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This study demonstrates that the unpolarized attenuated total reflectance Fourier transform infrared spectrosco-
py (ATR FTIR) is a practical and quick tool to distinguish different types of sediments in landslide-affected areas,
and potentially other types of physical environments too. Identification and quantification of minerals by ATR
FTIR is implemented on a set of powdered natural sediments from a loess landslide (Kulcs, Hungary). A protocol
including sample preparation, analytical conditions and evaluation of sediment ATR spectra is outlined in order to
identify and estimate major minerals in sediments. The comparison of the defined FTIR parameters against
qualitative and quantitative results of X-ray diffraction and thermal analysis was used to validate the use of
ATR FTIR spectroscopy for the considered sediments. The infrared band areas and their ratios (water/carbonates;
silicates/carbonates; kaolinite) appear to be the most sensitive parameters to identify strongly weathered
sediments such as paleosols and red clays which most likely facilitate sliding and could form sliding zones. The
effect of grain size and orientation of anisotropic minerals on the wave number and intensity of some major
absorption bands is also discussed.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Key minerals in landslides

Various techniques have been developed to classify minerals and
monitor compositional changes of sediments. Currently, several
complex and sometimes expensive analytical techniques are utilized
for the mineralogical analysis of sediments (i.e., X-ray Fluorescence,
Scanning Electron Microscope, Raman spectroscopy). Most of these
methods require special sample preparation and considerable analysis
and evaluation time. One of the alternative and supplementarymethods
for mineral analysis in sediments is infrared spectroscopy. The infrared
spectra of sediments can be recorded using different infrared tech-
niques such as transmission infrared (TIR), diffuse reflectance infrared
Fourier transform (DRIFT) and attenuated total reflectance Fourier
transform infrared (ATR FTIR) spectroscopy. Several studies have
presented geological applications of ATR FTIR for qualitative phase
identification in sediments and cements (e.g., Herbert et al., 1992;
Hughes et al., 1995; Besson and Drits, 1997; Vaculícová and Plevová,
cs).
2005; Kumar and Rajkumar, 2013). Jian et al. (2009) identified smec-
tite-rich sediments in the Anlesi landslide (China) based on TIR spectra,
which demonstrated first the potential feasibility of infrared techniques
in the identification of sliding zones. This is because infrared techniques
are sensitive for identifyingwater-bearing (hereafter the termwater in-
cludes both OH− and H2O species) minerals such as clay minerals and
other sheet silicates (muscovite, illite, smectite, kaolinite, chlorite
etc.). Weathered sediments usually contain these water-bearing
minerals the proportions of which are indicative of the extent of
weathering (Essington, 2004).

For geological studies, especially for landslides and slope failures,
mineralogical investigation of sediments is essential. This is because a
large abundance of sheet silicates (especially smectite) in slip zones is
one of the fundamental controlling factors of sliding processes within
landslides due to their high specific surface, water absorbing capacity
and preferred orientation (Summa et al., 2010; Wang et al., 2011).

Smectite is the most important clay mineral group in terms of
geotechnical behavior because of its swelling property, in contrast to
kaolinite and micas (such as muscovite and illite). Consequently,
smectite plays the dominant role in slope failures as recently demon-
strated by Azañón et al. (2010).

Weathered sediments usually contain kaolinite as an indicator of
advanced weathering. Kaolinite has typically platy morphology and
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commonly shows evidence for shear deformation. Thus the presence of
kaolinite in slip zones and zones of discontinuity in clayey silty
lithological formations can also facilitate slope failure due to its
micromorphology (Summa et al., 2010). The accurate identification
and quantification of kaolinite by X-ray diffraction (XRD), however,
could be difficult when it coexists with other clay minerals. This is
especially challenging when kaolinite is present in small quantities,
namely less than about 10% of the sample. This is because the character-
istic X-ray diffraction peaks of kaolinite overlap with those of chlorite
at ~7 Å and ~3.5 Å. Especially in mixtures, kaolinite can therefore be
overlooked in XRD traces (Guo and Underwood, 2011). Accuracy
improves if the analytical methods include calibration with standards;
however, those kinds of approaches are too long to be practical for a
large number of samples (Środoń et al., 2001). Infrared spectroscopy
techniques may be more sensitive to relatively low concentrations of
kaolinite due to its intense OH− vibrations between 3600–3700 cm−1

(Kodama and Oinuma, 1962).
Generally, slip zones develop along pre-existing zones of weakness

which contain larger amounts of sheet silicates (especially smectite
and kaolinite) and lower amount of carbonates. In addition, water–
mineral interactions such as hydrolysis, argillation and dissolution of
carbonates can contribute to slidings along pre-existing weak zones
(Wen and Chen, 2007). Hence, it is important to study the variation of
sheet silicate and carbonate contents in landslide-affected sediments
for the purpose of detecting pre-failure indicators.

1.2. Analytical overview

Recent geological studies deal with the estimation of mineralogical
composition in synthetic and natural mixtures of minerals with the
application of IR techniques using for example multivariate statistical
techniques (e.g., Breen et al., 2008; Adamu, 2010). However, classical
methods such as X-ray powder diffraction are superior to infrared
spectroscopy when mixtures contain more than 3 phases (Hillier
et al., 2000). This is because the infrared spectra of sediments are usually
characterized by numerous, very often overlapping, absorption bands.
In addition, absorption bands are usually anisotropic; therefore their
intensity is also dependent on the direction of the incident light with
respect to the absorption indicatrix (Libowitzky and Rossman, 1996;
Kovács et al., 2008; Sambridge et al., 2008). Furthermore, reproducibil-
ity of TIR andDRIFTmeasurementsmay be challenging. TIR requires the
preparation of KBr pellets, which procedure involves pressing and
grinding of the sample powder (i.e., mechanical effect, preferred
orientation etc.), and chemical alterations may occur in contact with
the KBr buffer (hydration, ion-exchange etc.). These mechanical and
chemical effects along with scattering of infrared light at KBr–mineral
interfaces may cause disturbances in the measured infrared spectrum
(Dent, 1996).

DRIFT measurements are usually done in the near infrared region
and the method has its limitations in the mid infrared region
(i.e., when the wavelength is below 1200 cm−1) due to interference
effects created by particle size. Most of these effects could be reduced
if the sample powder is mixed with KBr. However, to get optimal
spectral quality, the degree of dilution of the sample powder with KBr
may be different for each sample. A critical comparison of these infrared
techniques can be found in Madejová (2003).

Compared to ATR FTIR spectroscopy, TIR and DRIFT methods still
require relatively long sample preparation. However, ATR FTIR spectros-
copy only requires finely ground and homogenized sample powder to
obtain a representative spectrum. With the ATR FTIR technique it is
also possible to study both wet suspensions and dry powders.

ATR FTIR has been used extensively in the study of polymers and
organics (Planinsek et al., 2006; Urbaniak–Domagala, 2012) but its use
is still relatively restricted in geological applications (Bertaux et al.,
1998; Johnston and Premachandra, 2001; Reig et al., 2002; Guiliano
et al., 2007), especially in qualitative phase identification. The intensity
of characteristic absorption bands is usually related to the concentrations
of the absorbing specie, through the Beer-Lambert law. Therefore
recently a few studies have attempted the quantitative application of
ATR FTIR for economically important sediments (e.g., Adamu, 2010;
Palayangoda and Nguyen, 2012; Washburn and Birdwell, 2013).

There are several advantages of ATR FTIR in quantitative analysis.
According to Glotch et al. (2007) the ATR technique does not suffer
from the multiple scattering effects due to fine sample particle size
that can make the interpretation of reflectance or emissivity spectra
difficult. In fact, ATR is an ideal technique to identify minerals in fine
grained (b10 μm) sediments because fine particles provide the best
contact between the sample and the ATR element. Theoretically,
proportionality between concentration of particular mineral constitu-
ents and their corresponding absorption bands is expected only if the
mineral grains are similar sized, fully homogenized and are unoriented.
Chemtob et al. (2010) revealed that absorbance is strongly grain size
dependent where intensity increases with decreasing grain size. There-
fore, the preparation of sampleswith small and homogeneous grain size
is a key factor for more accurate quantitative ATR FTIR analysis
(Palayangoda and Nguyen, 2012).

The objectives of this study includes: (1) to identify characteristic
infrared bands and band areas of diagnostic minerals by ATR FTIR in
natural slip-prone sediments; (2) to compare the variation of infrared
band areas against estimated mineral compositions by X-ray powder
diffraction (XRD) and thermal analysis (TA), and (3) to explain some
typical particularities of the defined ATR FTIR parameters observed for
clay minerals and carbonates which may be attributed to grain size
and orientation effects, respectively.

The study illustrates the usefulness of the ATR FTIR technique for
the discrimination of different sediment types with various clay and
carbonate content. It is demonstrated that ATR FTIR spectroscopy
could be a very effective tool for the identification of weakness zones
in sediments which are typically characterized by high clay mineral
(especially smectite and kaolinite) and low carbonate contents.
2. Study site

The Kulcs area is one of the largest active landslide affected areas
in Hungary that is situated on the high bluff (high and steep bank)
along the River Danube. The high bluff is 50–70 m above the average
water level of the River Danube, and shows a steeper upper slope
(about 30°) and a less steep lower slope (b10°) towards the river
(Rónai et al., 1965).

Mass movements are reported from an approximately 1800 m long
section of the river bank. The estimated total volume of landslides is
7.55 × 105 m3, but four distinctive landslides were identified in 2011
with different slipped volume (Farkas, 2011).

The study area is covered by Neogene-Quaternary unconsolidated
sediments. The basement formations consists of Miocene (Upper
Pannonian) clayey and sandy sequences those are below 150–200 m
in the background of the high bluff and outcrop in the river bed due to
the morphology of the area and Quaternary tectonic movements
(Rónai et al., 1965). This deposit is overlain by Pleistocene Old Loess
Series including sand and brown to red paleosol zones in variable
thicknesses. It is about 20–50 m in the high bluff and thins toward
the river (typically less than 10 m thick). The old paleosol layers
are characterized by clay-rich forest or subtropical soils (Pécsi and
Schweitzer, 1993; Varga et al., 2011). The Young Loess Series is missing
due to erosion. The cover deposits are soaked by rainfalls, floods and
ground water flows to the River Danube and by highly pressurized
water through the Upper Pannonian sand (Rónai et al., 1965).

The climate of the studied area is continental with a mean annual
temperature of 9–10 °C. The mean annual precipitation is around
550–600 mm and concentrated in the late spring to summer (from
May to July), as well as during late autumn (Szalai et al., 2005).



Table 1
List of samples from fluvial sediment, loess, paleosol, loam and red clay, and their
granulometrical composition (%). Samples are collected from boreholes and marked with
borehole ID (K1-6) and a number with increasing depth (B-No). The proportion of
smallest grains of the clay fraction below 500 nm is also illustrated.

Sample
type

Sample
B-No

Sampling
depth

Sand
50–2000 μm

Clay
b2 μm

Silt
2–50 μm

b500 nm

(m) (%) (%) (%) (%)

fluvial
sediment

K1-1 0.21–0.25 23.46 5.33 71.22
K2-1 0.50–0.53 14.21 18.57 67.22 13.20
K2-2 0.73–0.76 19.16 9.58 71.26 1.01
K3-1 0.78–0.82 27.69 8.37 63.94 0.58
K3-2 0.83–0.88 40.94 4.44 54.62
K3-4 1.08–1.12 18.39 4.81 76.80 0.11
K4-1 0.55–0.60 38.62 5.92 55.47
K4-2 0.94–0.98 2.92 20.11 76.97 14.52
K5-1 1.34–1.37 16.30 8.29 75.41 0.65
K6-1 0.52–0.58 19.06 8.50 72.44 0.79
K6-2 0.81–0.84 18.35 6.40 75.25
K6-3 1.08–1.11 17.66 11.48 70.86 4.25
K6-4 1.29–1.34 23.27 8.46 68.27 0.57

Average 21.54 9.25 69.21 3.96
σ 9.95 4.92 7.35 5.75
loess K1-2 0.77–0.80 3.94 7.37 88.69 0.53

K2-3 1.69–1.73 15.65 20.42 63.94 14.29
K2-4 2.12–2.15 17.54 19.41 63.05 12.22
K2-5 2.52–2.55 20.99 12.89 66.12 7.96
K2-7 2.82–2.87 0.15 7.21 92.64 1.59
K3-9 2.26–2.29 17.40 4.83 77.78 0.10
K3-10 2.77–2.80 17.58 5.60 76.82 0.11
K3-12 3.58–3.61 23.10 5.38 71.53 0.15
K3-13 3.71–3.74 4.71 12.59 82.70 8.28
K4-3 1.31–1.35 0.43 12.65 86.93 9.23
K4-7 2.78–2.88 10.19 12.29 77.52 5.08
K4-8 3.42–3.46 13.42 11.63 74.96 7.07
K5-3 2.50–2.54 22.91 4.56 72.53
K5-4 2.62–2.66 2.91 4.79 92.30 0.25
K5-5 2.87–2.91 3.82 5.64 90.54 0.40
K6-5 1.37–1.40 29.97 4.90 65.13

Average 12.79 9.51 77.70 4.80
σ 9.26 5.21 10.33 5.01
loam K1-3 1.84–1.88 24.45 3.89 71.66

K3-14 3.78–3.81 19.13 15.27 65.61 10.83
K5-6 4.10–4.20 4.63 7.95 87.42 1.71
K6-7 2.64–2.67 15.40 3.42 81.18
K6-8 3.52–3.56 3.78 6.72 89.50 1.50

Average 13.48 7.45 79.07 4.68
σ 9.06 4.77 10.24 5.33
paleosols K2-6 2.64–2.68 20.89 8.95 70.17 1.10

K3-5 1.26–1.30 20.20 4.81 74.99 0.12
K3-6 1.57–1.62 19.52 5.95 74.53 0.14
K3-7 2.03–2.07 21.26 5.42 73.32 0.10
K3-8 2.15–2.17 21.61 6.05 72.35 0.11
K3-11 3.39–3.43 18.88 6.36 74.76 0.30

Average 20.39 6.25 73.35 0.31
σ 1.05 1.43 1.86 0.39
red clay K4-4 1.41–1.46 0.00 38.76 61.24 24.00

K4-5 2.26–2.34 3.24 30.52 66.25 21.37
K4-6 2.49–2.53 0.00 28.70 71.30 23.16

Average 1.08 32.66 66.26 22.85
σ 1.87 5.36 5.03 1.34
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3. Materials and methods

3.1. Sample collection and preparation

Samples were taken from the southern landslide (roughly 10 m
thick in average, area of 2.1 × 104 m2, estimated volume of 15–450 ×
103 m3), where the slip zone is exposed along the riverbank (Farkas,
2011). Shallow boreholes (3–7 m) were drilled on the riverbank in a
previously identified sliding zone (Farkas, 2011). Four distinct sediment
units were identified macroscopically in the slipped body, from the
top to the bottom as follows: 1) grey fluvial sediment, 2) yellow loess
with intercalated yellow-light brownish paleosols, 3) red clay, and 4)
yellow-grey sand–sandstone intercalated with yellow loamy units
(Supplementary Fig. 1).

In this study, 43 sediment samples were collected from continuous
core sections at various depths (Table 1). Only loamy units (referred
to as loam hereafter) are considered from the yellow-grey sand–
sandstone unit as the investigation of sand-sandstones with the applied
infrared technique would not provide extra information for our
purposes. The samples were mostly selected from the top and the
bottom part of the particular units. The samples were numbered from
top to bottom (for the exact sampling points see Supplementary Fig. 1).

Initial batch of 5 g was usually sieved from each sample below
63 μm, and further grindingwas applied if it was necessary. The samples
were homogenized by grinding in a porcelain mortar. In addition, we
examine the effect of orientation on carbonate absorption bands in
powder mixtures of sediments. For this study a cuboid (1.5 × 1.2 ×
0.9 cm) was cut, ground and polished from a single idiomorphic and
clean rombohedral calcite crystal with one pair of surfaces perpendicu-
lar to the c-axis of the crystal. The principal c-axis was identified based
on the morphology of the original calcite crystal. Each pair of nominally
parallel surfaces of the cuboid is almost perfectly parallel and was
polished carefully to avoid any unwanted scattering effect. Then, the
polished slabs of the calcite cuboid were placed onto the ATR plate
and were measured by ATR FTIR.

Furthermore, four mechanical mixtures with different proportions
of kaolinite (KGa-1, Georgia, USA) and calcite (Beremend, Hungary)
were prepared. The binary mixtures were mixed with varying mass
proportions of kaolinite and calcite as follows: 40.0, 59.8, 79.8, 90.0%
kaolinite and 60.0, 40.2, 20.2, 10.0% calcite in themixtures, respectively.
A mass of 100 mg was prepared from each mixture.

3.2. Laser particle size distribution analysis

The particle size distribution was measured by the laser diffraction
method using a Horiba Partica LA-950 V2 instrument, which measures
particle sizes in a range from 0.01 μm to 3.0 mm. The samples were air
dried, disaggregated and subsequently 1 g was treated with sodium
pyrophosphate solution (50 g/l) overnight. Five minutes of ultra-
sonic treatment was applied to complete dispersion. Three repeated
measurements of each sample were taken in order to monitor homoge-
neity of grain size distribution. In the calculation of particle size, the
refractive index and the imaginary part were assumed to be 1.53 and
0.01, respectively (Jonasz, 1991; Eshel et al., 2004; Ozer et al., 2010).
Among the three repeated measurements, the distribution was used
which shows the best fit between the measured and theoretical
distributions (Horiba, 2008). Grain size distribution of samples based
on the USDA (United States Department of Agriculture) texture
classification using the percentage of sand (2000–50 μm), silt
(50–2 μm) and clay (b2 μm) was calculated. The proportion of grains
below 500 nmwas also determined.

3.3. ATR FTIR analysis

A similar volume of each sample (3–5 mg) was placed in polished
glass containers and heated for at least 30 min at 80 °C in an oven
immediately prior to the ATR FTIR measurements. After heating, the
glass containers were closed and sealed with glass lids and parafilms,
respectively. This heat treatment is thought to remove the majority of
the absorbed water that substantially affects the vibrational modes of
both the structural OH groups and H2O molecules and prevents the
aggregation of grains (Udvardi et al., 2012). The relatively low temper-
ature of the heat treatment guarantees that it causes no first order
alterations in the clay minerals’ structure but facilitates significantly
interpretation of the ATR spectra (see Tóth et al., 2012, formore details).

The sediment samples were studied by a Fourier-transform infrared
spectrometer (Varian Model 2000) with a single pass ATR cell (Specac
GoldenGate diamond ATR) and an MCT detector was used to obtain
ATR spectra in the mid-infrared spectral range (400–4000 cm−1). It



4 B. Udvardi et al. / Sedimentary Geology 313 (2014) 1–14
should be noted that each spectrum displays spectral features of the
diamond ATR crystal between ~1800 and 2200 cm−1. The number of
scans and the spectral resolution were 128 and 4 cm−1, respectively.

ATR FTIR measurements of binary mixtures and the calcite cuboid
were performed using a Bruker Vertex 70 spectrometer equipped
with a diamond Bruker Platinum ATR accessory and an MCT detector.
The number of scans and the spectral resolution were also 128 and
4 cm−1. One of the parallel slabs of the calcite cuboid was placed onto
the ATR plate in two perpendicular and one diagonal positions by
rotating the cuboid. In the anisotropic sections the absorbance charac-
teristics changes with the direction of the incident light upon rotation.

The sample powders are pressed with constant pressure (70 Ncm)
on a small crystal plate (3×3mm)which allows for reproducible spectra
obtained from different batches. The fact that specimens usually
have limited contact with the air, and the sample layer is thicker than
the penetration depth of infrared light (dp) is reflected in the high
reproducibility of the infrared spectra. However, water gain sometimes
occurred during repeated analysis of the consecutive proportions of the
same sample batch. This water gain was especially profound in clay rich
sediments. Consequently, the first spectrum of each sample batch is
reported and used in further discussion because it is thought to be the
least affected by the unwanted spectral contribution of atmospheric
moisture (Tóth et al., 2012).

Baseline and ATR correctionswere done by applying the Resolutions
Pro software package. ATR correction is necessary to account for the
wave number dependency of the penetration depth, which procedure
make ATR spectra resembling more closely normal TIR spectra. Using
the refractive indices of common minerals in sediments (Lide, 2005),
the authors calculated the minimal and maximal depth of penetration
at 1000 cm−1 (dp1000 cm

−1 ) and at 3400 cm−1 (dp3400 cm
−1 ) for common

minerals in sediments (Table 2).
For the calcite cuboid, advanced ATR correction of theOPUS software

was used. The incident angle is set to 45°, the number of reflections is
1 and the refractive index of the calcite is changed from 1.486 for
anisotropic to 1.658 for isotropic sections. For the diagonal measure-
ments in anisotropic sections the average of these two extreme indices
is used for the advanced ATR correction.

The positions of the most intense bands in the sediment samples
were measured by the peak-pick tool of the OPUS. Besides the ‘peak
picking’method for the identification of band positionswhich is optimal
for sharper absorption bands, additional individual bands – as parts of
broad and complex bands – are identified by the second derivative
method of theOPUS6.5 using a 9-point Savitzky–Golayfilter to enhance
the resolution of superimposed bands.

Infrared band areas (A, i.e. integrated intensities), containing all
bands (overlapping bands and shoulders), were determined instead of
linear intensities (band heights) for quantitative evaluation, as infrared
band areas are thought to be less sensitive to the presence of other
overlapping bands (Libowitzky and Rossman, 1997). The most com-
monly applied approach for the integration of bands is when the area
between the line, connecting the intersections of the lower and upper
Table 2
Minimum andmaximum refractive indices ofminerals (RImax, RImin; Lide, 2005) and their
penetration depth (dp) at 1000 cm−1 and 3400 cm−1. ΔRI = RImax−RImin.

Minerals RImin RImax ΔRI dpmin dpmax dpmin dpmax

at 1000 cm−1

(μm)
at 3400 cm−1

(μm)

quartz 1.54 1.55 0.01 2.21 2.27 0.65 0.67
calcite 1.49 1.66 0.17 1.18 4.04 0.56 1.19
dolomite 1.50 1.68 0.18 1.97 5.57 0.58 1.64
chlorite 1.61 1.62 0.01 2.85 3.01 0.84 0.89
muscovite 1.56 1.60 0.04 2.34 2.74 0.69 0.81
illite 1.56 1.59 0.03 2.32 2.60 0.68 0.76
smectite 1.55 1.57 0.02 2.25 2.40 0.66 0.71
kaolinite 1.55 1.57 0.02 2.24 2.36 0.66 0.69
limits of the integration, and the spectrum is considered. Following
this routine the area under characteristic absorption bands are deter-
mined (Supplementary Tables 1, 2).

The infrared band area under a very wide range of absorbance
conditions is linearly proportional to the concentration of the absorbing
species. It is expected, therefore, that ATR absorbances are proportional
to concentration, analogous to the way concentration is related to
absorbance in TIR. It follows that there should be linear correlation
between infrared band areas of characteristic minerals and their
estimated modal abundance by XRD and TA. In strongly absorbing
minerals and/or in highly anisotropic sections unpolarized absorbance
may underestimate the real concentrations (Libowitzky and Rossman,
1996). Based on previous experiences, however, the large number of
unoriented grains and the low linear absorbances (b0.3) make the
application of the unpolarized ATR FTIRmethod feasible for quantitative
purposes (Kovács et al., 2008; Sambridge et al., 2008).

3.4. X-ray powder diffraction

The XRD analysis of whole-rock powder samples were carried
out using a Phillips PW 1710 diffractometer with a Cu anode at 40 kV
accelerating voltage and 30 mA tube current using graphite mono-
cromator at a goniometer speed of 2°θmin−1 from 2 to 66° 2θ.

A semi-quantitative assessment of the relative concentrations of
phases was performed by relative intensity ratios and full width at
half maximum (FWHM) of specific reflections of minerals by using
XDB Powder Diffraction Phase Analytical software 2.7 (Sajó, 1994).
The full width at half maximum of 10 Å reflection (FWHMm),
representing micas (both muscovite and illite), was also measured.
Mica can be classified as muscovite below the 0.30 value of FWHMm

following a previous study that found that samples aremoremuscovitic
below this value, and more illitic above it (Földvári and Kovács–Pálffy,
2002).

3.5. Thermal analysis

Thermal analysis were carried out by Derivatograph–PC from room
temperature (20 °C) to 1000 °C (10 °C/minute) using Al2O3 as inert
material. A total of 100mg of samples was heated in a ceramic crucible.
The quantitative determination of the thermally activeminerals is based
on stoichiometric calculations of decomposition processes of the
identified minerals due to loss of mass during heating (Paulik and
Paulik, 1981; Földvári, 2011). Loss ofmolecular waterwas alsomeasured.

4. Results

4.1. Grain size distribution of different types of sediments

Measured grain sizes in samples vary in the range of 0.061–350 μm.
The grey fluvial sediment contains on average the largest fraction of
coarse grains (average 12.3%; min. 1.2–max. 25.6%) (Fig. 1, Table 1).
Relatively low abundance of coarse grains was found only in the two
grey fluvial sediment samples (1.2% for K4-2 and 7.3% for K2-1). Except
for these two samples, grey fluvial sediment is silt loamwith about 10%
clay (Fig. 1). Loess shows higher variation in the amount of the coarse
grain fraction than paleosols, loam and red clay. Based on the USDA
texture classification triangle, loess, paleosols and two samples of
loam (K3-14, K1-3) are silty loams. In addition four loess (K1-2, K4-3,
K5-4, K5-5) and two loam (K5-6, K6-8) samples are silts with less
than 5% sand. One sample of loam (K6-7) is silt with 15.4% sand.
The most homogeneous granulometrical composition was found in
paleosols, where the standard deviations of different grain size fractions
are below 2%. Loess has a slightly higher percentage of clay particles
than loam and paleosols. Two loess samples (K2-3, K2-4) have almost
20% clay (Fig. 1). The red clay is silty clay loam and contains more



Fig. 1.USDA textural triangle shows the classification of sediments analyzed in this study.

Table 3
ATR FTIR observed wave numbers (cm−1) of sediment samples with mineral identifica-
tions. Standard deviation of band positions (σ) among samples is reported.

wave numbers Band
assignments1

Minerals References2

(cm−1) σ3 A4 B5

3696 sh m νOH, inner
surface

kaolinite 1, 2, 3, 4, 5

3664 2nd νOH, inner
surface

kaolinite 1, 2, 3, 5

3645 2nd νOH, inner
surface

kaolinite 1, 2, 3, 5

3620 s νOH muscovite, illite, smectite,
kaolinite

2, 3, 5

3557 6 sh w νOH chlorite 2, 4, 6, 7
3402 7 s νwater-OH smectite, chlorite 4
2988 w νC-H organic material 6
2923 w νC-H organic material 6
2877 w νC-H organic material 6
2850 2nd νC-H organic material 6
1798 m νCO3 calcite, dolomite 2, 4
1635 m δwater-OH smectite 6
1428 11 s νCO3, asym calcite, dolomite 2, 4, 6
1412 16 2nd νCO3, asym calcite, dolomite 2, 4, 6
1396 2nd νCO3, asym calcite, dolomite 2, 4, 6
1162 sh m νSi-O, asym quartz 6
1117 2nd νSi-O kaolinite 2, 3
1089 2nd νSi-O kaolinite, quartz, chlorite 2, 4, 6
1060 2nd νSi-O illite, muscovite 2, 6
1030 2nd νSi-O muscovite, illite, kaolinite 4, 6
1002 2nd νSi-O smectite, kaolinite 3, 6
989 8 s νSi-O muscovite, illit, smectite,

kaolinite
3, 6

977 2nd νSi-O chlorite 4, 6, 7
933 2nd δAl-OH kaolinite 2, 3
909 sh m δAl-Al-OH muscovite, illite, smectite,

kaolinite
3, 4

874 sh s δCO3, out of
plane

calcite, dolomite 2, 4, 6

847 2nd δAl-Mg-OH smectite 2, 3, 4
830 w δAl-O muscovite, illite 2, 4
796 s νSi-O, sym quartz 2, 4, 6
778 s νSi-O, sym quartz 2, 4, 6
759 2nd δAl-O-Si muscovite, illite 2, 4
748 12 2nd δAl-Mg-OH,

δAl-O-Si
muscovite, illite 2, 4

728 m δCO3, planar
bending

dolomite 2, 6

713 m δCO3, planar
bending

calcite 2, 4, 6

695 s δSi-O, sym quartz 2, 4
674 2nd δAl-O-Si chlorite 2, 6
649 m δSi-O smectite, chlorite 6
533 s δAl-O-Si muscovite, illite, smectite 2, 3
514 2nd δSi-O quartz 2, 6, 8

1 ν: stretching mode, δ: bending mode, sym: symmetrical vibration, asym: asymmet-
rical vibration.

2 Minerals are assigned using available data from literature as follows: 1) Wada, 1967;
2) Farmer, 1974; 3) Madejová and Komadel, 2001; 4) Vaculícová and Plevová, 2005;
5) Jung et al., 2010; 6) Van der Marel and Beutelspacher, 1976; 7) Schroeder, 2002;
8) Hlavay et al., 1978.

3 Standard deviaton of band maximum is indicated only above the spectral resolution
(4 cm-1).

4 sh: shoulder, 2nd: identified only on the second-derivative spectrum.
5 Column B represents the intensity of bands; w: weak, m: medium, s: strong.
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than 28% clay, differing most considerably from grey fluvial sediment,
loess, paleosol, and loam samples.

The amount of grains below 500 nm is variable: with an average at
2.7% in grey fluvial sediment, 4.2% in loess, 2.81% in loam, 0.3% in
paleosols and 22.8% in red clay (Table 1). There are only two grey fluvial
sediment (K2-1, K4-2) and loess samples (K2-3, K2-4) and one loam
(K3-14) sample which contain greater than 10% grains below 500 nm.

4.2. Mineralogical compositions by different methods

4.2.1. ATR FTIR
The characteristic wave numbers (cm−1) of the identified bands are

observed in the range of 4000–400 cm−1 (see Table 3 for a comprehen-
sive summary). Note, however, that band positions could be slightly or
considerably shifted from reported band wave numbers obtained by
both TIR and ATR techniques (Wada, 1967; Farmer, 1974; Van der
Marel and Beutelspacher, 1976; Hlavay et al., 1978; Madejová and
Komadel, 2001; Schroeder, 2002; Vaculícová and Plevová, 2005; Jung
et al., 2010) due to the different infrared methods (i.e., TIR, DRIFT, ATR
FTIR), sample preparation (pressed pellet or powder sample), changing
chemistry of minerals (i.e., Mg incorporation in calcite; different cation
occupancy in layers and interlayers of smectite etc.) and anisotropy of
infrared absorption (in which certain indicatrix section(s) may become
dominant during analysis).

Fig. 2 shows representative ATR spectra for themajor sediment units
(i.e., grey fluvial sediment, loess, loam, paleosols and red clay) with the
band assignments for themost prominent absorption bands. The typical
ATR spectra of grey fluvial sediment and loess display lower absolute
absorbances than loam, paleosols and red clay. The band at 1428 ±
11 cm−1 in the ATR spectrum of grey fluvial sediment is broader than
in other sediments and the presence of the band at 728 ± 2 cm−1,
representing dolomite, is better expressed. The carbonate band at
874 ± 2 cm−1 usually can be well resolved from the broad band of
silicateminerals at 989± 8 cm−1 in the grey fluvial sediment and loess.

Paleosols and red clays display characteristic spectral features in that
the band at 1428±11 cm−1 hasmuch lower absolute intensity relative
to grey fluvial sediment, loess and loam, whereas the band at 1635 ±
1 cm−1 related to the bending of molecular water, mainly in smectite,
shows higher absolute intensity (Fig. 2).

Significant shifts in wave numbers occur at 989± 8 cm−1 (referred
to as νsilicates hereafter) and at 1428±11 cm−1 (referred to as νcarbonates
hereafter) in the ATR spectra of samples corresponding to Si-O and
CO3

2− vibrations, respectively (Table 3). The νsilicates shows the highest
average wave number in the grey fluvial sediment (996 ± 5 cm−1)
and decrease gradually from the loess (989 ± 7 cm−1) to red clay
(975 ± 1 cm−1) through loam (985 ± 2 cm−1), paleosols (984 ±
4 cm−1). The νcarbonates appears at slightly higher wave numbers in
paleosols (1439 ± 10 cm−1) in decreasing order red clay (1433 ±
1 cm−1) loam (1433 ± 8 cm−1) loess (1424 ± 14 cm−1) grey fluvial
sediment (1423 ± 7 cm−1) and this particular wave number shows
large variation in loess samples.

Based on the qualitative analysis of sediments’ ATR FTIR spectra,
characteristic infrared band areas are defined for main minerals or

image of Fig.�1


Fig. 2. Selected ATR FTIR spectra of the five sediment types with their generalized assignments marked. The underlying bands contributing to the baseline-corrected spectra were deter-
mined using the second derivative method (indicated by dotted line). Qz: quartz, Cal: calcite, Dol: dolomite, Chl: chlorite, Ms: muscovite, Ilt: illite, Sme: smectite, Kln: kaolinite.
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group of minerals so as to facilitate quantitative evaluation. Sheet
silicates such as muscovite ± illite, smectite, chlorite and kaolinite
could be quantified by taking the area under the broad absorption
band in the range 3000–3740 cm−1 (referred to as Asheet silicates here-
after) and 825–1235 cm−1 (referred to as Asilicates, see below for more
detailed explanation). This latter area also includes the contributions
of quartz and feldspar, however, as we shall demonstrate later this
does not invalidate the use of this infrared band area for quantitative
purposes. Integrated area of carbonates in the range 1235–1585 cm−1

(referred to as Acarbonates hereafter) and at 874 ± 2 cm−1 (referred to
as Acarbonates-2 hereafter) are considered for quantification. The latter
band is evaluated individually in each sample by defining individual
integration limits, given that it is difficult to define uniform integration
limits for this band in all the samples. This is because the Acarbonates-2

(Fig. 2) appears as a shoulder on the broader and more intense band
in the range of 825–1235 cm−1. The Acarbonates-2, therefore, contributes
to the area of the 825–1235 cm−1 band so that its subtraction from the
area of the 825–1235 cm−1 leaves roughly the area of sheet silicates
(referred to as Asilicates hereafter). The infrared band areas are shown
in Supplementary Tables 1 and 2.

The amount of molecular water is quantified by defining the
integrated area in the range 1585–1725 cm−1 (referred to as Awater

hereafter). The quantification of kaolinite is done by constraining the
integrated area of the band at ~3697 cm−1 (referred to as Akaolinite here-
after). This latter band of kaolinite should also be evaluated individually
by defining suitable integration limits for each sample, analogous to that
applied for Acarbonates-2.

The minimum, maximum and average infrared band areas of these
parameters in different types of sediments are plotted in Fig. 3. Infrared
band areas show systematic variations in different sedimentary units,
which may facilitate their identification based solely on their ATR FTIR
spectra if other conventionalmethods are not available. The Asheet silicates

shows an increasing tendency in the following sequence: grey fluvial
sediment, loess, loam, red clay and paleosol (Fig. 3A). The highest
variation between maximum and minimum infrared band areas is
observed in the loess samples. A similar tendency is observed for the
A

water
but in this case the highest value is for the red clays instead of

the paleosols (Fig. 3A). The difference between the maximum and
minimum values for loess is nearly as high as for loam. The Asilicates

shows a similar trend toAsheet silicates andAwater and reaching the highest
value in the red clay (Fig. 3A and B). Acarbonates-2 and Acarbonates show an
opposite trend to that of Akaolinite, Asheet silicates, Awater and Asilicates as
these decrease gradually from grey fluvial sediment to loess, loam,
paleosols and red clay (Fig. 3C). The Akaolinite for red clay and paleosol
is higher than for grey fluvial sediment, loess and loam (Fig. 3B).

4.2.2. X-ray powder diffraction
Result of whole rock samples’ XRD analysis shows that variable

amounts of quartz, carbonates (calcite N dolomite) and sheet silicates
(muscovite ± illite N chlorite N smectite) are present in the samples;

image of Fig.�2


Fig. 3. Characteristic ranges for particular infrared band areas (indicated by the extent of
lines) and their average values (indicated by diamonds and rectangles) are presented
for the five sediment types. The ranges of infrared band areas are calculated from the
infrared spectra of sediments (see Supplementary Table 2, for more details) as follows:
A) Awater and Asheet silicates, B) Asilicates and Akaolinite, C) Acarbonates and Acarbonates-2.
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feldspars (plagioclase (0–8%) N K–feldspar (1–3%)) and goethite (0–3%)
appear in minor amounts (Supplementary Table 3). Samples contain
only traces of kaolinite and gypsum as indicated by the low relative in-
tensities of their diagnostic reflections. Percent amount of kaolinite is in
some samples of loess (tr.−2%) and one sample of greyfluvial sediment
(tr.−3%), and even amphibole (tr.−1%) and pyrite (1%) appear also
sporadically. Low amount of amorphous phase is present as well, espe-
cially in paleosols (1–5%) and red clay (3%). One sample of paleosol con-
tains 5% of amorphous phase (K3-11).

Averaged content of quartz is about 35%, except paleosol samples
with 54% but varies in a broad range, especially in loess (17–57%) and
in loam (26–61%).

The total amount of carbonates is higher in grey fluvial sediment
(average 35%, 19–45%) than in paleosols (5%, 0–22%), in loam (22%,
7–31%) and red clay (1%, 0–2%), and even loess (27%, 9–50%) are more
calcareous. In the grey fluvial sediment, dolomite (2–30%) is commonly
more than calcite (12–39%) whereas loess and loam contain two or
more times calcite than dolomite. Dolomite does not occur in the red
clay. One red clay sample (K4-5) and two samples of paleosols (K2-6,
K3-11) contain only calcite.

Content of sheet silicates also varies in a broad range. Compared
with the abundance of sheet silicates in the sediments, red clay (59%,
53–68%), loam (34%, 22–39%) and paleosols (31%, 19–40%) contain a
greater amount of sheet silicates than loess (30%, 19–47%) and grey
fluvial sediment (25%, 17–33%).

Among sheet silicates, muscovite± illite (14%, 8–16%), chlorite (9%,
5–12%), smectite (5%, 2–11%) are found in the grey fluvial sediment. A
similar quantitative sequence of sheet silicates occurs also in loess,
paleosols and loam. The average content of muscovite ± illite is 24%
for red clay (24–25%), 16% loam (8–20%), 15% loess (8–22%), 14%
paleosols (10–17%).

Full width at half maximum of muscovite ± illite (FWHMm) varies
between 0.22° and 0.45° and the average value is 0.30° in the samples.
According to this value, the samples of red clay (0.43, 0.41–0.45) are
illitic and even loess (0.30, 0.23–0.36), paleosols (0.35, 0.27–0.55) and
grey fluvial sediment (0.28, 0.22–0.41) have higher values of FWHMm.
Paleosols (10%, 8–12%) and loam (12%, 8–14%) contain more chlorite
than loess (9%, 6–16%) and red clay (8%, 5–12%). Estimated amount of
smectite is 6% for loess (2–13%), 6% loam (5–8%), 9% paleosols
(5–15%) and 32% red clay (22–37%).

4.2.3. Thermal analysis
Analysis of thermal curves indicates five characteristic temperature

ranges that represent release of volatiles from minerals and their
phase transitions. For all samples, the first step is loss of absorbed
water between 47-268 °C (DTG curve minimum of 91 ± 8 °C) and
loss of interlayer water from smectite between 137-364 °C (DTG
curve minimum of 169 ± 16 °C) during heating. In the range of 313-
792 °C (DTG curve minimum point: 530 ± 31 °C), the clay structures
lose their water and carbonates structures start to disintegrate. At
high temperature, between 573-962 °C (DTG curve minimum point:
819±37 °C), carbonates decompose completely and oxides and silicate
phases form. Supplementary Table 4 represents the estimated mineral
composition of samples by TA. In a large number of samples, thermal
dissociation of CaCO3 and MgCO3 from dolomite cannot be distin-
guished due to its weathered state (Földvári and Kovács-Pálffy, 2002).
Thus the total content of dolomite + calcite was calculated.

The identified minerals in samples are muscovite ± illite, smectite,
chlorite, calcite, dolomite and small amount of goethite and kaolinite.
Among micas, hydromuscovite is also identified through its dehydrox-
ylation temperature (620–650 °C) between muscovite (820–920 °C)
and illite (~550 °C). Hydromuscovite is a hydrated form of muscovite
containing little interlayer water from the replacement of K to H3O−

(marked in parentheses, in the column of micas, Supplementary
Table 4) (Földvári, 2011). It should be noted that the XRD pattern
of hydromuscovite is very similar to muscovite, therefore, their identifi-
cation is only possible the careful analysis of the thermal curves of
samples. The thermal curve of hydromuscovite shows dehydroxylation
at lower temperatures and contains a very small amount of interlayer
water. In this study we considered hydromuscovite as illite. Traces of
gypsum and organic material are also present. Pyrite occurs in one
sample of grey fluvial sediment (K3-1).

According to TA, sheet silicates are abundant in samples of red clay
(average 61%, min. 51–max. 68%), and even paleosols (23%, 16–30%)
contain a larger percentage of sheet silicates compared to grey fluvial
sediment (11%, 0–23%), loess (6–47%, 19%) and loam (17%, 14–24%).

Averaged content of smectite increases in the following sequence:
3% for grey fluvial sediment (1–6%), 6% loess (1–13%), 7% loam
(4–15%), 10% paleosols (6–13%) and 23% red clay (21–26%). The total
amount of micas (hydromuscovite and muscovite ± illite, Σilt, mu, hym)
is higher in red clay (25%, 24–26%) and in paleosols (13%, 10–15%)
than in grey fluvial sediment (8%, 13–11%) and loess (13%, 2–22%). A
similar tendency is found for chlorite; 7% grey fluvial sediment
(0–12%), 9% loess (5–15%), 10% loam (8–13%), 10% paleosols (7–15%),
12% red clay (4–20%).

The amount of calcite is usually more than dolomite in sediments,
and the total carbonate contents are 35% for grey fluvial sediment
(23–43%), 26% loess (7–52%), 22% loam (8–28%), 4% paleosols
(0–20%) and 1% red clay (0–2%). Red clay samples do not contain
dolomite.

The mass change during loss of molecular water is summarized
in Supplementary Table 4. It is higher in the red clay (average 3.77%,
min. 3.39–max. 4.09%) and in the paleosols (1.61%, 1.22–2.04%)
than in the grey fluvial sediment (0.28%, 0.03–0.91%), loess (1.05%,
0.14–2.16%) and loam (0.88%, 0.61–1.32%).
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5. Discussion

5.1. Infrared features of minerals and their estimated content by XRD

The defined ATR FTIR parameters were first compared to the most
common analytical technique for phase identification. Fig. 4A shows a
closely linear relationship between sheet silicate content determined by
XRD and Asheet silicates for the five types of sediments considered in this
study. The plot indicates clustering of the different sediments. The grey
fluvial sediment has a small amount of sheet silicates and lowAsheet silicates

values partly overlapping with the loess samples which show the most
significant scattering in the plot. Loam and paleosol samples partially
overlap with loess samples, however, paleosols are above, whereas
most of the loam samples are below the trend line. The red clay comprises
themost distinctive groupwhich shows very high sheet silicate content at
relatively low A

sheet silicate
value (therefore these samples fall off the linear

trend defined by the other samples).
The sheet silicates vs. Asilicates plot also reflects lower values for grey

fluvial sediment overlapping with loess, loam and paleosol (Fig. 4B).
The red clay and one loess (K4–8) samples occur at high sheet silicate
content and Asilicates values.

The illite and smectite (Σilt, sme) content can absorb more water due
to their relatively high surface, shows relatively good relationship with
Asilicates and νsilicates (Fig. 5A and B). There is a positive correlation in the
Σilt, sme vs. Asilicates plot (Fig. 5A). On the other hand, there is an inverse
correlation in the plot of Σilt, sme vs. νsilicates (Fig. 5B). Loam samples
fall below the trendline inΣilt, sme vs. νsilicates plot. Red clay shows higher
Σilt, sme, Asilicates and νsilicates, differing clearly from the other sediment
types.

Among sheet silicates, the abundance of smectite appears to corre-
late positively with Awater (Fig. 6A). Paleosols and red clay have higher
smectite content and Awater values than grey fluvial sediment, loess
and loam. The calculated Awater is only about 0.01 in carbonate rich
samples of grey fluvial sediment and loess.
Fig. 4.Variation of characteristic infrared bandareas (Asilicates and Asheet silicates) as a function of es
Carbonate content (calcite and dolomite) by XRD vs. Acarbonates

and νcarbonates are presented in Fig. 7A and B. The carbonate content
shows a positive and negative correlation with Acarbonates and νcarbonates,
respectively. Red clay and paleosol samples form a rather distinct group
characterized by low carbonate content and Acarbonates values (Fig. 7A).
Grey fluvial sediment has the highest carbonate content and Acarbonates

values. In addition, the carbonate band of grey fluvial sediment samples
appears at the lowest wave number among all the sediment types. For
the loess samples, all the parameters (νcarbonates, Acarbonates and carbon-
ate content) vary significantly overlapping with grey fluvial sediment
and loam samples (Fig. 7A and B).

5.2. Infrared features of minerals and their estimated content by TA

The relations between infrared band areas and carbonate and mica
content determined by TA are consistent with those determined by
XRD measurements (Figs. 5, 7).

The sheet silicates content by TA vs. Asheet silicates plot is very similar
to the sheet silicates by XRD vs. Asheet silicates (Fig. 4C and D). The abun-
dances of smectite, illite and hydromuscovite (Σilt, hym, sme) by TA show
similar values to the estimated abundance of smectite and illite by XRD
(Σilt, sme). This is because it seems that the illite content defined by the
XRDmethod (as N0.30) equals to the illite plus hydromuscovite content
seen by the TA (Supplementary Tables 3, 4). The hydromuscovite is
most probably seen as illite by the XRD. Note, however, that TA can
resolve the peak temperatures related to the hydroxyl and water loss
of illite and hydromuscovite. Thus, no wonder that both Σilt, hym, sme

and Σilt, sme correlate with Asilicates and νsilicates (Fig. 5A–D).
Fig. 6B shows the correlation between smectite contents by TA and

Awater values, which resemble very closely the smectite content by
XRD and Awater plot (Fig. 6A).

Carbonate content by TA vs. Acarbonates and νcarbonates plots are
presented in Fig. 7C and D, which are almost identical to the trends
defined by XRD determined carbonate contents (Fig. 7A and B).
timated abundances of sheet silicates byX-ray diffraction (A, B) and thermal analysis (C, D).
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Fig. 5. The total amount of smectite and illite vs. infrared band areas typical for these minerals. Mineral percentages of the total amount of smectite and illite (and hydromuscovite) are
obtained by X-ray diffraction (A, B) and thermal analysis (C, D).
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The loss of molecular water between 47 and 268 °C by TA and the
Awater values are positively correlated (Fig. 6C). Loess displays a wider
field than the other sediment types and overlaps with loam and grey
fluvial sediment. Again, the paleosol and red clay samples are clearly
differ from the sediment types by showing bothmuch higher molecular
water content and Awater values. Therefore, the water content
determined by ATR FTIR as Awater may provide a good estimate for the
wetting capacity of sediments, which in turn can be applied as an
indicator for clay rich zones more likely to suffer failures if conditions
permit.

5.3. Effect of grain size and penetration depth of minerals (dp) on the ATR
FTIR spectra of sediments

Several correlations between infrared band areas and the amount of
sheet silicates and carbonates by XRD and TA are identified along with
several distinctive features for the different sediment types. However,
Fig. 6. Amounts of smectite (%) by X-ray diffraction (A) and thermal analysis (B) plotted as a fu
molecular water by thermal analysis vs. the Awater.
further explanation may be warranted for the deviation of red clay
samples from the main trendlines in the Asheet silicates and Asilicates vs.
sheet silicates plots (Fig. 4A–D). These samples usually occur below
the trendline as their infrared band areas (Asheet silicates, Asilicates) are
lower than what would follow from the main trend lines. This means
that the integrated absorbances of these particular spectral regions are
smaller than what would follow from the amount of sheet silicates
present in the sediments (smectite in particular).

The most likely explanation could be that clay minerals (especially
smectite) usually show grain sizes akin to or smaller than the penetra-
tion depth of IR radiation in the considered spectral ranges (~2 and
0.5 μm at 1000 cm−1 and 3400 cm−1, respectively; Table 2). The
consequence is that if the grain size of a given mineral component is
below the penetration depth specific to the particular mineral, then
the absorbance of a component is underestimated. This is because the
surface area of the mineral in contact with the ATR crystal is no longer
proportional to its abundance in the sediment because the IR light
nction of infrared band area in the 1585-1725 cm−1 infrared region (Awater). C) The loss of
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Fig. 7. Carbonates measured by X-ray diffraction (A, B) and thermal analysis (C, D) plotted against the integrated area and band maximum of carbonates (Acarbonates, νcarbonates).
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(evanescent wave) could not fully sample themineral to the maximum
theoretical depth given by the penetration depth. Ideally, if the surface
area in contact with the ATR crystal is constant, then the absorbance
increases proportionally with the grain size up to the penetration
depth. When the grain size is equal or larger than the penetration
depth then the absorbance remains constant (given that the surface
area in contact with the ATR crystal remains unchanged). This means
that minerals with grain sizes below the penetration depth could
show different absorbances depending on the grain size even if their
surface area in contact with the ATR crystal is constant. It also follows
that minerals with grain sizes larger than the depth of penetration
(however not orders of magnitude larger) could be, in fact, effectively
quantified since the absorbance in this case is thought to be only
proportional to the surface area in contact with the ATR crystal. The
surface area of a given mineral in contact with the ATR crystal is
believed to be comparative to its proportion in the sediment. Thus
ideally minerals with grain size larger than 2 μm could be better
Fig. 8. Amounts of smectite (%) by X-ray diffraction (A) and thermal a
quantified because this is the thickness that is optimal for both the
‘water’ and ‘Si-O’ band region (Table 2).

Two important consequences include: (1) the minerals with an
average grain size below 2 μm may only be quantified with high
uncertainty, and (2) the low wave number bands at ~ 1000 cm−1 seem
to be more sensitive to grain size effect than those at ~ 3400 cm−1,
which have smaller penetration depth (~0.5 as opposite to 2 for the
bands at 1000 cm−1).

Consequently, deviation from the main trends is expected for
sediments with high concentration of clay minerals which are likely to
have small grain sizes (Table 1, Supplementary Tables 3 and 4). This is
particularly true for smectite which besides its low dp also has small
size (~0.1–1 μm, Yong et al., 2012). Individual particles of smectite
have a larger contact area, although smaller penetration depth resulting
in weaker ATR absorbance signals than what would follow from the
surface area in contact with the ATR crystal. Indeed, it seems that the
proportion of smectite correlates with the grain size fraction below
nalysis (B) plotted as a function of the b500 nm particle fraction.
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Fig. 9. Representative ATR FTIR spectra of the calcite cuboid from three orthogonal
directions (A) and their second derivative curves in the 1350–1450 cm−1 wave number
region (B). Each second derivative spectrum is stretched to illustrate the relative
proportion of bands which contribute to the broad band in the region 1350–1450 cm−1.
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500 nm especially for red clay (Fig. 8A and B), which is the sediment
that shows the most profound deviation from the main trends on
absorbance vs. mineral proportion plots (Figs. 4, 5, 7).

There are also samples on the grain size fraction below 500 nm vs.
smectite content plotwith lowproportion of smectite and high percent-
age of grain sizes below 500 nm (Table 1, Fig. 8A and B). These samples
contain a higher fraction of amorphous material and even goethite
occurs thatmay explain the higher contribution to this veryfine grained
fraction (Supplementary Table 3). Note that goethite in soils and
sediments usually shows grain size below 0.1 μm (Langmuir, 1971).
Nevertheless, there are also samples with higher percentages of
smectite and lower proportion of 500 nm grains falling outside of the
main trend. It is a possible consequence of different sample preparation
by sieving and grinding, and the presence of aggregations arising from
fine particles during particle analysis.

5.4. Contribution of clay minerals to the infrared features of the band at
825–1235 cm−1

Correlation between Σilt, sme (by XRD and TA) vs. Asilicates and νsilicates
from infrared spectra was also noticed which may imply the most
significant relative contribution of smectite and illite to the infrared
band area 825–1235 cm−1. Infrared signals of quartz, feldspars, chlorite
and muscovite also occur in the range of 825–1235 cm−1, however,
their estimated proportions do not seem to be correlated with Asilicates.
This is because smectite and illite may usually have smaller average
grain size and larger surface area than other sheet silicates (Yong
et al., 2012). The contact with ATR crystal is closer for illite and smectite
due to their fine platy particles which are not as rigid as that of quartz,
feldspars, muscovite and chlorite. Consequently, the integrated area of
the ‘silicate region’ (~1200–800 cm−1) itself can provide a valuable
indication, especially on the smectite and illite content of sediments.

5.5. Orientation of carbonates in powders

The ATR spectra of sedimentswith various carbonate contents reveal
a significant shift (1398 to 1450 cm−1) in the main band of carbonates
at 1428± 11 cm−1 with the changing concentration of carbonates. The
band position is shifted towards lower wave numbers with increasing
carbonate content.

There are in principle two main reasons for band shifts in mineral
ATR spectra. The first is that the presence of dolomite in the studied
sediments also contributes to the enhanced scattering in the wave
number and area of the band at 1428 cm−1. Micro-scale changes in
the mineral structure due to substitutions/incorporations of particular
elements can also slightly shift the energy, therefore, the wave number
of the particular absorption band. However, most bands other than that
of carbonate show negligible shifts in wave numbers (Table 3). In
addition, there is no indication by XRD and TA which would refer to
significant variation in chemistry of the mineral constituents. While
carbonates show the same degree of variation in proportions as sheet
silicates, the shift in their prominent band at 1428 ± 11 cm−1 is much
more significant (Table 3). The other explanation might be that the
shift is due to the significant anisotropy and/or preferred orientation
of carbonates as their modal proportion changes.

For this reason, we studied whether preferred orientation of calcite
could be the reason for the observed band shift. First, a single oriented
calcite crystal in three orthogonal directions (one being perpendicular
to the c axis) was studied on the ATR plate. The IR spectrum of uniaxial
crystals such as calcite shows a rather complicated behavior (Ketelaar
and Haas, 1956). Fig. 9A shows three unpolarized average spectra
of calcite representing one isotropic and two anisotropic sections
(i.e., the average spectrum is the average of the two orthogonal and
one diagonal spectra in each of the three sections). As light propagates
along the c-axis of the calcite crystal, the infrared spectra remain
unchanged during rotation. However, in the two other anisotropic
sections the calcite crystal behaves strongly anisotropically and the
spectra vary considerably during rotation. The average spectra in these
two sections, nevertheless, are similar and only their absolute intensity
differs (Fig. 9A).

If we take a closer look at the second derivative curve, the similarity
of the anisotropic sections are evenmore obvious (Fig. 9B). Not only the
positions of the main bands at ~1390 cm−1 and 1400 cm−1, but their
relative changes are also similar. In contrast, the isotropic section
seems to indicate positive amplitude of the secondary derivative
spectrum at 1390 cm−1 and the direction of changes here appears to
be opposite and more intense with respect to the anisotropic section.
This suggests that in the isotropic section of calcite the main band
appears at a slightly lower wave number. Therefore, it is very likely
that the reason why the main band of carbonate shifts towards lower
wave number is that the contribution of the isotropic sections becomes
dominant. In other words, the c-axis of the calcite crystals is aligned
perpendicular to the ATR plate. In fact, this makes perfect sense as
probably this is how calcite crystals can minimize the effect of gentle
pressure exerted by the ATR anvil.

Orientation effect was studied further in mechanical mixtures of
kaolinite (KGa-1)–calcite (Beremend, Hungary) in different proportions
(Fig. 10A and B). ATR spectra of binary mixtures show increasing shifts
in wave numbers (from 1392 to 1433 cm−1) with decreasing calcite
content. This is in very good agreement what follows from our observa-
tions on the calcite cube.

In summary, the band shift towards lower wave numbers with
increasing carbonate content is because that the c-axis is preferentially
aligned perpendicular to the ATR plate due to the exerted pressure.

image of Fig.�9


Fig. 10.ATR spectra of powdered calcite-kaolinite mixture (A) and their second derivative
curves in the 1350–1450 cm−1 wave number region (B). Each second derivative spectrum
is stretched to illustrate the relative proportion of bands those contribute the broad band
in the region 1350–1450 cm−1.
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5.6. Kaolinite in ATR spectra of sediments and its importance

As weathering proceeds, formation of smectites and leaching of
carbonates will create weakness zones more susceptible to sliding. In
addition, the low permeability and high water absorbing capacity of
smectites hinders water flow and the stagnating underground water
may further intensify weathering. This also makes pre-existing
smectite-rich zones more slippery.

The occurrence of sheet silicates, especially kaolinite seems to be
common in landslide-prone sediments and its amount is considered to
play an important role in sliding (i.e., Wen and Chen, 2007; Summa
Fig. 11. Variation of the ratio of infrared band areas (Awater/
et al., 2010). Kaolinite is also known to occur in larger modal abundance
with the increasing degree of weathering (Singer, 1984). This means
that in potential sliding zones the concentration of sheet silicates
(especially smectite and kaolinite) and carbonates are thought to
increase and decrease, respectively. As was shown, particular infrared
parameters (Asilicates andAwater) correlate reasonablywell with smectite
content, whereas Acarbonates is proportional to the carbonate content
determined by XRD and TA. Similar relations for kaolinite were not
identified due to the difficulties during its XRD (i.e., overlap with
chlorite band) and TA quantifications (i.e., high temperature exother-
mic peak and overlap with carbonate and muscovite bands). XRD and
TA results show that a large number of samples contain relatively high
concentration of chlorite (average 10%) and traces of kaolinite also
occur in some samples. The presence of kaolinite, however, was
confirmed in each sample by ATR FTIR analysis. The overlapping
makes it difficult to distinguish and quantify between kaolinite and
chlorite by XRD technique when both are present in a clay mineral
assemblage (Guo and Underwood, 2011). Therefore, the information
about the amount and mineralogy of kaolinite derived from infrared
spectroscopy may differ to that of XRD (and TA). It seems plausible,
however, that even trace amount of kaolinite can be determined and
estimated using the presence and the area of one of its prominent
absorption band at 3697 cm−1.

As we have demonstrated, the silicate/carbonate ratios are expected
to be significantly higher in more weathered zones, which are more
likely to accommodate sliding. Accordingly, kaolinite is also more
abundant in these zones, thus, if Awater/Acarbonates and Asilicates/Acarbonates

ratios are plotted against Akaolinite, sheet silicate rich and carbonate poor
sediments would fall in different parts of the diagram (Fig. 11A and B).
The band ratios were visualized on a logarithmic scale and carbonate
poor and sheet silicate rich sediments fall in the upper right part of
the diagram. Both paleosol and red clay have distinctive higher values
of Awater/Acarbonates (average 3.65, min. 0.03–max. 8.02), Asilicates/
Acarbonates (315.30, 41.95–622.24) and Akaolinite (0.09, 0.07–0.15) than
in loess, loam and grey fluvial sediment. Only one paleosol sample
(K2-6) has higher carbonate content than other paleosols, therefore
overlaps with other observed sediments. Grey fluvial sediment and
loam form different clusters but overlap with loess.

6. Conclusions

The results of this study demonstrate that on the bulk powder of a
representative collection of sediments (grey fluvial sediment, loess,
paleosols, intercalated loam samples between sand–sandstone and red
clay) from a landslide area that using infrared band areas of carbonates
and sheet silicates show good agreement with classic XRD and TA
methods. Therefore, ATR FTIR methods could be applied complementa-
ry to classic TA and XRD methods in classifying natural sediments, if a
quick and cost effective analysis is needed. This methodology can be
Acarbonates (A) and Asilicates/Acarbonates (B)) with Akaolinite.
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directly applied for the identification of weakness zones in landslides.
Kaolinite infrared band area vs. silicates/carbonate andwater/carbonate
infrared band areaswere found to be especially useful for the identifica-
tion of paleosols and red clay. These latter two sediment types or
clay-rich and carbonate poor sediments, in general, are expected to
occur in elevated quantities along sliding zones or facilitate the onset
of sliding.

The ATR spectra of sediments showed that grain size, penetration
depth and orientation effects can contribute to changes in magnitude
and wave number shift of characteristic infrared bands. The large
sample set including various modal abundances of common minerals
in sediments ensures the feasibility of the developed ATR FTIR
methodology.
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