesq̇k. The first row of this matrix is given by the kinematic constraint Eq. (2), whereas the other rows can be
chosen intuitively. Here,β1 is the lateral velocity of centre of gravity C1 of the car, whileβ2 andβ3 are the angular
velocities of the car and the trailer, respectively.

By means of Eq. (3), the generalized velocities can be eliminated using the pseudo velocities, which already fulfil
the kinematic constraint:

Ẋ1 = V cosψ1 − β1 sinψ1,

Ẏ1 = V sinψ1 + β1 cosψ1,

ψ̇1 = β2 ,

ψ̇2 = β3 .

(4)

The energy of acceleration containing the pseudo accelerations can be calculated from:

S =
1
2

m1a2
C1
+

1
2

JC1ε
2
1 +

1
2

m2a2
C2
+

1
2

JC2ε
2
2 + . . . , (5)

wherem1 andm2 are the masses,JC1 andJC2 are the mass moments of inertia about theZ axis at the centres of gravity
of the car and the trailer, respectively,aC1 andaC2 are the accelerations of the centres of gravity, whereasε1 andε2 are
the angular accelerations. All these kinematic quantitiescan be given as a function of the pseudo velocities (β1, β2, β3)
and pseudo accelerations (β̇1, β̇2, β̇3), and the energy of acceleration can be expressed as

S =
1
2

(

(m1 + m2) β̇2
1 +
(

JC1 + m2h2
)

β̇2
2 +
(

JC2 + m2l2c
)

β̇2
3

)

− m2hβ̇1β̇2 − m2lc
(

β̇1 − hβ̇2

)

β̇3 cos(ψ2 − ψ1)

+
(

(m1 + m2)Vβ2 + m2lcβ
2
3 sin(ψ2 − ψ1)

)

β̇1 − m2h
(

Vβ2 + lcβ
2
3 sin(ψ2 − ψ1)

)

β̇2

− m2lc
(

V cos(ψ2 − ψ1) + (β1 − hβ2) sin(ψ2 − ψ1)
)

β2β̇3 + . . . .

(6)

The presented formula is not complete, but it can be seen, that only the given terms are necessary for the derivation of
the governing equations.

The Appell-Gibbs equations read
∂S

∂β̇r
= Γr , r = 1,2,3, (7)

whereΓr are the pseudo forces, which can be identified as the coefficients of the virtual pseudo velocities in the virtual
power of the active forces:

δP =
∑3

r=1
Γr δβr . (8)
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In our case, the virtual power can be calculated via the formula

δP = F1 · δvT1 + F2 · δvT2 + F3 · δvT3 + (M1 +M2) · δω1 +M3 · δω2 , (9)

whereFi andM i (for i = 1,2,3) are the forces and aligning torques transmitted by the tyres from the ground to the
vehicle. They can be written in the car-fixed (x, y, z) coordinate system (see Fig. 1) as
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andM i = Mik, wherek is the unit vector of theZ direction. The notationsδvT1, δvT2 andδvT3 are the virtual velocities
of points T1, T2 and T3, respectively, whereasδω1 = δβ2k andδω2 = δβ3k are the virtual angular velocities. The
virtual velocities can easily be calculated in the car-fixed(x, y, z) coordinate system:
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After some manipulation of the given formulas, one can determine both sides of Eq. (7), and the governing
equations of the non-linear system can be composed as

m1

(

β̇1 + Vβ2

)

+ m2

(

β̇1 + Vβ2 − hβ̇2 − lcβ̇3 cos(ψ2 − ψ1) + lcβ
2
3 sin(ψ2 − ψ1)

)

= F1 + F2 + F3 cos(ψ2 − ψ1) ,

JC1β̇2 + m2

(

h2β̇2 − hVβ2 − hβ̇1 + hlcβ̇3 cos(ψ2 − ψ1) − hlcβ
2
3 sin(ψ2 − ψ1)

)

= F1 f − F2b − F3h cos(ψ2 − ψ1) + M1 + M2 ,

JC2β̇3 + m
(

lc
2β̇3 − lcVβ2 cos(ψ2 − ψ1) − lcβ̇1 cos(ψ2 − ψ1) − lcβ1β2 sin(ψ2 − ψ1)

+hlcβ̇2 cos(ψ2 − ψ1) + hlcβ
2
2 sin(ψ2 − ψ1)

)

= M3 − F3l .

(12)

3. Tyre model with memory effect

In order to calculate the forces and aligning torques of the tyres, a delayed tyre model is used, which is based
on the so-called brush tyre model (see [12]). Let us considerthe tyre of a rigid wheel with the wheel centre point
T. The wheel centre point position is described by theXT andYT coordinates while the angle of the wheel plane is
denoted byψ. The tyre-ground contact patch with its laterally deformedcentre line is shown in Fig. 2. The length
of the contact patch is 2a. The tyre is modelled as massless elements with distributedstiffnessk and dampingd, and
the lateral displacement of its centre line is described by the deformation functionq(x, t). The wheel rotates around
the y axis and due to this rotation, the tyre particles in the contact patch move in the wheel-fixed (x, y, z) Eulerian
coordinate system, although they have zero velocity relative to the ground (in case of rolling). Since thez coordinate
of a contacted tyre particle is constant, the relative motion of the tyre particles in the contact patch can be investigated
as an in-plane motion. Thus, we omit thez coordinate in our further calculations in order to keep the formulas as
simple as possible.

The position vectorRP of an arbitrary point P on the contact patch centre line can bedescribed with the help of
the wheel centre point T (i.e. the origin of the (x, y, z) Eulerian coordinate system):

RP = RT + RTP (13)

where the position vectorsRP,RT andRTP are given in the (X,Y,Z) ground-fixed coordinate system. Give the position
of the wheel centre point by

RT =

[

XT

YT

]

. (14)
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Figure 2: Tyre deformation in the contact patch

The position vector of the point P is given in the (x, y, z) coordinate system by

rP =

[

x
q (x, t)

]

. (15)

This can be also expressed in the ground-fixed coordinate system:

RTP =

[

x cosψ − q (x, t) sinψ
x sinψ + q (x, t) cosψ

]

. (16)

Hence, the the position vectorRP of an arbitrary contact point reads as

RP =

[

XT + x cosψ − q (x, t) sinψ
YT + x sinψ + q (x, t) cosψ

]

. (17)

By assuming pure rolling, the velocity of the points in the contact patch relative to the ground is zero, namely:

d
dt

RP = 0. (18)

Due to the material flow along thex direction via the rotation of the wheel, this leads to:

ẊT + v cosψ − x ψ̇ sinψ −
d
dt

q(x, t) sinψ − q (x, t) ψ̇ cosψ = 0 , (19)

ẎT + v sinψ + x ψ̇ cosψ +
d
dt

q(x, t) cosψ − q (x, t) ψ̇ sinψ = 0 , (20)

in which v is the longitudinal component of the velocity-field (i.e. the longitudinal translational rate of the tyre
particles) in the Eulerian system. The material time derivative of q(x, t) is:

d
dt

q (x, t) = q̇ (x, t) + q′ (x, t) v , (21)

where prime refers to the derivative with respect to the space coordinatex. After multiplying Eq. (19) with sinψ, and
similarly Eq. (20) with cosψ, and adding the two equations together the following can be written:

d
dt

q(x, t) = ẊT sinψ − ẎT cosψ − x ψ̇ . (22)

And in the same way, multiplying Eq. (19) with cosψ, and Eq. (20) with sinψ and adding them together, we obtain:

v = −ẊT cosψ − ẎT sinψ + q (x, t) ψ̇ . (23)
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Substituting Eq. (22) and Eq. (23) into Eq. (21) a non-linearpartial differential equation (PDE) can be obtained:

q̇ (x, t) = ẊT sinψ − ẎT cosψ − x ψ̇ + q′ (x, t)
(

ẊT cosψ + ẎT sinψ − ψ̇q (x, t)
)

(24)

for x ∈ [−a, a]. This equation can be originated in the kinematic constraint Eq. (18) of rolling, and it describes the
exact tyre deformation in the contact patch in case of pure rolling. The boundary condition (BC) of this PDE is
q(a, t) = 0, which corresponds to the zero deformation at the leading edge according to the implemented brush tyre
model.

The tyre forces and aligning torques caused by tyre deformation can be calculated by the integral formulas:

F = k

a
∫

−a

q (x, t) dx + d

a
∫

−a

d
dt

q (x, t) dx and M = k

a
∫

−a

x q (x, t) dx + d

a
∫

−a

x
d
dt

q (x, t) dx . (25)

One can use the formulas of Eq. (25) together with Eq. (24) foreach tyre of the mechanical model in Fig. 1. And then,
Eq. (12) turns to be three non-linear integro-differential equations (IDEs) coupled to three non-linear PDEs.

In what follows, it is shown that the IDE-PDE system can be transformed into a more manageable form. We can
compose the travelling wave solution of the PDEs and we can obtain delay differential equations (DDEs) as governing
equations. This method provides simpler system of equations with respect to three scalar time-dependent coordinates
only, while the lateral deformation shape of the tyre is still described accurately (for rolling), while the governing
equations still represent the infinite dimensional behaviour of the original system.

3.1. The travelling wave solution for rolling tyres

In order to find the travelling wave solution of the PDE given in Eq. (24), the position vectorRP of an arbitrary
contact point has to be used. Since tyre particles keep theirpositions in the ground-fixed coordinate system during the
contact, we can construct the travelling wave solution as

RP (x, t) = RP (a, t − τ (x)) , (26)

whereτ(x) is the time delay, which is the function of the coordinatex. This time delay is needed for a tyre particle to
travel from the leading edge (x = a) to its actual position characterized byx. With the help of Eq. (17) in Eq. (26), the
travelling wave solution can be composed, which satisfy thePDE Eq. (24) with boundary conditionq(a, t) = 0:

q(x, t) = (XT (t) − XT (t − τ)) sinψ (t) − (YT (t) − YT (t − τ)) cosψ (t) − a sin(ψ (t) − ψ (t − τ)) , (27)

for x ∈ [−a, a]. All this means that the lateral deformation of a tyre can becalculated via the past and present values
of the wheel centre point coordinates (XT, YT) and the wheel deflection angle (ψ).

Unfortunately, the relationship between the space coordinatex and the time delayτ reads:

x = − (XT (t) − XT (t − τ)) cosψ (t) + (YT (t) − YT (t − τ)) sinψ (t) + a cos(ψ (t) − ψ (t − τ)) , (28)

namely, the time delay can not be expressed explicitly. However, we can calculate the derivative of the coordinatex
with respect to the time delay

∂x
∂τ
= −ẊT (t − τ) cosψ (t) + ẎT (t − τ) sinψ (t) − a sin(ψ (t) − ψ (t − τ)) ψ̇ (t − τ) . (29)

In Eq. (25), one can use these expressions to change the integration variablex to τ.

3.2. Tyre force and aligning torque for small oscillations around the straight wheel motion

As it was mentioned before, the equation of motion of the car-trailer system can be transformed into DDEs. In
order to do this, the travelling wave solution Eq. (27) with Eq. (28) and Eq. (29) can be used in Eq. (25) for each of
the three tyres. Here we show this calculation only for the linear case since we focus on the linear stability analysis of
the car-trailer system.
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Thus, we can linearise the equations around the rectilinearforward motion of the tyre, which corresponds to

XT (t) = Vt, YT (t) ≡ 0, ψ (t) ≡ 0,

ẊT (t) ≡ V, ẎT (t) ≡ 0, ψ̇ (t) ≡ 0.
(30)

For the small oscillations around this solution, the linearised form of the travelling wave solution (27) can be used:

q(x, t) = Vτψ(t) − (YT(t) − YT(t − τ)) − a (ψ(t) − ψ(t − τ)) . (31)

For this linear case, the relationship (28) between the space coordinatex and the time delayτ simplifies to:

x = a − Vτ ⇒ τ =
a − x

V
, (32)

whereas the velocity field given in Eq. (23) reduces to

v = −V . (33)

Considering these, the material time derivative in Eq. (22)of the lateral tyre deformation gives:

d
dt

q(x, t) = (Vτ − a) ψ̇(t) − ẎT(t) + Vψ(t). (34)

The forces and aligning torques caused by tyre deformation can be calculated with the help of Eq. (25), where the
integrals can be transformed by replacing the space coordinate x to the time delayτ. According to the formulas in
Eq. (32), we can use:

dx = −Vdτ (35)

whereas the limits of the integrations get modified to

x = −a ⇒ τ =
2a
V
,

x = a ⇒ τ = 0 .
(36)

Performing the integration in closed form on those terms where it is possible, the forces and aligning torques
caused by tyre deformation can be expressed for the linear case as a function of the past and present values of the
wheel centre point coordinateYT and the wheel angleψ for each wheel as:

F = −2akYT(t) − 2ad
(

ẎT(t) − Vψ(t)
)

+ kV
∫ 2a

V

0
YT(t − τ) + aψ(t − τ) dτ (37)

and

M = −
2
3

a3kψ(t) −
2
3

a3d ψ̇(t) + kV
∫ 2a

V

0
(a − Vτ) (YT(t − τ) + aψ(t − τ)) dτ . (38)

4. Governing equations of the car-trailer combination withdelayed tyre model

The linearised deformation function Eq. (27) of the tyre is based on the wheel centre point coordinates and on the
wheel orientation angle. Hence, the position vectors of thewheel centre points T1, T2 and T3 (see Fig. 1) have to be
determined as a function of the state variables of the mechanical model:

[

XT1

YT1

]

=

[

X1 + f cosψ1

Y1 + f sinψ1

]

,

[

XT2

YT2

]

=

[

X1 − b cosψ1

Y1 − b sinψ1

]

,

[

XT3

YT3

]

=

[

X1 − h cosψ1 − l cosψ2

Y1 − h sinψ1 − l sinψ2

]

. (39)
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If we evaluate the linearised form of these expressions in Eq. (37) and Eq. (38) for each tyre, we obtain the forces and
aligning torques. Here we present the expressions for the case when the length of the contact patch is the same for all
of the tyres, which later enables us to simplify some terms inthe equations:

F1 = − 2ak (Y1(t) + fψ1(t)) − 2ad
(

Ẏ1(t) + f ψ̇1(t) − Vψ1(t)
)

+ kV

2a
V
∫

0

Y1(t − τ) + ( f + a)ψ1(t − τ) dτ ,

F2 = − 2ak (Y1(t) − bψ1(t)) − 2ad
(

Ẏ1(t) − b ψ̇1(t) − Vψ1(t)
)

+ kV

2a
V
∫

0

Y1(t − τ) − (b − a)ψ1(t − τ) dτ ,

F3 = − 2ak (Y1(t) − hψ1(t) − lψ2 (t)) − 2ad
(

Ẏ1(t) − h ψ̇1(t) − l ψ̇2(t) − Vψ2(t)
)

+ kV

2a
V
∫

0

Y1(t − τ) − hψ1(t − τ) − (l − a)ψ2(t − τ) dτ ,

(40)

and

M1 = −
2
3

a3kψ1(t) −
2
3

a3d ψ̇1(t) + kV

2a
V
∫

0

(a − Vτ) (Y1(t − τ) + ( f + a)ψ1(t − τ)) dτ ,

M2 = −
2
3

a3kψ1(t) −
2
3

a3d ψ̇1(t) + kV

2a
V
∫

0

(a − Vτ) (Y1(t − τ) − (b − a)ψ1(t − τ)) dτ ,

M3 = −
2
3

a3kψ2(t) −
2
3

a3d ψ̇2(t) + kV

2a
V
∫

0

(a − Vτ) (Y1(t − τ) − hψ1(t − τ) − (l − a)ψ2(t − τ)) dτ .

(41)

Transform the governing equations Eq. (12) into the space ofthe generalized coordinates. For small oscillations
around the rectilinear motion, the relationship between the generalized coordinates and pseudo velocities simplifies
to:

β1 = Ẏ1 − Vψ1 ,

β2 = ψ̇1 ,

β3 = ψ̇2 .

(42)

Taking these into account, the linearised form of the equations of motion Eq. (12) can be written as

m1Ÿ1 + m2

(

Ÿ1 − hψ̈1 − lcψ̈2

)

= F1 + F2 + F3 ,

JC1ψ̈1 + m2

(

h2ψ̈1 − hŸ1 + hlcψ̈2

)

= F1 f − F2b − F3h + M1 + M2 ,

JC2ψ̈2 + m2

(

f 2ψ̈1 − f Ÿ1 + hlcψ̈2

)

= M3 − F3l .

(43)

After substitution of the formulas Eq. (40) and Eq. (41) intoEq. (43) we obtain a system of DDEs with distributed
time delay:

Mÿ(t) + Dẏ(t) + Ky (t) = Q(yt), (44)

wherey(t) is the vector of the remaining state variables of the linearised system:

y (t) =





















Y1 (t)
ψ1 (t)
ψ2 (t)





















, (45)
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andyt is a function of bounded variation above the delay interval [0,2a/V] defined by the shift operatoryt(τ) = y(t−τ),
τ ∈ [0,2a/V]. The mass matrixM can be expressed as

M =





















m1 + m2 −m2h −m2lc
−m2h JC1 + m2h2 m2hlc
−m2lc m2hlc JC2 + m2lc

2





















. (46)

The stiffness matrixK can be separated into symmetric and non-symmetric parts, i.e.,K = K k + K d. The symmetric
part is originated in the elastic properties of the tyres while the non-symmetrical part is originated in the tyre damping:

K k = 2ak





















3 f − b − h −l
f − b − h f 2 + b2 + h2 + 2

3a2 lh
−l lh l2 + 1

3a2





















, (47)

K d = 2adV





















0 −2 −1
0 − f + b h
0 0 l





















. (48)

The damping matrixD is proportional to the symmetric part of the stiffness matrix:

D =
d
k

K k . (49)

The retarded functionalQ(yt) on the right hand side of Eq. (44) can be composed as:

Q(yt) = kV
∫ 2a

V

0
(B0 − VτB1) y(t − τ) dτ, (50)

where the coefficient matrices are:

B0 =





















3 f − b − h + 2a −l + a
f − b − h + 2a f 2 + b2

− h2 + 2a ( f − b + a) h (l − a)
−l + a h (l − a) (l − a)2





















(51)

and

B1 =





















0 0 0
2 a − b + 2a 0
1 −h −l + a





















. (52)

5. Linear stability and self-excited vibrations

The characteristic function of the system can be determinedby using the trial solutiony(t) = Aeλt, whereλ ∈ C is
the characteristic exponent,A ∈ C3. Substituting this into the differential equation Eq. (41) we obtain:















λ2M + λD + K − kV















∫ 2a
V

0
B0e−λτdτ −

∫ 2a
V

0
VτB1e−λτdτ





























Aeλt = 0 , (53)

where the closed form calculation of the integrals leads to the characteristic equation

D (λ) := det
(

λ2M + λD + K − k
V
λ

(

B0

(

1− e−
2a
V λ
))

− B1

(V
λ

(

1− e−
2a
V λ
)

− 2a e−
2a
V λ
))

= 0, (54)

with D(λ) defined as the characteristic function of the system.
It can be shown, that this equation has at least two zero roots, which is corroborated by our physical view, namely,

the stability of the rectilinear motion is independent to the direction and position in the (X,Y) reference coordinate
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plane. Therefore, from the point of view of the stability it is sufficient to analyse the simplified̂D (λ) = D (λ) /λ2

characteristic function.
The rectilinear motion of the vehicle is stable if and only ifall the (infinitely many) characteristic roots take place

on the left half of the complex plane, i.e.

Re
(

λ j

)

< 0, j = 1, ...,∞. (55)

We investigate the stability of the rectilinear motion of the vehicle with special attention to the location of the
payload on the trailer and to the longitudinal speedV of the vehicle. Thus, we introduce the dimensionless payload
position parameter

p =
lc
l
, (56)

which describes the location of the centre of gravity of the trailer with respect to the location of the trailers axle (e.g.
p = 0 if the centre of gravity is exactly at the king pin, andp = 1 if the centre of gravity is exactly at the axle of the
trailer.)

In view of the loss of stability, two cases can be differentiated. When a pure real characteristic root becomes
positive, we can speak about ‘static’ loss of stability, which corresponds to saddle-node (SN) bifurcation of the steady
state solution of the corresponding non-linear system. Then at the stability boundary the following equation has to be
satisfied:

lim
λ→0

D̂ (λ) = 0 , (57)

from which the critical parameterpSN can be calculated in closed form. Here we present the formulafor the undamped
(d = 0) case:

pSN = p0 − p−2
1

V2
, (58)

where

p0 =
(3l + a) ((m1 + m2)(3( f − b) − 2a) + 6m2h)

3(3(f − b + 2h) − 2a)m2l
,

p−2 =
2a2k

(

3( f + b)2(a + 3l) − a2( f + 2(−a + h − 2l) − b)
)

3(3(f − b + 2h) − 2a)m2l
.

(59)

For realistic system parametersp−2 > 0, which means that forp < p0 there always exists a critical speed over which
the rectilinear motion of the vehicle is unstable.

When the real part of a complex conjugate characteristic-pair becomes positive, the rectilinear motion loses its
stability via oscillation (i.e. Hopf bifurcation may occur). For this case:

D̂ (λ)
∣

∣

∣

λ=±iω
= 0 . (60)

Since this equation is transcendental, numerical methods have to be applied in order to detect the stability boundaries,
like the so-called multi-dimensional bisection method [17]. Still, in certain undamped cases, semi-analytical solutions
also help to check the numerical results, just like in [18]. There are several methods in the literature to select stable pa-
rameter domains from the many determined by the calculated boundaries [19]. Or one can use the semi-discretisation
method (see [20]) to detect the stable parameter domain of linear DDEs.

Using these methods, stability charts were constructed in theV− p parameter plane using the system parameters of
Table 1. The stability analysis showed that at large longitudinal velocities two unstable domains occur, see the shaded
domains in Fig 3. One of them corresponds to the SN bifurcation curve given by Eq. (58). For the chosen parameters,
this stability boundary can clearly be identified forp < p0 = 0.729. The stability boundary forp > 1 belongs to Hopf
bifurcation, i.e. self-excited vibrations appear when this boundary is crossed. By means of the stability chart, it can
be established thatp ≈ 1 (i.e. lc ≈ l) can guaranty the linear stability for a wide range of the speed. This statement is
well-known in vehicle dynamics, and it can be proven even fora simple towed rigid-wheel with single contact point
[21].
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Parameter Notation Value
Mass of the car m1 1600 kg
Mass of the trailer m2 400 kg
Mass moment of inertia of the car JC1 24 576 kgm2

Mass moment of inertia of the trailer JC2 800 kgm2

The distance between the car’s front axle and the centre of gravity f 1.4 m
The distance between the car’s rear axle and the centre of gravity b 1.6 m
The distance between the king pin and the centre of gravity ofthe car h 1.8 m
The distance between the king pin and axle of the trailer l 2.0 m
Half length of the tyre-ground contact patch a 0.05 m
Distributed lateral stiffness of the tyre k 2× 107 N/m2

Table 1: The realistic parameter set-up used for the stability analysis.
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 p
 [

1
]

Stable

UnstableHopf bifurcation

SN bifurcation

Unstable

Figure 3: Linear stability chart for a wide speed range of thevehicle in the plane of the longitudinal speedV and payload position parameterp.
Tyre damping is not considered (d = 0). Unstable domains are shaded. Vibration modes with the typical tyre deformation shapes are also shown.

In Fig 3, the emerging vibrations are also illustrated with the characteristic tyre deformation shapes for two essen-
tial types of the unstable domains. Note that the lateral tyre deformations seem to be close to simple linear functions,
which clearly explains why the quasi-static tyre models (like Pacejka’s creep-force model) can efficiently be used to
identify these relevant stability boundaries, why these unstable domains were already verified in many publications
(see for example, [12, 14, 22]). In other words, the delayed tyre model provides a kind of theoretical proof for the
validity of the quasi-stationary tyre models even for the case of car-trailer combination, at least in the speed range
V > 5 m/s.

Nevertheless, we also discover new unstable parameter domains for small speeds, which can be only determined
by taking into account the regenerative effect of the tyre-ground contact patch. Fig. 4 shows the charted stability
boundaries, which all relates to Hopf bifurcations leadingto the oscillation of the vehicle. If the speed tends to zero
(V → 0), an infinite number of such unstable domains emerge, whichis typical in delayed systems (e.g. see ‘chatter’
of machine tools in [20] or ‘wheel shimmy’ in [18]). Note thatthe vibration frequencyω also tends to infinity as the
speed decreases, which means that the wave length of the tyredeformation shape also decreases. Fig. 4 presents some
of these unstable domains.

There are also parameter domains, where two unstable regions intersect each other. In these cases two pairs of
complex conjugate roots of the characteristic equation have positive real parts, therefore, oscillations occur with multi-
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Figure 4: Stability chart for the slow motion of the vehicle inthe plane of the longitudinal speedV and the payload position parameterp. Tyre
damping is not considered (d = 0). Unstable domains are shaded with different colours regarding to the corresponding vibration modes and tyre
deformations.

ple frequencies. For the case of the wheel shimmy, this type of intersections of stability boundaries was experimentally
validated in [21] giving explanation for the quasi-periodic oscillation of a one degree-of-freedom caster-wheel system.

The detected stability boundaries can be categorized by themode shape of the emerging vibration. This is demon-
strated in Fig. 4. Three different modes can be seen: the larger the parameterp is, the more complicated the vibration
mode is. The deformed shapes of the tyres are all sinusoidal with period one. The boundary condition of the brush
tyre model ensures the zero deformation at the leading edge of the contact patch only, but one can observe zero or
close to zero deformation at the trailing edge too. For the simplest mode, the deformations of the tyres are in phase,
while for the other modes the trailer’s tyre and the car’s rear tyre are in counter-phase, respectively.

The effect of the tyre damping is analysed in Fig. 5, where the distributed damping parameterd is increased with
discrete steps. As it can be seen, the viscous damping reduces the size of the unstable regions, and the smaller very
narrow unstable regions even disappear. Note that the rectilinear motion can be stabilized for any speed by means of
large enough damping values ifp ≈ 1.

It is also interesting to investigate practical cases when the tyres of the vehicle have different parameters. Here,
we vary the contact patch lengtha3 and the stiffnessk3 of the trailer’s tyre, which corresponds to the case when the
trailer’s tyres have smaller inflation pressure and/or larger vertical load. Experimental observations suggest that such
conditions make the vehicle to be more ‘unstable’. Fig. 6 shows the stability charts of the undamped (d = 0) system
for different values of the contact patch length and stiffness. The stability chart in the right bottom panel corresponds
to the reference system with data in Table 1. As the tyre stiffness is reduced, the unstable domains shrink and shift
to the left. The effect of the variation of the contact patch length is more complicated. If the differences between the
contact patch lengths are small, many unstable domains disappear; compare the casesa3 = 0.05 m anda3 = 0.0625 m.
However, when the tyre contact lengtha3 of the trailer is 3/2 or 2 times larger than the contact length of the other
tyres, then some of the unstable domains rebirth and extend.This effect can be originated in the interactions of the
tyres, namely, the stability depends on whether the tyres can excite each other or not, which corresponds to the wave
lengths of the tyre deformations (check them in Fig. 4). All this means that there exist certain (maybe ‘extreme’)
parameter set-ups, which can lead to kind of worst case scenarios.
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Figure 5: The effect of tyre damping on stability. Stability charts are constructed for different damping factors in the plane of the longitudinal speed
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Figure 6: The effect of the contact patch lengtha3 and the lateral stiffnessk3 of the trailer’s tyre on the stability of the car-trailer system. Unstable
domains are shaded in the plane of the longitudinal speedV and the payload position parameterp. Tyre damping is considered to be zero (d = 0).
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6. Conclusions

Complex structures of unstable parameter domains were identified using the delayed tyre model in the single
track mechanical model of the car-trailer combination. Theintricate effects of the system parameters – with special
attention to the tyre specific stiffness, damping and the length of the contact patch – were analysed via the variation of
the corresponding stability charts constructed in the plane of the longitudinal vehicle speed and the payload position
parameter along the trailer. The numerical evaluations of the analytical results proved that although the emerging
vibrations in the unstable domains are ’weak’ compared to the ones at the well-known unstable parameter domains
at large longitudinal speeds, they are still relevant due tothe related unwanted noise and increased fuel consumption.
Moreover, these instabilities may have a significant role inspecific applications where accurate modelling of the tyre
deformation is needed for the control of low-speed manoeuvres like parking or reversing with car-trailer systems,
also called non-holonomic balancing. Also, the analytically detected unstable parameter ranges can be useful for the
verification of multi-body simulation software in case of more complicated real-world car-trailer mechanical models.
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[5] P. Lugner, H. B. Pacejka, M. Plöchl, Recent advances in tyre models and testing procedures,Vehicle System Dynamics 43 (6) (2005) 413–426.
[6] P. B. U. Andersson, W. Kropp, Rapid tyre/road separation: An experimental study of adherence forces and noise generation, Wear 266 (1-2)

(2009) 129–138.
[7] D. O’Boy, A. Dowling, Tyre/road interaction noise - Numerical noise prediction of a patterned tyre on a rough road surface, Journal of Sound

and Vibration 323 (12) (2009) 270 – 291. doi:http://dx.doi.org/10.1016/j.jsv.2008.12.024.
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