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Selection of optimal validation methods for quantitative 
structure–activity relationships and applicability domain
K. Héberger
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ABSTRACT
This brief literature survey groups the (numerical) validation meth
ods and emphasizes the contradictions and confusion considering 
bias, variance and predictive performance. A multicriteria decision- 
making analysis has been made using the sum of absolute ranking 
differences (SRD), illustrated with five case studies (seven exam
ples). SRD was applied to compare external and cross-validation 
techniques, indicators of predictive performance, and to select 
optimal methods to determine the applicability domain (AD). The 
ordering of model validation methods was in accordance with the 
sayings of original authors, but they are contradictory within each 
other, suggesting that any variant of cross-validation can be super
ior or inferior to other variants depending on the algorithm, data 
structure and circumstances applied. A simple fivefold cross- 
validation proved to be superior to the Bayesian Information 
Criterion in the vast majority of situations. It is simply not sufficient 
to test a numerical validation method in one situation only, even if 
it is a well defined one. SRD as a preferable multicriteria decision- 
making algorithm is suitable for tailoring the techniques for valida
tion, and for the optimal determination of the applicability domain 
according to the dataset in question.
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Introduction

The debate about whether cross-validation [1–3] or external validation [4,5] is better 
(superior, compulsory) seems to have come to a standstill around the mid-2010s [6,7].

An empirical meta-analysis [8] compared the performance of internal cross- versus 
external validation for 28 studies on molecular classifiers and concluded that cross- 
validation variants overestimate classifier performance in the majority of cases. 
Therefore, they suggest routine external validation of molecular classifiers [8].

In contrast, Chatterjee and Roy [9] have recently suggested avoiding overestimation of 
performance of 2D-QSAR models, by using cross-validation strategies.

A single split external test cannot be considered ground truth. On the contrary, single 
split and external validation are different [4]. The Gütlein-Gramatica debate was settled 

CONTACT K. Héberger heberger.karoly@ttk.hu
Supplemental data for this article can be accessed at: https://doi.org/10.1080/1062936X.2023.2214871.

SAR AND QSAR IN ENVIRONMENTAL RESEARCH   
https://doi.org/10.1080/1062936X.2023.2214871

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any med
ium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on which this article 
has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://orcid.org/0000-0003-0965-939X
https://doi.org/10.1080/1062936X.2023.2214871
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/1062936X.2023.2214871&domain=pdf&date_stamp=2023-05-25


with Gramatica suggesting multiple external testing: ‘To avoid the limitation of using only 
a single external set, we, in our recent papers [10] always verify our models on two/three 
different prediction sets’ [11].

Some sources about performance merits are summarized next: the square of multiple 
correlation coefficients for the test set can be defined differently (i.e. the explained 
variance for the prediction model, generally denoted by Q2) [12]. Concordance correlation 
coefficient (CCC) is recommended as a measure of real external predictivity [13]. On the 
other hand, a detailed study [14] on mapping between the CCC and the mean squared 
error showed that CCC is overoptimistic, and the authors advised against the replacement 
of traditional Lp-norm loss functions by CCC-inspired loss functions in multivariate regres
sions. Shayanfar and Shayanfar have recently disclosed that the ranges for performance 
parameters defining good, moderately good and bad models are contradictory and no 
advocated way exists, which shows superiority from all points of view (according to all 
performance parameters) [15]. Significance thresholds for performance parameters are 
strongly application-dependent [16].

Several sources reveal some problems of k-fold cross-validation [16–18]. A simple 
permutation of rows may lead to contradictory conclusions about the significance of 
the models [16]. Rakhimbekova et al. find that k-fold cross-validation is overoptimistic, i.e. 
it provides biased predictions for the modelling of chemical reactions [17]. A comparison 
of validation variants revealed that the conclusions can vary according to the data 
structure; row randomization is suggested as the first step of data analysis [18].

As early as in 2007, Rücker et al. called attention to the fact that a randomization 
(permutation) test can be performed differently, not only by y-scrambling [19]; yet his 
recommendations are rarely followed, if at all.

There are many variants of cross-validation (CV): leave-one-out, leave-many-out, boot
strap, bootstrapped Latin partition, Kennard-Stone algorithm, etc., with realizations of i) 
row-wise, pattern-wise (Wold), etc. [20]; ii) Venetian blinds, contiguous block, etc. [21]. 
Reliable estimation of prediction errors for QSAR models can be completed by using 
double cross-validation [22,23], also in a repeated form [22]. The variants should also be 
disclosed to obtain reproducible results.

A bunch of mostly new, individual statements are gathered below to illustrate the 
complexity of the validation aspects.

How to split training, validation (calibration) and test set is of crucial importance [3,24]. 
In a detailed classification modelling, Xu and Goodacre have ended up with statements as 
i) a good balance between training and test set is a prerequisite to obtain a stable 
estimation of model performance, and ii) there are no superior methods/parameter 
combinations, which would always give significantly better results than others, i.e. 
which method is to be used for data splitting (and with which parameters) cannot be 
defined a priori [24]. A recursive variable elimination algorithm was elaborated using 
repeated double cross-validation. The robust algorithm improves the predictive perfor
mance and minimizes the probability of overfitting and false-positive rates at the same 
time [25]. Cross-validation (single split) and even a double cross-validation ‘provide little, if 
any, additional information’ to evaluate regression models [26]. Guo and his colleagues 
[27] uncovered two types of common mistakes of cross-validation in Raman spectroscopy: 
i) splitting the dataset into training and validation datasets improperly; ii) applying 
dimension reduction in the wrong position of the cross-validation loop. Several 
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combinations of different cross-validation variants (c.f., ref. [21]) and model-building 
techniques were used to reveal their complexity. The gap between the squared multiple 
correlation coefficients for calibration (r2) and for the test set (Q2) has changed in 
a systematic manner according to the algorithms applied [28]. As multiple linear regres
sion can be taken as a kind of standard, Kovács et al. have investigated the sample size 
dependence of validation parameters [29].

The fast development of the big data and machine learning fields requires novel 
validation techniques. Here, two examples are indicated only: Novel validation options 
(convergent and divergent ones) have been developed for machine learning models 
(convergent means one dataset and many classifiers—also called consensus modelling— 
whereas divergent means more external datasets). Suggestions have been made on i) how 
to acquire valid external data, ii) how to determine the number of times an external 
validation needs to be performed and iii) what to do when multiple external validations 
disagree with each other [30]. Coefficient of determination (r-squared) is more informative 
and truthful than symmetric mean absolute percentage error (SMAPE). Moreover, r2 does 
not have the interpretability limitations contrary to error variants (mean absolute error) [31].

Hence, it is somewhat odd, annoying and astonishing (!) that older, refuted and 
outdated sources are still cited, but at the same time, new examinations also produce 
contradictory conclusions. The well recognized international standards [32,33] are not 
always followed. Cross-validation is not one, but a set of algorithms, which need to be 
applied differently in different contexts. The same is true for external validation, as well. 
Herewith it is not feasible to put the jungle of contradictory references in order, but some 
reasons are enumerated here.

The reasons are manyfold: i) the validation practices are different for various scientific 
disciplines; ii) the aim of validation can be different (model optimization, feature selection, 
understanding the data structure, etc.); iii) the modelling methods are diverse (regression, 
classification); iv) the peculiarities (idiosyncrasies) of datasets are different; v) the types 
and number of performance parameters provide conflicting results, and many others.

A simple and trivial conclusion would be that the recommended validation techniques 
are dataset dependent and should be carried out independently again and again, from 
case to case.

However, the question remains: why are there so many independent studies with 
contradictory conclusions? What kind of validation variant should be selected for a new 
examination, if the data structure has not been known yet?

Hence, the primary aim of this study is to compare (numerical) validation methods 
(bounded to selection criteria) in a fair way. If the performance criterion concerns an ‘on- 
line modelling and prediction’ situation, the model comparison includes this case, as well. 
Ranking (ordering and, if possible, grouping) of the performance criteria is also the goal of the 
present study, definitely. To date, numerous methods are known to determine the applic
ability domain, but their validation is scarcely studied and recommendations are hard to find.

A feasible assumption is that all types of validation approximate the true performance 
with a certain level of error. Similarly, the performance parameters are not error-free 
quantities. Even worse, they can produce contradictory model rankings (feature selection, 
etc.). Fortunately, well-known algorithms were elaborated in the field of Multi Criteria 
Decision Analysis (MCDA), also termed as Post-Pareto-analysis or multiobject 
optimization.

SAR AND QSAR IN ENVIRONMENTAL RESEARCH 3



‘MultiCriteria Decision-Making (MCDM) strategies are used to rank various alternatives 
(scenarios, samples, objects, etc.) on the basis of multiple criteria, and are also used to 
make an optimal choice among these alternatives. In fact, the assessment of priorities is 
the typical premise before a final decision is taken’ [34]. The highly degrading character
istic of the total ranking methods is the subjectivism: i) the choice of a performance index 
is subjective, ii) the selection and definition of attribute weights are subjective and iii) the 
choice of preference functions is also subjective [34]. The author is well aware of the fact 
that some authors [35] claim to define objective weights. However, the selection of 
mathematical procedures to calculate them remains subjective.

Therefore, a fair method comparison algorithm was applied: sum of ranking differences 
(SRD) as a method of ranking and grouping [36]. Several, carefully selected case studies 
are employed, and fair evaluations are expected without influencing the results with the 
beliefs of the original authors. This work explains the existence of contradictory conclu
sions in the literature and suggests solutions to overcome the difficulties of model 
validation.

Calculation method

Since its invention in 2010 [36], sum of ranking differences achieved a considerable 
record: As of May 16 2023, Scopus lists 559 research papers by the keyword ‘sum of 
ranking differences’ (search within all fields). SRD is entirely general, and it has been 
applied for column selection in chromatography [36,37], for comparison of compounds 
based on their ADMET characteristics [38], for outlier detection (without tuning parameter 
selections) [39], for lipophilicity assessment [40–42], for ranking academic excellence [43], 
to develop novel similarity indices [44,45], to tea grade quantification [46], just to name 
a few.

The utilization of SRD has proliferated as it turned out to be one of the best MCDA 
techniques [3,47]. Eight MCDM algorithms were compared, and their consensus was 
realized by the sum of ranking differences without using subjective weights [47].

The validation methods are to be arranged in a matrix form: objects are placed in the 
rows, whereas variables (validation methods or selection criteria) to be compared are 
arranged in the columns. Ranking should be carried out for each validation method. If the 
‘governing’ (reference) ranking is known, it should be compared with the rankings for 
each individual ranking produced by the variables (validation methods) one by one. Then, 
absolute values for differences between the reference ranking and individual ones are 
calculated and summarized for each validation method. The absolute values of differ
ences for the ‘governor’ (benchmark) and individual rankings are summed up. The 
procedure is repeated for each individual validation method (or criterion), therefore one 
SRD value will be assigned to each method (or criteria). The SRD values obtained in such 
a way order (rank and group) the methods simply. The reference ranking—if not known 
a priori—can be different: for analysing residuals and error rates, the row-wise minimum is 
the best choice, whereas for correct classification rates the row-wise maximum is the best 
one. In other cases, the average might be chosen as a suitable benchmark (or median, if 
the distribution is skewed). The rationale behind is that we are better off using the 
average than any other individual reference scale, even if the average (median) is biased 
and/or highly variable. Consensus modelling (ensemble averaging) is one of the success 
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stories in the modelling field (rational drug design, QSAR, etc.). The theoretical foundation 
is given in the book of Hastie et al. on the example of smoothing and assuming additive 
Gaussian noise: ‘ . . . the bootstrap . . . allows us to compute maximum likelihood estimates 
in settings where no formulas are available’ [48].

We can always define a hypothetical model (method), which produces average values. 
We may be interested in knowing which models, methods, etc., are the most similar and/ 
or dissimilar to the hypothetical one, and how the models are grouped regarding the 
average as reference. SRD corresponds to the principle of parsimony and provides an easy 
tool to evaluate the validation methods: the smaller the sum, the better the method, 
because the smaller discrepancies are preferred as compared to the reference.

As all variants of cross-validation and all criteria were determined on the same scale (0 
< r2, Q2 < 100; 0 < No. of PC < Nmax; 0 < classification rate < 100), no data preprocessing 
was necessary.

If the number of rows (objects) is different, the SRD values cannot be compared 
directly. To make the different case studies comparable, the resulting SRD values were 
scaled between 0 and 100 (which is possible due to the existence of an exact upper limit 
for the SRD values for any given number of objects, which can be easily determined).

The SRD procedure contains a kind of validation called CRRN (comparison of ranks by 
random numbers) [49]. A recursive algorithm calculates the discrete distribution for 
a small number of objects (n< 14). The discrete (true) distribution of simulated (random) 
SRD-s is approximated with a normal distribution for any number of objects larger 
than 13.

The reliability (significance) of ranking by SRD can be checked easily. The distance 
between true SRD values and SRD values by chance shows the reliability. The significance 
can be tested by nonparametric tests such as the Wilcoxon matched pair test. If the SRD 
values derived from random numbers are in the same range as the true SRD values, the 
models built on real data are indistinguishable from random ranking, even if physical 
significance can be assigned to the parameters of the model.

Results

Case study no. 1. Comparison of validation variants

As outlined in the introduction, reputable scientists cannot agree on the performance of 
cross- and external validations. Herewith, the results of two scientific schools are com
pared: that of Gramatica’s [5] and that of Hawkins’ [50].

Gramatica has given the statistical performance parameters for 30 linear models 
containing two descriptors each. The models predicted mutagenicity of 48 nitro substi
tuted polycyclic aromatic hydrocarbons (39 compounds were selected in the training set 
and 17 compounds in the prediction set). The following performance indicators were 
calculated: square of multiple correlation coefficient for the training set (R^2), leave-one- 
out cross-validated correlation coefficient (Q^2LOO), bootstrap cross-validated correla
tion coefficient (Q^2bootstr) and correlation coefficient calculated on the external test set 
(Q^2ext). Performance parameters are from Table 1 in ref. [5].

The 30 models provide a reliable basis for ranking. The row averages of performance 
parameters were considered as the ‘governing feature’ of ranking. The only assumption is 
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that all performance indicators express predictive features of the models with error (with 
bias and random error). As some of the indicators are overoptimistic (R^2, Q^2LOO) and 
others are pessimistic (Q^2bootstr, Q^2ext), we may well hope that not only the random 
errors cancel each other out but the biases as well.

Figure 1 shows unambiguously that external validation is the best (consensus) choice, 
the bootstrap validation is far worse, LOO is even worse and the worst validation method 
is the usage of the correlation coefficient for the training set. Still, the validation by r2 

(training) is better than the random ranking (5% limit can be found at scaled SRD ~ 
54 (XX1)).

Before drawing an intermediate conclusion, let us compare various modelling methods 
and consider the performance parameters given by Hawkins et al. [50]. In their Table 1, 
performance parameters (cross-validated Q2 and hold-out r2 values) are gathered for (i) 
usual ridge regression, RR: true 10-fold CV-Q2 (Q^2U) and hold-out r2 (Q^2Uext); (ii) Soft 
threshold descriptor selection then RR: naïve one-deep 10-fold CV-Q2 (Q^2Sn1), naïve 
two-deep 10-fold CV-Q2 (Q^2Sn2), true 10-fold CV-Q2 (Q^2S) and hold-out r2 (Q^2Sext); 
(iii) Gram–Schmidt descriptor selection then RR: naïve one-deep 10-fold CV-Q2 (Q^2Gn1), 
naïve two-deep 10-fold CV-Q2 (Q^2Gn2), true 10-fold CV-Q2 (Q^2G) and hold-out R2 

(Q^2Gext); (iv) elastic net: true 10-fold CV-Q2 (Q^2E), and hold-out r2 (Q^2Eext).
Twenty randomly drawn splits serve as a reliable basis for SRD ranking. Naturally, the 

splits should not differ considerably; still, the average of 12 performance parameters runs 
from 0.468 to 0.522 showing the differences in data structure from segments to segments. 
Test of means suggests a significant difference: p-limit = 0.0226, assuming normal 
distribution, two-sided t-test for performance parameters (Table 1 in ref. [50]). These 
differences help in ranking, but no importance should be attributed to them.

The results are visualized in Figure 2.

Figure 1. Scaled sum of ranking difference (SRD) values between 0 and 100 for performance 
parameters plotted against themselves (x and left y axes). The solid (black) line is an approximation 
by cumulated Gauss distribution to the discrete distribution of the simulated random numbers given 
in relative frequencies, right y axis. (XX1 = first icosaile, 5%, XX19 = last icosaile 95%, med = median).

SAR AND QSAR IN ENVIRONMENTAL RESEARCH 7



Two groups can be seen immediately; (i) ‘good’ performance indicators (left-hand side) 
and ‘bad’ ones (right-hand side): Q^2Sn1, Q^2G, Q^2Gn1, Q^2E, Q^2Gn2, Q^2S and 
Q^2Sn2, Q^2U, Q^2Eext, Q^2Gext, Q^2Uext, Q^2Sext, respectively. All SRD values for the 
‘bad’ group are above the 5% error limit (i.e. comparable with random ranking). The close 
proximity of SRD values suggests that the ordering might vary if other splits or other data 
were used. The first position of Q^2Sn1 should not be taken seriously, as random splits 
governed the ranking. However, such proximities as Q^2Gn1 and Q^2E show the closest 
similarities.

A striking but not surprising conclusion is that external validations are not better than 
random ranking; all external validation parameters are overlapping with the discrete 
distribution of random SRD values (approximated by a continuous cumulated Gaussian 
fit, black line in Figure 1, the fitting parameters are given in the title). It is not surprising 
because the main message is in accordance with Hawkins et al.’s conclusions [50].

Half of the indicators are commensurable with the random ranking, as expected; the 20 
splits were drawn randomly, but the correlation coefficients of the performance criteria 
vary between –0.825 and +0.850 (Table 1).

Table 1 indicates the significant differences compared to the theoretical ρ = 0. Indeed, 
Q^2Eext, Q^2Gext, Q^2Uext, Q^2Sext, are positively correlated with each other pairwise 
and located in the range of random ranking (Figure 2).

Comparing Figures 1 and 2, one can immediately conclude that the ranking procedure 
(SRD) is perfect; it recapitulates the sayings of the original authors. However, the two 
conclusions are in full contradiction; in the first case external validation is selected as the 
best method, whereas in the second case any variants of external validations are ordered 
in the ‘bad’ group; they, in fact, realize the worst options. Both scientific schools con
cluded correctly on the basis of the available information. Figure 1 shows the superiority 
of external validation on the basis of the mutagenicity example of benzene derivatives 

Figure 2. Scaled sum of ranking difference (SRD) values between 0 and 100 for performance 
parameters plotted against themselves (x and left y axes). The solid (black) line is an approximation 
by cumulated Gauss distribution to the discrete distribution of the simulated random numbers given 
in relative frequencies, right y axis (for notations see text).
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(48): 30 bivariate models and four types of cross-validation are compared. ‘Some models 
appear stable and predictive by internal validation parameters (Q^2LOO and Q^2bootstr), 
but are less predictive (or even unpredictive Q^2ext = 0) when applied to external 
chemicals’ [5]. On the contrary, the juvenile hormone example (304 compounds), vali
dated by 20 segments, applies different variants of model building, and CV clearly shows 
that external validation is the worst option (Figure 2).

Case study no. 2. Comparison of statistical tests based on residuals

Cederkvist et al. have compared four methods from the point of view of prediction 
performance [51]. As the statistical tools are applicable in a pair-wise manner only, they 
compared PLS and PCR models with different numbers of latent variables pairwise in 
various combinations. Unfortunately, the predicted values or the residuals are not given in 
their work, i.e. a direct comparison is not possible between SRD ordering and their results. 
However, Table I in ref. [51] allows a ranking of three statistical tests: CVANOVA, Wilcoxon 
Signed-Rank test and Friedman test. Five pairs of models served to order the above three 
tests. Their table contains probability values for testing squared and absolute residuals. 
The SRD ordering provides exactly the same results for both cases, as expected. The 
average probabilities were accepted as a reference.

Although the number of pairs is fairly small (5), the finding is in accordance with the 
original authors’ main conclusion ‘CVANOVA based on the absolute values of the predic
tion errors seems to be the most suitable method for testing the difference between 
prediction methods’. The smallest SRD was calculated for CVANOVA (Figure 3). The 
distorted random distribution (black line connects the points of the discrete distribution) 
shows that the theoretical SRD distribution is not normal, but still a clear decision can be 
made. To note, all three methods overlap with the distribution of SRD values for random 

Figure 3. Scaled sum of ranking difference (SRD) values between 0 and 100 plotted against 
themselves. The solid (black) line connects the discrete points of theoretical SRD distribution for the 
simulated random numbers given in relative frequencies, right y axis.
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ranking, but this can be attributed mostly to the small number of objects, which yields an 
unusually wide SRD distribution.

Case study no. 3 Bayesian information criterion or cross-validation?

A recent empirical study questions the usefulness of information criteria (ICs) in selecting 
the best model. Various ICs (e.g. Akaike’s IC, Bayesian IC, etc.) are used extensively to rank 
competing models, to select the ‘best-performing’ model(s) from alternatives and to make 
inferences on variable importance [52]. The authors, as editors, have observed that many 
submissions . . . did not evaluate whether the nominal ‘best’ model(s) found using IC is 
a ‘useful model’ [52].

Toher et al. have compared classification methods in a detailed study [53]. Their 
intention was to compare classifiers (linear and quadratic discriminant analyses) with 
variants of partial least squares discriminant analysis (PLS DA, their terminology was 
‘regression based’ methods). They applied measured data: 157 honey samples from 
Ireland (pure and adulterated differently) in various situations (data preprocessing with 
and without Savitzky-Golay filter, maximum of 10, 20 and 40 PLS components, as well as 
three different types of training-test splits: (i) correct proportions of pure and each type of 
adulterant, (ii) correct proportions of pure and adulterated and (iii) unrepresentative 
proportions of pure and adulterated samples). Different data structures have been con
sidered in various sample sets (Tables 2–5 in ref. [53]) using different kinds of evaluations. 
Honey samples were drawn from different times. Three batches were adulterated with 
fructose-glucose mixtures, and one-one batch with fully inverted beet syrup and high 
fructose corn syrup, each.

Two methods of model selection were compared for each classification variant: fivefold 
cross-validation (CV) and the Bayesian Information Criterion (BIC). Best classification rates 
in Tables 2–5 in ref. [53] served as a reliable basis either to compare the variants of 
regression and model-based discriminant methods, or to compare various tested situa
tions (pure-adulterated, various splits). The ordering by SRD on regression- and on model- 
based discriminant methods gives interesting and conforms results to the original con
clusions (e.g. Savitzky-Golay filtering with a maximum of 10 PLS components is the best, 
40 PLS components realize a clear overfit, etc., the results are available from the author 
upon request). This work aims to compare different situations. As both criteria (BIC and 
CV) were tested in all situations, also the two criteria can be compared reliably.

Figure 4 shows the frequencies plotted against the scaled sum of ranking differences, 
unlike the previous figures.

Two distributions can be seen clearly. While there is some overlap, still there is 
statistical evidence that the two distributions are significantly different. The variances 
are homogeneous (Levene test, Cochran, Hartley, Bartlett tests all suggest this). Smaller 
SRD values show the superiority of CV over BIC criterion: scaled-SRDmean(CV) = 26.4 and 
scaled-SRDmean(BIC) = 45.0. The means of SRD values for the two groups are significantly 
different by t-test (assuming normal distribution); the significance limit is p= 0.000144. 
Nonparametric tests also confirm significant difference for the two groups: Kolmogorov– 
Smirnov test (p-limit < 0.01) and Mann–Whitney U-test (p-limit = 0.000674). Naturally, the 
ranking by SRD can reveal which situations are the best ones and which criteria should (or 
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might) be used in different situations, in case of different data structures. However, it lies 
outside the scope of present investigations to analyse this in detail.

The above finding is in full accordance with the original authors: ‘ . . . the vast 
improvement in classification performance using cross-validation as a model selection 
method indicates that the penalty term imposed by BIC is not optimum for achieving 
good classification performance . . . ’.

The figure clearly shows the problem one should face in model comparison studies. In 
some cases, BIC and CV are equivalent; in a few cases, BIC is even superior to CV, c.f., 
Figure 4. However, in the vast majority of cases, the statistical tests suggest that the 
conclusion is in accordance with the conclusion based on SRD. Hence, it is not sufficient to 
test a method in one situation only, even if it is a well defined one.

Case study no. 4. Comparison of r2 with error terms

Chicco et al. [31] have compared the coefficient of determination (r2) with the symmetric 
mean absolute percentage error (SMAPE) in several use cases and in two real medical 
scenarios. They declared that the r2 is more informative than SMAPE. Other error measures 
have interpretability limitations, which include mean square error (MSE), and its rooted 
variant (RMSE), or the mean absolute error (MAE) and its percentage variant (MAPE).

As SRD incorporates rank transformations, the scaling problem is eliminated. Two 
tables were united and transposed (Supporting information Tables S1 and S2 of ref. 
[31]). Average was accepted as the benchmark. Figure 5 visualizes the main message in 
full accordance with the conclusions of ref. [31].

The selection of the reference is mirrored in the SRD plot. As the majority of perfor
mance parameters are error measures, the closest ones to the benchmark (SRD = 0) are 
error-based parameters, as they should be. The best of them is MAPE and all the 

Figure 4. Frequencies of Bayesian information criterion (B) and fivefold cross-validation (C) (y–axis) as 
a function of scaled sum of ranking differences (x-axis).
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remaining error measures are indistinguishable from each other and from the random 
ranking (their line lies between XX1 and XX19). However, SRD is fool proof: the line for r2 is 
located to the right of the 95% probability of random ranking (XX19), i.e. it is the best 
measure but ranks reversely as compared to error merits. This finding supports the 
conclusion of the original authors, with an independent multicriteria decision-making 
tool.

Case study no. 5. Comparison of methods to determine the applicability domain

Standardization always lags behind cutting-edge research. There is no wonder that no 
validation is included in regulatory documents for defining the applicability domain (AD). 
Fortunately, the frontier is extending: two attempts could be found to compare validation 
methods for defining AD [54,55]. The latter one is a special case and concerns QSPR 
models for chemical reactions only.

Sahigara et al. [54] emphasized that different algorithms for the determination 
of AD define the interpolation space in several ways, and that the selected thresh
olds contribute significantly to the extrapolations, while conforming with OECD 
principles [54]. The analysis of Sahigara et al. was limited to classical AD methodol
ogies used for interpolation space. These classical methodologies can be classified 
into three groups: i) range-based ii) distance-based and iii) probability density 
distribution-based methods. Transposes of Tables 6 and 7 of ref. [54] are suitable 
to compare the AD determination methods in a fair way. The notations are as 
follows: Euclidean Distance (EUC), City Block (Manhattan) Distance (CBk), 
Mahalanobis Distance (Mah), k-Nearest neighbour algorithm (k= 5) with Euclidean 
Distance (5NNEUC), k-Nearest Neighbour algorithm (k= 5) with City Block 
(Manhattan) Distance (5NNCBk), k-Nearest Neighbour algorithm (k= 5) with 
Mahalanobis Distance (5NNMah), all distance measures are at p= 95%; Bounding 

Figure 5. Comparison of coefficient of determination (r2) and error measures (MAE MSE SMAPE RMSE 
MAPE, resolving the abbreviations can be found in part 3.3) using the SRD methodology. Notations are 
the same as in Figures 1–3.
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Box (BouB), PCA Bounding Box (PCABouB), Convex Hull (ConvexHull) and Potential 
Function (PotFunc).

The only highly sensitive decision is the selection of an appropriate gold standard in an 
SRD analysis. Fortunately, the SRD algorithm allows the usage of a hybrid optimum. As the 
number of compounds outside the 95% range is on different scales, the median was 
selected as the best possible choice (outside range, test sets). The squared correlation 
coefficient of prediction (Q2) was averaged to obtain the optimal benchmark value, 
whereas minimum was applied to absolute error values (details are given in the 
Shakigara sheet of the supplementary excel table).

There are some insignificant differences in the middle of the SRD plot (Figure 6); 
however, the best (Convex Hull) and worst (k-Nearest Neighbour algorithm (k= 5) with 
Euclidean Distance, 5NNEUCp95) methods to determine the applicability domain can be 
easily perceived. 5NNEUCp95 is indistinguishable from random ranking, as its line is 
located right of the XX1 (5%) border. Naturally, the ordering of the methods might 
change, if other computer codes and performance parameters were included in the 
study. However, it is the best multicriteria choice at the present state of knowledge.

The Convex Hull algorithm defines the interpolation space as the smallest convex area 
containing the entire training set; hence, it can be challenging with increasing dimen
sions, i.e. it is a fine approximation, and the leading position is understandable henceforth. 
The Euclidean distance is sensitive to outliers i.e. its random character is understandable 
even when considering five neighbours.

It is much more difficult to define AD for quantitative structure–property relationship 
models of chemical reactions in comparison with standard QSAR/QSPR models because it 
is necessary to consider several important factors (reaction representation, conditions, 
reaction type, atom-to-atom mapping, etc.) [55].

Figure 6. Comparison of the methods for determining the applicability domain, i.e. scaled sum of 
ranking difference (SRD) values between 0 and 100 (x and left y axes). Abbreviations can be seen in the 
text. The solid (black) line is an approximation by cumulated Gauss distribution to the discrete 
distribution of the simulated random numbers (500 000) given in relative frequencies, right y axis.
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Rakhimbekova et al. [55] have compared various AD definition methods for four types 
of reactions (Bimolecular nucleophilic substitution (SN2), Diels–Alder reactions (DA), 
Bimolecular elimination (E2) and Tautomerization). They have used four performance 
metrics and categorized the AD definition methods as i) machine learning technique- 
dependent AD definition methods, and universal AD definition methods ii) with opti
mized hyperparameters and iii) without the usage of hyperparameters. Finally, 16 method 
combinations were compared. The authors have properly realized that the situation is an 
MCDM one and introduced ‘zero’ models with best and worst performances. The trans
pose of their Table 3 [55] is suitable for an SRD analysis. Again, the selection of an 
appropriate gold standard is a sensitive decision. Fortunately, numerical optimal values 
are given in Table 3 of ref. [55] (OIR criterion, four values in line 19 of Table 3), and the 
hypothetical best values were selected in case of all other criteria (the maximum). The 
details can be found in the Rakhimbekova sheet of supplementary information.

Figure 7 suggests making three classes: recommendable techniques below SRD ≈ 30 
(indicated by the dashed black vertical line) from RFR_VAR*_OIR to Leverage, NOT 
recommendable techniques above SRD ≈ 30 from RFR_VAR*_OD to GPR-AD*_OD and 
one forbidden method combination: 1-SVM*_OD. The latter one could not pass the 
randomization test, i.e. it cannot be distinguished from random ranking. The notation 
can be found in the Rakhimbekova sheet in supplementary information and in ref. [55].

The large gap between SRD = 0 and SRD ≈ 25 suggests clearly that none of the examined 
method combinations are optimal, and better ones can be elaborated in the future.

It is obvious that the best performance parameter is the difference between RMSE of 
property prediction for reactions outside and within AD (OIR). This metric was first 
proposed by Sahigara et al. [54]. Namely, the best (first four) method combinations are 
based on OIR according to SRD analysis. The other parameter, though it is used multiple 

Figure 7. Comparison of the methods for determining the applicability domain for four types of 
reactions, i.e. scaled sum of ranking difference (SRD) values between 0 and 100 (x and left y axes). 
Abbreviations can be seen in the text. The solid (black) line is an approximation by cumulated Gauss 
distribution to the discrete distribution of the simulated random numbers (500 000) given in relative 
frequencies, right y axis.
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times, the outlier detection (OD, an analogue of balanced accuracy) is far inferior: OD is 
present in the last (worst) four combinations (Figure 7).

Naturally, another outcome might be expected, if the method is changed for the 
determination of AD, e.g. somewhat better results are expected if the k-nearest neighbour 
environment would increase from k= 1 to (say) five. However, the comparison is exhaus
tive—if one intends to tailor (or even to standardize) the determination of AD methods— 
only several combinations would suffice.

Discussion

Which algorithm(s), which performance parameters, which validation variants 
should be used—all constitute typical MultiCriteria Decision-Making (MCDM) pro
blems and cannot be solved properly when neglecting the interplay of conflicting 
criteria.

It is known that machine learning approaches pioneered validation techniques: 
cross-validation variants, bootstrap, jackknife, randomization test and similar ones. 
Convolutional or deep neural networks cannot be validated in known ways: they 
cannot pass the randomization test, and changing even one pixel in the corner of 
the image deteriorates the licence plate recognition completely. My personal view 
is that deep learning is suitable for the rationalization of existing information 
(description, interpolation) but not for prediction (extrapolation). Hence, proper 
validation techniques should be elaborated urgently for different tasks, various 
problems, and specific datasets individually.

Validation aspects can be coded binarily with certain (slight or considerable) infor
mation loss. The loss is quantifiable by calculating uncertainties, confidence interval 
statistical testing and alike. SRD does not use binary coding, but rank transformation 
(RT); RT eliminates scaling problems at the expense of some information loss. The 
obvious coding for Applicability Domain (AD) is also binary: yes or no = in or out 
of AD.

Imbalanced datasets are quite common in drug design and medicinal chemistry. 
Balanced accuracy [56] was introduced as a performance metric to overcome biased 
classification. Balanced accuracy should be preferred over accuracy because the 
former performs similarly to accuracy on balanced datasets, but it still returns 
true model performance on imbalanced datasets. When performing MCDM analysis, 
balanced accuracy is only one of the conflicting factors, it exerts negligible effect to 
the fair method comparison; c.f. Rácz et al. who have compared 25 performance 
measures in multiclass situations [57]: accuracy and balanced accuracy did not exert 
significantly different outcomes in the case of the three different datasets 
examined.

Deep learning models, e.g. convolutional neural networks (CNNs), are consider
ably over-parameterized. They have many more weights to be fitted than the 
number of observations they were trained on. Consequently, CNN should be more 
prone to overfitting than their fully connected parallels. However, it has recently 
been shown that CNNs exhibit implicit self-regulation, which enhances their ability 
to better generalize [58]. This apparent contradiction can only be overcome if 
MCDM techniques are introduced in the validation step.
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Conclusions and recommendations

The ordering based on sum of absolute values for ranking differences (SRD) is entirely 
general; it can be applied to evaluate and rank (i) modelling methods, (ii) variants of cross- 
validation, (iii) statistical tests, (iv) classification rates, v) information criteria, vi) methods 
determining the applicability domain and vii) performance parameters, as well.

Moreover, the evaluation, ordering and grouping have been completed in a reliable 
manner, in full conformity with the messages of the original authors.

However, the results of this work involve far-reaching consequences. Cross-validation is 
not one technique but a bunch of methods differing in algorithms, in aims, in predictive 
performances (in bias, variance and various degrees of freedom) and in implementations. 
Data structure also exerts a serious influence on the results of cross-validation. It is not 
sufficient to publish the name of the validation method; the next issues should also be 
given detailed algorithm, implementation and decision criteria.

The literature is full of contradictory statements, which are based on empirical evi
dence. Most scientists tend to accept experimental and empirical evidence as ‘truth’ 
without hesitation. The dissonance cannot be solved to search for new evidence and 
other datasets, recommending different practices, as the counterarguments can also be 
supported similarly. Multicriteria decision-making methods of model comparison, not 
utilized until now, are suitable to dissolve such discrepancies. Having not been biased 
by the conviction of the original authors, SRD can compare the methods and criteria in 
a fair way.

Reliable statistical tests (t-test, if the normality can be assumed, or Wilcoxon matched 
pair test, if distributional assumptions cannot be made) can determine whether the 
difference is significant between SRD values of models (methods, performance para
meters, etc.) to be compared and those derived from simulation test by random numbers.

What is the recommended policy, if it is almost sure that the same techniques can be 
applied (or optimized) to be superior and far inferior? Use more variants of validation and 
cross-validation (>7) and compare criteria for a series of specific situations using a sum of 
ranking differences (search for consensus). The best validation method will be suitable in 
similar situations without completing all calculations, resampling, etc.

To obtain a reliable picture on which validation criteria can be used for a given 
modelling task (situation), at least four performance criteria must be checked: r2(training 
set), biased heavily upwards, Q2(leave-one-out), biased in similar direction but to less 
extent, Q2(bootstrap), biased heavily downwards and Q2(prediction set) biased down
wards less than bootstrap. Prediction indicators for randomization tests cannot be used in 
comparison as they deteriorate the original modelling process. They are, however, useful 
in statistical testing, assuming a null hypothesis that the two groups (simulated with 
random numbers and the real one) stem from the same distribution, and rejection of the 
hypothesis, if the difference is significant. Williams-t-test seems to be suitable as it takes 
into account the cross-correlation of performance indicators.

Practitioners of Bayesian methods might experience disappointment that a simple 
fivefold cross-validation is generally better than the Bayesian information criterion when 
truly exhausting different situations.

Methods for the determination of the applicability domain have not been standardized 
yet, but some efforts are worth to think over: i) convex hull algorithm is to be preferred; ii) 
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Random forest regression, in combination of the variance in the ensemble of predictions 
and of OIR criterion (‘out or in RMSE’ – the difference between RMSE of property predic
tion outside or within AD) is a good candidate, whereas support vector machine with 
outlier detection criterion is to be avoided for the validation of methods to determine the 
applicability domain.
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