
ar
X

iv
:1

50
4.

03
22

4v
2 

 [
m

at
h.

C
O

] 
 7

 M
ay

 2
01

5

On the number of k-dominating independent sets

Zoltán Lóránt Nagy ∗

Abstract

We study the existence and the number of k-dominating independent sets in certain
graph families. While the case k = 1 namely the case of maximal independent sets - which
is originated from Erdős and Moser - is widely investigated, much less is known in general.
In this paper we settle the question for trees and prove that the maximum number of k-
dominating independent sets in n-vertex graphs is between ck · 2k

√
2
n

and c′
k
· k+1

√
2
n

if
k ≥ 2, moreover the maximum number of 2-dominating independent sets in n-vertex graphs
is between c · 1.22n and c′ · 1.246n. Graph constructions containing a large number of k-
dominating independent sets are coming from product graphs, complete bipartite graphs and
finite geometries. The product graph construction is associated with the number of certain
MDS codes.

Keywords: k-DIS, domination, maximal independent sets, k-dominating, MDS codes, finite
geometry, hyperoval, (k, n)-arcs

1 Introduction and background

Let G = G(V,E) be a simple graph. For any vertex v ∈ V (G), d(v) denotes the degree
of v, N(v) denotes the set of neighbors of v, and N [v] denotes the closed neighborhood, i.e.
N [v] := N(v) ∪ {v}.

A subset I ⊆ V (G) is called independent if it does not induce any edge. A maximal inde-
pendent set is an independent set which is not a proper subset of another independent set (it
cannot be extended). A maximum independent set is an independent set of maximal size; its
size is denoted by α(G).

A subset D ⊆ V (G) is a dominating set in G if each vertex in V (G) \ D is adjacent to at
least one vertex of D, that is, ∀v ∈ V (G)\D, |N(v)∩D| ≥ 1. We call a set k-dominating if each
vertex in V (G)\D is adjacent to at least k vertices of D, that is, ∀v ∈ V (G)\D, |N(v)∩D| ≥ k
. The theory of independent sets and dominating sets has been studied extensively over the last
60 years.

Following the concept of W loch [28], we study k-dominating independent sets, or k-DISes for
brevity, in case k > 1. Note that the case k = 1 when a set W is dominating and independent
at the same time is also extensively studied. These sets are called kernels of the graphs (due
to Neumann and Morgenstern) and they clearly coincide with the maximal independent sets.
The possible number of kernels has been resolved in many graph families including connected
graphs, bipartite graphs and trees, triangle-free graphs, see the results of Moon, Moser, Füredi,
Hujter and Tuza, Jou and Chang [5, 14,20,21,25].

Our principal function is formulated in the following
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Notation 1.1. Let mik(n) denote the maximum number of k-DISes in graphs of order n, and
let mik(n,F) denote the maximum number of k-DISes in the n-vertex members of the graph
family F . If F consists of a single graph G, we denote by mik(G) the number of k-DISes in G.

Concerning graph constructions, we will use

Notation 1.2. For arbitrary graphs G and H, G + H denotes the disjoint union of G and
H. Similarly, if a parameter k ∈ Z

+ is given, kG denotes the disjoint union of k copies of G.
Km�Km denotes the Cartesian product of two Km graphs, or in other words it is the strongly
regular Lattice graph L(m), or Rook graph. Finally, (Km)t denotes the Cartesian product of t
Km graphs: Km�Km� . . .�Km.

Observation 1.3. mik(G + H) = mik(G) · mik(H) for any two graphs G and H.

Notation 1.4. Let ζk(G) := n
√

mik(G) for a fixed graph G on n vertices and let

ζk(n) := n
√

mik(n), ζk(n,F) := n
√

mik(n,F).

Theorem 1.5. (i) ζk(n) ∈ [1, 2] ∀k, n ∈ Z
+, k ≤ n.

(ii) ζk(G) ≤ lim inf ζk(n) ∀k ∈ Z
+ and for every fixed graph G.

(iii) ∀k ∃ lim ζk(n).

Proof. Part (i) is straightforward since 1 ≤ mik(n) ≤ 2n in view of the empty graph and the
number of all possible subsets of the vertex set.

Suppose ζk(G) ≥ 1. If we apply Observation 1.3 to
⌊

n
|V (G)|

⌋

disjoint copies of G and suitable

number of additional isolated vertices, we get mik(n) ≥ mik(G)

⌊

n
|V (G)|

⌋

, hence part (ii) follows.
Finally, part (i) and part (ii) together implies part (iii).

Our main theorems are

Theorem 1.6. The order of magnitude of the maximum number of 2-DISes is bounded as
follows.

1.22 <
9
√

6 ≤ lim ζ2(n) ≤ 5
√

3 < 1.2457.

Theorem 1.7. For every k > 2,

2k
√

2 ≤ lim ζk(n) ≤ k+1
√

2.

The paper is built up as follows. Section 2 summarizes the main known results on the number
of k-DISes for k = 1.

In Section 3, we give a simple characterization of graphs which contain a k-dominating
independent set and point out the existence of large graph families not containing 2-DISes.
Next we prove that if a k-DIS exists in a tree, then it is unique. Furthermore we present
an efficient algorithm which provides a k-DIS in a given tree or proves the non-existence of
such a set. Finally, we present graph constructions containing many k-DISes. Proposition 3.2
essentially states that a random graph contains a huge number of k-DISes for any fixed k.

We prove the lower bounds of Theorem 1.6 and Theorem 1.7 in Section 4. These bounds
are based on constructions. The presented graphs providing the lower bound on ζk(n) are of
different structure in the cases k = 1, 2, 3 and k ≥ 4. One of them leads to the determination of
the number of ternary (n,M, 2)3 MDS codes as well.
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Extremal constructions are often obtained from finite geometry. (For detailed descriptions we
refer to [15].) In our case, specific examples for different types of graphs with many 2-dominating
(k-dominating) independent sets are given based on hyperovals and generalized {k;n}-arcs.

Section 5 is devoted to the upper bound part of Theorem 1.6 and Theorem 1.7. At last,
some open questions and concluding remarks are collected in Section 6.

2 Results on the number of maximal independent sets: 1-DISes

Erdős and Moser raised the question to determine the maximum number of maximal cliques in
n-vertex graphs. Note that it is the same as the maximum number of maximal independent sets
(that is, 1-DISes) an n-vertex graph can have.

Answering a question of Erdős and Moser, Moon and Moser proved the following well known

Theorem 2.1 (Moon-Moser, [25]). The following equality holds:

mi1(n) =







3n/3 if n ≡ 0 (mod 3)
4
3 · 3⌊n/3⌋ if n ≡ 1 (mod 3)

2 · 3⌊n/3⌋ if n ≡ 2 (mod 3)

Moreover, they proved that the equality is attained if and only if the graph G is isomorphic to
the graph n

3K3 (if n ≡ 0 (mod 3)); to one of the graphs (⌊n3 ⌋− 1)K3 +K4 or (⌊n3 ⌋− 1)K3 + 2K2

(if n ≡ 1 (mod 3)); to ⌊n/3⌋K3 + K2 (if n ≡ 2 (mod 3)).

Corollary 2.2. lim ζ1(n) = 3
√

3, and lim ζk(n) ∈ [1, 3
√

3] for all k > 1.

For connected graphs the question was raised by Wilf [27], and the answer is fairly similar.

Theorem 2.3 (Füredi [14], Griggs, Grinstead, Guichard [18]). Let Fcon be the family of con-
nected graphs. Then

mi1(n,Fcon) =







2
3 · 3n/3 + 1

2 · 2n/3 if n ≡ 0 (mod 3)

3⌊n/3⌋ + 1
2 · 2⌊n/3⌋ if n ≡ 1 (mod 3)

4
3 · 3⌊n/3⌋ + 3

4 · 2⌊n/3⌋ if n ≡ 2 (mod 3)

The extremal graphs are determined as well. In these graphs, there is a vertex of maximum
degree, and its removal yields a member of the extremal graphs list of Theorem 2.1.

Wilf, and later Sagan studied the family of trees.

Theorem 2.4 ( [26,27]). Let T be the family of trees. Then the following equality holds:

mi1(n,T ) =

{

1
22n/2 + 1 if n ≡ 0 (mod 2)

2⌊n/2⌋ if n ≡ 1 (mod 2)

The extremal trees can be classified.

Corollary 2.5. lim ζ1(n,T ) =
√

2.

Theorem 2.6 (Hujter, Tuza [20]). Every triangle-free graph on n ≥ 4 vertices has at most 2n/2

or 5 · 2(n−5)/2 maximal independent sets, whether n is even or odd. In each case, the extremal
graph is unique.
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3 k-DISes — existence and characterizations

While kernels (1-DISes) obviously exist in every graph, this is far from being true for k-DISes
for a fixed k > 1. To illustrate this phenomenon, consider

Proposition 3.1. Let G be (i) a complete graph, (ii) an odd cycle, (iii) the complement of
a connected triangle-free graph with at least 2 edges, w.r.t. Kn. Then G does not contain a
k-dominating independent set for k > 1.

Proof. It is straightforward to check the statement for (i) and (ii). If G is the complement of
a connected triangle-free graph, then an independent set consists of at most 2 vertices in G,
however no pair of vertices are both adjacent to every other vertex in the graph.

Hence the question naturally arises whether to contain (many) k-dominating sets is rather
a rare property for k > 1. Consider the Erdős-Rényi random graph Gn,p. Let Xt,1 denote the
random variable which counts the number of maximal independent sets of size t in Gn,p and
Xt,k denote random variable which counts the number of k-DISes of size t in Gn,p.
Following the idea of Bollobás and Erdős on maximal cliques [9], one can easily calculate the
expected value of Xt,1, Xt,2 or generally of Xt,k as well. Note that the expected value for Xt,1

is well known, we only add here for the purpose of comparison.

Proposition 3.2. E(Xt,1) =
(n
t

)

(1 − p)(
t

2)
(

1 − (1 − p)t
)n−t

,

E(Xt,2) =
(n
t

)

(1 − p)(
t

2)
(

1 − (1 − p)t − tp(1 − p)t−1
)n−t

,

E(Xt,k) =
(n
t

)

(1 − p)(
t

2)
(

1 − (1 − p)t − tp(1 − p)t−1 − · · · −
( t
k−1

)

pk−1(1 − p)t−k+1
)n−t

.

Corollary 3.3. Let p = 1/2.
If t < log2 n− 2 log log n or t > 2 log2 n, then E(Xt,1) < 1/n and so E(Xt,k) < 1/n for all k.

If t = c log2 n with constant 1 < c < 2, then E(Xt,k) = nΩ(c(1− c
2
) log2 n) for all k.

Next, we present an easy constructive method to gain graphs with k-DISes.

Construction 3.4. Let Σ = {Sti} be a set of disjoint stars with centers vi such that ti ≥ k.
Then the following two operations are allowed:

i Identification of x ∈ N(vi) and y ∈ N(vj) in the ith and jth star for a pair (i, j),

ii Addition of an edge between vi and vj for a pair (i, j).

Claim 3.5. Every graph G which contains a k-dominating independent set can be obtained by
Construction 3.4.

Proof. Consider a k-dominating independent set D in G, and let D′ := V (G) \D. Delete the
edges of G |D′ . In the resulting graph, the degree d(v) of every v ∈ D′ is at least k, while
N(D′) = D is an independent set. The claim thus follows.

For the family of trees, we saw in Section 2. that the number of 1-DISes can be exponential
in the number of vertices via Theorem 2.4. If k > 1, the situation is completely different from
the case k = 1. Confirming an extended version of a conjecture of Pawe l Bednarz [3] on k-DISes
of trees, we can formulate the following

Theorem 3.6. Let k > 1. If G is a tree (or forest) and there exists a k-dominating independent
set in G, then it is unique. That is, mik(n,T ) = 1.

4



Proof. Assume to the contrary that there exists a forest T with (at least) two different k-
dominating sets D1 and D2, moreover T is a minimal counterexample regarding the number
of vertices and edges. We introduce the notions LT for the set of leaves in T , QT := N(LT )
the neighbors of the leaves and RT := V \ (LT ∪ QT ) the rest of the vertices. The minimality
condition immediately implies that T is a tree. Furthermore LT ⊆ Di from the k-domination
and QT ∩ Di = ∅ from the independence of the sets Di. Consequently, the graph spanned by
RT has at least two different k-dominating sets and they can be extended in the same way to
QT and LT , a contradiction.

Finally, observe that the leaves of a star Sk+1 form a k-dominating independent set in Sk.

An alternative way to see this is a consequence of the following simple Algorithm 3.7, which
either finds the unique k-dominating set in the tree, or proves that there does not exist any.

Algorithm 3.7. Let D and D′ be empty sets in the beginning.
• Put all the isolated vertices to D. Cluster the vertices of the forest T to LT , QT , RT as in

the proof of Theorem 3.6.
• If |QT | = 0 but |LT | > 1, stop with the answer ’no k-dominating independent set’.
• If |QT | = 0 and |LT | = 1, put w ∈ LT to D and stop with the answer ’D is the k-dominating
independent set’.
• If |QT | = |LT | = 0, stop with the answer ’D is the k-dominating independent set’.
• Else choose a vertex q from QT which has at most 1 neighbor from RT ∪QT . Note that such
a vertex clearly exists since the graph G \ LT is a tree, whose leaf set is a subset of QT .
• • If |N(q) ∩ LT | ≥ k, then put q to D′ and the vertices of N(q) ∩ LT to D, finally delete
{q} ∪ (N(q) ∩ LT ) from T .
• • If |N(q) ∩ LT | = k − 1 and |N(q) ∩ (RT ∪ QT )| = 1, then put q to D′ and the vertices of
N(q) ∩ LT to D, delete {q} ∪ (N(q) ∩ LT ) from T , and separate the edges which are adjacent
to the vertex N(q) ∩ (RT ∪ QT ) in the remaining graph with copies of N(q) ∩ (RT ∪ QT ) as
endvertices.
• • Else, stop with the answer ’no k-dominating independent set’.
Iterate.

It is easy to see that if a vertex is duplicated, then the copies will be leaves in the remaining
graph hence the vertex will be part of D if there exists a suitable k-dominating independent
set. It is also clear that D will be an independent set throughout the algorithm. At the same
time every vertex in D′ will have at least k neighbors from D. Indeed, if a vertex q is put into
D′ when |N(q) ∩ LT | = k − 1, then it is guaranteed that its last neighbor will be in D as well.
Thus D will be a k-dominating independent set. Finally, the algorithm stops with ’no’ answer
exactly when there is an evidence for the non-existence.

4 k-DISes — constructions and lower bounds

In this section we prove the lower bound of Theorem 1.6 and Theorem 1.7 by showing suitable
graphs. Let G be a complete bipartite graph of equal cluster size, or a Turán graph Tp2,p on p2

vertices and p equal partition classes.

Proposition 4.1. ζk(Kt,t) = 2t
√

2 if k ≤ t.
ζk(Tp2,p) = p2

√
p if k ≤ p.

5



Putting together the first statement of Proposition 4.1 with k = t and Theorem 1.5 we get
the lower bound of Theorem 1.7 : ζk(Kk,k) = 2k

√
2 ≤ lim ζk(n).

Note that for k = 3, the Turán graph provides better estimation from Proposition 4.1:
ζk(T3·3,3) = 9

√
3 ≤ lim ζ3(n). Here 9

√
3 ≈ 1.13 while the bipartite graph K3,3 would yield

only 6
√

2 ≈ 1.122. For k = 4, ζ4(T4·4,4) = ζ4(K4,4).

Kneser graphs also provide many k-DISes:

Proposition 4.2. Let G = KN(n, t) denote the Kneser graph whose vertices correspond to
the t-element subsets of a set of n elements, and where two vertices are adjacent if and only
if the two corresponding sets are disjoint. Suppose t < n/2. Then G contains n k-DISes for
k =

(n−t−1
t−1

)

.

Proof. Clearly the largest independent set in G is of size
(n−1
t−1

)

according to the theorem of
Erdős, Ko and Rado [12], and the corresponding t-element subsets are those which contain a
fixed element i ∈ {1, 2, . . . , n}. Thus the proposition indeed follows since a t-element subset
which does not contain i are disjoint to exactly k =

(

n−t−1
t−1

)

t-subsets which contain i, while less
vertices in a maximal independent set do not provide enough edges to k-dominate the rest of
the vertices.

Now we turn our attention to the case k = 2.

Claim 4.3. mi2(3) = 1, mi2(4) = 2, mi2(5) = 2, mi2(6) = 3, mi2(7) = 3, mi2(8) = 4,
mi2(9) = 6, mi2(16) ≥ 24.

Proof. It is easy to check that the number of the 2-DISes in P3, K2,2, K2,2,2, K2,2,2,2, K3�K3

and K4�K4 is 1; 2; 3; 4; 6, and 24, respectively. It is also easy to check that joining a new vertex
to a graph’s every vertex does not increase or decrease the number of the 2-DISes. Finally, it
can be shown by case analysis that these graphs are extremal indeed.

Concerning 2-DISes, product graphs seem to provide the best lower bound, at least much
better than those provided by Proposition 4.1.

Construction 4.4. Let n be large enough, and let

Gn = αK3�K3 + βK4�K4, with α, β ∈ N, β ≤ 8.

(Observe that α and β is uniquely determined.)

In view of Observation 1.3 this implies

Proposition 4.5.
mi2(n) = Ω(6n/9) and hence

9
√

6 ≤ lim ζ2(n).

We conjecture that in fact 9
√

6 = lim ζ2(n) holds, moreover, the graphs listed in Construction
4.4 are extremal graphs, that is, if n is large enough then mi2(n) = mi2(G) holds for an n-vertex
graph only if G is a graph from Construction 4.4.

Concerning k = 3, we conjecture that the Turán graph T3·3,3 provides the order of magnitude,
as 9

√
3 ≤ ζ3(n). Finally, in general we conjecture that if k is large enough, then ζk(n) =

ζk(Kk,k) = 2k
√

2.

Notation 4.6. Let G∗ denote the graph constructed from G by adding a new vertex to its vertex
set and joining it to all of the vertices of G.
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Applying the observation mik(v(G), G) = mik(v(G) + 1, G∗), we have

Corollary 4.7.
mi2(n,Fcon) = Ω(6n/9).

4.1 Connections to MDS codes

We begin with some preliminaries about coding theory and MDS codes, for more details we refer
to [24].

Definition 4.8. Let C ⊆ F
n
q be a set of codewords in the vector space F

n
q . Defining the Hamming

metric d(∗, ∗) on F
n
q , d(C) – called the minimal distance – is d(C) = min{d(c, c′) : c, c′ ∈ C, c 6=

c′}. A code C ⊆ F
n
q is a q-ary (n,M, d)q code if the dimension of the vector space is n, |C| = M

and the minimal distance is d. A code C is linear if it is a subspace of the vector space F
n
q .

The Singleton bound for a q-ary (n,M, d) code states that |C| ≤ qn−d+1. If equality holds,
then C is said to be a maximum distance separable code, or simply, an MDS code. (Linear)
MDS codes are extensively studied, and have strong connections to finite geometries, namely,
to the existence of certain arcs in multidimensional projective spaces, see [24]. The problem of
determining the number of linear MDS codes in F

n
q of minimal distance d was essentially posed

by Segre, and determined so far only in some special cases [8, 17]. We highlight here only

Proposition 4.9. The number of linear q-ary (n,M, 2)q MDS codes is (q − 1)n−1.

Much less is known about the number of all MDS codes in F
n
q of minimal distance d.

Now we return to Construction 4.4. One may suggest that similar graph products with multiple
terms yield bounds on ζk(n).
Consider t disjoint copies of (K3)k. The set V ((K3)k) can be represented by vectors over F3 of
length k, and two of them is adjacent if and only if they differ in exactly 1 coordinate. Hence a
subset D of V ((K3)k) is a k-DIS if and only if every fixed k − 1 coordinate determines exactly
one element of D. In other words, D is a set of 3k−1 vectors from F

k
3, with minimal Hamming

distance 2. Consequently, D is a MDS code, and the number of k-DISes in (K3)k is the number
of (not necessarily linear) (k, 3k−1, 2)3 MDS codes.

Theorem 4.10. The number of (k, 3k−1, 2)3 MDS codes is 3 · 2k−1.

Proof. We prove by induction on k. For k = 1, the statement clearly holds.
First observe that Proposition 4.9 provides 3 · 2k−1 general (k, 3k−1, 2)3 MDS codes. Indeed,
any linear MDS code C contains the all-zero vector, and their translations C + (0, · · · , 0, 1) and
C − (0, · · · , 0, 1) yields suitable new codes.
Hence it is enough to prove that the number of (k + 1, 3k, 2)3 MDS codes is at most twice the
number of (k, 3k−1, 2)3 MDS codes if k ≥ 1. Observe that if one prescribes the value of arbitrary
k coordinates in a (k + 1, qk, 2)q MDS code, then exactly one codeword will fulfill the condition.
Consider a (k + 1, 3k, 2)3 MDS code. Observe that the set of codewords having zero as first
coordinate are corresponding to a (k, 3k−1, 2)3 MDS code. Indeed, the minimal distance does
not change while deleting the first coordinate yields a set of 3k−1 codewords of length k. Finally
we prove that such a (k, 3k−1, 2)3 MDS code could be obtained from at most two (k + 1, 3k, 2)3
MDS codes. To this end, delete the first coordinate of the codewords, and omit those codewords
which had 0 on the first coordinate. Thus we get 2 ·3k−1 vectors in F

k
3. Assign a graph G to this

vector set by connecting every pair of vectors which are at Hamming distance 1. The number of

7



proper two-colorings of this graph by colors ’1’ and ’2’ is equivalent to the number of extensions
of this vector set by an appropriate first coordinate to get a (k + 1, 3k, 2)3 MDS code together
with the omitted codewords. Notice that the number of proper two-colorings is at most two for
any connected graph. Thus Lemma 4.11 finishes the proof.

Lemma 4.11. G, the graph assigned to the codewords of nonzero first coordinate, is connected.

Proof. We prove by contradiction. Assume that (v1, v2, . . . vk+1) and (w1, w2, . . . , wk+1) are
codewords, v1 6= 0 6= w1, furthermore v = (v2, . . . vk+1) and w = (w2, . . . , wk+1) are in differ-
ent component of G and their Hamming distance is minimal w.r.t. pairs of codewords taken
from different components of G. Note that v and w must differ in at least two coordinates
according to our assumption, hence k ≥ 2. W.l.o.g. we may assume that v2 6= w2. Let
us define z2 by {v2, w2, z2} = {1, 2, 0}. Since v and w were at the smallest Hamming dis-
tance, (w2, v3, v4, . . . vk+1) or (v2, w3, w4, . . . , wk+1) cannot be vertices of G since it would yield
a smaller Hamming distance. But any k prescribed coordinates can be extended to get a code-
word in an (k + 1, 3k, 2)3 MDS code, thus (0, w2, v3, v4, . . . vk+1), (0, v2, w3, w4, . . . , wk+1) ∈ C.
Hence (0, z2, v3, v4, . . . vk+1) and (0, z2, w3, w4, . . . , wk+1) do not belong to C, which implies that
(z2, v3, v4, . . . vk+1) and (z2, w3, w4, . . . , wk+1) are in the vertex set of G. Observe that they have
more common coordinates than v and w had while they still belong to different components,
which is a contradiction.

Remark 4.12. The proof implies that the graph assigned to the codewords of nonzero first coor-
dinate is bipartite as well, and all (k, 3k−1, 2)3 MDS codes are the translates of linear (k, 3k−1, 2)3
MDS codes.

Corollary 4.13. ζk((K3)k) =
3k
√

3 · 2k−1. If k > 2, this is less then ζk(Kk,k) = 2k
√

2.

4.2 Connections to finite geometries

In this subsection we study constructions coming from finite geometries. The first reason to
do this is the fact that many extremal structures are provided by geometric constructions in
general (see [15]). In our case they provide a graph family with large number of k-DISes. The
second reason is that these families have remarkable connections to many interesting subfields
of projective geometry, including m-fold blocking sets, arcs and tangent-free sets.

Definition 4.14. Let PG(2, q) denote a finite projective plane over Fq, with point set P and
line set L. Let G(P,L) be the (bipartite) point-line incidence graph of the geometry. Note that
G(P,L) is a q + 1 regular graph on N = 2(q2 + q + 1) vertices.

Definition 4.15. An m-fold blocking set B in a projective plane is a set of points such that
each line contains at least m points of B and some line contains exactly m points of B.

Definition 4.16. In a finite projective plane of order q, a {K; t}-arc is a nonempty proper
subset K of K points of the plane such that every line intersects K in at most t points and there
exists a set of t collinear points in K. A {K, 2}-arc is simply called a K-arc. Note that {K, t}-
arcs and multiple blocking sets are complements of each other in a projective plane, that is, the
complement of a {K, t}-arc is a (q + 1 − t)-fold blocking set. A {K; t}-arc is called maximal, if
K = (q + 1)t− q, that is, in the case when the size attains the possible maximum [10].
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It is well known that every line intersects K in either 0 or t points in a maximal {K; t}-arc
K [10]. Denniston showed [11] that maximal {K; t}-arcs exist in projective planes PG(2, q) of
even order for all divisors t of q. On the other hand, Ball, Blokhuis and Mazzocca proved that
no maximal {K; t}-arcs exists in projective planes of odd order [1].

Construction 4.17. Consider a hyperoval H in PG(2, q), q > 2 even, that is, a maximal arc
of q + 2 points. Let the set D ⊆ V (G) consist of the lines skew to H and the points of H.

Claim 4.18. Construction 4.17 provides a 2-DIS for any hyperoval of the projective geometry.

Proof. Any line intersects a hyperoval in 0 or 2 points, thus the secants of the hyperoval are
dominated by exactly 2 vertices of D ∩ P. The points of P \ H are also dominated by at least
2 vertices of D ∩L since exactly q + 1 − q+2

2 skew lines are going through any external point of
H. Finally, it is clear that the set of skew lines and the vertices of H form an independent set
in G(P,L).

There exist other suitable 2-dominating (or k-dominating) independent sets in G(P,L).
Let us take a point set Q ⊆ P and the lines skew to Q from L. This provides a k-dominating
independent set of G(P,L) if and only if the following conditions hold:

(1) Any line intersects Q in 0 or at least k points,

(2) There exist at least k skew lines to Q through any point in P \ Q.

Corollary 4.19. If Q is a set without tangents on at most 2q − 2 points, the conditions above
hold for k = 2.

Indeed, (1) holds by definition, while (2) is easy to check since if l lines intersect Q through a
given point in P \ Q, then |Q| ≥ 2l must hold.

Beside hyperovals of planes of even order, various families of sets are known which fulfill the
conditions (1) and (2). First, consider the generalization of Construction 4.17.

Construction 4.20. Consider a maximal {K; t}-arc K in PG(2, q), q even. Let G(P,L) be the
point-line incidence graph of the geometry, and let the set D ⊆ V (G) consists of the lines skew
to K and the points of K.

Claim 4.21. Construction 4.20 provides a t-dominating independent set for any maximal
{K; t}-arc of the projective geometry if t ≤ √

q.

Indeed, (1) holds by definition. Concerning (2), at most q + 1 − t lines can intersect K through
a given point in P \ K, thus (q + 1 − t)t ≥ |K| = t(q + 1) − q ⇔ q ≥ t2.

The so-called (q + t, t)-arcs of type (0, 2, t) were investigated by Korchmáros, Mazzocca,
Gács and Weiner [16, 22]. These are pointsets of q + t points in PG(2, q) such that every line
meets them in either 0, 2 or t points, 2 < t < q. It is easy to see that a necessary condition
for their existence is that t divides q and q is even. In [22] the authors construct an infinite
series of examples whenever the field GF (q/t) is a subfield of GF (q). Gács and Weiner [16]
added further geometric and algebraic constructions, moreover, applying a projecting method
to maximal {2s(q + 1) − q, 2s}-arcs, they presented (qh−1(2s(q + 1) − q), qh−12s)-arcs of type
(0, 2s, 2sqh−1) with h ∈ Z

+. Observe that these sets are examples for k-DISes with k > 2 as
well.
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So far, we have seen tangent-free sets only if q is even. For any odd prime power q > 5,
Blokhuis, Seres and Wilbrink presented a suitable set of 2q−2 points arises from the symmetric
difference of two conics [6], which provides a 2-DIS via Corollary 4.19. For q prime, no example is
known having fewer vertices. If q = ph, h > 1, Lavrauw, Storme and Van de Voorde constructed
a set without tangents of size q + (q − p)/(p − 1) < 2q − 2 [23]. Up to now, this is the smallest
known tangent-free pointset in the q odd case. The main idea was to apply the following result.
Consider a set S of q affine points in PG(2, q), p > 2, and let D be the set of determined
directions of S, lying on the ideal line . If |D| < (q+3)/2, then S together with the complement
of D w.r.t. the ideal line is a set without tangents. This was observed and applied by Blokhuis,
Brouwer and Szőnyi [7], showing a set without tangent of size 2q − q/p.

5 Proof of the upper bounds of Theorem 1.6 and 1.7

In Section 4 we proved a lower bound on mi2(n) in Proposition 4.5 which provides
Θ(1, 22n) < mi2(n). This section is devoted to the results on upper bounds. Following the
idea of Füredi [14], the approach is inductive. We begin with a general upper bound which
highlights the key concept.

Proposition 5.1. Let αk := maxd∈Z+{ d+1

√

k+d
k }. Then mik(n) = O(αn

k ).

Proof. Let δ denote the minimal degree in a graph G, and let v be a vertex of minimal degree
in G. Any k-dominating independent set of G contains either v and none of N(v), or at least
k vertices of N(v). The number of k-DISes containing v is evidently at most mik(n − δ − 1),
while the number of k-DISes not containing v is at most δ

kmik(n− δ−1). Indeed, any w ∈ N(v)
appears in at most mik(n−δ−1) k-DISes, and the k-dominating property concerning the vertex
v implies that we counted any such k-dominating independent set at least k times. Hence
mik(n) ≤ (1 + δ

k )mik(n− δ − 1), and the statement follows.

Remark 5.2. Comparing this result with Theorem 2.1, Proposition 5.1 determined the right
order of magnitude in the case k = 1.

Corollary 5.3. mi2(n) < 3
√

2
n

where 3
√

2 ≈ 1, 26.

In order to prove the upper bound of Theorem 1.6, we refine the above result. The main
idea is to improve the bounds if the minimal degree is less then 4.

Theorem 5.4. mi2(n) < 5
√

3
n

where 5
√

3 ≈ 1, 2457.

Proof. Define τ := 5
√

3. We prove by induction. Note that mi2(0) ≤ τ0 and mi2(1) ≤ τ1 trivially
holds and assume that mi2(i) ≤ τ i holds for i = 0, . . . , n−1. Notice that the deletion of possible
isolated vertices does not affect the number of 2-DISes.

Assume first that δ = 1 in G. Consequently, mi2(n,G) ≤ mi2(n− 2) ≤ τn−2 ≤ τn as vertices
of degree 1 must be in the 2-dominating set in contrast with their neighbors.

Next, suppose that d(v) = δ = 2. This implies

mi2(n,G) ≤ mi2(n− 3) + mi2(n− 4) (5.1)

since the 2-DISes are either formed by v and a 2-DIS in G\N [v] or formed by w1, w2 ∈ N(v) and a
2-DIS in G\ (N [w1]∪ N [w2]). Let τ1 be the unique positive root of P (x) = x4−x−1. (τ1 ≈ 1, 22.)
Then inequality (5.1) implies that mi2(n,G) ≤ mi2(n − 3) + mi2(n− 4) ≤ τn−3 + τn−4 < τn as
τ1 < τ .
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Let us suppose d(v) = δ = 3. If |N(wi)∪ N(wj)]| ≥ 5 for all pairs of vertices wi 6= wj ∈ N(v)
and N(v) is an independent set, then

mi2(n,G) ≤ mi2(n− 4) + mi2(n− 7) + 2mi2(n− 8). (5.2)

Indeed, the 2-DISes are either formed by v and a 2-DIS in G \ N [v], or formed by w1, w2 ∈
N(v) and a 2-DIS in G \ (N [w1] ∪ N [w2]), or formed by w1, w3 ∈ N(v) and a 2-DIS in
G\ (N [w1]∪ N [w3]∪{w2}), or formed by w2, w3 ∈ N(v) and a 2-DIS in G\ (N [w2]∪ N [w3]∪
{w1}). Let τ2 be the unique positive root of P (x) = x8−x4−x−2. (τ2 ≈ 1, 241.) Then inequality
(5.2) implies that mi2(n,G) ≤ mi2(n−4)+ mi2(n− 7)+ 2mi2(n− 8) ≤ τn−4+τn−7+2τn−8 < τn

as τ2 < τ .
What if |N(wi)∪ N(wj)| ≥ 5 does not hold for some wi 6= wj ∈ N(v)? Then every 2-DIS which
does not contain v must contain both wi and wj . Indeed, one of them must be in the set D to
dominate v, but then the other one cannot be 2-dominated, thus it must be in the D as well.
Hence we could bound the number of 2-DISes by mi2(n− 4) + mi2(n− 5), and the inequality
mi2(n,G) < τn follows easily.
Finally, we have to handle the case when |N(wi) ∪ N(wj)| ≥ 5 holds for every wi, wj ∈ N(v)
but N(v) induces at least one edge. W.l.o.g, w1w2 ∈ E(G) and then we miss the 2-DISes where
w1 and w2 were both part of D in inequality (5.2), which yields

mi2(n,G) ≤ mi2(n− 4) + 2mi2(n− 7) (5.3)

to hold in this case. Observing that the unique positive root τ3 of x7 − x3 − 2 is less then τ , we
conclude to mi2(n,G) < τn again.

At last, applying the proof of Proposition 5.1 to δ ≥ 4, we get

mi2(n) ≤
(

2 + δ

2

)

mi2(n− δ − 1).

The fact

max
d∈Z,d≥4

{

d+1

√

2 + d

2

}

=
5

√

6

2
= τ

thus completes the proof.

Proof of Theorem 1.7, upper bound. Finally, to obtain the upper bound in Theorem 1.7, we
only have to observe two facts. On the one hand, we can assume that δ ≥ k holds for the
minimal degree of G, similarly to the proof of Theorem 5.4. Indeed, otherwise we would get

mik(n,G) ≤ mik(n−δ). On the other hand, easy computation shows that d+1

√

k+d
k is a monotone

decreasing function of d from d = k, if k is fixed. Thus mik(n,G) ≤ 2 · mik(n − k − 1), and the
upper bound follows.

6 Concluding remarks and open problems

In this final chapter we gather some problems and conjectures related to the discussed results.

Problem 6.1. Determine or bound the number of all MDS codes, especially the number of q-ary
MDS codes of type (n,M, 2)q

Remark 6.2. The result is related to the number of q − 1-coloring of certain Hamming-graphs
in view of the proof of Theorem 4.10. Note that this problem is widely open even if we consider
linear MDS codes, and on the other hand q is not required to be a prime power.
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Problem 6.3. Determine the number of maximal independent sets of the incidence graph
G(P,L) of the projective geometry PG(2, q) in terms of the number of vertices.

Conjecture 6.4. For every k, there exists a graph G for which ζk(G) = lim ζk(n) holds.

Conjecture 6.5. ( 9
√

6-conjecture) The maximal number of 2-DISes in n-vertex graphs is
Θ( 9

√
6
n
). That is, ζ2(n) = ζ2(K3�K3). Moreover, Construction 4.4 provides the extremal

graphs for the function mi2(n) if n is large enough.

Conjecture 6.6. The maximal number of k-DISes in n-vertex graphs is attained for the disjoint
union of Kk,k graphs for k > 3 if 2k|n.

Problem 6.7. Describe large graph families F for which

• mik(n,F) ≤ 1,

• mik(n,F) is bounded by a polynomial of n,

• lim ζk(n,F) = 1.

This problem is motivated by the results of Farber, Hujter and Tuza [13].

Conjecture 6.8. mik(n,F) is not bounded by a polynomial of n for the graph family of incidence
graphs of projective planes.
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Zsolt Tuza for helpful discussions on the topics of this paper.

References

[1] S. Ball, A. Blokhuis, Mazzocca, Maximal arcs in Desarguesian planes of odd order do not
exist, Combinatorica 17(1) (1997) 31-41.

[2] P. Bednarz, private communication

[3] P. Bednarz, C. Hernandez-Cruz, I. W loch, On the existence and the number of (2 − d)-
kernels in graphs, to appear.

[4] C. Berge, Graph and Hypergraphs, North-Holland, Amsterdam, 1973.

[5] G. J. Chang, The number of maximum independent sets, Taiwanese Journal of Mathemat-
ics, 4(4) (2000) 685-695.
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[12] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, The Quarterly
Journal of Mathematics, 12(1), (1961) 313-320.

[13] M. Farber, M. Hujter, Zs. Tuza, An upper bound on the number of cliques in graphs,
Networks, 23 (1993) 207-210.
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[15] Z. Füredi, M. Simonovits, The history of degenerate (bipartite) extremal graph problems,
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[16] A. Gács, Zs. Weiner, On (q + t, t)-arcs of type (0, 2, t), Designs, Codes and Cryptography
29(1-3) (2003) 131-139.

[17] S. R. Ghorpade, G. Lachaud, Hyperplane sections of Grassmannians and the number of
MDS linear codes, Finite Fields and Their Applications, 7(4) (2001) 468-506.

[18] J. R. Griggs, C. M. Grinstead, D. R. Guichard, The number of maximal independent sets
in a connected graph, Discrete Mathematics 68(2-3) (1988) 211-220.

[19] N. Hamilton, Maximal Arcs in Finite Projective Planes and Associated Structures in Pro-
jective Spaces, Thesis, 1995.

[20] M. Hujter, Zs. Tuza, The number of maximal independent sets in triangle-free graphs SIAM
J. Discrete Math., 6 (1993) 284-288

[21] M-J. Jou, G. J. Chang, Survey on counting maximal independent sets, Proceedings of the
Second Asian Mathematical Conference, World Scientific, Singapore (1995) 265-275.
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