Evolution of insect innate immunity through domestication of bacterial toxins

Kirsten I. Verster1, Gyöngyi Cinege1,2, Zoltán Lipinszki1, Lilla B. Magyar3,4, Éva Kurucz1,5, Rebecca L. Tarnopol1,6, Edit Ábrahám1,5, Zsuzsanna Darula1,6, Marianthi Karageorgi1,6, Josephine A. Tamsil1,6, Saran M. Akalu,1,7 István Andó1,2,8, and Noah K. Whiteman9,10

PNAS 2023 Vol. 120 No. 16 e2218334120

Toxin cargo genes are often horizontally transferred by phages between bacterial species and are known to play an important role in the evolution of bacterial pathogenesis. Here, we show how these same genes have been horizontally transferred from phage to bacteria to animals and have resulted in novel adaptations. We discovered that two widespread bacterial genes encoding toxins of animal cells, cytolethal distending toxin subunit B (cdtB) and apoptosis-inducing protein of 56 kDa (aip56), were captured by insect genomes through horizontal gene transfer from bacteria or phages. To study the function of these genes in insects, we focused on Dro sophila ananassa as a model. In the D. ananassa subgroup species, cdtB and aip56 are present as singular (cdtB) or fused copies (cdtB::aip56) on the second chromosome. We found that cdtB and aip56 genes and encoded proteins were expressed by immune cells, some proteins were localized to the wasp embryo’s serosa, and their expression increased following parasitoid wasp infection. Species of the ananassa subgroup are highly resistant to parasitoid wasps, and we observed that D. ananassa lines carrying null mutations in cdtB and aip56 toxin genes were more susceptible to parasitoids than the wild type. We conclude that toxin cargo genes were captured by these insects millions of years ago and integrated as novel modules into their innate immune system. These modules now represent components of a heretofore undescribed defense response and are important for resistance to parasitoid wasps. Phage or bacterially derived eukaryotic toxin genes serve as macromutations that can spur the instantaneous evolution of novelty in animals.

Significance

Several disease-causing bacteria produce toxins that damage host cells by triggering preprogrammed cell death. Two such bacterial toxins are called cytolethal distending toxin B and apoptosis-inducing protein of 56 kDa. We discovered that diverse insect species coopted the two bacterial genes encoding each cytotoxin through a phenomenon called horizontal gene transfer (HGT). HGT occurs when a gene from one organism is inserted into the genome of another and then is stably inherited across generations. We found that the two bacterial toxin genes were captured by an ancestral fruit fly ~21 Mya and are important for resistance against parasitoid wasps, which are principal enemies of fruit flies. These horizontally transferred genes now contribute to the fly’s immune system.

Edited by Nancy Moran, The University of Texas at Austin, Austin, TX; received October 27, 2022; accepted March 1, 2023

Competing interest statement: The authors have organizational affiliations to disclose. N.K.W. is on the Board of Directors of the Genetics Society of America.

This article is a PNAS Direct Submission.

Copyright © 2023 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1K.I.V. and G.C. contributed equally to this work.
2To whom correspondence may be addressed. Email: ando@brc.hu or whiteman@berkeley.edu.
This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2218334120/-/DCSupplemental.

Published April 10, 2023.
Photobacterium damselae subsp. *piscicida* (14). Its proteolytic activity arises from the N terminus (A domain), which cleaves NF-kB p65 and leads to apoptosis by interfering with the regulation of antiapoptotic genes (15). The A domain has signature HEXXH motif typical of most zinc metallopeptidases (16). The B domain is linked to the A domain via a disulfide bridge and facilitates cellular entry of the A domain to the target cell (15).

Previously, we found that both cdtB and aip56 homologs were horizontally transferred to several insect lineages (17, 18), and we inferred three independent HGT events to the Drosophilidae. To determine the potential function and adaptive value of these insect-encoded toxins, here we studied *Drosophila ananassae* as an exemplar species because its chromosome 2L encodes cdtB and aip56, and it is amenable to genome editing (19). Furthermore, *D. ananassae* subgroup species have evolved a robust parasitoid defense mechanism distinct from that of the model organism *Drosophila melanogaster*. Generally, *D. ananassae* shows higher defense against parasitoid wasps than *D. melanogaster* (20, 21). It is known that in *D. melanogaster*, parasitoids are encapsulated with the involvement of a subset of blood cells, named lamellocytes, which are flattened cells important for the antiparasitoid response. A melanization reaction involving production of the lamellocyte-specific prophenoloxidase 3 (PPO3) contributes to parasitoid death (22). However, the gene encoding PPO3 is absent from the genomes of parasitoid-resistant *ananassae* subgroup species (23), and melanization of the capsule never occurs (21). Rather, multinucleated giant hemocytes (MGHs) encapsulate the parasitoids, suggesting that in these species an unknown, highly efficient killing mechanism must be present. We hypothesized that *D. ananassae* deploys CdtB and AIP56 proteins against parasitoid wasps through elements of the innate immune system.

Results

The Genes Encoding CdtB and a Noncatalytic Domain of AIP56 Were Horizontally Inherited from Endosymbiotic Bacteria or Phages in Insects. We previously found that cdtB and aip56 were horizontally transferred to several insect lineages from bacterial endosymbionts or their phages (17, 18). Here, we report additional cases to Diptera, Hemiptera, Hymenoptera, Lepidoptera, and Thysanoptera, and the identities of the closest living relatives to the extant insect copies (Fig. 1 and SI Appendix, Fig. S1). Despite many independent HGT events to insects from prokaryotes, all insect CdtB proteins formed a single clade with those from *H. defensa* and APSE-2, APSE-6, and APSE-7 phages. We found similar results for the B domain of AIP56 proteins in insects (henceforth “AIP56”), which form a clade of proteins with AIP56 from APSE-2 and APSE-7 phages and insect-associated bacterial endosymbionts including *H. defensa* and *Arsenophonus* spp. Based on this evidence, we inferred that insect cdtB and aip56 genes originated in ancestors of APSE phages that infected bacterial endosymbionts or the bacteria themselves.

The Gene Order of cdtB and aip56 in D. ananassae Subgroup Species Suggests HGT from an APSE-Like Sequence from a Phage or Bacterial Ancestor, Followed by Gene Fusion and Duplication. We found a single copy of cdtB (LOC.26513850) upstream of two tandem cdtB::aip56 fusion genes (LOC.116654562 and LOC.116654563) in *D. ananassae*. Through syntenic analysis, we inferred that ancestral acquisition of cdtB and aip56 might have occurred in a lineage leading to the extant insect copies of these genes. We previously found that cdtB and aip56 genes were horizontally transferred to several insect lineages from bacterial endosymbionts or their phages (17, 18). Here, we report additional cases to Diptera, Hemiptera, Hymenoptera, Lepidoptera, and Thysanoptera, and the identities of the closest living relatives to the extant insect copies (Fig. 1 and SI Appendix, Fig. S1). Despite many independent HGT events to insects from prokaryotes, all insect CdtB proteins formed a single clade with those from H. defensa and APSE-2, APSE-6, and APSE-7 phages. We found similar results for the B domain of AIP56 proteins in insects (henceforth “AIP56”), which form a clade of proteins with AIP56 from APSE-2 and APSE-7 phages and insect-associated bacterial endosymbionts including H. defensa and Arsenophonus spp. Based on this evidence, we inferred that insect cdtB and aip56 genes originated in ancestors of APSE phages that infected bacterial endosymbionts of arthropods, or from the bacteria themselves.

Fig. 1. cdtB and aip56 genes were horizontally transferred to insects from phages or their bacterial endosymbiont hosts. (A) Maximum likelihood phylogenies of AIP56 and CdtB proteins show that insect-encoded horizontally transferred gene (HTG) sequences are nested within phage and endosymbiotic bacteria clades of each protein, suggesting ancestral HGT from prokaryotes or phages to insects. Several cases of HGT-derived genes are syntenic within species groups (SI Appendix, Tables S1 and S4), suggesting that HGT was followed by extended vertical transmission. (B) Synteny between cdtB and aip56 in the APSE phage and D. ananassae subgroup species genomes suggests that ancestral HGT occurred from APSE phages or their bacterial lysogens, which may contribute to the efficient wasp resistance of D. ananassae. (C) Insect species tree highlighting the insect orders and taxa which horizontally acquired cdtB and/or aip56 genes. Shown are extant representatives of the possible donor lineage.
LOC116654561, referred to as cdtB::aip56 A and cdtB::aip56 B, respectively) in the D. ananassae reference genome assembly.

Strikingly, this tandem arrangement maintains the gene order found in the extant APSE-2 phage genome sequence, where aip56 is located immediately downstream of cdtB, consistent with ancient HGT from an APSE-like ancestral sequence in phages or bacteria (Fig. 1B) to a D. ananassae ancestor. This may then have been followed by fusion of cdtB with aip56 and duplication of the resultant fusion gene, though the order of these events is unclear.

All the three genes have introns, and all reference genome assemblies of the other ananassae species carried syntenic copies of these genes (SI Appendix, Table S1). Thus, HGT occurred once in this lineage based on maximum parsimony, prior to the diversification of the D. ananassae species subgroup. D. ananassae is the only species in the subgroup that has a duplication of cdtB::aip56. Essential DNase residues are conserved in D. ananassae CdtB and CdtB::AIP56 proteins (SI Appendix, Fig. S2), and we found that purifying selection has acted on residues encoded by cdtB and cdtB::aip56 in the D. ananassae subgroup lineage since the HGT event (SI Appendix, Fig. S3 and Table S2). Thus, the function of the encoded CdtB toxins appears to remain optimized for DNase activity, although their exact organismal function is unclear.

Horizontally Transferred cdtB and cdtB::aip56 Fusion Gene and Protein Expression Are Induced after Infection with Parasitoid Wasps. We conducted gene expression studies across development of D. ananassae with or without Leptopilina boulardi figitid parasitoid wasp infection. Single-copy cdtB expression was highest in the fly embryo, gradually decreased throughout larval development, and was moderately elevated after parasitoid attack (Fig. 2A). In contrast, cdtB::aip56 fusion copies were marginally expressed during embryogenesis, which increased during the larval stages, and then showed a strong induction following L. boulardi attack in larvae (Fig. 2A). Expression of all the three genes was enriched in fat body and blood cells post wasp infection, consistent with a humoral innate immune role (SI Appendix, Fig. S4). We found that expression of these genes is not induced indiscriminately following injury but is tied specifically to wasp infection (SI Appendix, Fig. S5).

Next, we generated a panel of monoclonal antibodies against recombinant single-copy CdtB and CdtB::AIP56 A/B fusion proteins for immunological studies. Antibody specificity was confirmed on recombinant proteins (SI Appendix, Fig. S6) and biological samples by western blot (WB), indirect immunofluorescence (IIF) assay, and liquid chromatography–tandem mass spectrometry (LC-MS/MS) (Fig. 2B and C and SI Appendix, Figs. S6–S9 and Table S3). Protein expression analysis during development of naïve and infected D. ananassae (Fig. 2B) mirrored the gene expression profiles (Fig. 2A).

IIF experiments that targeted single-copy CdtB revealed expression in embryonic macrophages (Fig. 2C). Consistent with the WB data, we did not detect CdtB in naïve or infected larval blood samples, or on parasitoids (SI Appendix, Figs. S7B and S8 B–D), but in whole larvae, the protein was weakly induced following wasp parasitization.

WB analysis of the CdtB::AIP56 A/B fusion proteins revealed their expression in larval, pupal, and adult stages, which was elevated after parasitoid wasp infection. Under nonreducing conditions, the antibodies reacted at positions corresponding both to the complete, fused proteins and those of the individual CdtB and AIP56 domains (Fig. 2B). However, under reducing conditions, the majority of the proteins were detected at positions corresponding to the individual CdtB and AIP56 components (SI Appendix, Fig. S9), suggesting cleavage of disulfide bonds linking them together. We observed the same pattern in L. boulardi wasp larvae extracted from the hemocoel of D. ananassae, suggesting that the fusion proteins bind the wasp larvae in the unreduced, processed state (Fig. 3). Structural predictions of CdtB::AIP56 further corroborate that the CdtB component is distinct from that of AIP56 (SI Appendix, Fig. S10).

Though our WB data showed fusion CdtB A/B in blood samples (SI Appendix, Fig. S6B), and in the isolated parasitoid wasps (Fig. 3A), they were not detected using IIF (SI Appendix, Fig. S8 F–H), suggesting the masking of CdtB A/B toxin epitopes in vivo. AIP56 A/B components were detected by both WB and IIF in the hemolymph clot, in MGHs, spherical blood cells, and microvesicles (SI Appendix, Figs. S6B and S8 J and L), confirming the presence of the fusion proteins and the epitope hiding of their CdtB domain. Moreover, AIP56 A/B components were also detected in precipitates localized on parasitoids, and in a single layer of outer epithelial cells, the serosa of the wasp (Fig. 3B and SI Appendix, Fig. S8K and Movie S1).

cdtB and cdtB::aip56 Mutants Are Susceptible to Parasitoid Wasp Infection. We next generated a panel of backcrossed, homozygous null mutant lines of D. ananassae (SI Appendix, Fig. S11) whose genotypes represented several combinations of loss-of-function (LOF) mutations in cdtB and cdtB::aip56 genes, including a triple null mutant for all the three genes. Wild-type and mutant flies were then exposed to gravid females of three Leptopilina wasp species used to dissect mechanisms of innate immunity in Drosocephila (20, 21), L. boulardi, L. heterotoma, and L. victoriae. L. boulardi is the least virulent and specialist of the broader melanogaster group, which includes D. ananassae. L. heterotoma is a virulent generalist that attacks species inside and outside the melanogaster group. Finally, L. victoriae is the most virulent, specialized on the ananassae species subgroup (24). It attacks D. ananassae in its native range in South and Southeast Asia and the Indo and South Pacific (further descriptions of the wasp and fly ranges can be found in SI Appendix, Extended Discussion).

We found that the cdtB and cdtB::aip56 mutant D. ananassae lines were more susceptible to wasp infections (Fig. 4) than the wild type. We observed that some L. boulardi adults emerged in mutants lacking both cdtB::aip56 A and cdtB::aip56 B, even though L. boulardi does not normally complete development in D. ananassae (21). Mutant D. ananassae lines were more susceptible to wasp infections (Fig. 4) as the number of LOF mutations in cdtB and cdtB::aip56 genes increased. In particular, the triple mutant D. ananassae lines had significantly lower host survival rates when attacked by each of the three wasp species compared to wild-type flies and had significantly higher rates of emergences in each of the wasp species. Overall, these experiments show that the three horizontally transferred genes (HTGs) are essential for wild-type resistance against Leptopilina wasps in D. ananassae.

Discussion

Here, we report the repeated horizontal transfer of cytotoxic genes derived from an APSE-like ancestral sequence in phages or bacteria to insect genomes. We dissect their potential adaptive value in a recipient lineage, the fruit fly D. ananassae, where gene, protein, and knockout data are each consistent with an immune role. These same horizontally transferred cytotoxins are adaptive to host insects when expressed in bacterial intermediaries (e.g., in the case of H. defensa and its APSE phages) because they provide protection from parasitoid wasp attacks. Our knockout studies in D. ananassae suggest that this is also true when homologs
of these cytotoxins are encoded in the genomes of the host insects themselves. The *H. defensa* endosymbionts impose fitness costs on sap-feeding insects when parasitization rates are low (25), a trade-off that may explain why endosymbionts and phages are frequently lost and regained in natural populations (11). Our study shows how the reach of this widespread defensive mutualism has been extended through HGT from phages or prophages to insects directly. In the case of *D. ananassae*, the bacterial intermediary that is housed as an intracellular mutualist and associated costs of this symbiosis have been obviated through HGT. This is a biological example of the economic principle of disintermediation or “cutting out the middleman.” However, there are likely pleiotropic costs associated with expressing a eukaryotic cytotoxin in a eukaryotic cell as well. It remains to be understood how such costs have been mitigated during the domestication process in *D. ananassae.*

We suggested that *D. ananassae cdtB* and *aip56* genes may have been inherited sequences from APSE-like phage ancestors or bacteria ~21 Mya (17), a hypothesis strengthened by the observed synteny between these genes in the extant APSE-2 and *D. ananassae* subgroup species genomes (Fig. 1A). However, due to the vast expanses of time involved, the shuttling of toxin gene cassettes between taxa via HGT, a lack of sampling, and temporal biases, we are unlikely to ever know the specific provenance of these genes. We hypothesize that they came from insect endosymbiotic bacteria or their phages, due to the increased likelihood of HGT between spatially overlapping organisms (18) and the large representation or their phages, due to the increased likelihood of HGT between spatially overlapping organisms (18) and the large representation of insect endosymbionts in the *CdtB* and *AIP56* phylogenies (SI Appendix, Fig. S1). One possible candidate could be an ancestor of *Arsenophonus* spp., a clade of insect intracellular symbionts which has been found to acquire APSE-like gene cassettes through HGT (11). Following the initial HGT from a microbe or phage...
to a eukaryotic genome, the gene has to undergo a process of
domestication, wherein it is incorporated into existing genetic
networks or pathways (26), and may acquire other eukaryotic
motifs such as introns. For example, cdtB
and cdtB::aip56 genes
in the D. ananassae
lineage have acquired eukaryotic motifs such
as untranslated regions (UTRs), TATA boxes, polyA signals, and
cleavage sites (17), in addition to having been integrated into
mainstream immune mechanisms, as we show here.

The pathogenicity of CdtB in other contexts is facilitated by
additional subunits, such as CdtA and CdtC in several bacterial
species [Campylobacter jejuni and Helicobacter hepaticus, among
others (12, 27), or PltA and PltB in Salmonella Typhi (28)].
However, CdtB can function as a DNase by itself. Some studies
have suggested that horizontal transfer is more likely to occur in
genes that, like cdtB, can serve as self-contained units, i.e., those
that are not part of protein complexes or complicated pathways
(29). This could explain the abundance of cdtB HGT events across
the insects as a whole (Fig. 1).

Given that the canonical proteolytic A domain of AIP56 is
missing from all insects, and most insect-associated phages or

Fig. 3. Processed CdtB:AIP56 A/B proteins are present in parasitoid wasps isolated from infected D. ananassae larvae. (A) The CdtB:AIP56 A/B could be reduced by 2-ME, which revealed that disulfide bonds link the CdtB and the AIP56 subunits of the processed fusion proteins. Twenty microgram protein was loaded per lane. (B) AIP56 A/B proteins in parasitoid wasp larvae isolated from wild-type and mutant D. ananassae.

Fig. 4. D. ananassae mutants are less likely to survive parasitization from L. boulardi, L. heterotoma, and L. victoriae than wild-type flies. Leptopilina spp. wasps are more likely to eclose when developing in D. ananassae mutants. The error bars indicate the SEM from three to four independent data points. Tukey's post-hoc
test was used to compare means and assess statistical significance of differences; for clarity, only differences between mutant lines and wild type are shown.

Legend

- Wild type
- ∆ fusAB
- ∆ fusA
- ∆ cdtB
- ∆ fusAB
- ∆ cdtB

* P < 0.05
** P < 0.01
n.s. = not significant

Results of all pair-wise comparisons between all mutant lines are in SI Appendix, Table S6.
bacteria, other encoded genes may have served a similar catalytic function after fusing to the nonproteolytic AIP56 B domain. These include CdtB in *D. ananassae* or SltxA in lepidopterans and hymenopterans (*SI Appendix, Extended Discussion*). This hypothesis is strengthened by our finding that *D. ananassae* CdtB is connected to AIP56 B domain via disulfide bridges, a phenomenon characteristic of bacterial AB toxins (15). Other examples of bacterial CdtB sequences linked to noncanonical "B" subunits (e.g., Shiga-like toxin) have been reported (30). Such multiplexed gene fusions are common and have been shown to contribute to the evolution of multidomain proteins in both bacteria and eukaryotes (31). We hypothesize that, similar to its function in the pathogenic *P. damselae* subsp. *piscicida*, the B domain of AIP56 facilitates cellular entry of the catalytic subunit into the target cells. Though both cdtB and aip56 cooccur in some APSE phages, the actual fusion of the two genes appears to be unique to insects.

Epitope masking in the CdtB domain of the fusion proteins, under in vivo conditions, suggests that the eukaryotic genotoxin is enveloped by antitoxin-like molecules (possibly involving AIP56) to avoid cellular damage of the eukaryotic host. We showed that AIP56 was detected on the wasp serosa and, given that AIP56 is linked to CdtB via disulfide bonds, we conclude that fusion CdtB may target the serosa as well. The serosa plays an essential role in nutrient uptake and pathogenesis during the development of diverse parasitoid wasps (32). In some wasp species, this membrane gives rise to single cells called teratocytes that disassociate, invade the host tissues, and suppress the innate immune response (32). We speculate that AIP56 A/B components may bind to a parasitoid wasp-specific receptor, which facilitates entry of the fusion CdtB components into the serosa. This intoxicated serosal layer could be associated with parasitoid death (Fig. 3B and *SI Appendix*, Fig. S8K and Movie S1). Further research is needed to characterize the mechanism of action of these toxins in the parasitoid and host.

Parasitization assays showed that not only CdtB::AIP56 fusion proteins were involved in the parasitoid defense response (Fig. 4), but also the single-copy CdtB, which was not detected on parasitoid wasps isolated from the host (*SI Appendix*, Fig. S8 C and D), possibly due to an indirect role in the defense reaction. It is known that embryonic macrophages, where CdtB is expressed, are cells involved in remodeling of the nerve cord that deposit extracellular matrix proteins and retaining of innate immune functions through development (33). We therefore hypothesize that CdtB plays an indirect role in defense via an unknown signaling pathway and may also have a pleiotropic developmental function. As CdtB exhibits potent phosphorylpyridosinol-3,4,5-triphosphate phosphatase activity (34), small fold induction for CdtB might be able to trigger large changes in expression of other elements, which could also be involved in the protection mechanisms against parasitoids.

The fitness advantage conferred by *cdtb* and *cdtb::aip56* genes was large when wild-type flies were compared to the toxin gene knockout fly lines for each of the three endoparasitoid wasps with varying immune strategies. Following the parasitoid infection, both the host and the invader start a complex and species-dependent defense mechanisms involving virus-like particles originating from the venom injected during oviposition (20, 35). The outcome of these elaborate defense mechanisms, which are an emergent property of the host–parasite interaction (36), is reflected both in fly and wasp emergence rates, to varying degrees. Our results show that CdtB and CdtB::AIP56 are important components of the parasitoid immune response in *D. ananassae*, but their absence is not sufficient to eradicate it altogether (Fig. 4).

Critically, the HGT-derived cytotoxins serve to bolster the immune system of insects like *D. ananassae* against parasitoid wasp attacks. Mortality rates from endoparasitoids can exceed 50% in natural drosophilid populations (20), and thus new traits that enhance protection have the potential to be strongly favored by natural selection. In contrast to the diversified effector repertoires and adaptive immune systems of chordates, insects have relied instead on a highly conserved effector pool coupled with an ecletic but effective defense strategy that includes the use of toxins provided by other organisms. This includes dietary toxins such as ethanol that protect *D. melanogaster* against parasitoid wasp attack (37), and Ribosome Inactivating Protein (RIP) toxins encoded by *Spiroplasma* endosymbionts that protect mushroom-feeding drosophilids from both nematodes and parasitoid wasps (38, 39). A third strategy that has evolved, as we have shown here, is through cytoxins ancestrally directed at animal cells that have been gained through ancient HGT events and provide resistance against parasitoid wasp attack.

Despite the initial outcrossing of the mutant fly lines, and the similar emergence rates of mutant and wild-type flies in the absence of parasitoid pressure, we cannot eliminate the possibility that nontarget, pleiotropic effects or off-target mutations led to deficiencies in these LOF mutant lines that were brought forward under stress. Future studies are needed that focus on phenotyping of multiple LOF mutant alleles, on corroborating these results with genetic rescue in *D. ananassae*, and gain-of-function experiments in *D. melanogaster*.

It is dogma that phage-derived macromutations result in the instantaneous origin of new virulence factors in prokaryotes. Our study demonstrates that some of the same toxin cargo genes are utilized as macromutations by animals too, resulting in a repeated pattern of the evolution of novelty across domains of life.

Materials and Methods

Identification of CdtB and AIP56 in Insects. To search for cases of HGT of cdtB and aip56 in eukaryotes, we used HGT screening methods as described previously (18), with modifications. AIP56 and CdtB proteins from APSE phages and insects were queried against publicly available, translated eukaryotic genomes on National Center for Biotechnology Information (NCBI) GenBank, Darwin Tree of Life project (www.darwintree.life.org), and individual aphid genome sequences. Sequences with E-values <0.0001 were retained for analysis and manually validated for evidence of contamination (more details in *SI Appendix, Supplementary Methods*). A summary of the new insect sequences is shown in *SI Appendix*, Table S4.

TLBLASTN was used to identify the coordinates of cdtB and cdtB::aip56 genes in *Drosophila ananassae* subgroup species from published genomes (*SI Appendix, Extended Methods*). The two genes are found in all sequenced genomes in this group, are syntenic, and are between 400 and 550 bp of each other, with cdtB upstream of cdtB::aip56. *D. ananassae* appears to be the only species with two copies of cdtB::aip56, which was validated with PCR and Sanger sequencing (*SI Appendix*, Table S5).

Generation of AIP56 and CdtB Toxin Phylogenies. The multidomain nature of AIP56, its fusion to other encoded proteins, high divergence, and prior misannotations complicated previous attempts to create informative AIP56 phylogeny (18). To overcome these confounds, we queried AIP56 B domain sequences from four query species: *Arsenophonus nasoniae* (WP_051297188.1: 346-470), *Photobacterium damselae* subsp. *piscicida* (WP_012954632.1: 354-479), *APSE-2* (ACJ10170.1), and *D. ananassae* (WP_017099943.1: 477-649) against NCBI GenBank and extracted the top 100 “aligned amino acid sequences” per search, removing duplicates. CD-HIT at 90% similarity was used to prune redundant sequences in the main figure. Sequences were aligned in MAFFT v7.450 (40, 41), and protein topologies were inferred using maximum likelihood as implemented in W-IQ-TREE (http://iqtree.cibiv.univie.ac.at/) [42] using the best-fit model as assessed by BIC in ModelFinder. Nodes with 50% bootstrap support were collapsed using the di2multi function in ape v5.4 (43). Phylogenies

https://doi.org/10.1073/pnas.221833420

pnas.org
were visualized and annotated using ggte v. 2.5.0.991 (44). For CdtB, similar methods were used, except with a 0.8 cutoff for CD-HIT and the following query sequences: XP_031641203 (Contarinia nusturii); XP_014760894 (D. ananassae); XP_022163116 (Myzus persicae); QDF82162 (Scaptomyza flava); CAB3623624 (APSE-7); CAB3775476 (APSE-2); WP_100099656 (Hamiltonella delta); and Lycana phleasae sequence (scaffold CAJOSV01000005.1, translocated nt 1772611-1773549). The full trees for each protein can be seen in SI Appendix, Fig. S5.

Alignment and Structural Predictions of CdtB and AIP56. Representative CdtB sequences were aligned in MAFFT (SI Appendix, Fig. S2). We found that previously annotated residues corresponding to DNA binding, metal ion binding, and enzyme catalysis were highly conserved between prokaryotes, phage, and insects (17) (SI Appendix, Fig. S2), suggesting conserved DNA activity, AIP56, and in particular the B domain, is not as well characterized as CdtB, and thus the alignment is not informative as to conserved function. D. ananassae CdtB and CdtB:AIP56 sequences were submitted to the AlphaFold v2 (1.0) colab notebook (https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb) (45). We used AlphaFold because previous attempts to predict CdtB structure have failed on other software such as Phyre2 (18, 45), and AlphaFold predicts protein structures via a machine learning approach even when no similar structure is known (45). PDB files for top-ranked predictions are in Datasets S1–S3.

Measuring Evolutionary Constraint on cdtB and cdtB:AIP56 in D. ananassae Subgroup Species. Ka/Ks analyses were calculated using UniBiCC online tool, and then confirmed with Phy/Phy aBSREL (46). Selection at specific codons was tested using FUBAR (47) using default settings. For more details, see SI Appendix, Extended Methods.

Insect Stocks and Culturing. D. ananassae wild type (14024-0371.13), obtained from UC San Diego Drosophila Stock Center, was kept at 25 °C on standard yeast-fruitfly medium. The Leptopilina boulardi G486, L. victoriae U/VN, and L. heterotoma Lh14 were a gift from Todd Schlenke (University of Arizona) and maintained on D. melanogaster Oregon R hosts.

Generation of Warp-Induced Samples for RNA and Protein Assays. To generate D. ananassae larvae that were infected with parasitoid wasps for gene and protein expression experiments, a total of 70 staged, second instar D. ananassae larvae were exposed to 17 mated female L. boulardi G486 parasitoid wasps for 6 h. Parasitized fly larvae were then selected by screening under a dissecting microscope 24 h following wasp induction based on the presence of the melanized site of oviposition on the cuticle. The selected wasp-infected larvae were placed in vials with standard yeast-cream food for further harvesting until the required developmental stage for harvesting.

qRT-PCR. RNA samples were prepared by RNAeasy mini kit (Qiagen) according to the manufacturer's instructions. For each sample, 25 µL complementary DNA (cDNA) was generated from 1,000 ng DNA using the RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific) with the Oligo(dT)18 Primer. PerfeCTa SYBER Green SuperMix (Quanta bio) and 2 µL 10 times diluted cDNA were used for qRT-PCR. A Rotor-Gene Q (Qiagen) qPCR platform was used with the following reaction:\n
Reaction:

2H5 (anti-AIP56 A/B), were subcloned by limiting dilution, and their supernatants and larval extracts. Selected cell lines, 3G9 (anti-CdtB), 2B8 (anti-CdtB A/B), and 2HS (anti-AIP56 A/B), were subcloned by limiting dilution, and their supernatants were used throughout.

Preparation of Tissue Extracts. Tissues, hemocytes, and parasitoids were isolated in Schneider's medium (Lonza) supplemented with 5% fetal bovine serum (Gibco) and 1 mM 1-phenyl 2-thiourea (Sigma) (CSM). The isolated parasitoids were washed three times in Drosophila Ringer solution, centrifuged for 20 s, 700 × g at 4 °C, and the pellets were harvested for protein analysis. The extracts were prepared in lysis buffer (50 mM Tris HCl, pH 8.0; 150 mM NaCl; 1% Nonidet P-40; 0.5% sodium deoxycholate; 0.1% SDS) supplemented with protease inhibitor mixture (Boehringer Mannheim) and 1 mM phenyl methylsulfonyl fluoride, for immunoprecipitation and in sample buffer (250 mM Tris pH 6.8, 35% glycerol, 0.7 mg/mL Bromophenol blue, 9.2% SDS) for WBs, using a homogenizer, and incubated for 1 h on ice. For WB, samples were boiled 5 min and centrifuged at 18,000 × g for 5 min. Protein concentrations were determined by Amido Black assay. To generate reduced conditions, 5% 2-Mercaptoethanol (2-ME) was added.

WB Analysis and Immunoprecipitation. Crude protein extracts were run on 10% or 12% SDS PAGE, blotted to polyvinylidene difluoride (PVDF) membrane (Millipore), blocked with 5% nonfat milk in Tris-buffered saline (TBS) (10 mM Tris pH 7.5, 150 mM NaCl), and incubated with primary antibodies (polarcys serum 1:10,000 dilution, hybridoma supernatant 1:1 dilution in RPMI Medium 1640 (gibco) containing 5% fetal bovine serum (FBS)) for 1 h. Membranes were washed three times (10 min each) with TBS containing 0.1% Tween 20, incubated with Polyclonal Goat Anti-Mouse Immunoglobulins/horse-radish peroxidase (HRP) (Dako) (1:10,000 diluted in TBS containing 0.1% Tween 20 and 1% bovine serum albumin (BSA)), and washed three times. Reactions were visualized with Immobilon Western Chemiluminescent HRP Substrate (Merck).
Immune protection was carried out with the 2H5 antibody, cross-linked with dimethyl pimelimidate dihydrochloride (Sigma) to Protein G Sepharose beads (Cytiva). The samples were run on 10% SDS-PAGE under reducing conditions; the silver-stained bands were cut out and subjected to mass spectrometric identification (LC-MS/MS).

Identification of CdtB::AIP56 and AIP56 Using LC-MS/MS. The proteins with an apparent ~70 kDa molecular weight showing strong reactivity with the anti-AIP56 antibodies were subjected to tryptic in-gel digestion and the resulting peptide mixtures were analyzed using a Waters MClass nHLPC-Thermo Orbitrap Elite LC-MS system in a data-dependent fashion (49). Proteins were identified using the Protein Prospector BatchTag Web software using the Drosophila subset of the UniProt database supplemented with the CdtB::AIP56 sequences, applying score-based acceptance criteria. The CdtB::AIP56 fusion proteins were identified with multiple peptides affording 33% and 17% sequence coverage for CdtB::AIP56 B and CdtB::AIP56 A, respectively (SI Appendix, Table S3).

IIAF Assay. Larvae were dissected in CSM, fat bodies and parasitoids were removed and fixed with 2% paraformaldehyde for 10 min, washed three times in PBS (5 min each), and blocked with 0.1% BSA in PBS supplemented with 0.01% Triton X-100. Hemocytes were adhered for 1 h on microscope slides in CSM, fixed with acetone for 6 min, air dried, and blocked with 0.1% BSA in PBS for 20 min. Samples were incubated with the primary antibodies for 2 h, washed three times in PBS, incubated with the Alexa Fluor 488 goat anti-mouse IgG secondary antibody (Invitrogen, 1:1,000), containing DAPI (2.5 µg/mL) for 45 min, washed three times in PBS, mounted in Fluormount G medium, and analyzed with an epifluorescence microscope (Zeiss Axioscope 2 MOT) or with an Olympus FV1000 confocal laser scanning microscope. Embryonic samples were prepared as previously described (50).

Generation of D. ananassae Mutant Lines. We generated five backcrossed D. ananassae mutant lines with CRISPR/Cas9-mediated mutagenesis via homologous end joining in a wild-type (14024-0371.13) background. The \(\Delta cd tB \) line carries a 1,000 bp deletion in cdtb; the \(\Delta fusA \) line has a 5 bp deletion in cdtb::aip56 A; the \(\Delta fusA \) fusA line has a 1 bp frameshift deletion at cdtb::aip56 B in a \(\Delta cd tB \) background; the \(\Delta fusAB \) line encodes a 7 bp frameshift deletion in cdtb::aip56 A, and a 400 bp deletion in cdtb::aip56 B; and the \(\Delta fusAB \) fusAB line has a 400 bp deletion in cdtb::aip56 B, a 399 bp deletion in cdtb::aip56 A, and a 18 bp deletion in fusA in a \(\Delta cd tB \) background (SI Appendix, Fig. S11). Mutant lines were verified with bidirectional Sanger sequencing, using primers listed in SI Appendix, Table S5. Sequences of altered genes can be found in GenBank accession numbers Q0302761-Q0302764. For more information on the generation of mutant lines, please see SI Appendix, Supplementary Methods.

Parasitization Assay. Seventy, second instar D. ananassae larvae were exposed to 17 female parasitoid wasps for 6 h. Forty-eight hours after the attack period, 10 parasitoids. A vial was considered available for the parasitization assay when each tested larva carried at least one parasitoid (51). For each fly line, three to four (the latter for untreated controls) independent parasitization assays were carried out. The eclosed flies and wasps were counted for 15- and 30-d post-infection, respectively. Control uninfected flies were treated under identical conditions. After determining the data approximated a normal distribution using the Shapiro–Wilks test, we conducted ANOVA and post-hoc Tukey HSD tests (these results are shown in SI Appendix, Table S6).

Data, Materials, and Software Availability. Partial sequences of altered D. ananassae genes have been deposited in GenBank under accession numbers: (Q0302761 (52), Q0302762 (53), Q0302763 (54), Q0302764 (55), Q0302765 (56), Q0302766 (57), Q0302767 (58).

Acknowledgments. The technical help of Olga Kovalskic, Anita Baláz, Zsuzsanna Réthi Nagy, and Henrietta Kovács is acknowledged. Thanks to Dr. Todd Schlenke who provided parasitoid wasp specimens. We extend additional thanks to Jessica Aguilar, Susan Bernstein, Ted Chor, Dr. Doris Bachtrog, Dr. Kamalatkar Chatla, and Dr. Kevin Wei for animal husbandry support, and Dr. Nicolas Alexandre for bioinformatics assistance. K.I.V was supported by the NSF Graduate Research Fellowship, the Philomathia Foundation Fellowship, and the NSF Postdoctoral Research Fellowship. G.C. was supported by the National Research, Development and Innovation Office (NKFI) K128762 grants from the Hungarian NSF; and the BO/00552/20/8 Bolyai János Research Scholarship from the Hungarian Academy of Sciences. Z.L. was supported by grants from the Hungarian Academy of Sciences [Bolyai–János Research Scholarship (BO/00329/15) and Lendület Program Grant (LP2017-7/2017)]. L.B.M. was supported by the Doctoral School of Biology, University of Szeged. R.L.T. was supported by the NIH Genetic Dissection of Cells and Organisms Training grant (award no. ST5GM13202203) and the NSF Graduate Research Fellowship. The Hungarian Center of Excellence for Molecular Medicine has received funding from the European Union’s Horizon 2020 Research and Innovation Program under grant agreement no. 739593. N.K.W. was supported by a grant from the National Institute of General Medical Sciences of the NIH (award no. R35GM119816). I.A. was supported by the National Research, Development and Innovation Office (NKFI) K135877 grant from the Hungarian NSF.

Author affiliations: “Institute of Integrative Biology, University of California, Berkeley, CA 94720; “Innate Immunity Group, Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, Szeged 6726, Hungary; “MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged 6726, Hungary; “Doctoral School of Biology, University of Szeged, Szeged 6720, Hungary; “Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720; Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, Szeged 6728, Hungary; “Laboratory of Proteomics Research, Biological Research Centre, Eötvös Loránd Research Network, Szeged 6726, Hungary; “Department of Biology, Stanford University, Palo Alto, CA 94305; “Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720; and “Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720.

49. Z. Roth-Nagy et al., STABION, a novel sequence motif that enhances the expression and accumulation of intracellular and secreted proteins. *Int. J. Mol. Sci.* **23**, 8168 (2022).

