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Abstract: (1) Background and Goal: Several studies have investigated the association of sleep,
diurnal patterns, and circadian rhythms with the presence and with the risk states of mental illnesses
such as schizophrenia and bipolar disorder. The goal of our study was to examine actigraphic
measures to identify features that can be extracted from them so that a machine learning model can
detect premorbid latent liabilities for schizotypy and bipolarity. (2) Methods: Our team developed
a small wrist-worn measurement device that collects and identifies actigraphic data based on an
accelerometer. The sensors were used by carefully selected healthy participants who were divided
into three groups: Control Group (C), Cyclothymia Factor Group (CFG), and Positive Schizotypy
Factor Group (PSF). From the data they collected, our team performed data cleaning operations and
then used the extracted metrics to generate the feature combinations deemed most effective, along
with three machine learning algorithms for categorization. (3) Results: By conducting the training,
we were able to identify a set of mildly correlated traits and their order of importance based on the
Shapley value that had the greatest impact on the detection of bipolarity and schizotypy according to
the logistic regression, Light Gradient Boost, and Random Forest algorithms. (4) Conclusions: These
results were successfully compared to the results of other researchers; we had a similar differentiation
in features used by others, and successfully developed new ones that might be a good complement
for further research. In the future, identifying these traits may help us identify people at risk from
mental disorders early in a cost-effective, automated way.

Keywords: machine learning; actigraphy; bipolar disorder; schizophrenia; linear regression; light
gradient boost; random forest

1. Background
1.1. Introduction

Schizophrenia and bipolar disorder are mental disorders with overlapping suscep-
tibility genes, structural and functional brain abnormalities, symptoms, and treatment
response [1]. In the last couple of decades, there has been a significant improvement in
treating schizophrenia and bipolar affective disorder. In the early 2000s, an approach was

Sensors 2023, 23, 958. https://doi.org/10.3390/s23020958 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23020958
https://doi.org/10.3390/s23020958
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3321-004X
https://orcid.org/0000-0001-9459-912X
https://orcid.org/0000-0001-6946-5795
https://orcid.org/0000-0001-7108-9530
https://orcid.org/0000-0002-7085-3901
https://orcid.org/0000-0003-3863-7595
https://orcid.org/0000-0001-6112-884X
https://orcid.org/0000-0001-7318-4232
https://orcid.org/0000-0002-9561-6857
https://orcid.org/0000-0003-4316-0373
https://orcid.org/0000-0002-1867-5861
https://orcid.org/0000-0002-2720-3380
https://orcid.org/0000-0001-6570-2685
https://orcid.org/0000-0002-7793-2661
https://orcid.org/0000-0002-2612-7291
https://doi.org/10.3390/s23020958
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23020958?type=check_update&version=2


Sensors 2023, 23, 958 2 of 24

applied that helped to identify the first psychotic episode in patients much earlier, so their
treatment could be started sooner. In the first couple of years, their results seemed promis-
ing, but overall, it did not prevent the chronic progression in many of the patients; hence,
from the point of view of the outcome, the improvement was only moderate [2]. Therefore,
the focus was shifted to even earlier periods before the first psychotic episode [3,4]. Ac-
cording to earlier studies, this prodromal phase occurs in 73–98.4% of the patients and can
last on average up to 5–6 years [5,6]. During this time, the chance opens up for prevention,
which is becoming the focus in psychiatry as well.

To forecast the onset of a psychosis or a psychotic disorder, we have two methods.
One approach is the ultra high risk (UHR) criterion that helps to define an imminent risk
of psychosis onset within one year [7,8]; the other one is the basic symptoms (BS) method,
that is more specific for indicating the development of schizophrenia [9]. However, these
methods can only be used among those patients who already had some mental complaints,
hence asked for help but cannot be utilized for screening healthy populations. Besides this,
there is still a reversed relationship between the specificity and sensitivity of the predictive
criteria, which lead to clinical and ethical dilemmas for doctors [10]. The methods of
repeated assessments of the help-seeking individuals’ clinical states with the designation
of syndrome stages, and multivariate analyses of empirically derived markers have proven
to be useful tools for finding a balance between the sensitivity and specificity [11].

There have been some studies conducted on the sleep and daily functions of people
with the schizophrenia-bipolar spectrum disorders. Reeve et al. [12] found that 80% of
their subjects with early, non-affective psychosis had some kind of severe (either chronic or
frequent) sleep disorder, for example, 50% had insomnia. Those patients who had problems
with their sleep were suffering from more severe psychotic symptoms. Mulligan et al. [13]
also found a connection between sleep problems (fragmentation, reduced efficiency) and
psychotic symptoms on the following day. Meyer et al. [14] studied patients with remitted
schizophrenia and bipolar disorder, and they also found that sleep problems (such as
fragmentation) was something patients had to deal with more compared to healthy controls.

When daily activity was in focus, it was found to be reduced in patients with remitted
schizophrenia and bipolar disorder [14,15]. Moreover, euthymic bipolar patients displayed
activity patterns that could be described as less organized or predictable, especially after a
life event or being in a novel environment. Euthymic bipolar patients could be differentiated
from other groups in the variability and complexity of activity patterns and they had a
relative lack of habituation [15].

Researchers also focused on people who did not yet have a differentiated disorder but
were at risk (e.g., showing some symptoms, having a diagnosed close relative, etc.) of devel-
oping one. Hennig et al. [16] found that using multilevel regression models, shorter sleep
time and more dreaming could predict paranoia on the following morning in patients who
had some psychotic symptoms, but not full-blown psychosis. Lunsford-Avery et al. [17]
found that ultra-high risk (UHR) people moved more during sleep, woke up more often
after sleep onset, and slept less efficiently compared with healthy controls. Some of the
sleep problems could be used to predict psychotic symptoms in the 12-month follow-up.

Castro et al. [18] found that circadian rest–activity rhythms (and likely sleep patterns)
might be altered in UHR (to schizophrenia and borderline disorder) individuals compared
to healthy controls, as in the UHR group worse sleep quality, higher total sleep time, more
fragmented sleep rhythms, longer nap duration, and shorter activity periods were found.
According to the authors, it is probable that the alterations in circadian rhythms of activity
and rest could be prodromal signs and might imply the brain changes which are common
in these disorders.

Ritter et al. [19] carried out a longitudinal study in which they utilized data from
a large cohort (N = 1943) free of mental disorder used as the baseline. They found that
poor sleep quality increased the risk of developing bipolar disorder, trouble falling asleep,
and early morning awakening being predictive factors. Meyer and Maier [20] placed their
subjects in the bipolar risk group if they had a hypomanic personality; the unipolar risk
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group consisted of subjects with more rigid personality traits; and the control group had
subjects with none of these traits. The bipolar risk group had less regularity with daily
activities according to their diaries and more variability in their sleep pattern compared to
the control group.

The aim of our study is to help improve the chance of sensitivity and specificity with
instrumental procedures in order to recognize the path of pathological schizotypal and
bipolar disease development early and to treat people at risk as early as possible. In this
study, our goal was to screen a healthy population, to detect individuals at low risk with
bipolar and schizotypal vulnerability based on personality traits and to attempt to differ-
entiate them via certain instrumental methods. To achieve this, we used a methodology
called actigraphy. Actigraphy [21] is a diagnostic methodology that tracks overall activity
during sleep–wake cycles by measuring the triaxal acceleration of limb movements using
an accelerometer sensor attached to the limb. It can be used to calculate the patient’s
resting/active period, which can then be used to monitor sleep quality and validate sleep–
wake cycles. In the first step, using screening tests sensitive to bipolar affective risk and
schizotypy detection, three homogeneous subgroups were formed among those with traits
predisposing to one or the other disease, as well as those without such traits. In the second
step, we investigated whether the results of the self-administered screening methods based
on the testing of subjective experience changes could be linked to the empirical indices
of circadian activity and sleep regulation that can be measured by actigraphy. Then, a
confrontational analysis of actigraphic parameters was performed by comparing the groups
showing a latent tendency towards the development path of the two diseases in order to
determine specific early markers.

1.2. State of Art

Recent actigraphy studies indicate the disturbance of sleep and circadian rhythm
both in schizophrenia and bipolar disorder [14,22–26]. In terms of circadian rhythm pa-
rameters, schizophrenia and bipolar patients have lower motor activity compared with
healthy controls [14,22,26]. The manic phase of bipolar disorder is associated with more
disorganized and complex activity patterns, especially in the morning, and with phase
advance [24]. The depressive phase is characterized by higher minute-to-minute variability
in activity pattern, and phase delay [23,24]. In the case of schizophrenia, more severe
positive symptoms were associated with less structured movement patterns, and more
severe negative symptoms were associated with lower motor activity [26].

According to Berle et al. [27], circadian rhythm parameters interdaily stability was
higher and intradaily variability was lower in the schizophrenia patient group than in the
healthy control group, suggesting the motor activity pattern of schizophrenia patients is
more monotonous. Jones, Harc, and Evershed (2005) found that intradaily variability was
higher and interdaily stability was lower among bipolar patients compared to healthy con-
trols [28]. However, other studies did not find any significant mean difference in interdaily
stability, intradaily variability, or in other circadian rhythm parameters such as the relative
amplitude and acrophase among schizophrenia, bipolar, and healthy control groups [14].

Sleep disturbance manifests itself in longer total sleep time, a longer time in bed, longer
sleep latency and a longer time being awake after sleep onset both in schizophrenia and
bipolar disorder compared with healthy controls, and reduced sleep efficiency in bipolar
disorder compared with healthy controls [14,22]. Schizophrenia and bipolar patients
compared with healthy controls need more time to fall asleep, spend more time in bed, and
have more fragmented sleep [14,26]. More disrupted sleep–wake patterns are associated
with more severe positive symptoms of schizophrenia. More severe negative symptoms
are associated with longer sleep time, more common awakenings during the night, and
sleepiness during the day. The sleep disturbance in schizophrenia and bipolar disorder
causes further increase in the symptoms of the disorders [26].
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1.3. Data Collection

The following questionnaires were used in the study for screening: Temperament
Evaluation of Memphis, Pisa, Paris, and San Diego Autoquestionnaire (TEMPS-A) [29] is a
self-report questionnaire assessing the five affective temperaments: depressed, cyclothymic,
irritable, hyperthymic, and anxious. The questionnaire consists of 110 items for women and
109 for men, with all questions requiring a “yes” or “no” response. The 43-item Hungarian
version of the shortened Oxford-Liverpool Inventory of Feelings and Experiences (O-LIFE)
is used to assess schizotypal personality traits [30]. The items of the questionnaire can be
answered with “yes” or “no”. The short version of the questionnaire consists of four scales:
Unusual Experiences, Cognitive Disorganization, Introverted Anhedonia, and Impulsive
Nonconformity. The Unusual Experiences scale measures the positive trait of schizotypy
with items related to perceptual abnormalities, magical thinking, and hallucinations. The
Cognitive Disorganization scale includes questions about attention and concentration
difficulties, decision-making problems, and social anxiety. The Introverted Anhedonia
scale assesses negative schizotypy or schizoid temperament, which can be described as the
reduced form of negative symptoms in schizophrenia. The Impulsive Nonconformity scale
contains items measuring lack of self-control [31]. The Peters et al. Delusions Inventory
(PDI) [32] measures delusions that occur in the normal population. The questionnaire
contains 40 questions on different types of delusions (delusions of control, expansive
delusions, etc.). Each item of the PDI is rated on a five-point Likert scale under three
different aspects: distress (from “not at all distressing” to “very distressing”), preoccupation
(from “hardly ever think about it” to “think about it all the time”), and conviction (from
“don’t believe it’s true” to “believe it’s absolutely true”).

The Mood Disorder Questionnaire is a self-report questionnaire used to screen for
bipolar spectrum disorder [33]. The first item of the MDQ consists of 13 yes/no questions to
screen for manic or hypomanic symptoms of bipolar disorder. The questionnaire contains
two additional items related to whether the respondent experienced multiple symptoms
of the above 13 manic or hypomanic symptoms at the same time and the extent to which
these symptoms caused problems, which were rated on a 4-point Likert scale (from “no
problem” to “serious problem”).

The Clinician Version (SCID-CV) of the Structured Clinical Interview for DSM-5 (SCID-5)
was used to diagnose current and lifetime mental disorders [34]. The SCID-5-CV captures
mental disorders such as mood disorders, psychotic disorders, substance use disorders,
anxiety disorders, obsessive-compulsive and related disorders, eating disorders, somatic
symptom disorders, sleep disorders, externalizing disorders, trauma-related disorders,
and stressor-related disorders. The Structured Clinical Interview for DSM-5 Personality
Disorders (SCID-5-PD) assesses the personality disorders listed in the DSM-5.

Demographic data, family and personal medical history, medications currently being
taken, previously diagnosed and treated mental disorders, and family history of symptoms
of psychosis or affective spectrum disorder were also recorded.

The tools used in research but not analyzed here include: Agency Attribution Task (de-
veloped by our research team); Intentional Binding Task [35]; Examination of Anomalous
Self-Experiences (EASE) [36]; Discrimination of time intervals (DIS), and production of a sin-
gle time interval (STT) [37]; the Temperament and Character Inventory-Revised (TCI-R) [38];
the Behavioral Inhibition and Activation System Scales (BIS/BAS Scales) [39]; Morningness–
Eveningness Questionnaire [40]; Leuven Affect and Pleasure Scale (LAPS) [41]; the THINC-
Integrated Tool (THINC-it) Screening Assessment for Cognitive Dysfunction [42]; Raven’s
progressive matrices [43]; electroencephalogram (EEG); eye-tracker, assessment of allostatic
load (heart rate, blood pressure, cortisol levels, C-reactive protein (CRP), interleukin 6
(IL-6), interleukin 12 (IL-12), total cholesterol; triglyceride levels).

1.4. Participant Selection

Study participants were recruited online via social media platforms and the University
of Szeged mailing list. First, participants read general information about the study in a
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prompt email or online advertisement. They then clicked on a Web link included in the
advertisement or email to access the study consent form. After agreeing to participate in
the study, they were able to complete a screening package of questionnaires.

The subjects were healthy university students, who could not be diagnosed with any
current mental disorder, from the first two years of the different faculties of the University
of Szeged. In the first step, the intention was to form three homogeneous subgroups in
the groups of subjects with low risk traits for schizophrenic-bipolar spectrum disorders.
The test package consisted of 4 self-completion tests: the Peters et al. Delusions Inventory
(PDI-21) [32] to measure delusions, including distress, preoccupation, and conviction;
the Hungarian version [44] of the TEMPS-A (the Temperament Evaluation of Memphis,
Pisa, Paris and San Diego—autoquestionnaire version) [29] questionnaire’s Cyclothymic
Temperament scale; the Hungarian version [30] of the O-LIFE (the Oxford-Liverpool
Inventory of Feelings and Experiences) questionnaire [45] measuring schizotypy; and the
Hungarian version (unpublished) of the MDQ (the Mood Disorder Questionnaire) [33]
assessing possible mood disorders. This primary survey was conducted electronically after
recruitment through social media channels commonly used by university students.

Inclusion criteria of the Cyclothymia Factor Group (CTF, presumably with a latent
tendency toward bipolarity): age 18–25 years, written informed consent, TEMPS-A Cy-
clothymia Score > median. Exclusion criteria: current presence of a primary or sec-
ondary mental disorder (SCID-1/2 DSM-5), Abbreviated O-LIFE Unusual Experiences
score > median and PDI total score > median; MDQ scale minimum of 7 points for the first
question, “yes” for the second question, and “at least a moderate” or “severe problem” for
the third question; current abuse of psychoactive substances; a history of head trauma with
permanent loss of consciousness; any physical illness known to affect brain structure; any
unstable medical condition that may significantly impair neurocognitive function.

Inclusion criteria of the Positive Schizotypy Factor group (PSF, presumed to have a
latent tendency toward schizotypy): age 18–25 years; written informed consent; abbrevi-
ated O-LIFE Unusual Experiences score > median; PDI total score > median. Exclusion
criteria: current presence of a primary or secondary mental disorder (SCID-1/2 DSM-5); MDQ
scale score of at least 7 for the first question, “yes” for the second question, and “at least a
moderate” or “severe problem” for the third question; TEMPS-A Cyclothymia Score > median;
current abuse of psychoactive substances; a history of head trauma with permanent loss of
consciousness; any physical illness known to affect brain structure; any unstable medical
condition that may significantly impair neurocognitive function.

Inclusion criteria for Control Group (C): age 18–25 years; written informed consent;
abbreviated O-LIFE Unusual Experiences Score < median; PDI total score < median; TEMPS-
A Cyclothymia Score < median. Exclusion criteria: current presence of a primary or
secondary mental disorder (SCID-1/2 DSM-5); MDQ scale score of at least 7 points for the
first question, “yes” for the second question, and “at least a moderate” or “severe problem”
for the third question; current abuse of psychoactive substances; a history of head trauma
with permanent loss of consciousness; any physical illness known to affect brain structure;
any unstable disease state that may significantly impair neurocognitive function.

Based on the online questionnaire, we screened N = 710 students of the University of
Szeged. Among the respondents, we selected N = 182 individuals based on the inclusion
criteria. Based on the exclusion criteria, N = 87 students were eligible to form the three
study groups. However, during the subsequent face-to-face medically structured diagnostic
interview, we still had to exclude N = 2 individuals due to acute mental disorder confirmed
on the basis of SCID.

Based on TEMPS-A, O-LIFE, and PDI values, participants were divided into three
groups:

• A risk for bipolarity (hereafter, CTF group, Cyclothymia Factor Group) if their TEMPS-
A Cyclothymia score was greater than 11, but their PDI-21 total score was less than 11
and their O-LIFE total score was less than 6;
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• A schizotypy risk group (hereafter, PSF group, Positive Schizotypy Factor) included
those with a PDI-21 total score greater than 10 and an O-LIFE total score greater than
5, but a TEMPS-A Cyclothymia Score less than 12;

• The Control Group included individuals who had relatively low scores on all three
questionnaires, with a total score of less than 12 for TEMPS-A Cyclothymia, less than
11 for PDI-21, and less than 6 for O-LIFE.

To ensure comparability, the following groups were included in the study: CTF Group
N = 25 students; PSF Group N = 26 students; Group C (control group) N = 29 students. We
managed to obtain analyzable actigraphy data from 69 participants (33 male, 36 female):
CTF Group (cyclothymia factor group, presumably showing a latent tendency to bipolarity)
NCTF = 22, 11 male and 11 female, mean age MCTF = 25.28, standard deviation of age
SDCTF = 1.78; PSF Group (positive schizotypy factor group, presumably showing a latent
tendency to schizotypy) NPSF = 22, 11 male and 11 female, mean age MPSF = 26.20, standard
deviation of age SDPSF = 2.06.; Group C (control group) NCONTROL = 25, 11 males and
14 females, mean age MCONTROL = 25.42, standard deviation of age SDCONTROL = 1.90.
Eighty percent of the subject sample took no medications, 14% took birth control pills, 3%
took beta blockers, and 3% took antihistamines.

The study was conducted as part of a study entitled “An examination of neurobiologi-
cal, cognitive and neurophenomenological aspects of the susceptibilities to mood swings or
unusual experiences of healthy volunteer students”, and it was approved by the Human
Investigation Review Board of the University of Szeged, Albert Szent-Györgyi Clinical
Centre, Hungary (No. 267/2018-SZTE) according to its recommendations. All subjects
gave written informed consent in accordance with the Declaration of Helsinki and they
were informed of their right to withdraw from the study at any time without providing
any explanation. The selected participants received an expense allowance of HUF 15,000
for participation in the entire study, which was obtained through a grant application.

2. Method
2.1. Actigraphy Instruments

In a previous paper [46], members of our research team presented a novel actigraphy
sensor used to measure and collect the required data. The device was housed in a 3D-
printed capsule measuring 41 mm × 16 mm × 11.3 mm (LWH) and weighing only 5.94 g,
which contained a microcontroller (C8051F410), a 3-axis MEMS accelerometer (LIS3DH), a
flash memory chip with a capacity of 1 GB, and a real-time quartz clock with an accuracy
tolerance of +/−20 ppm. It was necessary to develop our own device because, although
there was already a number of actigraphy sensors available on the market, their price was
very high at the beginning of our study, and we needed to provide sensors for dozens of
patients. Nevertheless, our methodology and results are compatible with the actigraphic
sensors available on the market.

The sampling rate and other options of the sensors are configurable, with a minimum
sampling rate of 1 sample/second and a maximum sampling rate of 100 samples/second,
and the flash memory is capable of storing measurements of entire weeks. This custom-
built actigraphy instrument was able to acquire all the signals provided by commercial
actigraphs, and it also provided the research team with full access to the different configu-
rations and processing flow. This instrument was used to perform 84 measurements over a
4-month period in 2019.

2.2. Data Cleaning and Preparation

The first step in data preparation was to keep only those measurements where the
instrument was able to gather data for at least 2 days without any discharges or problems
(measurements lasted 14 days on average). In this way, the CTF (bipolarity) Group had 22,
PSF (schizotypy) Group had 22, and the Control Group had 25 participants.

The three axes of acceleration data collected in this way were then first subjected
to a bandpass filtering procedure to filter out low-frequency noise (such as the Earth’s



Sensors 2023, 23, 958 7 of 24

gravity) and high-frequency noise (which might be caused by vibrations, for example). The
bandpass filter chosen was the maximally flat magnitude filter or Butterworth filter with
cutoff frequencies of 0.25 and 2.5 Hz [46].

The actigraphic devices available on the market use different activity metrics, such
as integration-based methods including Activity Count (AC) or Proportional Integration
Method (PIM), threshold-based methods such as Zero Crossing Method (ZCM) or Time
Above Threshold (TAT), and many others (AI, ENMO, MAD, etc.) [46]. For activity
calculation, we have chosen the ZCM metric, which identifies activity based on the number
of times a certain threshold is crossed by the acceleration signal. The threshold level should
not be necessarily 0 g due to measurement noise; therefore, we have selected a threshold
level of 0.05 g which is slightly above the noise level.

An activity metric can be applied to the magnitude of the acceleration or separately to
the axial components. However, the resulting activity data produced by the two approaches
could differ significantly, in the case of the ZCM metric, this difference is negligible [46].
Therefore, for the ZCM activity calculation, the crossings counted on the three axes were
summed into 60 s epochs. To make the ZCM functions smoother, sliding window averaging
was applied, using the previous 5 and the subsequent 5 for each epoch. In contrast, for
the feature extraction, we used the resultant magnitude of the acceleration signal, which
proved to be suitable for the subsequent use of multiple software packages.

2.3. Algorithms

When selecting the appropriate categorization algorithms, our team followed the lead
of Jakobsen et al. [47], whose 2020 paper attempted to uniquely categorize the two groups
based on data collected from schizophrenic and healthy patients. The three categorization
algorithms they used, and which we decided to use after initial evaluations, were:

• Logistic regression (LGR) [48]: one of the most common and simplest algorithms for
estimating a categorization function based on discrete values;

• Random Forest (RF) [49]: categorization is decided by majority voting based on
unpruned classification trees grown from random samples of the original data, and
choosing a random predictor instead of the best split at each node;

• Light Gradient Boosting (LGB) [50]: it estimates the categorization function for a
given training sample while minimizing the value of a loss function over the joint
distribution of all (y,x) pairs of values.

To train and test our samples, we have 10-fold cross-validation [51], in which the
sample data are shuffled and divided into 10 groups, each of which is marked as part of
either the training or the testing set, with the groups being regenerated for each epoch of
the algorithm. The 10-fold cross-validation has shown very good results even on smaller
datasets, such as ours.

The next step was to establish a baseline for our experiments with the three algo-
rithms by comparing them individually with the Control Group (C) and the bipolar or
schizophrenic group. The three characteristics used by Jakobsen et al. [47], which, accord-
ing to them, described the subjects in the most general way were the ZCM mean, ZCM
standard deviation, and ZCM null-ratio (ZCM data with 0 values). The results can be seen
in Table 1. Accuracy is calculated by adding the number of true positives and true negatives
and dividing by the total number of outcomes. Precision is calculated by dividing the
number of true positives by the total number of true positives and false positives. Recall is
calculated by dividing the number of true positives by the total number of true positives
and false negatives.
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Table 1. Baseline Results.

Model Control Compared to Accuracy Precision Recall

Logistic regression Bipolar 0.680 0.652 0.760
Schizophrenic 0.531 0.500 0.600

Random forest Bipolar 0.636 0.660 0.640
Schizophrenic 0.545 0.638 0.640

Light Gradient Boost Bipolar 0.681 0.684 0.840
Schizophrenic 0.745 0.812 0.800

Next, we turned to the detailed workings of these methods to select from the collected
actigraphic data the features that could effectively contribute to the correct categorization
of groups C, CTF (bipolarity), and PSF (schizotypy). To this end, we first had to determine
the method for calculating the importance score. The SHAP or Shapley Additive exPla-
nations [52], an interpretive method based on Shapley values, was chosen. Shapley was
originally used as a proven method in game theory to determine the contribution of each
participant to the outcome of a given game. Applied to machine learning as SHAP, it can
very effectively determine which of the identified features had the greatest impact on the
decision. Theoretically, the Shapley values of a given Machine learning (ML) model are
calculated by observing the performance of the model on each feature combination. Based
on this, SHAP can calculate the impact of each feature. To omit one (or more) feature(s),
SHAP replaces the feature values with random values and then makes a prediction. The
impact is calculated by how much the prediction worsens without the given features, not
just an impact for the given prediction, but for each sample. In reality, the algorithm does
not calculate all possible combinations of features, but only some of them, and then makes
an assumption about the overall picture.

Each feature has n Shapley values, where n is the number of decisions made by the
model, i.e., the number of samples in the dataset. In our case, one sample corresponds to
one individual, so we know the effect of the features in labeling an individual.

Using the Python SHAP library by Lundberg et al. [52], we found that the Shapley
values of the three features evolved as shown in Figure 1 using logistic regression, with
the Shapley values lying on the x-axis. In this case, the more positive the value, the more
the feature (for a given sample) contributed to being classified as disease-prone by the
algorithm. Each point represents the effect of a single sample on a single feature, so each
feature has n points, where n is the sample number (in this case, the number of contributors).
Color-coding is used to show which values of a particular feature (small or large values on
its own scale) contributed in which direction and to what extent to the final decision. In
this case, susceptibility to bipolarity is indicated by low values for the mean and standard
deviation of daily activity. For the detailed SHAP algorithm please refer to S1 in the
supplementary information.

Figure 1. SHAP (Shapley Additive exPlanations) values from the baseline logistic regression.

2.4. Feature Engineering

Below, we describe the methods used to derive a variety of characteristics from the
collected activity data. Because of the comparability of the data and the good applicability
of the learning algorithms, we tried several different normalization methods. We tested six
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different normalization methods on the three algorithms with randomly selected feature
combinations, found the standard normalization to be the best, and applied it to the
resulting features.

For the first set of features, we used the pyActigraphy library [53], a popular open-
source Python package designed specifically for processing actigraphy data. The resulting
features were computed using the package’s built-in BaseRaw model functions for the
preprocessed magnitude of acceleration data generated from the triaxial data from which
the gravitational acceleration bias was removed. These features measure the features most
commonly used in the literature to assess vulnerability to mental illness, such as the most
active 10 h mean (M10), the least active 5 h mean (L5), and interdaily stability (IS). In total,
six such features were developed with the package and they are listed in Table 2.

Table 2. Features engineered from the pyActigraphy package.

Feature Description

M10 Daily mean activity of the 10 most active hours
L5 Daily mean activity of the 5 least active hours
RA Relative rest/activity amplitude.
ADAT Total average daily activity
IS Interdaily stability
IV Intradaily variability

Next, we performed Savitzky–Golay filtering [54] on these averages, which smoothed
the data without distorting the signal trend. After this step, we were able to determine
different thresholds from the data and define new features based on them, which one can
see in Table 3.

Table 3. Features derived following the Savitzky–Golay filtering.

Feature Description

floor_sum_values sum of lower boundary values
e_v_avg_value average boundary value
avg_ceiling_value average upper boundary value
avg_floor_value average lower boundary value
avg_ceiling_floor_diff difference between average upper and average lower boundary values
std_avg standard deviation of boundary values
std_upper standard deviation of upper boundary values

Because we studied individuals without manifest disease, we assumed that the differ-
ences between our groups would be much smaller. We tried to find more subtle differences
among groups. One way to do this was to characterize the shape of the curves from the
ZCM data, which can be seen in Figures 2 and 3. These essentially describe the relief
pattern of the motion curve. To avoid excessive outliers, we averaged the ZCM data with a
5-5 long sliding window.

Because these are highly deterministic and sensitive variables, we assumed that
diurnal activity would be too variable, so we characterized only the period during sleep
with these features. The periods when ZCM values lay between 0 and 5 were considered
the longest periods of sleep. Based on this threshold, we obtained realistic distributions
of sleep periods. A “peak” in the curve means ZCM data greater than 0, and two peaks
are separated by zero values. The peaks were grouped into small and large, different
features were calculated, such as the distance between them, lengths, heights. From this,
we derived some features, such as minima, maxima, means, and medians, and we separated
the small and large peaks in two ways, namely along the median and by the lower and
upper quartiles (3 × 4 × 2 = 24 features). The same features were defined for each peak
(12 features).



Sensors 2023, 23, 958 10 of 24

Figure 2. The density function of sleep times per group.

Figure 3. Sliding window analysis of ZCM (Zero Crossing Method) data.

The most common global measure used for characterizing sleep quality is the fragmen-
tation index (“frg_index”). It describes the ratio of mobile time during sleep (cumulative
time of the periods of activities higher than the threshold value, plus the time of passive pe-
riods less than a minute), as compared to the total sleep time (time from falling asleep until



Sensors 2023, 23, 958 11 of 24

full awakening) [55]. An elevated “frg_index” is found to accompany various mental or
physical disorders [55,56], although it does not contain information about the distribution
of periods of nocturnal awakening.

For more details on the feature engineering please refer to S2 and the Figure S1 in the
Supplementary Information.

To characterize the latter, too, here we introduced an alternative method based on
continuous wavelet analysis (CWA). CWA is known to provide both frequency- and time-
domain information; hence, it is often used to analyze time series with a strong stochastic
nature, such as various biological signals [57], to extract essential information about the
dynamic behavior of the biological system. The CWA of a time series applies a so-called
“mother wavelet” (MW), a finite oscillation confined in a time window, whose correlation
coefficient with the signal is determined at each time point, while MW is shifted along
the time axis of the registered signal. MW can be compressed or dilated by a scale factor
defining the size of its time window, and the result of CWA is usually represented by
a 2D map, where the correlation coefficients (color-coded in Figure 4b) are depicted as
a function of running time and the scale factor (corresponding to the width of the time
window of MW). Those regions emerging from the map that show enhanced structural
features (i.e., high-amplitude correlation coefficients) are indicative of outstanding events
at the corresponding time and time window (Figure 4b). In our analysis, the so-called
Morlet wavelet was used as the MW, which is essentially a single-frequency sinusoidal
inside a Gaussian envelope. The Morlet wavelet, also called the Gabor wavelet, is known
to provide the best trade-off between time and frequency resolution [58], and it has been
successfully used for the analysis of physiological signals [57,59].

Figure 4. Flowchart of the wavelet-based evaluation of nocturnal activity structures. (a) Activities
of concatenated sleep periods of 5 subsequent nights. (b) Correlation-coefficient map of the time
series in (a), as a result of continuous wavelet analysis. (c) Structure parameters derived from the
map in (b), as a function of scale parameter in the 1 to 200 s time-window range. (d) Distribution
of the integrated structure factors (structure_pms) among the three groups of volunteers (Control
Group (blue), Cyclothymia Factor Group (red), and Positive Schizotypy Factor Group (green)).

In order to quantitatively characterize nocturnal activity features on the time window
scale, we calculated the squared sum of the correlation coefficients provided by the CWA,
at each scale factor (spanned from 1 min to 200 min in linear scale) from concatenated
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sleep periods of 5 subsequent nights (Figure 4c). From these “structure-factor” curves, it
is apparent that major features are distinguishable around the 1 h time window; hence,
the wavelet-based structure parameters in this study were defined as the integral (“struc-
ture_pm”) and the standard deviation (“structure_pm_stdev”) of these curves between the
20 min and 100 min, and the 51 min and 67 min time-window range, respectively.

The numerical calculation of the wavelet transforms was carried out in the Wavelet
Toolbox of the MATLAB program [60]. For the detailed description of the wavelet transfor-
mations please refer to S3 in the supplementary information.

2.5. Feature Selection

The feature engineering resulted in a total of 96 features, from which we had to select
those best suited for the various training tasks in the next step. Since only a few of the
numerous features can be used to distinguish groups efficiently, we tried to weed out the
less useful features. In our selection, we examined the extent to which the Welch test [61]
ranked the expected values of a particular feature as different between the two groups with
a tendency toward mental illness and the control group.

The p-value (significance level) in our Welch test was 0.3, leaving 46 characteristics
out of the 96.

Among these, however, many features were highly correlated. Therefore, we began to
create subgroups within which there was no strong correlation and whose individual value
in the decision process was therefore also high. To do this, we created the correlation matrix
of the 46 features as a weighted edge graph (complete), where the nodes represented the
features and the weights of the edges represented the absolute values of the correlation
between the two features. We deleted those edges whose weights exceeded a threshold; in
our case, it was 0.3.

In the resulting graph, we searched for the complete graphs with the most elements,
i.e., clicks with at least 8 elements, resulting in 2513 combinations. We set these two
parameters (absolute correlation value and minimum number of nodes) based on the
number of subsets created. These were further narrowed down by testing the prediction
algorithms with the possible feature combinations (clicks) and creating the final feature
set based on their performance. In our case, the computational complexity was solved by
randomly selecting 1600 feature combinations. These 1600 feature combinations consist
of 45 features. In total, about 9600 models were generated (based on the three algorithms,
the two groups, and the 1600 feature combinations), from which we selected those that
outperformed the baseline for each algorithm and group combination.

3. Results
3.1. Machine Learning Results

The results of the models performing above the baseline were collected and their
accuracy are plotted on the boxplot in Figure 5.

In the CTF Group (bipolarity), Random Forest showed spectacular improvement
over the baseline, with an average increase in accuracy from 5% to a maximum of 17%, a
maximum increase of 4% for logistic regression, and a maximum increase of 6.3% for Light
Gradient Boost (LGB). The outlier values for the best models are quantified and given in
Table 4.

The greatest improvement occurred in the PSF Group (schizotypy), where the max-
imum accuracy of the three algorithms was increased by an average of 18%, with some
exceptions. The best models are listed in Table 5.

The detailed features which were used in these best-performing models are summa-
rized in Tables 6 and 7.
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Table 4. Best-performing models for each algorithm in the CTF (bipolarity) group.

Algorithm Accuracy Precision Recall

Logistic regression 0.744681 0.727273 0.727273
Light Gradient Boost 0.702128 0.900000 0.409091

Random Forest 0.808511 0.809524 0.772727

Table 5. Best-performing models for each algorithm in the PSF (schizotypy) group.

Algorithm Accuracy Precision Recall

Logistic regression 0.787234 0.800000 0.727273
Light Gradient Boost 0.829787 0.888889 0.727273

Random Forest 0.744681 0.777778 0.636364

Table 6. The list of features used in the best-performing CTF (bipolarity) models, 1 meaning that
feature was used in that model and 0 meaning that it was not part of the feature set.

Features Logistic Regression Light Gradient Boost Random Forest

L5 1 1 1
IS 1 1 1
structure_pm_stdev 1 1 1
zero_ratio 1 1 1
min_length_between_bigger 1 0 1
lower_humps_width_min 0 1 0
3_thrd 0 1 0
upper_humps_width_max 0 1 0
median_length_between_bigger 0 1 0
min_bigger_values 0 0 1
2_thrd 0 0 0
upper_humps_median_distance 0 1 0
M10 1 0 0
number_of_upper_humps 0 0 1
upper_humps_median_distance 1 0 0
daily_activity_mean 0 0 1
lower_humps_width_min_qrt 1 0 0

Table 7. The list of features used in the best performing PSF (schizophrenic) models, 1 meaning that
feature was used in that model and 0 meaning that it was not part of the feature set.

Features Logistic Regression Light Gradient Boost Random Forest

L5 1 1 1
IS 1 1 1
structure_pm_stdev 0 1 1
zero_ratio 0 1 0
min_length_between_bigger 0 1 1
lower_humps_width_min 0 0 1
3_thrd 1 0 0
upper_humps_width_max 0 0 1
median_length_between_bigger 1 0 0
min_bigger_values 0 1 0
2_thrd 1 0 1
upper_humps_median_distance 0 0 1
M10 0 1 0
daily_activity_stdev 0 0 1
max_length_between_bigger 0 0 1
number_of_upper_humps 0 0 0
upper_humps_min_distance 0 1 0
structure_pm 1 0 0
upper_humps_width_max_qrt 1 0 0
length_of_sleep_in_minutes 1 0 0
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Figure 5. Boxplot of models performing above the baseline in the CTF (Cyclothymia Factor) and PSF
(Positive Schizotypy Factor) groups.

The correlation table showing the final 46 features is given in Figure 6.

Figure 6. The correlation table of the 46 filtered features, ordered by number of occurrence.
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3.2. Feature Effects
3.2.1. CTF (Bipolarity Group) Results

In the end, each algorithm (logreg, lgb, rfc) in each group had a few hundred models
that performed better than the baseline. This proved difficult to interpret, so we summa-
rized these results. To apply the Shapley summary to a more general model, we summed
the Shapley values for the corresponding algorithm, group, and feature row by row. For
each feature, each row has a Shapley value, as shown in Figure 1. Thus, when we sum two
models, we sum the Shapley values of the same features that belong to the same rows.

This step was necessary because we had a very small dataset. With this method, we
can reduce the bias due to random events and the inconsistency of the explanatory power
of the models. For example, consider a particular feature, “zero_ratio”, which occurs in
two different linear regression models, “model1” and “model2”. An exemplar individual,
named “E01”, has a Shapley value with opposite values in the two models. In the first
model, the value of the trait indicates the risk of mental illness, but in the second case, it
is the opposite. Thus, if we add the first Shapley value (from “model1” of “zero_ratio” of
“E01”) and the second (from “model2” of “zero_ratio” of “E01”), they cancel each other out.

Shapley values for the CTF Group are shown in Figure 7. In order of importance,
there is a gradual decline in the average importance scores after the first five features. The
distribution by feature value is nice, with high values going steadily from high to low
values (the coloring is continuous), and values with zero Shapley values are purple, so
values in the middle of the scale are not important to the decision. This is just the behavior
we would expect from an algorithm such as logistic regression.

Figure 7. Shapley values of features taken from the best model for Logistic regression in the CTF
(Cyclothymia Factor) group.

With this group, there is a gradual decline in the mean scores for the importance of
the Light Gradient Boost feature. Figure 8 shows the key part of the algorithm’s operation,
the gradient method of threshold selection (the boundary between presence and absence of
susceptibility), in terms of the weighting scores clustered at the edges.

In the case of the random forest depicted in Figure 9, the first few features are also
significant, but unlike the previous cases, they are not well separated by feature value,
which is to be expected given the small amount of data and the randomly generated decision
trees. This is not necessarily far from the potentially plausible solutions (especially since
these models performed best), but it could also mean that there is a nonlinear distribution of
propensity to bipolarity along our variables. For example, for 3_third, the average activity
in the third third of the day, there are very mixed values on both sides of the axis of the
graph. This might mean that different values of several variables actually have a low value,
a high value, and a slope.
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Figure 8. Shapley values of features from the best model for Light Gradient Boost in the CTF
(Cyclothymia Factor) group.

Figure 9. Shapley values of features taken from the best model for Random forest in the CTF
(Cyclothymia Factor) group.

For a summary of Shapley values, see Table 8. For each algorithm, the high intensity
of the least active 5 h (L5) was a leading determinant of the propensity to bipolarize. In
addition, features describing the characteristics of movements during sleep indicated that
movements were relatively infrequent, but when they occurred, they were long-lasting and
of high intensity, consistent with the high values of the fragmentation index. Relatively
low values were characteristics of the second and third periods of the day (with a higher
proportion of zero values). Another significant feature was IS. Here, samples with high IS
were much more likely to be classified in the propensity group.
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Table 8. Shapley values for best-performing models in the CTF (Cyclothymia Factor) group.

Feature LGR LGB RF

IS 4 − 2 − 1 −
L5 3 + 1 + 2 +
2_thrd 1 − 8 − 5 −
3_thrd 11 − x ? 4 −
frg_index 2 +
structure_pm 8 + x + 7 +
length_of_sleep_in_minutes 5 + 9 + x +
zero_ratio x + 3 + 3 +
max_length_between_bigger 6 + 5 + x +
median_length_between_bigger x + 6 + x +
avg_length_between_bigger 9 + 6 +
upper_humps_width_max x − 4 + x +
upper_humps_width_min_qrt 7 −
min_bigger_values 7 − x −
min_length_bigger x +
daily_activity_stdev x − x +

LGR: Logistic regression; LGB: Light Gradient Boosting; RF: Random forest.

3.2.2. PSF (Schizotypy Group) Results

In the case of logistic regression, the importance of the features decreases more or less
linearly, as can be seen in Figure 10, and it can be said that in this algorithm, most of the
features had a large impact on the result.

Figure 10. Shapley values of features taken from the best model for Logistic regression in the PSF
(Positive Schizotypy Factor) group

In contrast, it can be seen from Figure 11 that the Light Gradient Boost features
are largely separated, with the first zero_ratio being the most important and the next
4–5 features sharing the rest. It is interesting that this algorithm performs particularly well
in separating individuals with vulnerability to schizophrenia, and that the zero ratio is
given such a high weighting.
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Figure 11. Shapley values of features from the best model for Light Gradient Boost in the PSF (Positive
Schizotypy Factor) group.

Similar to the random forest models in the CTF Group (bipolarity), there is a lot of
scatter and overlap in the feature value coloring in Figure 12. The first 4 features are more
important, but the following also have significant impact as well.

Figure 12. Shapley values of features from the best model for Random forest in the PSF (Positive
Schizotypy Factor) group.

As for the CTF Group (bipolarity), the Shapley values of the models are summarized
in Table 9. In schizophrenia-prone individuals, the corresponding features (L5,2_thrd—low,
zero_ratio—high) show that activity is low, but in the third period of the day (the period
before sleep, 16:00–00:00), the same value is higher. High values for sleep fragmentation in-
dicate deterioration of sleep quality, but nocturnal features (lower_humps_width_min_qrt+,
min_length_between_bigger+, upper_humps_width_max+, upper_humps_(max/min/avg)
_distance+—based on these) together with L5 indicate that activity during sleep is low. For
structurality (IS), individuals with schizophrenic predisposition show a higher affinity. Part
of the results can be explained by the selection of individuals with schizotypy who have
negative symptoms.
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Table 9. Shapley values for best-performing models in the PSF (Positive Schizotypy Factor) group.

Feature LGR LGB RF

L5 1 − 3 −
IS 3 + 4 + 4 +
zero_ratio 2 + 1 + 6 +
frg_index 7 + x +
structure_pm 8 + x +
structure_pm_stdev 4 + 6 − 1 +
lower_humps_width_min_qrt x + 3 + x +
3_thrd x + x +
2_thrd x − 5 - x −
min_length_between_bigger 5+ 2 + 2 +
daily_activity_stdev x −
upper_humps_width_max x − 5 +
upper_humps_max_distance 7+
upper_humps_min_distance 8+
upper_humps_avg_distance 9+
length_of_sleep_in_minutes 6+ 7 +

LGR: Logistic regression; LGB: Light Gradient Boosting; RF: Random forest.

4. Discussion

In the case of the CTF group, the main similarities were the L5, zero_ratio, 3_thrd, and
some features of the night movement. However, some features that were considered very
important in the Shapley value-based analysis (such as IS, 2_thrd, frg_imdex, and sleep
time) proved irrelevant in the Adaptive, Hybrid Feature Selection (AHFS). Just as in the
CTF group, there are similarities (zero_ratio, structure_pm, etc.) and differences (IS, 3_thrd,
L5, frg_imdex) in the PSF group.

Figure 13 lists the features that were found in the literature for the two mental disorders
and are comparable to the features we use in the study.

Figure 13. A comparison of our key features with those in the literature. All the features taken from
the literature refer only to patients with bipolar or schizophrenic disorder, with the exception of longer
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sleep duration (highlighted in gray), as this also occurs in at-risk individuals. 1.: 2_thrd;2.: 3_thrd; 3.:
L5; 4.: zero_ratio; 5.: frg_index; 6.: length_of sleep_in_minutes; 7.: IS; CTF: Cyclothymia Factor; PSF:
Positive Schizotypy Factor. Berle et al., 2010 [27], Castro et al., 2015 [18], Dennison et al., 2021 [22],
Meyer et al., 2020 [14], Murray et al., 2020 [23], Panchal et al., 2022 [24], Reinertsen et al., 2018 [25],
Scott et al., 2017 [15], Wee et al., 2019 [26], Jones et al., 2005 [28].

Most of the variables were found mainly in manifest mental illness or in cases with a
very high risk of developing the illness. Our study indicates that some characteristics can
be detected even in cases of low susceptibility. We examined daily activity with variables
2_thrd, 3_thrd, and L5 covering approximately 24 h. Our results show a general decrease in
daily activity in our two propensity groups, as described in the literature [14,15,27]. Based
on the analysis of the data, it is more advisable to process the data in this way, i.e., in diurnal
subdivisions, since differences can be found both between the Control Group and the two
propensity groups and between the two groups studied in different time periods. However,
our models did not find any sufficient explanatory power for the feature describing the
average 24 h activity.

The features describing movement during sleep are consistent with fragmentation and
give us a better insight into patterns of nocturnal activity (which show significant differences
compared with controls). For example, in the CTF Group (latent bipolar liability), we saw
that in addition to high values of L5 and the fragmentation index, sleep characteristics
were also descriptive: pauses between movements increased, but so did the amplitude and
length of each movement. In addition, we noticed that the fragmentation index was also
higher, but L5 was low, meaning that the quality of sleep was also worse in this group, but
they were more restful during the least active 5 h. The interdaily stability variable also had
a similar pattern between groups to that in the literature: schizophrenia-prone individuals
showed higher stability, similar to patients diagnosed with schizophrenia studied by
Berle et al. [27]; bipolar-prone individuals showed lower stability, similar to patients
studied by Jones et al. [28]. Intraday variability and the lower M10 variable [18] were
examined but were not among the top 20 features in most models (M10 is the 18th feature
in the random forest in the schizophrenia group, but no distribution by feature value
is shown).

In order to validate our results, another approach was also used by our team members,
called Adaptive, Hybrid Feature Selection or AHFS. This hybrid solution combines the
existing (supervised, state-of-the-art) feature selection techniques, which have their own
specific but fixed feature evaluation measures/metrics, in an adaptive manner [62]. The
AHFS algorithm is a simple method that first selects the “most important” feature, then
another, the third, and so on. The difference between the two methods and their results
is so large and interesting that this article is not sufficient for a detailed analysis, but we
will cover this topic in another article. The AHFS uses artificial neural networks to create a
good set of features. This algorithm has significant differences from the other three, so the
existence of the differences is not surprising.

5. Conclusions

Schizophrenia and bipolar disorder are severe mental disorders whose early detection
is not sufficient to halt chronic progression. Another approach is to monitor individuals
at risk and their symptoms. However, we wanted to go one step further and group the
healthy university student population according to certain characteristics considered to
have specificity. Screening and monitoring people can help us better understand the
development pathway of these disorders and make it possible to prevent the onset of the
first manifest episodes. In summary, the results of our research are as follows:

• We successfully applied learning algorithms to separate Control, CTF (bipolarity), and
PSF (schizotypy) groups;

• We used features engineered from wavelet analysis that had a significant impact on
this decision;
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• Features describing the characteristics of movements during sleep were used and
interpreted in the training;

• Based on a significant number of models, we selected the most efficient ones and then
determined the Shapley value of the low-correlating features used in them;

• The results of the literature were supported and supplemented by new features
selected during our teaching.

We successfully applied learning algorithms to separate both the low-risk groups for
bipolarity and schizotypy from the control, and in both cases, we achieved an accuracy
of about 80%. The biggest limiting factor was the potential for random effects due to the
small sample size, which we attempted to filter out using a large number of models. The
importance scores of the features in these models were calculated using Shapley values
and averaged so that we could predict the weighting and contribution of each feature
with a relatively high degree of confidence. Based on these results, we found that the
features we constructed have high explanatory power. The nocturnal features may be a
good complement for the fragmentation index and L5 and allow us to better understand
the higher-resolution activity features for each disease and its liabilities.
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mation. S1: the scripts in the “ml” folder contain the machine learning codes including the SHAP
calculator, S2: the "pyactigraphy"; "zcm"; "RAW_VALUES"; "corr_clustering_and_cliques" folders con-
tain the various source codes for the data preparation and the feature composing processes, Figure S1:
A flowchart, titled ’aktigraf_features.png’ describing the process, S3: the “Wavelet transformation”
Word document contains details about the wavelet transformation method.
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Abbreviations
The following abbreviations are used in this manuscript:

AHFS Adaptive, Hybrid Feature Selection
BIS/BAS Scales The Behavioral Inhibition and Activation System Scales
BS Basic symptoms
C Control Group
CFG Cyclothymia Factor Group
CRP C-reactive protein
CWA Continuous wavelet analysis
EASE Examination of Anomalous Self-Experiences
EEG Electroencephalogram
HUF Hungarian Forint
LAPS Leuven Affect and Pleasure Scale
LGB Light Gradient Boosting
LGR Logistic regression
LIS3DH 3-axis MEMS accelerometer
LWH Length, width, height
IL-12 Interleukin 12
MDQ Mood Disorder Questionnaire
ML Machine learning
MW mother wavelet
O-LIFE Oxford-Liverpool Inventory of Feelings and Experiences
PDI Peters et al. Delusions Inventory
PDI-21 Peters et al. Delusions Inventory
PIM Proportional Integration Method
PSF Positive Schizotypy Factor Group
RF Random forest
SCID-5 Structured Clinical Interview for DSM-5
SCID-5-PD Structured Clinical Interview for DSM-5 Personality Disorders
SHAP Shapley Additive exPlanations
TCI-R The Temperament and Character Inventory Revised
THINC-it The THINC-Integrated Tool
TAT Time Above Threshold
UHR Ultra high risk
ZCM Zero Crossing Method
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