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1Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK
2Harvard Medical School, Boston, MA, USA
3Laboratory of Biological Computation, Institute of Experimental Medicine, Budapest, Hungary
4These authors contributed equally
5Lead contact

*Correspondence: youngjoon_kim@hms.harvard.edu

https://doi.org/10.1016/j.celrep.2023.112386

SUMMARY

The input-output transformation of individual neurons is a key building block of neural circuit dynamics.While
previous models of this transformation vary widely in their complexity, they all describe the underlying func-
tional architecture as unitary, such that each synaptic input makes a single contribution to the neuronal
response. Here, we show that the input-output transformation of CA1 pyramidal cells is instead best captured
by two distinct functional architectures operating in parallel. We used statistically principled methods to fit
flexible, yet interpretable, models of the transformation of input spikes into the somatic ‘‘output’’ voltage
and to automatically select among alternative functional architectures. With dendritic Na+ channels blocked,
responses are accurately captured by a single static and global nonlinearity. In contrast, dendritic Na+-
dependent integration requires a functional architecture with multiple dynamic nonlinearities and clustered
connectivity. These two architectures incorporate distinct morphological and biophysical properties of the
neuron and its synaptic organization.

INTRODUCTION

Under in vivo conditions, cortical neurons receive thousands of

synaptic inputs and integrate them through diverse computa-

tions distributed across the dendritic arbor.1,2 These integrative

processes determine how spatiotemporal patterns of ‘‘input’’

spikes impinging the cell are transformed into its time-varying

somatic membrane potential ‘‘output.’’ Accurately character-

izing this input-output transformation in individual neurons is a

key step toward understanding the collective dynamics of neural

circuits.3,4

Abstract mathematical models developed to capture the

input-output transformations of cortical neurons vary widely in

their complexity.5 These models can be operationalized as a

set of ‘‘subunits’’ (Figure 1, circles and square) connected by

directed edges (Figure 1, arrows between shapes). Each subunit

receives some subset of the cell’s synaptic inputs (Figure 1,

spike trains on top) as well as input from other subunits (as

dictated by its incoming connections) and performs some

elementary mathematical operation on these inputs. The result

of this mathematical operation is relayed to other subunits (as

dictated by the subunit’s outgoing connections) or forms the pre-

dicted output of the cell (Figure 1, bottom-most subunit). Existing

models differ in their functional architecture, as defined by the

number and connectivity of subunits and the form of mathemat-

ical operations used in those subunits (Figures 1A–1D). Some

models perform (either based on simplifying assumptions6–8 or

supported by data-driven analysis9) a fundamentally linear inte-

gration of all synaptic inputs arriving at the cell, followed by only a

single, global nonlinearity. In other words, they use a single, so-

called linear-nonlinear subunit (Figure 1A). Other models posit

that synaptic inputs are divided into a limited number of func-

tional clusters, such that inputs within each cluster are pro-

cessed by a local linear-nonlinear processing subunit, and a hi-

erarchical cascade of such subunits determines somatic

output9–12 (Figures 1B and 1C). Yet more complex models char-

acterize the input-output transformations of a single neuron as

equivalent to a multilayer deep neural network (DNN) with nearly

a thousand linear-nonlinear (sub)units13,14 (Figure 1D).

Despite the apparent diversity of proposals for the mathemat-

ical form of neuronal input-output transformations, previous

models all share a fundamental feature: they characterize this

transformation by a functional architecture that can be consid-

ered ‘‘unitary.’’ A unitary architecture is defined by specific con-

straints on the connectivity and type of its subunits. The con-

straints on connectivity can be best understood by following

the sequence of subunits that any particular synaptic input

passes through before reaching the output subunit

(Figures 1A–1D, colored pathways originating from green spike

train). This sequence consists of either a single pathway (as in

sparsely connected cascade models10–12; Figures 1A and 1B,

green pathway) or multiple processing pathways (e.g., multi-

plexed cascades9 or densely connected DNNs13,14; Figures 1C

and 1D, green spike train feeding blue and yellow pathways).
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However, even when multiple pathways exist in a unitary archi-

tecture, they converge rapidly, such that their contributions to

the final output of the model cannot be dissected (Figures 1C

and 1D, blue and yellow pathways mixing into green after one

step). The other constraint, in both single- and multiple-pathway

models, is that all subunits perform fundamentally the same type

of mathematical operation (typically a simple linear-nonlinear

transformation; Figures 1A–1D, circles). Therefore, thesemodels

may suggest that all the biophysical complexity underlying the

input-output mapping of neurons can be summarized by each

synaptic input making only one kind of contribution to the output

of the cell.

However, dendritic arbors typically harbor a diverse set of

biophysical integrative mechanisms with a broad range of

distinct time scales and input sensitivities. At one end of the

spectrum, fast dendritic Na+ spikes are triggered by highly

synchronized inputs arriving within a few milliseconds onto a

short dendritic segment.15 Although dendritic Na+ spikes can

contribute to the precise timing of somatic action poten-

tials,16–21 the sharp nonlinearity of the sodium channel activa-

tion makes them sensitive to small fluctuations in the inputs

and their propagation unreliable.19,22,23 At the other end of the

spectrum are NMDA receptor-mediated plateau potentials24

that are more robust to spatiotemporal variations in the in-

puts.25–27 Although the propagation of these events to the

soma is not actively maintained, they can still substantially

contribute to somatic depolarization and to robust neuronal tun-

ing under in vivo conditions.21,28

The diversity of dendritic mechanisms suggests that a single,

unitary functional architecture with a single type of subunit may

be insufficient to accurately describe the neuronal input-output

transformation. Instead, it motivates an approach loosely analo-

gous to the well-known Fourier decomposition of a potentially

complex transformation into a sum of elementary transforma-

tions operating at distinct frequencies in parallel. Specifically, it

suggests that the effects of dendritic mechanisms operating at

different time scales may be best understood by distinct func-

tional architectures, with different types of subunits (Figure 1E,

circles versus square), operating in parallel and converging

only in the last summation step (Figure 1E, blue and yellow path-

waysmixing only at the bottom). This way, even a single synaptic

input could make several distinct contributions to the cell’s

output, one contribution via each architecture.

While the existing empirical evidence is broadly suggestive of

parallel architectures with different types of subunits,29 there

remain several key issues unresolved. First, most of this evi-

dence was obtained in vitro, while understanding dendritic inte-

gration under in vivo conditions presents unique challenges9

because natural synaptic stimuli may contain multiple input pat-

terns at any given time, and different dendritic mechanisms

could interact with one another in complex ways.26,30 This may

potentially render the effective contributions of biophysically

distinct mechanisms to the cell’s output difficult to dissect. As

a result, such intermingled contributions may be best described

by functional subunits that are largely similar, or indeed are not

even separable, which would thus still be consistent with a uni-

tary functional architecture. Second, without a formal mathemat-

ical analysis, earlier studies did not distinguish whether the

effects of these distinct mechanisms converge early in the func-

tional architecture of the cell, again consistent with a unitary ar-

chitecture, or they converge late, thus giving rise to genuinely

parallel architectures.

A B C D E

Figure 1. Comparison of computational models of the neuronal input-output transformation

Each shape (circle or square) represents a functional ‘‘subunit,’’ performing an elementary operation (e.g., summation followed by a sigmoid nonlinearity) on the

inputs (incoming arrows, from spikes arriving via afferent synapses or from other subunits) to produce its output (outgoing arrow). The output of the cell is

produced by the bottom subunit (open circle). Identical shapes indicate subunits performing similar operations. An example input spike train is highlighted in

green, and the pathway processing this input is highlighted in colors. Splitting and mixing of colors indicates divergence and convergence of this pathway: parts

conveying distinct contributions of this input are shown in separate colors (blue and yellow), and parts conveying mixed contributions are shown in green.

(A) Point neuron model with no hierarchical processing.6–8

(B) Hierarchical cascade: each spike train is processed by only a single pathway.9–12

(C) Hierarchical cascade with input multiplexing.9 Each spike train is processed bymultiple rapidly converging pathways that are kept separate only at the level of

inputs and use the same type of elementary operation.

(D) Deep neural network (DNN).13,14 Each spike train is processed by multiple rapidly converging pathways that typically diverge and converge in each step,

always using the same type of elementary operation.

(E) Parallel architectures (this study). The processing pathways of the same spike train converge only in the last step of the hierarchy, and these pathways belong

to different functional architectures using different elementary operations (circles versus square).
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To study the functional architecture of neuronal input-output

transformations under in vivo-like conditions, and in particular

to establish formally whether its underlying architecture is unitary

or parallel, we used a model-based approach that allowed us to

rigorously characterize this transformation in a data-driven way.

For this, we first extended previously developed methods in

which subunits had only static nonlinearities9–11 by incorporating

subunits capturing arbitrary nonlinear dynamics. Second, we fit

all the parameters of the model, including those parameterizing

the dynamical nonlinearities, as well as the architecture of the

model in a data-driven way, with minimal prior assumptions. Us-

ing these methods, we characterized the input-output transfor-

mation of a hippocampal CA1 pyramidal cell during the ‘‘theta

state.’’31 We found that predicting the contribution of dendritic

Na+ channels to the output of the cell (vNa) required a functional

architecture fundamentally distinct from predicting the contribu-

tions of all other dendritic signals (vnoNa). Specifically, while vnoNa
could be accurately predicted using a single subunit with a static

nonlinearity, precisely capturing vNa required a larger number of

dendritic subunits equipped with nonlinear dynamics and con-

nected into an architecture that appropriately reflected the clus-

tering of synaptic inputs onto the dendritic tree. These results

suggest the presence of at least two distinct functional architec-

tures within the same dendritic tree, operating in parallel.

RESULTS

We chose hippocampal CA1 pyramidal cells as our test bed to

study the neuronal input-output transformation, as this is a para-

digmatic principal cell type in the cortex with validated biophys-

ical models32,33 and extensively characterized input statistics

in vivo in behaving animals.34,35 Briefly, we used a CA1 biophys-

ical model neuron (STAR Methods) that was tuned to reproduce

various somatic and dendritic integrative properties under

in vitro conditions33 (Figure S1). These included the generation

and propagation of Na+ spikes along the dendritic arbor26 (Fig-

ure S1B), the amplitude distribution of synaptic responses,36

the nonlinear integration of inputs via NMDA receptors26

(NMDARs; Figures S1A and S1C), and A-type K+ channels for

limiting dendritic excitability.37 To test the robustness of our an-

alyses, we used a range of NMDAR and dendritic Na+ conduc-

tances that produced realistic patterns of input integration

(Figures S1D and S1E).

We stimulated the biophysical model with synaptic input pat-

terns modeled to represent in vivo-like conditions.33 Specifically,

we used 2,000 excitatory and 200 inhibitory inputs with spiking

patterns expected to occur in an animal navigating a one-dimen-

sional environment (a circular track). Excitatory inputs showed

place cell-like activity, with location-dependent firing rate tuning

curves and spike timings exhibiting theta-phase precession,38,39

while inhibitory inputs were not specifically tuned to location and

were modulated only by the phase of the ongoing theta oscilla-

tion40,41 (Figure 2A). Of the 2,000 excitatory inputs, 240 of

them, with place fields covering a continuous segment of the

track (Figure 2A, colors), were grouped into synaptic clusters42

(Figure 2B), of which we varied the number between 4 and 12.

Synapses within a cluster were co-located on the same dendritic

branch, but the clusters themselves, as well as the remaining

‘‘background’’ synapses, were distributed randomly throughout

the dendritic tree (Figure 2B). Critically, the clustering of inputs

allowed the generation of dendritic spikes (Figure 2C).

Dendritic spikes control somatic action potential output
The somatic subthreshold membrane potential of this model

showed realistic fluctuations, characterized by strong theta

modulation,32,44 and elevated levels within a localized region of

the environment32 (Figure 2D, top). Place tuning was accompa-

nied by dendritic spikes generated in branches receiving clus-

tered inputs45 (Figure 2D, bottom). These dendritic spikes ap-

peared as spikelets in the somatic voltage26 (Figure 2E,

compare black trace at top with colored traces at bottom).

Although spikelets were small in magnitude, they seemed to

have a disproportionately strong control over the timing of so-

matic action potentials (after ‘‘unblocking’’ somatic voltage-

dependent Na+ channels in our simulations; Figure 2E, top or-

ange). To quantify this, we trained a decoder to predict the timing

of somatic action potentials based on the somatic subthreshold

membrane potential, either with dendritic spikes and conse-

quent spikelets (i.e., using the full biophysical model, vsoma) or

without dendritic spikes (by blocking dendritic Na+ channels,

vnoNa; STAR Methods). We found that action potential timings

were substantially better predicted with dendritic spikes than

without them as measured by precision and recall (Figure 2F)

or a coincidence factor46 (Figure 2G). Measuring prediction per-

formance using a receiver operating characteristic-based

approach, as used in earlier studies,13,47 was not able to distin-

guish between these two cases, as this measure is prone to be

dominated by the overwhelming number of time bins in which

no spikes occur (Figure S2).

Unitary architectures fail to accurately capture
spikelets
Tomathematically characterize the input-output transformation of

the CA1 pyramidal cell, we optimized a cascade of subunits to

predict the subthreshold somatic membrane potential at a given

time, vsoma, from the spike trains received by the cell up to that

point (Figure 1B, see also Figure S3 and STAR Methods). Stan-

dard approaches to using such cascades employ static subunits

whose output depends only on their instantaneous inputs or a

simple linearly filtered version of their inputs.9,11,13 To increase

the expressivity of our cascades, we extended previous ap-

proaches by allowing subunits to have internal dynamics, the

parameters of whichwecould fit togetherwith all the other param-

eters of the cascade (synaptic and subunit weights). Importantly,

all these architectures remained unitary. In contrast to recent ap-

proaches deploying densely connected DNN-like architectures13

(Figure 1D), we restricted our analyses to simple, sparsely con-

nected cascades, such that the number of pathways of informa-

tion processing within the cascade remained minimal and, thus,

the resulting architecture interpretable.

In line with earlier results,9 we found that a simple architecture

with only two layers of static subunits explained 96% of the vari-

ance of the subthreshold somatic membrane potential

(Figures 3A and 3B, green). This performance was on par with

that of more complex models using deeper cascades9 and

even more flexible, densely connected DNN architectures13
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(see also Figure S4A). We also considered multiplexing, such

that each input spike train contributed to two different nonlinear-

ities within the same subunit (Figure 1C), which has been shown

to improve performance at least asmuch as increasing the depth

of the cascade.9 We found little to no increase in performance

with multiplexing (96%–97%; Figures 3A and 3B, blue). As a final

improvement, we replaced the static subunits of the cascade

with dynamic subunits, which also achieved only a small

improvement in performance (98%; Figures 3A and 3B, red).

Although these unitary models could predict the somatic

responsewith high accuracy on average, a closer examination re-

vealed systematic errors in these predictions. Specifically, we

found that higher somatic membrane potential values (i.e., those

nearer the firing threshold) were predicted more poorly, with a

larger (downward) bias and a larger variance, and that this prob-

lem was present for all three models we considered so far (Fig-

ure 3C). These larger prediction errors seemed to stem from an

inability of these models to correctly predict spikelets (Figure 3A,

compare black with green, blue, and red).

To understand what causes the poor predictability of spike-

lets, we extracted the contribution of dendritic Na+ channels to

the somatic membrane potential, vNa (i.e., putative spikelets).

We defined vNa as the difference between the somatic mem-

brane potentials we recorded in the biophysical model with

(vsoma) andwithout the inclusion of dendritic Na+ channels (vnoNa;

see also Figure 2E, top):

vNa = vsoma � vnoNa: (Equation 1)

Thus, vNa included the direct contributions of dendritic Na+

channels to the somatic membrane potential (i.e., the additional

depolarization their currents caused), as well as any indirect con-

tributions they might have had (i.e., any interactions with other

channels, e.g., NMDARs, whereby the additional depolarization

caused by Na+ channels increased, or decreased, the currents

through these other channels). However, these indirect contribu-

tions were minimal in our biophysical model (NMDAR currents

barely changed when Na+ channels were blocked; Figures S1F

and S1G). Therefore, virtually all contributions of NMDARs to

the somatic membrane potential were represented in vnoNa.

We observed that moment-by-moment fluctuations in vNa
were closely followed by fluctuations in the prediction error of

the cascade models (Figure 3D) such that they were strongly

A B C

D
E

G

F

Figure 2. Dendritic Na+ spikes are critical for action potential timing in a biophysical CA1 model

(A) Spike raster plots for one 10-s trial showing spikes at 2,000 excitatory (bottom) and 200 inhibitory (top) input synapses. Two hundred forty excitatory synapses

(colors) are grouped into synaptic clusters of various sizes (four clusters are shown here, see also B).

(B) Schematics showing the locations of input synapses along the dendritic tree for ‘‘background’’ excitatory (gray) and clustered excitatory (colors) inputs for

three different arrangements of the 240 clustered synapses. Dot sizes are proportional to the frequency of Na+ spikes in the target branch.

(C) Frequency of dendritic Na+ spikes for the three cluster arrangements (shown in B).

(D) Dendritic (bottom, colors as in A and B, left) and subthreshold somatic (top, black) membrane potential traces in the four-cluster arrangement during the trial

shown in (A). Dendritic traces were recorded at the sites of clustered excitatory inputs. Dotted rectangle shows period magnified in (E).

(E) Close-up view of the dendritic (bottom, colors) and subthreshold somatic membrane potential traces (top, black, vsoma) from (D). The subthreshold somatic

membrane potential after blocking dendritic Na+ channels is shown in purple (vnoNa), and its difference from vsoma, i.e., the effective contribution of dendritic Na+

channels to the subthreshold somatic membrane potential, is shown in green (vNa). For reference, the somatic membrane potential including somatic action

potentials is also shown (orange).

(F) Precision versus recall of somatic action potential prediction using the subthreshold somatic membrane potential with (black) or without (purple) dendritic Na+

spikes. For reference, performance using the full somatic membrane potential is also shown (orange).

(G) Same as (F) but quantifying decoding accuracy with the spike coincidence metric of Naud et al.43 Boxplots in (C) and (G) show median (horizontal line), 25th

and 75th percentiles (box), ±1.5 interquartile ranges (whiskers), and outliers (circles) across 20 trials. Crosshairs in (F) showmean ± 1 SD along each axis across 20

trials. Data in (F) and (G) are from the four-cluster arrangement. See also Figures S1 and S2.
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correlated (Figure 3E). This remained the case even when using

an entirely different, DNN-based class of unitary architectures

(Figures S5A–S5C). These results suggested that it was the spe-

cific contribution of dendritic Na+ channels to vsoma that unitary

architectures failed to capture accurately.

Differences between vnoNa and vNa architectures: Static
versus dynamic subunits
Asspikelets ridingon topof other fluctuations in the somaticmem-

brane potential proved specifically challenging to predict for the

cascademodels,weproceededbysubdividing the taskofpredict-

ing the complete somatic membrane potential, vsoma, into sepa-

rately predicting its two additive components (Equation 1;

Figure 4A, top): only the spikelets, vNa (Figure 4A, bottom) and

the ‘‘rest,’’ i.e., the somatic membrane potential with dendritic

Na+ channels blocked, vnoNa (Figure 4A, middle). We then asked

if there were any key differences between the functional architec-

tures that best predicted each of vNa and vnoNa. Specifically, we

asked if they differed in the nature of the elementary operations

their subunitsperformed, thenumberandconnectivityof their sub-

units, and the way synapses were organized onto those subunits.

We found that vnoNa could be predicted by all cascades with

high accuracy (variance explained 96% or more), with only little,

if any, improvement with more complex cascades (multiplexing

or dynamic subunits; Figures 4A, middle, and 4B and 4C, left;

see also Figure S4B). In contrast, predicting vNa was more chal-

lenging (variance explained less than 70%, even with cascades

with >2 layers; Figure S4C). In this case, dynamic subunits

more than doubled performance over static subunits

(Figures 4A, bottom, and 4B and 4C, right, red versus green),

while multiplexing achieved only more moderate improvements

(Figures 4A, bottom, and 4B and 4C, right, blue versus green;

similar results were obtained also with 3-fold multiplexing; Fig-

ure S4C). This remained the case even when static subunits

were used in a densely connected DNN-based architecture,

rather than a sparsely connected cascade (Figures S4C and

S5D and S5E).

To understand why dynamic subunits were necessary for

fitting vNa, but not vnoNa, we examined how they processed their

inputs in comparison to static subunits (Figures 4D and 4E). We

found that fitting vnoNa required only the generation of slowly

evolving (on the timescale of tens of milliseconds) responses,

even for strong, clustered inputs (Figure 4E, i), with only a mildly

superlinear integration of inputs (Figure 4E, ii), which even

became sublinear for nonclustered inputs (Figure 4E, iii). This

behavior could be expressed by static subunits as much as by

dynamic subunits (Figure 4D, i–iii). However, dynamic subunits

fitted to vNa produced large but transient (spike-like) responses

for strong stimuli (Figure 4E, iv) that were characterized by

strong, step-like superlinearities (Figure 4E, v). Static subunits

A B

C

D

E

Figure 3. Unitary architectures fail to accu-

rately capture spikelets

(A) Sample somatic membrane potential trace of

the biophysical model neuron (black) with pre-

dicted voltages from the static (green), static with

multiplexing (blue), and dynamic (red) cascade

models. Inset shows schematics of the architec-

tures used: number of leaf subunits was 1

(receiving somatic inhibition) + 5 (number of main

dendrites, for nonclustered synapses) + 4, 8, or

12 (number of synaptic clusters), with synapses

assigned to the subunit corresponding to the

clustering and location of that synapse in the

biophysical model (see also STAR Methods).

(B) Cross-validated performance (variance ex-

plained) of the three cascade types (colors as in A)

for the three cluster arrangements (x axis, see

also Figure 2B).

(C) Predicted voltage as a function of the true

voltage for the three cascade types (colors as in

A). Inset shows enlarged view of the near-

threshold regime.

(D) Sample traces of the Na+ differential voltage

(vNa, black) and prediction error residuals of the

three cascade types (colors as in A) during the

same trial as shown in (A).

(E) Pearson correlation (R2) and joint histogram of

the dynamic cascade model’s prediction errors

and the Na+ differential voltage (vNa) for the three

cluster arrangements. Boxplots in (B) show me-

dian (horizontal line), 25th and 75th percentiles

(box), ±1.5 interquartile ranges (whiskers), and

outliers (circles) across 20 test trials. Lines and

shaded areas in (C) show mean ± 1 SD across 20

test trials. Data in (A), (C), and (D) are from the four-

cluster arrangement. See also Figures S3–S5.
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were unable to respond in this way (Figure 4D, iv and v) because

of their fundamental inability to produce transient responses to

sustained stimulation: once inputs reach threshold, a large

response is necessarily maintained for the duration of the input.

We also found that the step-like nonlinearity of the fitted dynamic

subunits reflected a meaningful biophysical property of the cor-

responding dendritic branch: their threshold correlated with the

membrane area of the dendritic branch receiving the clustered

inputs (Figure 4E, vi), which is a major factor determining local

input resistance.48

A B

C

D

E

Figure 4. Differences between vnoNa and vNa architectures: Static versus dynamic subunits

(A) Sample traces of vsoma (black, top), vnoNa (middle), and vNa voltages (bottom) with predicted voltages from the static (green), static with multiplexing (blue), and

dynamic (red) cascade models (see also inset, same as in Figure 3A).

(B) Cross-validated performance (variance explained) of the three cascade types (colors as in A) for the vnoNa (left) and vNa voltages (right) in the three cluster

arrangements (x axis, see also Figure 2B).

(C) Predicted voltages as a function of the measured vnoNa (left, inset shows enlarged view of the near-threshold regime) and vNa voltages (right) for the three

cascade types (colors as in A).

(D and E) Input integration in static (D) and dynamic (E) subunits fitted to the vnoNa (i–iii) or vNa voltage response (iv–vi). (i) and (iv) show the responses of the subunits

(colors) receiving clustered inputs to 30 spikes at 2-ms intervals. (ii) and (v) show themeasured versus expected amplitudes of responses (such as those in i and iv,

respectively), while varying the number of input spikes between 1 and 30. Expected response amplitude is the linear summation of responses to individual stimuli.

Thick lines indicate the subunit response range during in vivo-like stimulation (Figure 2A). (iii) is same as (ii) for subunits receiving nonclustered (background)

inputs. (vi) shows the threshold of each subunit nonlinearity (measured as the number of spikes required to reach half-maximal response) of the cascade model

against the surface area of the corresponding dendritic branch receiving the clustered inputs in the biophysical model. Different symbols indicate fits with different

cluster arrangements (only subunits generating dendritic Na+ spikes are included). Boxplots in (B) show median (horizontal line), 25th and 75th percentiles

(box), ±1.5 interquartile ranges (whiskers), and outliers (circles) across 20 test trials. Lines and shaded areas in (C) showmean ± 1 SD across 20 test trials. Data in

(A), (C), (D), and (E) (i–v) are from the four-cluster arrangement. See also Figures S6–S9.
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Differences between vnoNa and vNa architectures: Single
versus multiple subunits
We next asked whether, other than their differences in the tem-

poral processing of inputs, there were also differences in the

spatial integration of inputs between vnoNa and vNa. (For a fair

comparison, based on the results above, Figures 3, 4, and S4,

we used dynamic subunits for both vnoNa and vNa.) Specifically,

we investigated how much vnoNa and vNa reflected genuinely

multiple functional subunits. For this, for each of vnoNa or vNa,

we compared the predictions of two cascades, one with a single

subunit, and consequently with all synapses assigned to that

subunit, and another one with multiple subunits, whose number

scaled with the number of synaptic clusters in the biophysical

simulations and with the ‘‘correct’’ assignment of synapses to

those subunits that reflected the clustering of synapses in the

biophysical simulations (Figure 5A; STAR Methods).

In line with previous studies,9 we found that the single-subunit

model could predict vnoNa with an accuracy (within �2% perfor-

mance difference) similar to that of the multi-subunit model (Fig-

ure 5B, left). Having multiple subunits was more relevant for

predicting vNa (performance improved by�30% from single-sub-

unitmodels; Figure 5B, right). Although the improvement inpredic-

tion performance with multiple subunits for vNa may still seem

modest, performance could not be increased even using more

complex architectures with more subunits (Figure S4C), suggest-

ing that—at least within the model class we considered—the

two-layer architecturewithdynamic subunitswas (locally) optimal.

Robustness to model assumptions
To assess the robustness of our main findings, we introduced

changes to the underlying biophysical model, and its inputs, to

which we fit our cascade models. We first varied NMDA and

Na+ conductances in ranges that still generated realistic re-

sponses in the model (Figures S1D and S1E). As in the original

model, we found that vNa strongly correlated with the prediction

errors of a unitary architecture trying to predict vsoma (Figure S6A,

cf. Figure 3E) and that vNa, but not vnoNa, required multiple

(versus single; Figures S6B and S6C, cf. Figure 5B) dynamic

(versus static; Figures S6D and S6E, cf. Figure 4B) subunits to

be predicted accurately.

Next, we modified the spatial clustering of inputs to the bio-

physical model so that, in line with recent findings,49 more local

dendritic events (Na+ spikes and NMDA plateaus) were pro-

duced outside the place field of the cell, occasionally even in

the absence of somatic action potentials (Figure S7). Our main

results still remained unchanged under this modified input

regime (Figure S8).

As our original approach involved fitting the cascade model to

vsoma (Figures 3 and 4A), i.e., the somatic membrane potential

with axosomatic action potentials blocked, our results so far

ignored the potential effects of back-propagating action poten-

tials (bAPs) on dendritic integration. Therefore, we simulated

the biophysical model with axosomatic Na+ channels, and thus

action potentials unblocked, and refit the cascade to its somatic

membrane potential, vfull. As expected, in the biophysical model,

the difference between vfull and vsoma was large during and

immediately following an action potential (Figure S9A, top) due

to the direct additional local depolarization of the soma. Howev-

er, this difference was dominated by a stereotypical waveform

that quickly (within �25 ms) returned to near-zero levels after

the action potential (Figure S9A, bottom). Similarly, while we

found that bAPs were detectable in virtually all dendritic

branches, their effects on the local membrane potentials also

rapidly converged to zero in all but a subset of branches (Fig-

ure S9B, top). However, given the sparsity of somatic action po-

tentials, even in these branches, bAPs contributed little overall to

the local membrane potentials beyond an additive stereotypical

waveform (Figure S9B, bottom). In line with this, when

comparing the cascade models fit to vfull versus vsoma, we found

that input integration barely changed, as revealed by the near

perfect correlation between the local subunit activations of either

their vnoNa or their vNa architectures (Figures S9C and S9D).

These results suggest that the net effects of bAPs on dendritic

integration were minimal, at least as seen in the soma.

Differences between vnoNa and vNa architectures:
Synaptic organization
In the foregoing, we studied the internal properties of the vnoNa
and vNa architectures. We next asked how their external inputs,

i.e., the synapses impinging the cell, are organized onto their

A B

Figure 5. Differences between vnoNa and vNa architectures: Single versus multiple subunits

(A) Schematics of single- and multiple-subunit architectures compared in (B).

(B) Cross-validated performance (variance explained) of the two architectures (colors as in A) for the vnoNa (left) and vNa voltages (right) in the three cluster ar-

rangements (x axis, see also Figure 2B). Boxplots in (B) show median (horizontal line), 25th and 75th percentiles (box), ±1.5 interquartile ranges (whiskers), and

outliers (circles) across 20 test trials.
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subunits. For this, we developed a method to automatically

discover the assignment of synapses to subunits (as well as their

weights) in a data-driven way. This extended previous ap-

proaches9,13 used for our preceding analyses that only optimized

synaptic weights using hand-picked synapse assignments.

We formalized the problem of discovering synaptic organiza-

tion as a constrained optimization problem, which we solved

by using an ‘‘annealing’’ approach. Specifically, the algorithm

maximized the explained variance of the vnoNa or vNa signal,

such that it started from uniform synaptic weights and an all-

to-all assignment of inputs to subunits and then gradually refined

the model’s synaptic organization to achieve a sparse pattern,

with each input being ultimately assigned to only one subunit

with a non-zero synaptic weight (Figure 6A; STAR Methods).

For a fair comparison, we used architectures with identical inter-

nal properties (multiple dynamic subunits) for both vnoNa and vNa
(but see also Figure S10 for vnoNa results with a single static sub-

unit, which our previous analyses indicated to be more appro-

priate in that case).

We found that accuracy with the optimized synaptic assign-

ments and weights was higher than with random assignments

(but weights still optimized; Figure 6B, orange versus gray) and

was comparable to that achieved with hand-crafted, ‘‘correctly’’

clustered synapse assignments (Figure 6B, orange versus red;

optimized synaptic assignment models attaining over �90% of

the performance of hand-crafted models). The similar perfor-

mances of the optimized and clustered assignments demon-

strate the efficiency of our optimization approach and also vali-

date our previous choices for clustered synapse assignments.

Next, we analyzed the optimized synapse organization for both

vnoNa and vNa. As the biophysically definedweights (maximal con-

ductances) of synapses were uniform in the biophysical model,

any systematic differences between their effective weights in the

optimized cascade models reflected functional differences

A C E

B

D

Figure 6. Differences between vnoNa and vNa architectures: Synaptic organization

(A) Schematic of the ‘‘annealed’’ optimization approach used for the automatic discovery of synaptic organization.

(B) Cross-validated performance (variance explained) of a multi-subunit cascade (shown in A) with random (gray), optimized (orange), and hand-picked ‘‘correct’’

assignment of synapses to subunits in the vnoNa (left) and vNa architectures (right) for the three cluster arrangements (x axis, see also Figure 2B). Synaptic weights

were always optimized for a given synapse assignment.

(C) Synaptic organization in the biophysical model (top) and in the cascade model (bottom). Top: somatic distances of synapses (left) and locations of clustered

synapses in the biophysical model (right, dot sizes are proportional to the frequency of dendritic Na+ spikes in the target branches). Bottom: optimized subunit

assignments of synapses (dot colors, see also insets) and weights (dot sizes) in the vnoNa (left) and vNa architecture (right).

(D) Optimized weights of background (top) and clustered synapses (bottom) in the vnoNa (left) and vNa architectures (right) against their somatic distances in the

biophysical model. Colors reflect subunit assignment (as in C, bottom), and background synapses are shown in gray in the bottom plots for reference.

(E) Sample local vNa of the four clustered dendritic branches (black and gray) and subunit activations (color as in C, bottom right) for three subunits of the vNa
architecture during two example time periods (top and bottom). Boxplots in (B) show median (horizontal line), 25th and 75th percentiles (box), ±1.5 interquartile

ranges (whiskers), and outliers (circles) across five separate training datasets. Data in (C)–(E) are from the four-cluster arrangement. See also Figure S10.

8 Cell Reports 42, 112386, April 25, 2023

Article
ll

OPEN ACCESS



between their contributions to the vnoNa or vNa signals. For vnoNa,

synapse assignmentsmostly reflected the distances of the synap-

ses from the soma, such that synapses in approximate ‘‘concen-

tric rings’’ around the soma were assigned to the same functional

subunit (Figure 6C, top and bottom left). Synaptic weights were

broadly comparable for clustered and background (i.e., nonclus-

tered) synapses. The weights of clustered synapses showed no

apparent structure (Figure 6D, bottom left). The weights of back-

ground synapses were negatively correlated with somatic dis-

tance (Figure 6D, top left), reflecting the mostly nonregenerative

nature of these signals. In contrast, for vNa, the assignment of syn-

apses to functional subunits primarily reflected their clustering on

the dendrite rather than their somatic distance (Figure 6C, top and

bottom right), with background synapses having markedly lower

weights than clustered synapses (Figure 6D, bottom right). More-

over, while background synaptic weights exhibited no obvious

dependence on somatic distance (Figure 6D, top right), clustered

synapses were positively correlated with it (Figure 6D, bottom

right). This reflected the regenerative nature of vNa signals and

their dependence on the local membrane impedance, which is

known to increase toward dendritic tips.50,51

Although our optimization objective considered only the ex-

plained variance of the somatic voltage response, we found

that, with the synaptic organization discovered for vNa, even

the local activations of the subunits closely resembled the local

vNa of the corresponding dendritic branches (Figure 6E). Occa-

sional mismatches between the two (Figure 6E, top row) were

simply due to the imperfect, sometimesmany to one, correspon-

dence between the dendritic clustering of synapses (Figure 6C,

top right) and their assignment to functional subunits, as discov-

ered by our optimization algorithm (Figure 6C, bottom right). This

provided further evidence that the subunits of the vNa architec-

ture were biophysically interpretable.

We also quantified the similarity between different optimized

synaptic organizations, as well as their relationship to the organi-

zation of synapses in the biophysical model. For this, we em-

ployed a ‘‘representational similarity analysis’’-based approach52

and used the Pearson correlation between matrices measuring

the (dis)similarity of pairs of synapses (Figure 7A; STARMethods).

For the cascade models, dissimilarities between synapses were

defined based on one of the two defining aspects of their opti-

mized organization. First, we used dissimilarities that depended

solely (in a binary way) on whether two synapses were assigned

to the same subunit (Figure 7B, middle and bottom right). In this

case, no consistent synaptic organization could be found for vnoNa
across different training datasets (Figure 7C, dark blue). This was

in line with our earlier finding that the vnoNa architecture can be

effectively characterized by a single subunit (Figure 5B, left). In

contrast, we found that the same synaptic organization was reli-

ably discovered for vNa across training datasets (Figure 7C, dark

red). Critically, there was only minimal correlation between the

synaptic organizations discovered for vNa and vnoNa, even for

the same training set (Figure 6C, dark magenta).

Second, we used dissimilarities that measured (in a graded

way) the absolute difference between the synaptic weights of a

pair of synapses (Figure 7B, middle and bottom left). By this

measure, synaptic organizations optimized for vnoNa were highly

consistent and even more so than those optimized for vNa (Fig-

ure 7C, light blue versus red), but the agreement across vNa
and vnoNa synaptic organizations was still low (Figure 7C, light

magenta). These results indicated that, while the synaptic orga-

nization for vnoNa is most reliably defined by its synaptic weights,

the vNa synaptic organization is best defined by the cluster

assignment of its synapses, and that there is very little in com-

mon between vNa and vnoNa organization in general. (As themulti-

subunit architecture was unnecessary and unreliably recovered

for vnoNa, we also repeated our analyses for vnoNa by fitting the

synaptic weights in a single-subunit architecture and obtained

very similar results; Figure S10.)

To better understand the factors contributing to the differ-

ences between the synaptic organizations of the vnoNa and vNa
architectures, we also created synapse-dissimilarity matrices

based on the organization of synapses in the biophysical model.

Specifically, we computed a somatic distance-based dissimi-

larity matrix, with each element measuring the absolute differ-

ence between the somatic distances (along the dendritic tree)

of a pair of synapses (Figures 7A and 7B, top left) and a clus-

tering-based dissimilarity matrix that depended on whether syn-

apses belonged to the same dendritic cluster in the biophysical

model (orthogonalized with respect to the distance-based ma-

trix; Figures 7A and 7B, top right). We then compared each of

these biophysical dissimilarity matrices with those derived from

the cascade model as explained above. For each of the cascade

models describing the vnoNa or vNa architecture, we chose the

dissimilarity matrix that most reliably characterized it (i.e., synap-

tic weight based for vnoNa and subunit assignment based for vNa;

we also obtained similar results using the converse combina-

tion). In line with the qualitative patterns of synapse assignments

observed in Figure 6C, we found a double dissociation in the

relationship between how the synaptic organizations of the vNa
and vnoNa architectures were related to the dendritic clustering

and the somatic distance of synapses (Figure 7D). Specifically,

vNa architectures were mostly correlated with the dendritic clus-

tering of synapses and not with their somatic distances

(Figure 7D, red), while vnoNa architectures were more strongly

positively correlated with the somatic distances while not, or

even negatively, correlated with the dendritic clustering of syn-

apses (Figure 7D, blue).

Finally, we measured our ability to predict somatic action po-

tentials with different functional architectures. For this we used

the summed output of the vnoNa and vNa architectures (i.e., archi-

tectures that were optimized for fitting the corresponding com-

ponents of the subthreshold vsoma). Prediction accuracy was

slightly but significantly better than that achievable by using uni-

tary (cascade, or DNN-based) architectures fitted directly to

vsoma, and it was also on par with previously reported results us-

ing architectures that were explicitly optimized for action poten-

tial prediction13 (Figure S11).

DISCUSSION

Our results provide insights into dendritic integration in CA1 py-

ramidal cells (Table S1). In particular, they revealed a funda-

mental dichotomy in the way dendritic Na+ channels versus all

other dendritic processes contribute to the somatic membrane

potential. While the contributions of other processes,
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summarized in vnoNa, are responsible for most of the subthresh-

old variability in the somatic membrane potential, the contribu-

tion of Na+ channels, represented by vNa, has a major influence

on the timing of somatic action potentials. The functional archi-

tectures underlying these two contributions exhibit several key

differences. In the vnoNa architecture, the entire dendritic tree

functions as a single global subunit processing all synaptic in-

puts and expressing a static nonlinearity. This architecture is

A

B

C

D

Figure 7. Functional orthogonality of vnoNa and vNa architectures

(A) Schematic for the construction of the synaptic dissimilarity matrices shown in (B). A synaptic dissimilarity matrix shows the dissimilarity between all possible

pairs of synapses, ordered by their distance from the soma (outer color bars, color code is shown in left morphology, see also Figure 6C, top left), starting with the

clustered synapses (inner color bars, color code is shown in right morphology, see also Figure 6C, top right).

(B) Synaptic dissimilaritymatrices based on the somatic distance (top left) and dendritic clustering (top right) of synapses, in the biophysical model, and theweight

(bottom left) and subunit assignment (bottom right) of synapses in the cascademodels trained to predict either vnoNa or vNa (bottom two rows, averaged across fits

to different training datasets). The dendritic clustering-based morphological dissimilarity matrix was computed only for clustered synapses and orthogonalized

with respect to the corresponding (top left) block of the somatic distance-based morphological dissimilarity matrix (see also STAR Methods). Magnified top left

blocks in the right column are shown to highlight characteristic block structure reflecting clustering.

(C) Consistency of synaptic organizations within the vnoNa (blue) and vNa (red) cascade architectures, as well as between them (purple), based on the subunit

assignment (dark colors) or weights of their synapses (light colors, see also insets with colored boxes and arrows, and B for color code). Within- versus across-

architecture consistency is measured as the Pearson correlation between dissimilarity matrices obtained by fitting training datasets of the same versus different

kinds of voltage signals produced during different versus the same runs of the biophysical model.

(D) Correlation (Pearson correlation coefficient) of the synaptic organizations for the vnoNa (light blue) and vNa architectures (dark red) with the somatic distances (x

axis) and dendritic clustering of synapses (y axis) for the three cluster arrangements. Each architecture is characterized by its more consistent synaptic

dissimilarity matrix (cf. C): synaptic weight based for vnoNa, and subunit assignment based for vNa. Clustering-based correlations (y axis) are computed only for

clustered synapses (top left block of corresponding dissimilarity matrices, see also B). Boxplots in (C) show median (horizontal line), 25th and 75th percentiles

(box), ±1.5 interquartile ranges (whiskers), and outliers (circles) across five separate training datasets (C, purple) or 10 training dataset pairs (C, blue and red).

Crosshairs in (D) show mean ± 1 SD along each axis across five training datasets. See also Table S1.
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thus defined by the effective weights of synapses, which in turn

mostly depend on their somatic distances. In contrast, in the vNa
architecture, the dendritic tree is best described by a cascade of

multiple subunits, each of which corresponds to a small segment

of the dendritic tree and processes only the corresponding sub-

set of synaptic inputs. This architecture is mainly determined by

how the synapses are assigned to different subunits, which in

turn depends on the clustering of coactive synapses on the den-

dritic tree. The nonlinearity of subunits is dynamic and exhibits

spiking-like behavior that is activated by strong and synchro-

nous local inputs. Thus, synaptic inputs onto the same dendritic

tree are processed by parallel functional architectures with

distinct computational properties.

Parallel versus unitary functional architectures
Ever since Rall’s pioneering work,53 most models of dendritic in-

formation processing, even when incorporating the effects of

active dendritic conductances, considered the connectivity of

their (biophysical or abstract) processing subunits to be funda-

mentally anchored to the morphology of the cell.9,11,12,29,54–56

This was a natural choice given the primary focus of many of

these models on the spatial integrative properties of dendrites.

However, as dendritic morphologies correspond to acyclic

graphs, this meant that each synaptic input contributed to the

output of the cell through a single pathway. Thus—by our defini-

tion—these models were necessarily unitary. Interestingly, even

recent attempts that also tried to capture finer temporal aspects

of dendritic integration,9 including DNN-based architectures that

are otherwise detached from neuronal morphology,13 used an

essentially unitary functional architecture. Therefore, our results

showing parallel functional architectures within the same den-

dritic tree represent a major departure from previous abstrac-

tions of dendritic information processing.

Some previous studies hinted at the possibility of parallel ar-

chitectures co-existing in the dendritic tree, albeit with some-

what ambiguous results.1,29,57 For example, while studies of

dendritic integration using glutamate uncaging found different

integration rules for dendritic Na+ versus NMDA spikes, the

same studies also described substantial cooperativity between

these forms of dendritic integration.17,23,26,58 This might seem

to be incompatible with the parallel architectures we found.

However, these studies used highly simplified input regimes

in vitro, which do not necessarily generalize to the in vivo

regime.9 Our approach, based on statistically rigorous analyses,

allowed us to discover the existence of functionally parallel archi-

tectures underlying dendritic Na+-dependent and -independent

signals under in vivo-like input conditions and to systematically

characterize their differences.

Although the biophysical model that formed the basis of our in-

vestigations reproduced the cooperativity of Na+ and NMDA

spikes33 (Figures S1A–S1E), the simple linear summation of the

outputs of their corresponding parallel architectures suggests

that this cooperativity does not play a major functional role dur-

ing the integration of in vivo-like input patterns. Thus, these

mechanismsmay act more independently under in vivo-like con-

ditions than previously thought based on in vitro evidence. Our

finding that NMDA-mediated currents (under these conditions)

barely change after blocking Na+ conductances in the biophys-

ical model (Figures S1F and S1G) provides a simple biophysical

explanation for this.

The parallel architectures we describe also differ from previ-

ous suggestions of dendritic multiplexing in critical ways. For

example, hippocampal pyramidal cell dendrites have been

demonstrated to switch between different modes of integration

as a function of input synchrony,17 but this did not imply the

co-existence of different modes of integration in parallel, at the

same time. Neocortical pyramidal neurons have also been sug-

gested to possess two parallel architectures,59 but such that

these two architectures differ in the subset of synaptic inputs

they process (basal versus apical) and the way their computa-

tions are reflected in the final output of the cell (spiking versus

bursting), rather than in the actual computations they perform.

The local multiplexing of synaptic inputs into different processing

channels within the same subunit of a single functional architec-

ture has been shown to account for a wide variety of phenom-

ena,9,60 but previous work did not consider the parallel existence

of entirely distinct functional architectures.

Dynamic versus static computations in the dendritic
tree
A key feature of the vNa architecture we found was the dynamic

nature of its subunits. Although the fundamental biophysical

equations of cable theory describing signal propagation in pas-

sive dendritic trees are dynamic in nature,53 they result in a sim-

ple linear filtering of synaptic inputs and can thus be abstracted

into a minimal functional architecture that convolves synaptic in-

puts with some fixed waveforms.61 This corresponds to our defi-

nition of a ‘‘static’’ subunit.

Recent work suggested that even the functional architectures

of active dendritic trees can be described similarly, as long as the

outputs of these convolutions are passed through static (point-

wise) nonlinearities.9,57 This is also in line with what we found

for the vnoNa architecture. Thus, our finding that the vNa architec-

ture specifically requires dynamic nonlinearities implies a quali-

tatively different mode of operation.

While dynamic nonlinearities are widely used to describe the

time course of the somatic membrane potential in point-neuron

models,62 they have rarely been incorporated into descriptions

of dendritic functional architectures. When they were considered

at all, previous work used simple forms of nonlinearities (e.g.,

feedback loops in generalized linear models or reduced two-

compartmental biophysical models) and did not attempt to fit

them to data, or fitted them only to spatiotemporally highly con-

strained input (and output) patterns.43,60,63,64 In contrast, we

used gated recurrent units65 that allowed us to flexibly express

a wide variety of dynamic nonlinear behaviors and to fit these

systematically to richly structured in vivo-like inputs. Going for-

ward, a fuller characterization of dendritic processing will likely

require combining the flexibility of recurrent subunits, and their

amenability to being fit to data, with the interpretability of low-

dimensional dynamical systems.

Sparse versus dense architectures
We used sparsely connected cascades for our analyses.

These are less expressive than densely connected DNNs,66

which formally include sparse cascades as special cases.
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This means that sparse cascades can potentially have poorer

predictive performance but, in return, they may require fewer

training data and provide more interpretable results67 than

DNNs whose computations can be notoriously difficult to

interpret.68

For example, our key insights include the distinction between

the vnoNa and the vNa architectures in terms of using a single

static versus multiple dynamic subunits and whether their syn-

aptic organization is best characterized by their synaptic

weights or subunit assignment (Table S1, see also above).

Neither of these differences would have been straightforward

to reveal with the densely connected DNNs used in previous

work.13 First, the nodes of DNNs use purely static nonlinear-

ities. Second, for the in vivo-like inputs we studied here, DNN

nodes cannot be corresponded to functional subunits with indi-

vidually identifiable contributions to the output of the cell (un-

less in the hypothetical special case in which they express a

sparse architecture). At the same time, for the cell-type and

prediction tasks we considered, using densely connected neu-

ral networks did not bring benefits in terms of predictive perfor-

mance compared with sparsely connected (dynamic) cascades

(Figures S4, S5, and S11). Future work will need to examine

whether cascade-based parallel architectures yield similar per-

formance gains and functional insights when applied to

(neocortical) cell types for which both DNNs13 and cascade-

based unitary architectures9 have been shown to have high

predictive performance.

Limitations of the study
An obvious limitation of our study is that we used a detailed bio-

physical model of a neuron as ‘‘ground truth’’ to which we fit our

cascade models, in lieu of experimental recordings of an actual

neuron. While this approach has now become standard in the

field,9,11,13 it is still important to note that its conclusions rest

on a necessarily imperfect biophysical model and assumptions

about its inputs. Reassuringly, we found that the main conclu-

sions of our study were robust to variations of some key param-

eters (Figures S6 and S8).

The other main component of our approach, the cascade

models, could also be extended in various ways. For example,

we assumed that synapses assigned to the same subunit

differed only in the magnitude and not the time course of their

contributions to the output of the subunit (and thus, ultimately,

of the cell). However, dendrites show integration gradients

even within single branches, where the precise location50 and

temporal order25 of inputs can modulate the properties of the

response. Incorporating such gradients into cascade models

may provide improved prediction accuracy.

Another potentially important factor our cascade models do

not capture is the interactions between locally generated active

events in different dendritic branches.30,58 While this issue is

moot for the vnoNa architecture, which effectively consists of a

single subunit (Figure 5), our preliminary results indicate that al-

lowing dynamical interactions between subunits may indeed

improve predictions for the vNa architecture (Figure S12). Incor-

porating such interactions into cascade models, while still main-

taining their interpretability, is an interesting direction for future

research.

Experimental predictions
The main prediction of our work is that the generation and prop-

agation of dendritic Na+ spikes obey different rules than the gen-

eral integration of synaptic inputs. To test this prediction, both a

substantial fraction of the synaptic inputs of hippocampal pyra-

midal cells and their somatic membrane potential response

should be simultaneously recorded (at high temporal resolution)

under in vivo conditions. The somatic membrane potential

response should be separated into vnoNa and vNa components,

and the techniques that we developed here and tested on simu-

lated data should be used to predict each of these components

from its synaptic inputs as recorded experimentally. We expect

that predicting these components will require fundamentally

different architectures, just as we found in our simulated data

(Table S1). Specifically, for predicting vnoNa, simple, single-sub-

unit (one-layered) architectures with static subunits will suffice

that, thus, take into account only the overall level of synaptic

input to the neuron. This would be in line with earlier work using

cascade models,9 but in contrast to work using DNNs.13

Conversely, when vNa needs to be predicted, we expect that

multilayered architectures with dynamic subunits will be neces-

sary to take into account the detailed spatiotemporal configura-

tions of inputs. This would be more in line with DNN-based con-

ceptualizations of dendritic integration13 (although with the

important caveat that dynamic rather than static subunits will

be needed), but contrasts with earlier work using simpler

cascade models.9

There are two particularly challenging aspects of such experi-

ments: the separation of vNa and vnoNa components and the

comprehensive monitoring of synaptic inputs. First, the most

direct way to dissect vNa and vnoNa would require the specific

blocking of dendritic Na+ channels. As the subunit compositions

of dendritic versus somatic (or axonal) Na+ channels are highly

similar,69 such a selective blockade might not be feasible in CA1

pyramidal neurons. Thus, as a more feasible, albeit also more in-

direct, approach, all Na+ channels of the cell could be blocked and

model predictions compared for subthreshold somaticmembrane

potential fluctuations (under channel blockade) and somatic ac-

tion potential timing (without the blocking of channels). These

could serve as proxies for testing the differences between vnoNa
and vNa. Alternatively, the vNa component can be associated

with the somatic effect of localized dendritic Na+ spikes generated

in basal or oblique branches that appear as small-amplitude

spikelets. These spikelets can be detected (e.g., in the first deriv-

ative of the membrane voltage23,70) while injecting a small hyper-

polarizing current to prevent somatic spiking.

Second, monitoring synaptic inputs with sufficiently high tem-

poral precision will require advances in the temporal resolution of

calcium and glutamate sensors. The most recent variants

(iGluSnFR3 and GCaMP8) are able to resolve single action po-

tentials by imaging neuronal somata or individual synaptic bou-

tons in vivo.71,72 Glutamate sensors will be preferable over

Ca2+ or voltage indicators, as they are not affected by bAPs. Ul-

timately, microscopic techniques for imaging these sensors at

scale, at a large fraction of synaptic inputs, will also be neces-

sary.73,74 Until such techniques become routinely available,

more targeted monitoring of a smaller fraction of inputs may

also be adequate, e.g., focusing on dendritic branches with
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clustered inputs, which our results suggest to be critical for pre-

dicting vNa. More generally, computational analyses can also be

used to establish the minimal fraction of synaptic inputs that

needs to be monitored to reliably estimate the functional archi-

tecture of a neuron.

Functional implications
Whether cortical neurons operate in a fundamentally rate- or

spike timing-based coding regime has been a contentious issue

for decades.75 In particular, hippocampal pyramidal neurons un-

der in vivo conditions behave as place cells and are known to

employ in parallel both a rate- and a timing-based code.76,77

Our results suggest that the dominant contributions of the vnoNa
and vNa architectures are respectively to these two different as-

pects of the cell’s output and, conversely, that they are mostly

driven by different aspects of a cell’s inputs (overall level and

fine spatiotemporal pattern, respectively). Thus, our findings of

two parallel functional architectures in the same dendritic tree

may offer mechanistic insights into the genesis and control of

the parallel rate and temporal coding of hippocampal place cells.

These insights may also generalize to other brain areas where a

similar multiplexing of rate and temporal codes has been

observed.78 More generally, once such multiplexed single-cell

computations are incorporated into formal models of neural cir-

cuit dynamics, they may change our understanding of circuit-

level computations. For example, they may explain phenomena

at the level of single neurons that had been ascribed to circuit-

based mechanisms.79

We found that the vnoNa and vNa contributions to the somatic

membrane potential also differed in the set of biophysical and

morphological properties of the cell that mainly determined their

underlying architectures. As different plasticity mechanisms op-

erate on these cellular properties, this raises the possibility that

they may also be able to specifically modify one or the other ar-

chitecture. For example, classical forms of synaptic plasticity

changing synaptic weights6,80 may mostly affect the vnoNa archi-

tecture. In contrast, structural forms of plasticity that determine

the clustering of synapses81 may play a dominant role in modi-

fying the vNa architecture. Finally, perhaps the best candidate

for an architecture-specific plasticity mechanism is the more

recently described branch-strength potentiation that has been

shown to specifically affect the propagation of dendritic Na+

spikes.23 As such, branch-strength potentiation may be an ideal

substrate for ‘‘setting the switches’’ in the vNa architecture. Our

approach allows the data-driven dissection of these two func-

tional architectures and thus paves the way for studying their

modification over time by the interplay of an assortment of

ongoing plasticity mechanisms.
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2. Stuart, G., Spruston, N., and Häusser, M. (2016). Dendrites (Oxford Uni-

versity Press).

3. Rubin, D.B., Van Hooser, S.D., and Miller, K.D. (2015). The stabilized

supralinear network: a unifying circuit motif underlying multi-input integra-

tion in sensory cortex. Neuron 85, 402–417.

4. Zador, A.M. (2000). The basic unit of computation. Nat. Neurosci. 3, 1167.

5. Herz, A.V.M., Gollisch, T., Machens, C.K., and Jaeger, D. (2006). Modeling

single-neuron dynamics and computations: a balance of detail and

abstraction. Science 314, 80–85.

6. Gerstner, W., Kistler, W.M., Naud, R., and Paninski, L. (2014). Neuronal

Dynamics: From Single Neurons to Networks and Models of Cognition

(Cambridge University Press).

7. McCulloch, W.S., and Pitts, W. (1943). A logical calculus of the ideas

immanent in nervous activity. Bull. Math. Biophys. 5, 115–133.

8. Wilson, H.R., and Cowan, J.D. (1972). Excitatory and inhibitory interac-

tions in localized populations of model neurons. Biophys. J. 12, 1–24.

Cell Reports 42, 112386, April 25, 2023 13

Article
ll

OPEN ACCESS

https://doi.org/10.1016/j.celrep.2023.112386
https://doi.org/10.1016/j.celrep.2023.112386
http://refhub.elsevier.com/S2211-1247(23)00397-2/sref1
http://refhub.elsevier.com/S2211-1247(23)00397-2/sref2
http://refhub.elsevier.com/S2211-1247(23)00397-2/sref2
http://refhub.elsevier.com/S2211-1247(23)00397-2/sref3
http://refhub.elsevier.com/S2211-1247(23)00397-2/sref3
http://refhub.elsevier.com/S2211-1247(23)00397-2/sref3
http://refhub.elsevier.com/S2211-1247(23)00397-2/sref4
http://refhub.elsevier.com/S2211-1247(23)00397-2/sref5
http://refhub.elsevier.com/S2211-1247(23)00397-2/sref5
http://refhub.elsevier.com/S2211-1247(23)00397-2/sref5
http://refhub.elsevier.com/S2211-1247(23)00397-2/sref6
http://refhub.elsevier.com/S2211-1247(23)00397-2/sref6
http://refhub.elsevier.com/S2211-1247(23)00397-2/sref6
http://refhub.elsevier.com/S2211-1247(23)00397-2/sref7
http://refhub.elsevier.com/S2211-1247(23)00397-2/sref7
http://refhub.elsevier.com/S2211-1247(23)00397-2/sref8
http://refhub.elsevier.com/S2211-1247(23)00397-2/sref8


9. Ujfalussy, B.B., Makara, J.K., Lengyel, M., and Branco, T. (2018). Global

and multiplexed dendritic computations under in vivo-like conditions.

Neuron 100, 579–592.e5.

10. Jadi, M.P., Behabadi, B.F., Poleg-Polsky, A., Schiller, J., and Mel, B.W.

(2014). An augmented two-layer model captures nonlinear analog spatial

integration effects in pyramidal neuron dendrites. Proc. IEEE 102, 1–798.

11. Poirazi, P., Brannon, T., and Mel, B.W. (2003). Pyramidal neuron as two-

layer neural network. Neuron 37, 989–999. Number: 6.

12. Tzilivaki, A., Kastellakis, G., and Poirazi, P. (2019). Challenging the point

neuron dogma: FS basket cells as 2-stage nonlinear integrators. Nat.

Commun. 10, 3664. Number: 1.

13. Beniaguev, D., Segev, I., and London, M. (2021). Single cortical neurons as

deep artificial neural networks. Neuron 109, 2727–2739.e3.
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20. Górski, T., Veltz, R., Galtier, M., Fragnaud, H., Goldman, J.S., Tele�nczuk,

B., and Destexhe, A. (2018). Dendritic sodium spikes endow neurons with

inverse firing rate response to correlated synaptic activity. J. Comput.

Neurosci. 45, 223–234.

21. Smith, S.L., Smith, I.T., Branco, T., and Häusser, M. (2013). Dendritic
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79. Deny, S., Ferrari, U., Macé, E., Yger, P., Caplette, R., Picaud, S., Tka�cik,

G., andMarre, O. (2017). Multiplexed computations in retinal ganglion cells

of a single type. Nat. Commun. 8, 1964.

80. Magee, J.C., and Grienberger, C. (2020). Synaptic plasticity forms and

functions. Annu. Rev. Neurosci. 43, 95–117.

81. Chklovskii, D.B., Mel, B.W., and Svoboda, K. (2004). Cortical rewiring and

information storage. Nature 431, 782–788.

82. Chadwick, A., van Rossum, M.C.W., and Nolan, M.F. (2015). Independent

theta phase coding accounts for ca1 population sequences and enables

flexible remapping. Elife 4, e03542.

83. Pillow, J.W., Shlens, J., Paninski, L., Sher, A., Litke, A.M., Chichilnisky,

E.J., and Simoncelli, E.P. (2008). Spatio-temporal correlations and visual

signalling in a complete neuronal population. Nature 454, 995–999.

84. Holderith, N., Lorincz, A., Katona, G., Rózsa, B., Kulik, A., Watanabe, M.,
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Young Joon Kim

(yjkimnada@gmail.com).

Materials availability
No reagents, materials, or chemicals were used or generated in this study.

Data and code availability
d All original code has been deposited at Zenodo and is publicly available as of the date of publication (see key resources table).

d All simulated data used for our analysis can be generated from the aforementioned deposited code. No other original data was

used in this study.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

No in vitro samples, in vivo models, or human participants were involved in this study.

METHOD DETAILS

Biophysical model CA1 neuron
To generate target membrane potential responses, we simulated the CA1 neuron model from Jarsky et al.22 modified as in Ujfalussy

et al.33 to better account for dendritic processing of synaptic inputs in CA1 pyramidal cells. Full details of the biophysical model and

the generation of synaptic inputs can be found in Ujfalussy et al.33 In short, the model included AMPA and NMDA excitation and slow

and fast GABAergic inhibition and voltage gated Na+, delayed rectifier K+ and A-type K+ channels with location-dependent densities

and kinetics as described in Ujfalussy et al.33 We did not include dendritic Na+ hotspots21 in the current model, as their presence in

hippocampal CA1 pyramidal cells has not been unequivocally established and because we found sufficiently rich dynamical behav-

iour, including the reliable generation of dendritic Na+ spikes, even without such hotspots. We simulated three different versions of

the model: 1. as a target for predicting somatic action potentials (APs), a ‘‘full’’ version including both somatic and dendritic active

conductances (vfull; see Table S2 for the list of figures showing results using the output of this model, and modes of use); 2. as one of

the targets for training cascade models (and to study somatic AP predictions), a version with the maximal conductance of somatic

and axonal (but not dendritic) Na+ channels set to 0 (vsoma; see Table S2); and 3. as an alternative target for training cascade models

(and to study somatic AP predictions), a versionwith themaximal conductance of Na+ channels set to zero in all compartments (vnoNa;

see Table S2). In all other respects (passive properties, other active conductances, synaptic locations and inputs, etc.), all simulations

of the biophysical model used the same set of parameters, except in Figures S1D and S1E and S6 where we varied the dendritic Na+

and NMDA conductances to test the robustness of results. Finally, we also used differences between the outputs of thesemodels for

various analyses. For analysing spike predictions (see below), we defined vAP as vAP = vfull-vsoma (Table S2). As yet another target for

training cascade models, we defined vNa as vNa = vsoma-vnoNa (see also Equation 1; Table S2).

We distributed Se = 2000 excitatory and Si = 200 inhibitory synapses throughout the dendritic tree of the CA1 model neuron to

account for the majority of its inputs from local interneurons and CA3 neurons. Of the 2000 excitatory synapses, 240 of them

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Code for cascade models, biophysical models,

and simulated input synapse spike trains

Zenodo https://zenodo.org/record/7677374

NEURON 7.6.2 NEURON https://github.com/neuronsimulator/nrn

Python 3.7 Python https://www.python.org

PyTorch 1.10.0 PyTorch https://pytorch.org/
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were chosen for functional clustering on the postsynaptic dendritic tree into 4, 8, or 12 clusters (of 60, 30, or 20 synapses, each,

respectively). The locations of the synaptic clusters were selected amongst the dendritic compartments with lengths longer than

60 mm and the distance between synapses within a cluster was set to 1 mm. The remaining excitatory inputs were distributed uni-

formly throughout the dendritic tree, except in Figures S1F and S1G, Figures S7 and S8, where 4 additional sets of 20 inputs

were chosen for functional clustering (Figure S7B). The peak activity of these additional input clusters was outside the place field

of the postsynaptic neuron (Figure S7A). The 200 inhibitory synapses were divided into two groups such that 80 of them targeted

the soma and the apical trunk to simulate strong perisomatic inhibition, while the remaining 120were distributed randomly throughout

the dendritic tree.

Input regime
The input spike trains to the CA1 cell (and to the cascade models, see below) were designed to mimic neural activity in the hippo-

campus of a rodent continuously running around a circular 2 m-long track. Excitatory synapses received the spike trains of abstract

presynaptic CA3 place cells as they displayed a single, idealized place field, were modulated by the ongoing 8 Hz theta oscillation,

and exhibited theta phase precession.9 Inhibitory inputs were weakly modulated by theta oscillation, had an average firing rate of

7.4 Hz and were spatially untuned.

Specifically, the input spike train from excitatory presynaptic cell i, siðtÞ, was generated by a stochastic GLM with inhomogeneous

Poisson spiking (at time resolution Dt = 1 ms):

siðtÞ � PoissonðDt liðtÞ Þ (Equation 2)

based on an intensity function, liðtÞ, that was tuned to a set of external and internal covariates,33,82,83 and was defined as

liðtÞ = expðaiðtÞÞ+ l (Equation 3)

where

aiðtÞ = wðiÞ
4 4ðxðtÞ;jðtÞ Þ+wðiÞ

c

Z t

0

cðt � tÞ siðtÞdt (Equation 4)

is called the activation, l is the baseline firing rate, 4ðx;jÞ denotes a set of basis functions tuned to spatial location, x, and theta

phase, c, cð $Þ is a set of kernels filtering the presynaptic cell’s own output, and wðiÞ
4 and wðiÞ

c are the presynaptic cell’s coefficients

corresponding to these two types of covariates. To model spatial tuning and phase precession, we used basis functions co-tuned to

spatial location and theta phase. Specifically, we used Nbasis = Nx$Nj = 160 (factorised) Gaussian basis functions with Nx = 40

spatial and Nj = 4 temporal components uniformly tiling the space with standard deviations sx = 5 cm and sj = p=2 radians. The

parameter w4, defining a spatio-temporal tuning curve-template shared by all presynaptic cells, was fitted to the spike density vs.

location and theta phase data of Skaggs et al.,39 with the diameter of the place field being dz30 cm. In order for presynaptic tuning

curves to tile the space evenly, we then generated each individualwðiÞ
4 by permuting the parameters inw4 such that it expressed the

same spatio-temporal tuning curve up to a random shift along the spatial dimension. The average firing rate of the presynaptic place

cells was chosen randomly from a gamma distribution with shape and rate parameters a = 3 and b = 6 corresponding to a 0.5 Hz

grand average presynaptic firing rate,35 after accounting for the low release probability of hippocampal synapses84 (prelz 0:2). To

also account for the spatially untuned activity of non-active place cells (which we did not simulate explicitly), the parameter l was

set to 0.1 Hz, leading to a final average input rate of 0.6 Hz for each simulated input. The term wðiÞ
c

R t
0 cðt � tÞ siðtÞdt captures

the effect of past presynaptic spikes on the input rate83 and was included to model a short (� 5 ms) refractory period in the inputs.

The simulated animal was moving at a constant 20 cm/s speed, and in each trial we simulated the target somatic membrane po-

tential response vsomaðtÞ for 10 s at dt = 0:2 ms resolution. Figure 2 illustrates an example trial with all the input synaptic events (Fig-

ure 2A) together with the biophysical model’s somatic membrane potential response (Figure 2D). We fitted our cascade models to

980 runs with different input spike patterns but identical firing rates and reported the performance on 20 held-out test trials. For the

architecture dissimilarity analysis (Figure 7D and 7E), we generated 5 different datasets of 1000 trials with presynaptic place field

properties independently resampled from their corresponding distributions.

Cascade models
All cascade models are summarized by the following equations:

~vðtÞ =
XN
n = 1

C0n ynðtÞ (Equation 5)

ynðtÞ = Fn

�
senð0.tÞ; sinð0.tÞ; ynð0.tÞ � (Equation 6)

se=in ðtÞ = Csyn;e=i
n $

�
wsyn;e=i1se=iðtÞ � (Equation 7)
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ynðtÞ =
XN
m = 1

Cnm ymð0.tÞ (Equation 8)

where ~vðtÞ is the final output (root subunit) of the cascade, ynðtÞ is the output of leaf subunit n (out of N) at time t, C is a binary matrix

defining the connectivity between the subunits (a fully connected tree, with notional node 0, the root of the tree, corresponding to the

final output), Fnð$; $; $Þ represents the transformation carried out by a single model subunit (see below) on the history of its weighted

excitatory / inhibitory input spike trains, s
e=i
n ð0.tÞ, and of its inputs from other subunits, ynð0.tÞ, Csyn;e=i

n is the corresponding row of

the synapse-to-subunit assignment matrixCsyn;e=i (of which the columns, corresponding to synapses, are constrained to sum to one,

and which has binary elements except while optimisation is still ongoing as shown in Figure 6), wsyn;e=i is a vector of scalar synaptic

weights (with dimensionality equal to the total number of excitatory / inhibitory synapses, Se and Si), se=iðtÞ collects the spike trains

arriving at all the excitatory / inhibitory synapses, and1 denotes element-wise multiplication. Out of the parameters,C is fixed by the

architecture, Csyn;e=i is either fixed or optimized, and wsyn;e=i is always optimized (constrained to be non-negative, see below).

We used different model architectures that differed in the number (N) and connectivity of their subunits (C), and their synapse-to-

subunit assignment matrix (Csyn;e=i). The two-layer architectures shown in the main text (Figures 3, 4, 5 and 7, see also Figures S4,

S10, and S11) consisted of a number of leaf subunits, all feeding into the final output (root subunit) of the model (Equation 5). There

was a separate subunit dedicated for each synaptic cluster (4, 8, or 12), 5 separate leaf subunits dedicated to non-clustered inputs

targeting the 5 main dendritic branches of the neuron, and an additional subunit receiving the inhibitory input arriving at the soma of

the biophysical model (Figure S3, see also below).

In some of our figures, we used a different number of leaf subunits. The ‘‘single subunit’’ model in Figures 5, S6B, S8B, S10, and in

Figure S4 (‘‘global’’) only had a single leaf subunit. In the simulations where we optimized the synaptic organization (Figures 6 and 7),

we used as many leaf subunits as the number of input clusters plus one (but note that in this case the actual synapse assignments

used for initializing the optimization process did not reflect the correct assignment of synapses to subunits). The 3-layer architectures

in Figure S4 used 2 subunits for each synapse cluster (see below). In simulations with altered Na+ or NMDA conductances (Figure S6),

all background excitatory and inhibitory inputs targeted a single leaf subunit. Architectures fit to simulations with out-of-place field

clusters (Figure S8) did not use separate subunits for the out-of-place field input clusters, and all inputs apart from the main cluster

(i.e., background and out-of-place field clusters) were targeting a single leaf subunit. Finally, in the simulations studying the interac-

tions between dendritic branches (Figure S12) we only used a single subunit that received the same input spike trains as a two-layer

cascade model with separate subunits (see below).

The synapse-to-subunit assignment matrix, Csyn;e=i, was either optimized (Figures 6 and 7, see below), or set by hand (to the ‘‘cor-

rect’’ assignment). In the latter case, for multi-subunit models, we used a separate leaf subunit to process the excitatory inputs

arriving from each synaptic cluster along with those that synapsed onto the same dendritic branch of the biophysical model, and

5 subunits for non-clustered synapses, each receiving inputs from the background synapses targeting one of the 5 main dendritic

subtrees of the cell branching from the soma (Figure S3B). The inhibitory subunits, which were spread uniformly across the dendritic

tree of the biophysical model were also assigned to their respective subunits based on their morphological locations except for inhib-

itory synapses targeting the soma, which were placed on a separate nonlinear subunit. The outputs of all leaf subunits were inte-

grated by a single, linear root subunit serving as the output of the cascade model.

The three-layer architectures in Figure S4 were constructed by starting from the 2-layer architectures (see above), and inserting an

intermediate subunit between the root subunit and each leaf subunit that corresponded to a synaptic cluster. All input synapses that

lay on the dendritic path between the soma and the clusters in the biophysical model were assigned to this intermediate subunit,

rather than the cluster subunit. If a synapse in the biophysical model lay on the paths for several clusters (because the clusters

were placed on sister branches), then the corresponding elements of sðtÞ and wsyn;e=i (and column of Csyn;e=i) were duplicated in

the cascade model. This way, synapses corresponding to the same biophysical synapse could target multiple intermediate subunits

while being associated with unique weights in each.

Besides their architectures, we also varied the types of subunits comprising the cascademodels. For this, we used two fundamen-

tally different model classes that differed in the transformations their subunits implemented (Fnð$; $; $Þ in Equation 6). First, following

the hierarchical linear-nonlinear models of Ujfalussy et al.,9 the ‘‘static’’ model class used a classical linear-nonlinear transformation:

Fn

�
senð0.tÞ; sinð0.tÞ; ynð0.tÞ � =

XNch

j = 1

wnj tanh
�
ynðtÞ+ xenjðtÞ+ xinjðtÞ+bnj

�
(Equation 9)

where j indexes the input channels of the subunit (Nch = 1 for non-multiplexed, or ‘‘1-plex’’ models, and Nch = 2 for the multiplexed

models of the main text, whileNch = 3 was also used for Figure S4),wnj is the output weight of channel j of subunit n, bnj is a constant

baseline input, and x
e=i
nj is the temporally filtered excitatory and inhibitory input spike trains, s

e=i
n , respectively:

x
e=i
nj ðtÞ =

Z N

0

se=in ðt � tÞ ke=inj ðtÞdt (Equation 10)
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with the filtering kernels parameterized through a set ofK = 30 raised cosine bases functions83 (shared across subunits, channel, and

excitatory/inhibitory inputs):

k
e=i
nj ðtÞ =

1

2

XK
k = 1

a
e=i
njk gðtkðtÞ Þ ½cosðtkðtÞ Þ+ 1 � (Equation 11)

where the subunit- and channel-specific a
e=i
njk coefficients were optimized (one set for each of excitatory and inhibitory kernels, see

below), and tðtÞ is ‘‘rescaled’’ time

tkðtÞ = ak logðt + ckÞ � 4k (Equation 12)

with fixed (i.e. not optimized) constants ak = 30 and ck = 1 for all k, 4k ranging uniformly from 0 to 14:5 p, and gðtÞ simply ensuring

that only the first period of each cosine bump contributes to the kernel (i.e. gðtÞ = 1 when t˛ ½�p; +p� and gðtÞ = 0 otherwise).

Finally, for the dynamic models, we modeled each subunit as a standard gated recurrent unit (GRU).65 The internal dynamics of a

GRU subunit were defined as:

xnðtÞ = ynðtÞ+ senðtÞ � sinðtÞ (Equation 13)

rnðtÞ = sig
�
wir

n xnðtÞ+Whr
n hnðt � dtÞ+br

n

�
(Equation 14)

znðtÞ = sig
�
wiz

n xnðtÞ+Whz
n hnðt � dtÞ+bz

n

�
(Equation 15)

knðtÞ = tanh
�
wik

n xnðtÞ+bk
n +Whk

n ðrnðtÞ1hnðt � dtÞ Þ � (Equation 16)

hnðtÞ = ð1 � znðtÞÞ1knðtÞ + znðtÞ1hnðt � dtÞ (Equation 17)

with the output of the subunit defined as:

Fn

�
senð0.tÞ; sinð0.tÞ; ynð0.tÞ � =

XG
j = 1

wh
nj hnjðtÞ+bn (Equation 18)

with xnðtÞ representing the synaptic input into the nth GRU subunit, ynðtÞ denoting the inputs from other subunits (as in Equation 8),

sigð $Þ and tanhð $Þ representing element-wise applications of the logistic sigmoid and hyperbolic tangent functions to their respec-

tive inputs, and 1 being a vector of 1’s, and G being the hidden dimensionality of the GRU (G = 20, unless otherwise stated).

To allow for nonlinear dynamic interactions both within and between subunits, we trained a dynamic casacde model with dendritic

interactions (Figure S12, purple). This casacde model received input synaptic spike trains, s
e=i
n ðtÞ, for every subunit and processed

them all together within a single, global dynamic GRU subunit (with G = 100) to output a final somatic membrane potential

prediction.

All models were trained via PyTorch85 with the Adam optimizer.86 For fitting vsoma, vnoNa, and vNa, we used the mean squared error

between the predicted and true somatic voltage as the loss function and a learning rate of 0.005. A batch size of 5 trials was used

throughout training. The parameters of the dynamic cascades were initialized with standard normal random initialization while the

parameters of the static models were initialized by randomly sampling them from a normal distribution with s = 0:01.

For training while incorporating back-propagating action potentials (bAPs) we adopted a two stage procedure. First, cascade

models were trained to separately predict vNa and vnoNa as explained above. Second, a GRU decoder was trained to predict vAP
from the sum of the vNa and vnoNa predictions, also as above (i.e. minimizing mean squared error). Finally, the cascade models

and the GRU decoder were jointly trained to predict vfull via the sum of the vnoNa, vNa, and vAP predictions (Figures S9C and S9D;

again minimizing mean squared error).

For spike train prediction (Figure S2, S11A and S11B), we used a GRU-based decoder, of which the output represented the pre-

dicted instantaneous spiking probability, and trained it using cross-entropy loss.

Critically, all spike prediction metrics and variance explained values reported in the paper were computed using a cross-validation

approach, measuring mean squared error on a held out test data set (see above). This protects against overfitting and avoids unduly

preferring overflexible models in our comparisons.

Automatic discovery of synaptic organization
To discover the optimal synaptic organization in Figure 6 besides the standard parameters of the dynamic model (the weights, w,

bias, b, and the parameters in Equations 13–18), we also optimised the N3S binary synaptic connectivity matrix Csyn;e=i, where
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S = Se +Si is the total number of synapses. Each excitatory and inhibitory synapse was optimised independently so that the gradual

assignment of one synapse to its respective subunit did not influence the assignments of the others.We started the optimisation from

a full connectivity model where each input was connected with each subunit and optimised the elements of the matrix to minimise

mean squared error between the predicted and true the true somatic membrane potential by the model as described above.

Throughout optimization, we ensured that the columns of Csyn;e=i sum to one by using the following parameterization:

C
syn;e=i
nl

�
ue=i;b

�
=

exp
�
b u

e=i
nl

�
P

n
0 exp

�
b u

e=i

n
0
l

� (Equation 19)

where u
e=i
nl is the connection parameter between input l and subunit n. The b parameter was the inverse temperature hyperparameter

and it allowed us to gradually enforce sparse connectivity by increasing it over iterations q of the optimization procedure,87,88 b = bðqÞ.
Specifically, the inverse temperature started at bð0Þ = 1 and was increased exponentially over iterations:

bðqÞ = e� q=t (Equation 20)

with t = 724 steps. This way the hyperparameter reached bð5000Þz1000, at which it was no longer increased any further. At test

time, we replaced the tempered softmax with the hard max function (equivalent to infinite inverse temperature). We initialized u
e=i
ij

randomly from a Gumbel distribution with parameters87,88 m = 0 and b = 0:01.

Temporal convolutional networks
Following Beniaguev et al.,13 we also trained our own version of the temporal convolutional network (TCN) (Figure S5, yellow). As in

their main results, we ignore subunits and dendritic morphology and allow all 2,000 excitatory and 200 inhibitory input synapses to

engagewith each other through four layers of nonlinearities (for reference, Beniaguev et al.13 uses seven layers, but their performance

reaches near-saturating performance already with four layers, see their Figures S2 and S5). The first layer of our TCN implementation

uses 40 temporally convolving filters with a time window of 350 ms. The following layers are feedforward layers with 40 hidden units

each. Leaky rectified linear nonlinearities are used between each layer. In total, this results in a DNN with 31 million trainable param-

eters. For reference, the 7 layer TCN from Beniaguev et al.13 has 9.2 million trainable parameters (value obtained from their openly

available source code, note that the higher number of parameters in our implementation was primarily due to our usage of a higher

temporal resolution of 0.2 ms compared to the 1 ms of Beniaguev et al.13).

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of the biophysical model’s response
The expected response (Figures S1C-S1E) was calculated as the linear sum of the somatic response to the individual synaptic stim-

ulations. In Figures S1F and S1G the NMDA current was measured in 4 randomly selected synapses in each of the 16 dendritic

branches and the measured current was averaged across the 4 synapses targeting the same branch and across 16 repetitions.

Dendritic spikes in Figure S7 were detected by the downward crossing of the threshold q = -8 V/s in the temporal derivative of the

local dendritic membrane potential. This way we could avoid false positives due to strong local excitatory inputs in high input resis-

tance branches. Events within 5 ms of a somatic action potential were considered coincident, all other events were isolated.

Dendrite-soma coupling was defined as the fraction of somatic events during which the branch also fired a spike as in Rolotti et al.49

To study the effect of back-propagating action potentials (BAP) on input integration in the biophysical model we first calculated the

average local (B)AP waveform (Figures S9A and S9B, top), and then added it to the local (somatic, Figure S9A; or dendritic, Fig-

ure S9B) membrane potential response.

Spike analysis metrics
For the precision-recall analysis (Figures 2F and S11D), we trained a decoder (single GRU subunit, see below, using squared error

loss) to predict vAP (see above) from the subthreshold somaticmembrane potential of the biophysical model (vsoma or vnoNa; Figure 2F,

black and purple, respectively) or the predicted responses of the cascade models (trained to match vsoma or vnoNa and vNa; Fig-

ure S11D, blue and red respectively). For calibration, as an upper bound on realizable performance, we also trained a decoder to

predict vAP using vfull (Figure 2F, orange). In all cases, spikes were detected by finding the threshold crossings of the true or the pre-

dicted vAP with positive derivative, with the threshold at 16 mV, and binary spike trains (no spike vs. one or more spikes) were gener-

ated by using a moving time window of 1 ms. Table S3 shows how the precision and recall values were computed based on these

binarized spike trains.

For performing ROC analyses (Figures S2, S11A, and S11B), we trained a decoder (again a single GRU subunit) to predict the bi-

nary spike train of the biophysical model (again obtained by threshold crossings of vAP with positive derivative) from either the sub-

threshold response of the biophysical model (vsoma or vnoNa; Figure S2, black and purple, respectively) or the predicted responses of

the cascade models (trained to match vsoma or vnoNa and vNa; Figures S11A and S11B, blue and red respectively). We also included

binary spike train predictions derived from the predictions of a DNN (temporal convolutional networks, TCN, Figures S11A and S11B
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yellow; following Beniaguev et al.,13 see below). As above, for calibration, we also trained a decoder using vfull (Figure S2, orange).

Importantly, as we trained these decoders with a cross-entropy loss, their output was a predicted instantaneous spiking probability.

We then thresholded these predicted spiking probability traces (also only considering threshold crossings with positive derivative) to

obtain a predicted spike train, and the corresponding true and false positive rates (Table S3), for a given threshold. We obtained ROC

curves by systematically varying this threshold.

The coincidence factor46 (Figure 2G) was defined as:

G =
1

N

Ncoinc � CNcoincD

1
�
2 ðNref +NpredÞ

(Equation 21)

with

N = 1� 2 fpred D (Equation 22)

where Nref is the number of spikes in the reference spike train, Npred is the number of spikes in the predicted spike train, and Ncoinc is

the number of coincident spikes between the two spike trains using a D = 4 ms window around the reference spikes. For these pur-

poses, spike trains were defined based on true or predicted vAP, as for the precision-recall analysis (see above).

CNcoincD = 2 fpred D Nref is the expected number of coincidences generated by a homogeneous Poisson process with same spike

rate as the predicted spike train, fpred = Npred=T (where T is the duration over which the spike trains are recorded).

Spike rate cross correlation analysis13 (Figure S11C) was performed between the reference and predicted spike trains (defined as

for the ROC analyses, with a detection threshold for the predicted spike probability at 0.04) by calculating the spike rate of the pre-

dicted spike train conditioned upon the spikes of the reference spike train within a ± 20 ms time window.

Dendritic spike rates (Figure 2C) were calculated by thresholding the dendritic voltages recorded at the synaptic clusters of the

biophysical CA1 model neuron with dendritic Na+ channels (Table S2). Specifically, dendritic spikes were detected at each positive

crossing of a threshold at �10 mV.

Dissimilarity analysis
Representational similarity analysis52 allowed us to directly compare the synaptic organization of different model architectures

without requiring any structural similarity between them (biophysical or cascade, described by entirely different variables and param-

eters, or cascades of different structure or model class), as long as there was a correspondence between their synapses. We per-

formed the analysis in two steps. First, we calculated a synaptic dissimilarity matrix for each architecture separately. This matrix was

defined as the dissimilarity between any pairs of inputs according to somemeasure, as specified below. Second, we compared a pair

of synaptic dissimilarity matrices using the Pearson correlation coefficient between their corresponding upper triangular entries.

We constructed synaptic dissimilarity matrices using the architecture either defined by the biophysical model or by a cascade

model (separately for models fitted to vNa and vnoNa). For each cascade model, we defined two synaptic dissimilarity matrices,

one based on the optimized subunit assignments (Figure 7B,middle and bottom row, right), and another using the optimized synaptic

weights (Figure 6C, middle and bottom row, left). The subunit-based dissimilarity matrix was defined by the optimized subunit as-

signments (Equation 19):

Ds
ll0 = 1 � d

�
argmax

n
C

syn;e=i
nl ; argmax

n
C

syn;e=i
nl0

�
(Equation 23)

where dð$; $Þ is the Kronecker delta.

Elements of the weight-based dissimilarity matrix were calculated for all pairs of excitatory synapses independent of whether they

targeted the same or different subunits, as

Dw
ll0 =

		wsyn;e
l � wsyn;e

l0
		 (Equation 24)

where wsyn;e
l is the scalar weight associated with input l (Equation 7).

In the biophysical model, we also constructed two dissimilarity matrices: one based on the somatic distances of the synapses (Fig-

ure 7B, top left) and one based on the functional clustering of the synapses on the dendritic tree (Figure 7B, top right). We calculated

the somatic distance-based dissimilarity matrix as:

Dd
ll0 = jdl � dl0 j (Equation 25)

where dl is the path distance of synapse l from the soma along the dendritic tree. For the clustering-based dissimilarity matrix, we

used the following distance measure:

Dc
ll0 = 1 � dðcl; cl0 Þ (Equation 26)

where cl is the identifier of the input cluster to which (clustered) synapse l is assigned.

To compare the dissimilarity matrices obtained from the cascade model to the dissimilarity matrices of the biophysical model, we

orthogonalized the clustering-based dissimilarity matrix, Dc, relative to the somatic distance-based dissimilarity matrix, Dd. This
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way, we could remove the influence of somatic distance on the synaptic clustering in the biophysical model. Specifically, we

collected the elements of the clustering-based dissimilarity matrix into vector Mclust. Similarly, we formed another vector, Mdist,

from the corresponding elements of the distance-based dissimilarity matrix. Then the orthogonalized values were defined as

Mclustt = Mclust �MdistCM
clust;MdistD

CMdist;MdistD
(Equation 27)

We used the orthogonalized Mclustt instead of the original clustering-based dissimilarity matrix for all subsequent calculations.

Note that while the elements of the distance- and the weight-based dissimilaritiy matrices are positive real numbers, the subunit-

based synaptic dissimilarity matrix is binary and the elements of the clustering-based dissimilaritiy matrix became non-binary only

due to the orthogonalization.

In Figure 7D we compared the synaptic dissimilarity matrices of the same cascade model (vnoNa or vNa) obtained after indepen-

dently optimizing the synaptic organization of the model on different sets of training data (red and blue), or compared the synaptic

dissimilarity matrices of the two different models optimized on the same training data (purple). In Figure 7Ewe compared the synaptic

dissimilarity matrices of the biophysical model to that of the cascade models. When the comparison of two dissimilarity matrices

included a clustering- or a subunit-based dissimilarity matrix, we calculated the Pearson correlation between the elements of the

matrices corresponding to the 240 clustered synapses. Otherwise, all excitatory synapses were used for the comparison.

Statistical tests
The details of all statistical tests are included in the captions of the corresponding figures.
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