Tyre induced vibrations of the car-trailer system
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Abstract

The lateral stability of the car-trailer combination is Bisad by means of a single track model. The equations
of motion are derived rigorously by means of the Appell-Gilgguations for constant longitudinal velocity of the
vehicle. The tyres are described with the help of the sedalkelayed tyre model, which is based on a brush model
with pure rolling contact. The lateral forces and aligniogques of the tyreoad interaction are calculated via the
exact instantaneous lateral deformations in the contdchpa. The linear stability analysis of the rectilinear ioot

is performed via the analytically determined characteritnction of the system. Stability charts are constructed
with respect to the vehicle longitudinal velocity and thglpad position on the trailer. Self-excited lateral viliwas

are detected with flierent vibration modes at low and at high longitudinal spegdbe vehicle. The fects of the
tyre parameters are also investigated.
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1. Introduction

The tiny contact regions between tyres and road surfacedssential fects on the dynamics of large-scale road
vehicles. Consequently, tyre deformations strongly imftigevehicle manoeuvrability and stability, which explains
the fact that tyre dynamics is one of the most important mesefgelds in vehicle dynamics.

Several tyre models have been developed to be used in amadigtidor numerical investigations of vehicle sys-
tems. The basic models assume quasi-static tyre defomsatiath inside and outside the tyre-ground contact patch.
The tyre model initially developed in [1] is based on the stledl creep-force idea that has become standard in vehicle
dynamics. In engineering applications, this model ctiitiently be used for dierent vehicle set-ups running with
large or medium speeds. The usability of this tyre model amlproven by many studies; here, we mention recent
work on aircraft ground dynamics only (see, for example3[2]). Nevertheless, more accurate models are needed
when the instantaneous shape of the deformed tyre is releVap corresponding dynamic tyre models that can be
used in multi-body simulations of complex vehicle systemesraviewed and discussed in [5].

During the last decades, the fuel consumption and the neisergtion of vehicles have become relevant aspects
of tyre development. Recent publications, like [6, 7, 8,d]serve that the tyre-ground interaction has a key role in
noise generation and consequently, it has certé@ceon fuel consumption, too [10].

The further development of dynamic tygeound contact models are also required by the driving agtesys,
especially the self-parking systems, which tend to becaoroeasingly common nowadays. These systems demand
accurate modelling of the vehicle motion by means of impdotyge models. While the classical quasi-stationary
tyre models can be improved by introducing more and moreacharistic parameters obtained from extensive exper-
imental work, there are several arguments for not to overgiicate these models. On the one hand, the real-time
simulation of the vehicle models and the real-time digiahtcol of the corresponding vehicles require the use of
simple-enough dynamic tyre models. On the other hand, calptudies are also needed to find new insights into
the parameter dependence of vehicle dynamic behaviouseTiheestigations prefer the use of complex-enough tyre
models but with low number of parameters. As a typical exanipi such approach, the single track model of a
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passenger car (‘bycicle model’) can be mentioned in [11retihe non-linear analysis of the turning manoeuvre is
carried out leading to new information about the laterabifity of vehicles.

In the present report, the stability of the car-trailer camakion is studied. Although this vehicle system was
thoroughly analysed in former studies [12, 13, 14], it is thaevisiting it with the use of an improved dynamic tyre
model, since the bicycle model of the four-wheeled car ifj EHbwed that new unstable parameter domains can be
found by using a time delayed tyre model (also called ‘tyrénwiemory &ect’). These results motivated us to focus
on the accurate modelling of the tyre deformation in the @cinpatch and to implement the time delayed tyre model
in a car-trailer system, which is capable to describe theadled regenerative vibrations of the tyres, too.

In order to keep the governing equations analytically manhte, the partial slip in the tyiground contact as
well as the tyre relaxation outside the contact patch aréentxyl. These are rough but acceptable approximations in
case of the linear stability analysis of the stationaryilieear motion when small tyre deformations are assumed. As
a result of this analysis, stability charts are construetit respect to the speed of the vehicle and the locationeof th
trailer's payload. Theféects of the tyre damping and the parameters of the trailmesare investigated in details.

2. Mechanical model

Figure 1: The single track model of the car-trailer combimatio

The mechanical model is shown in Fig. 1. The car-trailer domtion is represented by the so-called single track
model (in-plane bicycle model with a trailer, see [12]) byansg of the following assumptions. The vehicle can move
in the (X, Y) plane, and its motion is described in the ground-fixed Liagien coordinate system. The vertical motion
of the vehicle is neglected. By using the single track model,also neglect the lateral extension of the vehicles,
which is an acceptable simplification for the stability a1sé8 of stationary rectilinear motion.

Hence, the vehicle system is represented by two rods, winicbamnected with a rotational joint at J. The wheels
are attached to the vehicle at points T, and T3. The notation$, f andb stand for the distances between the centre
of mass G and the joint J, the front and rear wheel pointand T, respectively. The distance between the centre of
gravity G, of the trailer and the king pin J is referred tolgswhile | (often called castgrail length) is the distance
between the king pin J and the wheel axle of the trailer. Famegalized coordinates describe the motion of the
vehicle: X; andY;, which are the coordinates of the centre of gravity &hd the angleg; andy, of the longitudinal
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axes of the car and the trailer with respect to ¥€eirection. These are represented in the vector of genethliz
coordinates:

T
q=[X1 Y1 Y d/z]. (1)
One kinematic constraint is applied to the system, namiedyldngitudinal velocityv of the car is kept constant
in time:
Xl COSW1+Y1 Sinlﬁl =V, (2)

where dots refer to the derivatives with respect to time. &tpgations of motion of the non-holonomic mechanical
system can be determineffieiently by means of the Appell-Gibbs equation [16]. Thisuiegs the definition of the
so-called pseudo velocitigs » 3, which can be introduced with the help of a system of lineara¢igns:

COoSy1 Sin!ﬁl 00 ):(1 V

—singy cosys O O Y1 |_| p1 3)
0 0 1 0 Y1 | B |
0 0 0 1llye B3

where the coicient matrix provides the unique relationship between theudo velocitie@, and the generalized
velocitiesdy. The first row of this matrix is given by the kinematic consitdEq. (2), whereas the other rows can be
chosen intuitively. Hereg; is the lateral velocity of centre of gravity,®f the car, while3, andgs are the angular
velocities of the car and the trailer, respectively.

By means of Eq. (3), the generalized velocities can be eéitethusing the pseudo velocities, which already fulfil
the kinematic constraint:

X1 = V cosy1 — B Singn,
Y1 = Vsinyy + B1 cosy,

4)
Y1=p2,
Y2=ps.
The energy of acceleration containing the pseudo accielesatan be calculated from:
1 1 1 1
S= Emla(z:l+§\]c18%+§n12aéz+E\]ngg-i‘... , (5)

wherem, andm, are the massedg, andJc, are the mass moments of inertia aboutZteis at the centres of gravity
of the car and the trailer, respectivedy, andac, are the accelerations of the centres of gravity, whesgaside, are
the angular accelerations. All these kinematic quantitzesbe given as a function of the pseudo velocifes4,, 83)
and pseudo accelerationiﬁ,([?z, Bs), and the energy of acceleration can be expressed as

S =%( (s + me) 32 + (Jo, + Meh) 33 + (Jo, + mel2)33) ~ mehpufa - melc (31— hB2) s cosa — )
+ (e + Mp)VBs + Mol oS sin@a — ya)) B — moh (VB2 + 185 sin(2 - ¥11)) B2 (6)
- mz|c(V cos{yz — Y1) + (Br — hB2) sin(y2 - lﬁl))ﬁszs +oo

The presented formula is not complete, but it can be seemtiyathe given terms are necessary for the derivation of
the governing equations.
The Appell-Gibbs equations read
oS
0B
whererl’; are the pseudo forces, which can be identified as th&ceats of the virtual pseudo velocities in the virtual
power of the active forces:

re, r=123 ©)

6P = Z; I 8B . ©)
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In our case, the virtual power can be calculated via the ftamu
oP = I:;|_~5V‘|'1 + |:2~5V‘|'2 + |:3~6V‘|'3 + (M1 + Mz) - 0wy + M3-6a)2, (9)

whereF; andM; (for i = 1,2, 3) are the forces and aligning torques transmitted by thestfnrom the ground to the
vehicle. They can be written in the car-fixedy, z) coordinate system (see Fig. 1) as

0 0 —F3zsin(2 — y1)
Fi=|F1|, Fa=|F2|, Fs=|Fscos{p—-y1) |, (10)
0 0 0

andM; = Mk, wherek is the unit vector of th& direction. The notationdvr,, svy, andévr, are the virtual velocities
of points T;, T, and T3, respectively, whereatw; = 682k anddw, = B3k are the virtual angular velocities. The
virtual velocities can easily be calculated in the car-fiked, z) coordinate system:

Vv Y V + 1Bz sin@2 — y1)
oV, =6|B1+ fB2|, Ovr,=8|B1—bB2|, Ovr, =8|B1—hB2—IB3cosP2 - y1)| . (11)
0 0 0

After some manipulation of the given formulas, one can deiee both sides of Eq. (7), and the governing
equations of the non-linear system can be composed as

My (B1 + VB2) + Mg (B1 + VB2 — W32 — | B3 COS(Yr2 — wa) + B3 Sin(Y2 - v1))
=F1+ F2+ Fscos(yz —y1) ,

Jo,B2 + g (W82 — hVB2 — 1 + hleBs cos(wz — ) — hleBE sin(y2 - ya))
=F1f — Fob— Fshcos(yo — y1) + M1 + My,

Je,B3 +mM(1%Bs = 10VB2 COS(Yr2 — Y1) — lBa COS(Y2 — Y1) — |2 SIN(2 — )
+hleBa cos(yz — y1) + hleB3 sin(yz — ¥1)) = Ms — Fal .

(12)

3. Tyre model with memory dfect

In order to calculate the forces and aligning torques of yiest a delayed tyre model is used, which is based
on the so-called brush tyre model (see [12]). Let us condluetyre of a rigid wheel with the wheel centre point
T. The wheel centre point position is described by Xgeand Y1 coordinates while the angle of the wheel plane is
denoted byy. The tyre-ground contact patch with its laterally defornoedtre line is shown in Fig. 2. The length
of the contact patch is&2 The tyre is modelled as massless elements with distritstifdessk and dampingl, and
the lateral displacement of its centre line is describedhieydeformation functiowi(x, t). The wheel rotates around
they axis and due to this rotation, the tyre particles in the atinpatch move in the wheel-fixe,fy, 2) Eulerian
coordinate system, although they have zero velocity k&dt the ground (in case of rolling). Since theoordinate
of a contacted tyre particle is constant, the relative nmotitthe tyre particles in the contact patch can be invesayat
as an in-plane motion. Thus, we omit taegoordinate in our further calculations in order to keep therfulas as
simple as possible.

The position vectoRp of an arbitrary point P on the contact patch centre line caddseribed with the help of
the wheel centre point T (i.e. the origin of the ¥, z) Eulerian coordinate system):

Rp =Rt +Rtp (13)

where the position vectoRp, Rt andRyp are given in theX, Y, Z) ground-fixed coordinate system. Give the position
of the wheel centre point by

Ry = [éﬂ (14)
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Figure 2: Tyre deformation in the contact patch

The position vector of the point P is given in they, z) coordinate system by

rp= [q (;i t)} . (15)

This can be also expressed in the ground-fixed coordinaterays

_ [xcosy —q(x,t) sing
Rrp = [xsim// +q(x t)cosy | (16)
Hence, the the position vectBy of an arbitrary contact point reads as
Xt + xcosy — q(x,t) sing
. ( . (17)
Y1 + XSinyg + q(X, t) cosy

By assuming pure rolling, the velocity of the points in the@axt patch relative to the ground is zero, namely:

d
—Rp=0. 18
s (18)
Due to the material flow along thedirection via the rotation of the wheel, this leads to:
: - d . :
X1 +Vcosy — Xy sing — aq(x, t) sing — q(x t)y cosy =0, (29)
Y1 + VSinyg + Xy cosy + %q(x, t) cosy — q(x, t) ¥ sinyg = 0, (20)

in which v is the longitudinal component of the velocity-field (i.e.etlongitudinal translational rate of the tyre
particles) in the Eulerian system. The material time déxeaof (X, t) is:

d .
&q(x’ t) = q(X’ t) + q, (X’ t)V, (21)

where prime refers to the derivative with respect to the sgaordinatex. After multiplying Eg. (19) with siny, and
similarly Eq. (20) with cog/, and adding the two equations together the following can tigen:

%q(x,t) = X7 sing — Yy cosy — Xy . (22)
And in the same way, multiplying Eq. (19) with césand Eq. (20) with sigr and adding them together, we obtain:

V= —Xr cosy — Yy sing + q(x,t) . (23)
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Substituting Eqg. (22) and Eq. (23) into Eq. (21) a non-lineantial diferential equation (PDE) can be obtained:

q(xt) = Xy siny — Yrcosy — Xy + q (X 1) (XT cosy + Yr sing — yq (X, t)) (24)

for x € [-a,a]. This equation can be originated in the kinematic condtifaiqn (18) of rolling, and it describes the
exact tyre deformation in the contact patch in case of pullsngo The boundary condition (BC) of this PDE is
g(a,t) = 0, which corresponds to the zero deformation at the leadilgg @ccording to the implemented brush tyre
model.

The tyre forces and aligning torques caused by tyre deféomatn be calculated by the integral formulas:

a a a a
F:qu(x,t)dx+df%q(x,t)dx and M=kfxq(x,t)dx+dfx%q(x,t)dx. (25)
-a -a -a -a

One can use the formulas of Eq. (25) together with Eq. (24¢&ah tyre of the mechanical model in Fig. 1. And then,
Eq. (12) turns to be three non-linear integrdéeliential equations (IDEs) coupled to three non-linear PDEs

In what follows, it is shown that the IDE-PDE system can bedfarmed into a more manageable form. We can
compose the travelling wave solution of the PDEs and we ctairobielay diferential equations (DDES) as governing
equations. This method provides simpler system of equatioth respect to three scalar time-dependent coordinates
only, while the lateral deformation shape of the tyre id sliiscribed accurately (for rolling), while the governing
equations still represent the infinite dimensional behavad the original system.

3.1. Thetravelling wave solution for rolling tyres

In order to find the travelling wave solution of the PDE giverHg. (24), the position vectd®p of an arbitrary
contact point has to be used. Since tyre particles keeppbsitions in the ground-fixed coordinate system during the
contact, we can construct the travelling wave solution as

Re(xt) =Rp(at—7(x)), (26)

wherer(x) is the time delay, which is the function of the coordinatd his time delay is needed for a tyre particle to
travel from the leading edge& & a) to its actual position characterized kyWith the help of Eq. (17) in Eq. (26), the
travelling wave solution can be composed, which satisihRB& Eq. (24) with boundary conditiag(a, t) = O:

a(x.t) = (X (t) = X (t = 7)) siny (1) — (Y7 (1) - Y (t - 7)) cosy (1) —asin(y (t) -y (t— 7)) , (27)

for x € [-a, a]. All this means that the lateral deformation of a tyre carcakeulated via the past and present values
of the wheel centre point coordinates$;( Y) and the wheel deflection angle)(
Unfortunately, the relationship between the space coatdiand the time delay reads:

X =—(Xr(t) = Xr (t— 7)) cosy (1) + (Yr () - Y7 (t — 7)) siny (t) + acos(y (t) -y (t - 7)) , (28)

namely, the time delay can not be expressed explicitly. Heweave can calculate the derivative of the coordinate
with respect to the time delay

g—’T( = —Xr (t—7)cosy (t) + Yr (t — 7) siny () —asin(y () -y (t— 7)) ¥ (t— 7). (29)

In Eq. (25), one can use these expressions to change thesitivegvariablex to 7.

3.2. Tyreforce and aligning torque for small oscillations around the straight wheel motion

As it was mentioned before, the equation of motion of thetater system can be transformed into DDEs. In
order to do this, the travelling wave solution Eq. (27) witly. £28) and Eq. (29) can be used in Eq. (25) for each of
the three tyres. Here we show this calculation only for thedr case since we focus on the linear stability analysis of
the car-trailer system.



Thus, we can linearise the equations around the rectiliioeaard motion of the tyre, which corresponds to

Xr@)=Vt, Yr()=0, ¢(t)=0,

Xr®=V, Yr(t)=0, ¢ (t)=0. (30)

For the small oscillations around this solution, the lingzda form of the travelling wave solution (27) can be used:
ax.t) = Vry(t) - (Yr(0) - Yr(t - 7)) —a(@() - ¢(t-7)). (31)

For this linear case, the relationship (28) between theespacordinate< and the time delay simplifies to:

x=a-Vr o r=2_% (32)
\Y
whereas the velocity field given in Eq. (23) reduces to
v=-V. (33)

Considering these, the material time derivative in Eq. (#2he lateral tyre deformation gives:

a0 = (Ve - a0 - Yo(0 + Vi), (34

The forces and aligning torques caused by tyre deformatiarbe calculated with the help of Eq. (25), where the
integrals can be transformed by replacing the space casdto the time delayr. According to the formulas in
Eqg. (32), we can use:

dx = -Vdr (35)

whereas the limits of the integrations get modified to

B VA (36)

x=a = 71=0.

Performing the integration in closed form on those termsre/tieis possible, the forces and aligning torques
caused by tyre deformation can be expressed for the linesa& &s a function of the past and present values of the
wheel centre point coordinatg and the wheel anglg for each wheel as:

2a

F = —2akY(t) - 2ad (Yr(t) - V(1)) + kV f Nt - 1) + au(t - 1) de (37)
0

and
M = _Z Bk (t) - ga3d w(t) + kV fv @-V7)(Yr(t-7)+ay(t-r1))dr. (38)
3 3 0

4. Governing equations of the car-trailer combination withdelayed tyre model

The linearised deformation function Eq. (27) of the tyreaséd on the wheel centre point coordinates and on the
wheel orientation angle. Hence, the position vectors ofttheel centre points 1 T, and T3 (see Fig. 1) have to be
determined as a function of the state variables of the mécilanodel:

Xl [ X - bcosy, X | [ Xe— hcosy; — | cosy, (39)
YT1 - - Y, — bSinlﬁl ’ YT3 - Y1 — hsim//l —1 Sinl//2 )

X1 + f cosys
Y1 + f Sinl//]_

X7,
Y7,

[l




If we evaluate the linearised form of these expressions i(&£f) and Eq. (38) for each tyre, we obtain the forces and
aligning torques. Here we present the expressions for theewhen the length of the contact patch is the same for all
of the tyres, which later enables us to simplify some ternthénequations:

2a
v

F1 = — 2ak(Ya(t) + fya(t) — 2ad (Ya(t) + fira(t) — Viga(t)) + kV f Yi(t—7) + (f + @) ya(t - 7) dr,

Fa = — 2ak (Ya(t) - bya(t) - 2ad (Ya(t) — by (t) - Vya()) + KV | Ya(t—7) - (o— @)y (t - 7) dIr,

oeuy ©

(40)
Fa = — 2ak (Ya(t) — hya(t) - 1y2 (1) - 2ad (Ya(t) — hya(t) - 1ga(t) - Vua(t))
+ kaY]_(t—T) —hya(t-7) - (1 -a)y(t—7)dr,
0
and
2, 2 ... Va
M =- 3 Ky (t) - ga dya(t) + ka(a— V1) (Y1t = 7) + (f + @) y1(t — 7)) dr,
0
2, 2 ... A
Mz = - Satkya(t) - Sadda(®) + kvf(a— VD) (Ya(t - 7) - (b— &) a(t - 7)) cr, (41)
0

2a

Mo = = Sa%kua(t) - 5o + KV [ (@=Va) ((t= 1) - hustt- 1) - (1 - @)ualt - 1) .
0

Transform the governing equations Eq. (12) into the spa¢heofeneralized coordinates. For small oscillations
around the rectilinear motion, the relationship betweengtneralized coordinates and pseudo velocities simplifies
to:

B1=Y1-Vy,
B2 =1, (42)
Ba=1y2.

Taking these into account, the linearised form of the equatof motion Eq. (12) can be written as

ml\"(1 + rr12(Y1 - hlﬁl - |C(ﬁ2) = Fj_ + F2 + F3,
Jcllﬁl + mz(hzzﬁl - hY]_ + h|clﬂ2) = F]_f - sz— F3h + M]_ + Mz, (43)

chlﬂz + I’le(leﬁ]_ — ij_ + h|clﬂ2) = M3 - F3| .

After substitution of the formulas Eq. (40) and Eq. (41) iEa. (43) we obtain a system of DDEs with distributed
time delay:

MY(t) + Dy(t) + Ky (t) = Q1) (44)
wherey(t) is the vector of the remaining state variables of the lirsear system:
Y1 (t)
y® =1}, (45)
Y2 (1)

8



andy, is a function of bounded variation above the delay intef®a224/V] defined by the shift operatet(r) = y(t—7),
7 € [0, 2a/V]. The mass matri can be expressed as

M=| —-mph  Jc, + mph? mphl

—Ipl¢ mphlc Je, + mZ'c2

(46)

m + M —-mph —mzlc}

The stifness matriXX can be separated into symmetric and non-symmetric pagti= Ky + K4. The symmetric
part is originated in the elastic properties of the tyred@thie non-symmetrical part is originated in the tyre dargpin

3 f-b-h -l
Kg=2ak|[f-b-h f2+b2+h2+§a2 lh , 47)
-1 Ih 12 + %az
0 -2 -1
Kg=2advV|0 —-f+b h (48)
0 0 I
The damping matri is proportional to the symmetric part of thefBtess matrix:
D= 9Kk. (49)
k
The retarded function&@(y;) on the right hand side of Eq. (44) can be composed as:
Zva
Q) =V [ (Bo-ViB)y(t- 1) cr (50)
0
where the coicient matrices are:
3 f-b-h+2a -l+a
Bo=|f-b-h+2a f?+b>-—h?+2a(f-b+a) h(-a) (51)
-l+a h(l —a) (I-a)?
and
0 0 0
B:=(2 a-b+2a 0 (52)
1 -h -l +a

5. Linear stability and self-excited vibrations

The characteristic function of the system can be deterniiyagsing the trial solutioy(t) = Ae, whered € C is
the characteristic exponem, e C3. Substituting this into the ffierential equation Eq. (41) we obtain:

2a 2a
(/IZM +AD + K —kV [ f Boe "dr — f VTBle‘th])Ae’“ =0, (53)
0

0
where the closed form calculation of the integrals leadbéocharacteristic equation

V 2a V 2a 2a
. 2 oA oA -] —
D) = det(/l M +AD + K — k= (Bo (1 - & #)) - Bl(z(l—e 7) - 2ae ¥ )) 0, (54)
with D(1) defined as the characteristic function of the system.
It can be shown, that this equation has at least two zero,rish is corroborated by our physical view, namely,

the stability of the rectilinear motion is independent te tlirection and position in theX(Y) reference coordinate
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plane. Therefore, from the point of view of the stabilitystsuficient to analyse the simplifieB (1) = D (1) /A2
characteristic function.

The rectilinear motion of the vehicle is stable if and onlglifthe (infinitely many) characteristic roots take place
on the left half of the complex plane, i.e.

Re(1j) <0, j=1,..c0. (55)

We investigate the stability of the rectilinear motion oé thehicle with special attention to the location of the
payload on the trailer and to the longitudinal sp&edf the vehicle. Thus, we introduce the dimensionless palyloa
position parameter

I
P=1 (56)
which describes the location of the centre of gravity of tiaddr with respect to the location of the trailers axle (e.g
p = 0 if the centre of gravity is exactly at the king pin, apd= 1 if the centre of gravity is exactly at the axle of the
trailer.)

In view of the loss of stability, two cases can bdfelientiated. When a pure real characteristic root becomes
positive, we can speak about ‘static’ loss of stability, ethtorresponds to saddle-node (SN) bifurcation of the gtead
state solution of the corresponding non-linear systemnEt¢he stability boundary the following equation has to be
satisfied: A

IﬂirrgD (@W=0, (57)

from which the critical parametgisy can be calculated in closed form. Here we present the forfoutae undamped
(d = 0) case:

1
Psn = Po — pfzw , (58)

where
_ (3 +a) (Mg + mp)(3(f - b) — 2a) + 6mph)
3(3(f — b + 2h) — 2a)myl ’
2%k (3(f + b)X(a + 3l) - a%(f + 2(-a+h-2) - b))
P-2= 3@ —b+ 2h) — 2a)myl ‘

(59)

For realistic system parametgrs, > 0, which means that fap < pg there always exists a critical speed over which
the rectilinear motion of the vehicle is unstable.

When the real part of a complex conjugate characteristichmiomes positive, the rectilinear motion loses its
stability via oscillation (i.e. Hopf bifurcation may ocquiFor this case:

B (W],..., =0 (60)

Since this equation is transcendental, numerical methads to be applied in order to detect the stability boundaries
like the so-called multi-dimensional bisection method][$till, in certain undamped cases, semi-analytical sohst
also help to check the numerical results, just like in [18]efie are several methods in the literature to select stable p
rameter domains from the many determined by the calculaiaddaries [19]. Or one can use the semi-discretisation
method (see [20]) to detect the stable parameter domaineddiDDESs.

Using these methods, stability charts were constructdted + p parameter plane using the system parameters of
Table 1. The stability analysis showed that at large lomfiital velocities two unstable domains occur, see the shaded
domains in Fig 3. One of them corresponds to the SN bifurnatiove given by Eq. (58). For the chosen parameters,
this stability boundary can clearly be identified fox py = 0.729. The stability boundary fqu > 1 belongs to Hopf
bifurcation, i.e. self-excited vibrations appear whers tundary is crossed. By means of the stability chart, it can
be established that ~ 1 (i.e. | ~ I) can guaranty the linear stability for a wide range of theeshp& his statement is
well-known in vehicle dynamics, and it can be proven everafeimple towed rigid-wheel with single contact point
[21].
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Parameter Notation Value

Mass of the car my 1600 kg
Mass of the trailer my 400 kg
Mass moment of inertia of the car Jc, 24 576 kgm
Mass moment of inertia of the trailer Je, 800 kgn?t
The distance between the car’s front axle and the centreawftyr f 1.4m

The distance between the car’s rear axle and the centrevifygra b 1.6m
The distance between the king pin and the centre of gravityetar h 1.8m
The distance between the king pin and axle of the trailer I 20m
Half length of the tyre-ground contact patch a 0.05m

Distributed lateral sffness of the tyre k 2x 10" N/m?

Table 1: The realistic parameter set-up used for the stahitialysis.

3.5

Hopf bifurcation Unstable

p 1]

1' = SN bifurcation
0.5 Stable

0 M | | 1 | 1 | Unstable

0 5 10 15 20 25 30 35 40 45 50
V [m/s]

Figure 3: Linear stability chart for a wide speed range ofwt@kicle in the plane of the longitudinal spe€dand payload position parameter
Tyre damping is not considered € 0). Unstable domains are shaded. Vibration modes with thedypire deformation shapes are also shown.

In Fig 3, the emerging vibrations are also illustrated wité tharacteristic tyre deformation shapes for two essen-
tial types of the unstable domains. Note that the lateral tigformations seem to be close to simple linear functions,
which clearly explains why the quasi-static tyre modelsg(lPacejka’s creep-force model) cafi@ently be used to
identify these relevant stability boundaries, why thesstaisle domains were already verified in many publications
(see for example, [12, 14, 22]). In other words, the delayeel inodel provides a kind of theoretical proof for the
validity of the quasi-stationary tyre models even for theecaf car-trailer combination, at least in the speed range
V >5m/s.

Nevertheless, we also discover new unstable parameteridgfioa small speeds, which can be only determined
by taking into account the regenerativifeet of the tyre-ground contact patch. Fig. 4 shows the ctiatability
boundaries, which all relates to Hopf bifurcations leadimghe oscillation of the vehicle. If the speed tends to zero
(V — 0), an infinite number of such unstable domains emerge, wkitpical in delayed systems (e.g. see ‘chatter’
of machine tools in [20] or ‘wheel shimmy’ in [18]). Note thifte vibration frequencwy also tends to infinity as the
speed decreases, which means that the wave length of thaetignenation shape also decreases. Fig. 4 presents some
of these unstable domains.

There are also parameter domains, where two unstable eegitersect each other. In these cases two pairs of
complex conjugate roots of the characteristic equatioe pasgitive real parts, therefore, oscillations occur witkitm
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V [m/s]

Figure 4: Stability chart for the slow motion of the vehicletire plane of the longitudinal spe&tiand the payload position parameter Tyre
damping is not considered & 0). Unstable domains are shaded witffetient colours regarding to the corresponding vibration ra@ael tyre
deformations.

ple frequencies. For the case of the wheel shimmy, this tfpeersections of stability boundaries was experimentall
validated in [21] giving explanation for the quasi-periodscillation of a one degree-of-freedom caster-wheeksyst

The detected stability boundaries can be categorized bytue shape of the emerging vibration. This is demon-
strated in Fig. 4. Three fierent modes can be seen: the larger the pararpésethe more complicated the vibration
mode is. The deformed shapes of the tyres are all sinusoittalpgriod one. The boundary condition of the brush
tyre model ensures the zero deformation at the leading efitiee @ontact patch only, but one can observe zero or
close to zero deformation at the trailing edge too. For thepkst mode, the deformations of the tyres are in phase,
while for the other modes the trailer’s tyre and the car’s tgi@ are in counter-phase, respectively.

The dtect of the tyre damping is analysed in Fig. 5, where the thsted damping parametdris increased with
discrete steps. As it can be seen, the viscous damping rethesize of the unstable regions, and the smaller very
narrow unstable regions even disappear. Note that théimeeti motion can be stabilized for any speed by means of
large enough damping valuesgf~ 1.

It is also interesting to investigate practical cases whentyres of the vehicle haveftérent parameters. Here,
we vary the contact patch leng#h and the sffnessks of the trailer’s tyre, which corresponds to the case when the
trailer's tyres have smaller inflation pressure /andarger vertical load. Experimental observations sugties such
conditions make the vehicle to be more ‘unstable’. Fig. Bxghthe stability charts of the undampeti=f 0) system
for different values of the contact patch length anfiretss. The stability chart in the right bottom panel corresiso
to the reference system with data in Table 1. As the tyfénsts is reduced, the unstable domains shrink and shift
to the left. The fect of the variation of the contact patch length is more caraptd. If the diferences between the
contact patch lengths are small, many unstable domaingmisa; compare the casgs= 0.05m andaz = 0.0625 m.
However, when the tyre contact lengih of the trailer is 32 or 2 times larger than the contact length of the other
tyres, then some of the unstable domains rebirth and extEid. &fect can be originated in the interactions of the
tyres, namely, the stability depends on whether the tyrasegaite each other or not, which corresponds to the wave
lengths of the tyre deformations (check them in Fig. 4). Alstmeans that there exist certain (maybe ‘extreme’)
parameter set-ups, which can lead to kind of worst case sosna

12



d = 600 Ns/m?

V [m/s] 2
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Figure 5: The #ect of tyre damping on stability. Stability charts are constied for diferent damping factors in the plane of the longitudinal speed
V and the payload position parameterShaded domains are unstable.
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Figure 6: The #ect of the contact patch leng# and the lateral sfinessks of the trailer’s tyre on the stability of the car-trailer sy. Unstable
domains are shaded in the plane of the longitudinal speadd the payload position parameterTyre damping is considered to be zedo< 0).

13



6. Conclusions

Complex structures of unstable parameter domains werdifiéenusing the delayed tyre model in the single
track mechanical model of the car-trailer combination. Trtigcate dfects of the system parameters — with special
attention to the tyre specific filmess, damping and the length of the contact patch — weresathlya the variation of
the corresponding stability charts constructed in theelafithe longitudinal vehicle speed and the payload position
parameter along the trailer. The numerical evaluation$iefanalytical results proved that although the emerging
vibrations in the unstable domains are 'weak’ compared ¢ooties at the well-known unstable parameter domains
at large longitudinal speeds, they are still relevant dudeaelated unwanted noise and increased fuel consumption.
Moreover, these instabilities may have a significant rolgpecific applications where accurate modelling of the tyre
deformation is needed for the control of low-speed manasulike parking or reversing with car-trailer systems,
also called non-holonomic balancing. Also, the analylycdétected unstable parameter ranges can be useful for the
verification of multi-body simulation software in case of ra@omplicated real-world car-trailer mechanical models.

Acknowledgement
This research was partly supported by thaas Bolyai Research Scholarship of the Hungarian Acaddi8giences
and by the Hungarian National Science Foundation undet gaarOTKA PD105442.

References

[1] H. B. Pacejka, The wheel shimmy phenomenon, Ph.D. thesihrieal University of Delft, The Netherlands (1966).
[2] E. Coetzee, B. Krauskopf, M. H. Lowenberg, Nonlinearlgsia of aircraft ground handling, in: Proceedings of ICGI&, 2006.
[3] C. Howcroft, B. Krauskopf, M. Lowenberg, S. NeildffEcts of freeplay on aircraft main landing gear stability, Hroceedings of AIAA
2012, AIAA, Minneapolis, Minnesote, USA, 2012, pp. 1-16peaNo. AIAA 2012-4730.
[4] N. Terkovics, S. Neild, M. Lowenberg, B. Krauskpof, Biiation analysis of a coupled nose landing gear-fuselagiesy in: Proceedings
of AIAA 2012, AIAA, Minneapolis, Minnesote, USA, 2012, pp-14, paper No. AIAA 2012-4731.
[5] P.Lugner, H. B. Pacejka, M. Bthl, Recent advances in tyre models and testing procedigbigle System Dynamics 43 (6) (2005) 413-426.
[6] P.B. U. Andersson, W. Kropp, Rapid tyread separation: An experimental study of adherence forgsaise generation, Wear 266 (1-2)
(2009) 129-138.
[7] D.O'Boy, A. Dowling, Tyrgroad interaction noise - Numerical noise prediction of agrattd tyre on a rough road surface, Journal of Sound
and Vibration 323 (12) (2009) 270 — 291. doi:hftgx.doi.org10.1016j.jsv.2008.12.024.
[8] J.Cesbron, F. Anfossoddee, D. Duhamel, H. P. Yin, D. L. Hadec, Experimental study of tyread contact forces in rolling conditions for
noise prediction, Journal of Sound and Vibration 320 (12p@ 125 — 144. doi:httyydx.doi.org10.1016j.jsv.2008.07.018.
[9] R. J. Pinnington, Tyre-road contact using a particleetope surface model, Journal of Sound and Vibration 332 (28)3) 7055 — 7075.
doi:httpy/dx.doi.org10.1016j.jsv.2013.08.018.
[10] D. Takacs, G. Stpan, Micro-shimmy of towed structures in experimentally untddunstable parameter domain, Vehicle System Dynamics
50 (11) (2012) 1613-1630. d0i:10.1080423114.2012.691522.
[11] F. D. Rossa, G. Mastinu, C. Piccardi, Bifurcation as&yof an automobile model negotiating a curve, Vehicle Syddgmamics 50 (10)
(2012) 1539-1562. arXiv:httfidx.doi.org10.108000423114.2012.679621, doi:10.1080423114.2012.679621.
URL http://dx.doi.org/10.1080/00423114.2012.679621
[12] H. B. Pacejka, Tyre and Vehicle Dynamics, Elsevier Butterth-Heinemann, Linacre House, Jordan Hill, Oxford OX2F8R00 Wheeler
Road, Burlington MA 01803, 2002.
[13] R. S. Sharp, M. A. A. Fernialez, Car-caravan snaking - part 1: the influence of pintleffiction, in: Proceedings of the Institution of
Mechanical Engineers Part C - Journal of Mechanical Enging&cience, Vol. 216 of 7, 2002, pp. 707-722.
[14] H. Troger, K. Zeman, A nonlinear-analysis of the genéyjies of loss of stability of the steady-state motion of attrasemitrailer, Vehicle
System Dynamics 13 (4) (1984) 161-172.
[15] D. Takacs, G. $tpan, Contact patch memory of tyres leading to lateral vibratmfifour-wheeled vehicles, Philosophical Transactiorthef
Royal Society A: Mathematical, Physical and Engineering@Soes 371 (1993). doi:10.108&a.2012.0427.
[16] F. Gantmacher, Lectures in analytical mechanics, MIRliBlérs, Moscow, 1975.
[17] D. Bachrathy, G. $ipan, Bisection method in higher dimensions and tfieiency number, Periodica Polytechnica 56 (2) (2012) 81-86.
[18] D. Takacs, G. Orosz, G. 8pan, Delay &ects in shimmy dynamics of wheels with stretched string-likedyEuropean Journal of Mechanics
A/Solids 28 (2009) 516-525.
[19] G. Sepan, Retarded Dynamical Systems, Longman Scientific and Tealhhimndon, 1989.
[20] T. Insperger, G. &fan, Semi-Discretization for Time-Delay Systems, Springew Nerk, 2011.
[21] D. Takacs, Dynamics of towed wheels - Nonlinear theory and expetiné.D. thesis, Budapest University of Technology anchioacs,
Hungary (2010).
[22] J. Darling, D. Tilley, B. Gao, An experimental investiga of car-trailer high-speed stability, Proceedingshaf tnstitution of Mechanical
Engineers, Part D: Journal of Automobile Engineering 22328p9) 471-484. doi:10.124B544070jauto981.

14



